1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/migrate.h> 56 #include <linux/pagemap.h> 57 #include <linux/fs.h> 58 59 #define ZSPAGE_MAGIC 0x58 60 61 /* 62 * This must be power of 2 and greater than of equal to sizeof(link_free). 63 * These two conditions ensure that any 'struct link_free' itself doesn't 64 * span more than 1 page which avoids complex case of mapping 2 pages simply 65 * to restore link_free pointer values. 66 */ 67 #define ZS_ALIGN 8 68 69 /* 70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 72 */ 73 #define ZS_MAX_ZSPAGE_ORDER 2 74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * as single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Memory for allocating for handle keeps object position by 103 * encoding <page, obj_idx> and the encoded value has a room 104 * in least bit(ie, look at obj_to_location). 105 * We use the bit to synchronize between object access by 106 * user and migration. 107 */ 108 #define HANDLE_PIN_BIT 0 109 110 /* 111 * Head in allocated object should have OBJ_ALLOCATED_TAG 112 * to identify the object was allocated or not. 113 * It's okay to add the status bit in the least bit because 114 * header keeps handle which is 4byte-aligned address so we 115 * have room for two bit at least. 116 */ 117 #define OBJ_ALLOCATED_TAG 1 118 #define OBJ_TAG_BITS 1 119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 121 122 #define FULLNESS_BITS 2 123 #define CLASS_BITS 8 124 #define ISOLATED_BITS 3 125 #define MAGIC_VAL_BITS 8 126 127 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 129 #define ZS_MIN_ALLOC_SIZE \ 130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 131 /* each chunk includes extra space to keep handle */ 132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 133 134 /* 135 * On systems with 4K page size, this gives 255 size classes! There is a 136 * trader-off here: 137 * - Large number of size classes is potentially wasteful as free page are 138 * spread across these classes 139 * - Small number of size classes causes large internal fragmentation 140 * - Probably its better to use specific size classes (empirically 141 * determined). NOTE: all those class sizes must be set as multiple of 142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 143 * 144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 145 * (reason above) 146 */ 147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 149 ZS_SIZE_CLASS_DELTA) + 1) 150 151 enum fullness_group { 152 ZS_EMPTY, 153 ZS_ALMOST_EMPTY, 154 ZS_ALMOST_FULL, 155 ZS_FULL, 156 NR_ZS_FULLNESS, 157 }; 158 159 enum zs_stat_type { 160 CLASS_EMPTY, 161 CLASS_ALMOST_EMPTY, 162 CLASS_ALMOST_FULL, 163 CLASS_FULL, 164 OBJ_ALLOCATED, 165 OBJ_USED, 166 NR_ZS_STAT_TYPE, 167 }; 168 169 struct zs_size_stat { 170 unsigned long objs[NR_ZS_STAT_TYPE]; 171 }; 172 173 #ifdef CONFIG_ZSMALLOC_STAT 174 static struct dentry *zs_stat_root; 175 #endif 176 177 #ifdef CONFIG_COMPACTION 178 static struct vfsmount *zsmalloc_mnt; 179 #endif 180 181 /* 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 183 * n <= N / f, where 184 * n = number of allocated objects 185 * N = total number of objects zspage can store 186 * f = fullness_threshold_frac 187 * 188 * Similarly, we assign zspage to: 189 * ZS_ALMOST_FULL when n > N / f 190 * ZS_EMPTY when n == 0 191 * ZS_FULL when n == N 192 * 193 * (see: fix_fullness_group()) 194 */ 195 static const int fullness_threshold_frac = 4; 196 197 struct size_class { 198 spinlock_t lock; 199 struct list_head fullness_list[NR_ZS_FULLNESS]; 200 /* 201 * Size of objects stored in this class. Must be multiple 202 * of ZS_ALIGN. 203 */ 204 int size; 205 int objs_per_zspage; 206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 207 int pages_per_zspage; 208 209 unsigned int index; 210 struct zs_size_stat stats; 211 }; 212 213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 214 static void SetPageHugeObject(struct page *page) 215 { 216 SetPageOwnerPriv1(page); 217 } 218 219 static void ClearPageHugeObject(struct page *page) 220 { 221 ClearPageOwnerPriv1(page); 222 } 223 224 static int PageHugeObject(struct page *page) 225 { 226 return PageOwnerPriv1(page); 227 } 228 229 /* 230 * Placed within free objects to form a singly linked list. 231 * For every zspage, zspage->freeobj gives head of this list. 232 * 233 * This must be power of 2 and less than or equal to ZS_ALIGN 234 */ 235 struct link_free { 236 union { 237 /* 238 * Free object index; 239 * It's valid for non-allocated object 240 */ 241 unsigned long next; 242 /* 243 * Handle of allocated object. 244 */ 245 unsigned long handle; 246 }; 247 }; 248 249 struct zs_pool { 250 const char *name; 251 252 struct size_class *size_class[ZS_SIZE_CLASSES]; 253 struct kmem_cache *handle_cachep; 254 struct kmem_cache *zspage_cachep; 255 256 atomic_long_t pages_allocated; 257 258 struct zs_pool_stats stats; 259 260 /* Compact classes */ 261 struct shrinker shrinker; 262 263 #ifdef CONFIG_ZSMALLOC_STAT 264 struct dentry *stat_dentry; 265 #endif 266 #ifdef CONFIG_COMPACTION 267 struct inode *inode; 268 struct work_struct free_work; 269 #endif 270 }; 271 272 struct zspage { 273 struct { 274 unsigned int fullness:FULLNESS_BITS; 275 unsigned int class:CLASS_BITS + 1; 276 unsigned int isolated:ISOLATED_BITS; 277 unsigned int magic:MAGIC_VAL_BITS; 278 }; 279 unsigned int inuse; 280 unsigned int freeobj; 281 struct page *first_page; 282 struct list_head list; /* fullness list */ 283 #ifdef CONFIG_COMPACTION 284 rwlock_t lock; 285 #endif 286 }; 287 288 struct mapping_area { 289 #ifdef CONFIG_PGTABLE_MAPPING 290 struct vm_struct *vm; /* vm area for mapping object that span pages */ 291 #else 292 char *vm_buf; /* copy buffer for objects that span pages */ 293 #endif 294 char *vm_addr; /* address of kmap_atomic()'ed pages */ 295 enum zs_mapmode vm_mm; /* mapping mode */ 296 }; 297 298 #ifdef CONFIG_COMPACTION 299 static int zs_register_migration(struct zs_pool *pool); 300 static void zs_unregister_migration(struct zs_pool *pool); 301 static void migrate_lock_init(struct zspage *zspage); 302 static void migrate_read_lock(struct zspage *zspage); 303 static void migrate_read_unlock(struct zspage *zspage); 304 static void kick_deferred_free(struct zs_pool *pool); 305 static void init_deferred_free(struct zs_pool *pool); 306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 307 #else 308 static int zsmalloc_mount(void) { return 0; } 309 static void zsmalloc_unmount(void) {} 310 static int zs_register_migration(struct zs_pool *pool) { return 0; } 311 static void zs_unregister_migration(struct zs_pool *pool) {} 312 static void migrate_lock_init(struct zspage *zspage) {} 313 static void migrate_read_lock(struct zspage *zspage) {} 314 static void migrate_read_unlock(struct zspage *zspage) {} 315 static void kick_deferred_free(struct zs_pool *pool) {} 316 static void init_deferred_free(struct zs_pool *pool) {} 317 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 318 #endif 319 320 static int create_cache(struct zs_pool *pool) 321 { 322 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 323 0, 0, NULL); 324 if (!pool->handle_cachep) 325 return 1; 326 327 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 328 0, 0, NULL); 329 if (!pool->zspage_cachep) { 330 kmem_cache_destroy(pool->handle_cachep); 331 pool->handle_cachep = NULL; 332 return 1; 333 } 334 335 return 0; 336 } 337 338 static void destroy_cache(struct zs_pool *pool) 339 { 340 kmem_cache_destroy(pool->handle_cachep); 341 kmem_cache_destroy(pool->zspage_cachep); 342 } 343 344 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 345 { 346 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 347 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 348 } 349 350 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 351 { 352 kmem_cache_free(pool->handle_cachep, (void *)handle); 353 } 354 355 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 356 { 357 return kmem_cache_alloc(pool->zspage_cachep, 358 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 359 } 360 361 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 362 { 363 kmem_cache_free(pool->zspage_cachep, zspage); 364 } 365 366 static void record_obj(unsigned long handle, unsigned long obj) 367 { 368 /* 369 * lsb of @obj represents handle lock while other bits 370 * represent object value the handle is pointing so 371 * updating shouldn't do store tearing. 372 */ 373 WRITE_ONCE(*(unsigned long *)handle, obj); 374 } 375 376 /* zpool driver */ 377 378 #ifdef CONFIG_ZPOOL 379 380 static void *zs_zpool_create(const char *name, gfp_t gfp, 381 const struct zpool_ops *zpool_ops, 382 struct zpool *zpool) 383 { 384 /* 385 * Ignore global gfp flags: zs_malloc() may be invoked from 386 * different contexts and its caller must provide a valid 387 * gfp mask. 388 */ 389 return zs_create_pool(name); 390 } 391 392 static void zs_zpool_destroy(void *pool) 393 { 394 zs_destroy_pool(pool); 395 } 396 397 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 398 unsigned long *handle) 399 { 400 *handle = zs_malloc(pool, size, gfp); 401 return *handle ? 0 : -1; 402 } 403 static void zs_zpool_free(void *pool, unsigned long handle) 404 { 405 zs_free(pool, handle); 406 } 407 408 static void *zs_zpool_map(void *pool, unsigned long handle, 409 enum zpool_mapmode mm) 410 { 411 enum zs_mapmode zs_mm; 412 413 switch (mm) { 414 case ZPOOL_MM_RO: 415 zs_mm = ZS_MM_RO; 416 break; 417 case ZPOOL_MM_WO: 418 zs_mm = ZS_MM_WO; 419 break; 420 case ZPOOL_MM_RW: /* fallthru */ 421 default: 422 zs_mm = ZS_MM_RW; 423 break; 424 } 425 426 return zs_map_object(pool, handle, zs_mm); 427 } 428 static void zs_zpool_unmap(void *pool, unsigned long handle) 429 { 430 zs_unmap_object(pool, handle); 431 } 432 433 static u64 zs_zpool_total_size(void *pool) 434 { 435 return zs_get_total_pages(pool) << PAGE_SHIFT; 436 } 437 438 static struct zpool_driver zs_zpool_driver = { 439 .type = "zsmalloc", 440 .owner = THIS_MODULE, 441 .create = zs_zpool_create, 442 .destroy = zs_zpool_destroy, 443 .malloc = zs_zpool_malloc, 444 .free = zs_zpool_free, 445 .map = zs_zpool_map, 446 .unmap = zs_zpool_unmap, 447 .total_size = zs_zpool_total_size, 448 }; 449 450 MODULE_ALIAS("zpool-zsmalloc"); 451 #endif /* CONFIG_ZPOOL */ 452 453 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 454 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 455 456 static bool is_zspage_isolated(struct zspage *zspage) 457 { 458 return zspage->isolated; 459 } 460 461 static __maybe_unused int is_first_page(struct page *page) 462 { 463 return PagePrivate(page); 464 } 465 466 /* Protected by class->lock */ 467 static inline int get_zspage_inuse(struct zspage *zspage) 468 { 469 return zspage->inuse; 470 } 471 472 static inline void set_zspage_inuse(struct zspage *zspage, int val) 473 { 474 zspage->inuse = val; 475 } 476 477 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 478 { 479 zspage->inuse += val; 480 } 481 482 static inline struct page *get_first_page(struct zspage *zspage) 483 { 484 struct page *first_page = zspage->first_page; 485 486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 487 return first_page; 488 } 489 490 static inline int get_first_obj_offset(struct page *page) 491 { 492 return page->units; 493 } 494 495 static inline void set_first_obj_offset(struct page *page, int offset) 496 { 497 page->units = offset; 498 } 499 500 static inline unsigned int get_freeobj(struct zspage *zspage) 501 { 502 return zspage->freeobj; 503 } 504 505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 506 { 507 zspage->freeobj = obj; 508 } 509 510 static void get_zspage_mapping(struct zspage *zspage, 511 unsigned int *class_idx, 512 enum fullness_group *fullness) 513 { 514 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 515 516 *fullness = zspage->fullness; 517 *class_idx = zspage->class; 518 } 519 520 static void set_zspage_mapping(struct zspage *zspage, 521 unsigned int class_idx, 522 enum fullness_group fullness) 523 { 524 zspage->class = class_idx; 525 zspage->fullness = fullness; 526 } 527 528 /* 529 * zsmalloc divides the pool into various size classes where each 530 * class maintains a list of zspages where each zspage is divided 531 * into equal sized chunks. Each allocation falls into one of these 532 * classes depending on its size. This function returns index of the 533 * size class which has chunk size big enough to hold the give size. 534 */ 535 static int get_size_class_index(int size) 536 { 537 int idx = 0; 538 539 if (likely(size > ZS_MIN_ALLOC_SIZE)) 540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 541 ZS_SIZE_CLASS_DELTA); 542 543 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 544 } 545 546 /* type can be of enum type zs_stat_type or fullness_group */ 547 static inline void zs_stat_inc(struct size_class *class, 548 int type, unsigned long cnt) 549 { 550 class->stats.objs[type] += cnt; 551 } 552 553 /* type can be of enum type zs_stat_type or fullness_group */ 554 static inline void zs_stat_dec(struct size_class *class, 555 int type, unsigned long cnt) 556 { 557 class->stats.objs[type] -= cnt; 558 } 559 560 /* type can be of enum type zs_stat_type or fullness_group */ 561 static inline unsigned long zs_stat_get(struct size_class *class, 562 int type) 563 { 564 return class->stats.objs[type]; 565 } 566 567 #ifdef CONFIG_ZSMALLOC_STAT 568 569 static void __init zs_stat_init(void) 570 { 571 if (!debugfs_initialized()) { 572 pr_warn("debugfs not available, stat dir not created\n"); 573 return; 574 } 575 576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 577 if (!zs_stat_root) 578 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 579 } 580 581 static void __exit zs_stat_exit(void) 582 { 583 debugfs_remove_recursive(zs_stat_root); 584 } 585 586 static unsigned long zs_can_compact(struct size_class *class); 587 588 static int zs_stats_size_show(struct seq_file *s, void *v) 589 { 590 int i; 591 struct zs_pool *pool = s->private; 592 struct size_class *class; 593 int objs_per_zspage; 594 unsigned long class_almost_full, class_almost_empty; 595 unsigned long obj_allocated, obj_used, pages_used, freeable; 596 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 597 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 598 unsigned long total_freeable = 0; 599 600 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 601 "class", "size", "almost_full", "almost_empty", 602 "obj_allocated", "obj_used", "pages_used", 603 "pages_per_zspage", "freeable"); 604 605 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 606 class = pool->size_class[i]; 607 608 if (class->index != i) 609 continue; 610 611 spin_lock(&class->lock); 612 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 613 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 614 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 615 obj_used = zs_stat_get(class, OBJ_USED); 616 freeable = zs_can_compact(class); 617 spin_unlock(&class->lock); 618 619 objs_per_zspage = class->objs_per_zspage; 620 pages_used = obj_allocated / objs_per_zspage * 621 class->pages_per_zspage; 622 623 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 624 " %10lu %10lu %16d %8lu\n", 625 i, class->size, class_almost_full, class_almost_empty, 626 obj_allocated, obj_used, pages_used, 627 class->pages_per_zspage, freeable); 628 629 total_class_almost_full += class_almost_full; 630 total_class_almost_empty += class_almost_empty; 631 total_objs += obj_allocated; 632 total_used_objs += obj_used; 633 total_pages += pages_used; 634 total_freeable += freeable; 635 } 636 637 seq_puts(s, "\n"); 638 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 639 "Total", "", total_class_almost_full, 640 total_class_almost_empty, total_objs, 641 total_used_objs, total_pages, "", total_freeable); 642 643 return 0; 644 } 645 646 static int zs_stats_size_open(struct inode *inode, struct file *file) 647 { 648 return single_open(file, zs_stats_size_show, inode->i_private); 649 } 650 651 static const struct file_operations zs_stat_size_ops = { 652 .open = zs_stats_size_open, 653 .read = seq_read, 654 .llseek = seq_lseek, 655 .release = single_release, 656 }; 657 658 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 659 { 660 struct dentry *entry; 661 662 if (!zs_stat_root) { 663 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 664 return; 665 } 666 667 entry = debugfs_create_dir(name, zs_stat_root); 668 if (!entry) { 669 pr_warn("debugfs dir <%s> creation failed\n", name); 670 return; 671 } 672 pool->stat_dentry = entry; 673 674 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 675 pool->stat_dentry, pool, &zs_stat_size_ops); 676 if (!entry) { 677 pr_warn("%s: debugfs file entry <%s> creation failed\n", 678 name, "classes"); 679 debugfs_remove_recursive(pool->stat_dentry); 680 pool->stat_dentry = NULL; 681 } 682 } 683 684 static void zs_pool_stat_destroy(struct zs_pool *pool) 685 { 686 debugfs_remove_recursive(pool->stat_dentry); 687 } 688 689 #else /* CONFIG_ZSMALLOC_STAT */ 690 static void __init zs_stat_init(void) 691 { 692 } 693 694 static void __exit zs_stat_exit(void) 695 { 696 } 697 698 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 699 { 700 } 701 702 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 703 { 704 } 705 #endif 706 707 708 /* 709 * For each size class, zspages are divided into different groups 710 * depending on how "full" they are. This was done so that we could 711 * easily find empty or nearly empty zspages when we try to shrink 712 * the pool (not yet implemented). This function returns fullness 713 * status of the given page. 714 */ 715 static enum fullness_group get_fullness_group(struct size_class *class, 716 struct zspage *zspage) 717 { 718 int inuse, objs_per_zspage; 719 enum fullness_group fg; 720 721 inuse = get_zspage_inuse(zspage); 722 objs_per_zspage = class->objs_per_zspage; 723 724 if (inuse == 0) 725 fg = ZS_EMPTY; 726 else if (inuse == objs_per_zspage) 727 fg = ZS_FULL; 728 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 729 fg = ZS_ALMOST_EMPTY; 730 else 731 fg = ZS_ALMOST_FULL; 732 733 return fg; 734 } 735 736 /* 737 * Each size class maintains various freelists and zspages are assigned 738 * to one of these freelists based on the number of live objects they 739 * have. This functions inserts the given zspage into the freelist 740 * identified by <class, fullness_group>. 741 */ 742 static void insert_zspage(struct size_class *class, 743 struct zspage *zspage, 744 enum fullness_group fullness) 745 { 746 struct zspage *head; 747 748 zs_stat_inc(class, fullness, 1); 749 head = list_first_entry_or_null(&class->fullness_list[fullness], 750 struct zspage, list); 751 /* 752 * We want to see more ZS_FULL pages and less almost empty/full. 753 * Put pages with higher ->inuse first. 754 */ 755 if (head) { 756 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 757 list_add(&zspage->list, &head->list); 758 return; 759 } 760 } 761 list_add(&zspage->list, &class->fullness_list[fullness]); 762 } 763 764 /* 765 * This function removes the given zspage from the freelist identified 766 * by <class, fullness_group>. 767 */ 768 static void remove_zspage(struct size_class *class, 769 struct zspage *zspage, 770 enum fullness_group fullness) 771 { 772 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 773 VM_BUG_ON(is_zspage_isolated(zspage)); 774 775 list_del_init(&zspage->list); 776 zs_stat_dec(class, fullness, 1); 777 } 778 779 /* 780 * Each size class maintains zspages in different fullness groups depending 781 * on the number of live objects they contain. When allocating or freeing 782 * objects, the fullness status of the page can change, say, from ALMOST_FULL 783 * to ALMOST_EMPTY when freeing an object. This function checks if such 784 * a status change has occurred for the given page and accordingly moves the 785 * page from the freelist of the old fullness group to that of the new 786 * fullness group. 787 */ 788 static enum fullness_group fix_fullness_group(struct size_class *class, 789 struct zspage *zspage) 790 { 791 int class_idx; 792 enum fullness_group currfg, newfg; 793 794 get_zspage_mapping(zspage, &class_idx, &currfg); 795 newfg = get_fullness_group(class, zspage); 796 if (newfg == currfg) 797 goto out; 798 799 if (!is_zspage_isolated(zspage)) { 800 remove_zspage(class, zspage, currfg); 801 insert_zspage(class, zspage, newfg); 802 } 803 804 set_zspage_mapping(zspage, class_idx, newfg); 805 806 out: 807 return newfg; 808 } 809 810 /* 811 * We have to decide on how many pages to link together 812 * to form a zspage for each size class. This is important 813 * to reduce wastage due to unusable space left at end of 814 * each zspage which is given as: 815 * wastage = Zp % class_size 816 * usage = Zp - wastage 817 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 818 * 819 * For example, for size class of 3/8 * PAGE_SIZE, we should 820 * link together 3 PAGE_SIZE sized pages to form a zspage 821 * since then we can perfectly fit in 8 such objects. 822 */ 823 static int get_pages_per_zspage(int class_size) 824 { 825 int i, max_usedpc = 0; 826 /* zspage order which gives maximum used size per KB */ 827 int max_usedpc_order = 1; 828 829 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 830 int zspage_size; 831 int waste, usedpc; 832 833 zspage_size = i * PAGE_SIZE; 834 waste = zspage_size % class_size; 835 usedpc = (zspage_size - waste) * 100 / zspage_size; 836 837 if (usedpc > max_usedpc) { 838 max_usedpc = usedpc; 839 max_usedpc_order = i; 840 } 841 } 842 843 return max_usedpc_order; 844 } 845 846 static struct zspage *get_zspage(struct page *page) 847 { 848 struct zspage *zspage = (struct zspage *)page->private; 849 850 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 851 return zspage; 852 } 853 854 static struct page *get_next_page(struct page *page) 855 { 856 if (unlikely(PageHugeObject(page))) 857 return NULL; 858 859 return page->freelist; 860 } 861 862 /** 863 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 864 * @page: page object resides in zspage 865 * @obj_idx: object index 866 */ 867 static void obj_to_location(unsigned long obj, struct page **page, 868 unsigned int *obj_idx) 869 { 870 obj >>= OBJ_TAG_BITS; 871 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 872 *obj_idx = (obj & OBJ_INDEX_MASK); 873 } 874 875 /** 876 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 877 * @page: page object resides in zspage 878 * @obj_idx: object index 879 */ 880 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 881 { 882 unsigned long obj; 883 884 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 885 obj |= obj_idx & OBJ_INDEX_MASK; 886 obj <<= OBJ_TAG_BITS; 887 888 return obj; 889 } 890 891 static unsigned long handle_to_obj(unsigned long handle) 892 { 893 return *(unsigned long *)handle; 894 } 895 896 static unsigned long obj_to_head(struct page *page, void *obj) 897 { 898 if (unlikely(PageHugeObject(page))) { 899 VM_BUG_ON_PAGE(!is_first_page(page), page); 900 return page->index; 901 } else 902 return *(unsigned long *)obj; 903 } 904 905 static inline int testpin_tag(unsigned long handle) 906 { 907 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 908 } 909 910 static inline int trypin_tag(unsigned long handle) 911 { 912 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 913 } 914 915 static void pin_tag(unsigned long handle) 916 { 917 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 918 } 919 920 static void unpin_tag(unsigned long handle) 921 { 922 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 923 } 924 925 static void reset_page(struct page *page) 926 { 927 __ClearPageMovable(page); 928 ClearPagePrivate(page); 929 set_page_private(page, 0); 930 page_mapcount_reset(page); 931 ClearPageHugeObject(page); 932 page->freelist = NULL; 933 } 934 935 /* 936 * To prevent zspage destroy during migration, zspage freeing should 937 * hold locks of all pages in the zspage. 938 */ 939 void lock_zspage(struct zspage *zspage) 940 { 941 struct page *page = get_first_page(zspage); 942 943 do { 944 lock_page(page); 945 } while ((page = get_next_page(page)) != NULL); 946 } 947 948 int trylock_zspage(struct zspage *zspage) 949 { 950 struct page *cursor, *fail; 951 952 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 953 get_next_page(cursor)) { 954 if (!trylock_page(cursor)) { 955 fail = cursor; 956 goto unlock; 957 } 958 } 959 960 return 1; 961 unlock: 962 for (cursor = get_first_page(zspage); cursor != fail; cursor = 963 get_next_page(cursor)) 964 unlock_page(cursor); 965 966 return 0; 967 } 968 969 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 970 struct zspage *zspage) 971 { 972 struct page *page, *next; 973 enum fullness_group fg; 974 unsigned int class_idx; 975 976 get_zspage_mapping(zspage, &class_idx, &fg); 977 978 assert_spin_locked(&class->lock); 979 980 VM_BUG_ON(get_zspage_inuse(zspage)); 981 VM_BUG_ON(fg != ZS_EMPTY); 982 983 next = page = get_first_page(zspage); 984 do { 985 VM_BUG_ON_PAGE(!PageLocked(page), page); 986 next = get_next_page(page); 987 reset_page(page); 988 unlock_page(page); 989 dec_zone_page_state(page, NR_ZSPAGES); 990 put_page(page); 991 page = next; 992 } while (page != NULL); 993 994 cache_free_zspage(pool, zspage); 995 996 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 997 atomic_long_sub(class->pages_per_zspage, 998 &pool->pages_allocated); 999 } 1000 1001 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1002 struct zspage *zspage) 1003 { 1004 VM_BUG_ON(get_zspage_inuse(zspage)); 1005 VM_BUG_ON(list_empty(&zspage->list)); 1006 1007 if (!trylock_zspage(zspage)) { 1008 kick_deferred_free(pool); 1009 return; 1010 } 1011 1012 remove_zspage(class, zspage, ZS_EMPTY); 1013 __free_zspage(pool, class, zspage); 1014 } 1015 1016 /* Initialize a newly allocated zspage */ 1017 static void init_zspage(struct size_class *class, struct zspage *zspage) 1018 { 1019 unsigned int freeobj = 1; 1020 unsigned long off = 0; 1021 struct page *page = get_first_page(zspage); 1022 1023 while (page) { 1024 struct page *next_page; 1025 struct link_free *link; 1026 void *vaddr; 1027 1028 set_first_obj_offset(page, off); 1029 1030 vaddr = kmap_atomic(page); 1031 link = (struct link_free *)vaddr + off / sizeof(*link); 1032 1033 while ((off += class->size) < PAGE_SIZE) { 1034 link->next = freeobj++ << OBJ_TAG_BITS; 1035 link += class->size / sizeof(*link); 1036 } 1037 1038 /* 1039 * We now come to the last (full or partial) object on this 1040 * page, which must point to the first object on the next 1041 * page (if present) 1042 */ 1043 next_page = get_next_page(page); 1044 if (next_page) { 1045 link->next = freeobj++ << OBJ_TAG_BITS; 1046 } else { 1047 /* 1048 * Reset OBJ_TAG_BITS bit to last link to tell 1049 * whether it's allocated object or not. 1050 */ 1051 link->next = -1UL << OBJ_TAG_BITS; 1052 } 1053 kunmap_atomic(vaddr); 1054 page = next_page; 1055 off %= PAGE_SIZE; 1056 } 1057 1058 set_freeobj(zspage, 0); 1059 } 1060 1061 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1062 struct page *pages[]) 1063 { 1064 int i; 1065 struct page *page; 1066 struct page *prev_page = NULL; 1067 int nr_pages = class->pages_per_zspage; 1068 1069 /* 1070 * Allocate individual pages and link them together as: 1071 * 1. all pages are linked together using page->freelist 1072 * 2. each sub-page point to zspage using page->private 1073 * 1074 * we set PG_private to identify the first page (i.e. no other sub-page 1075 * has this flag set). 1076 */ 1077 for (i = 0; i < nr_pages; i++) { 1078 page = pages[i]; 1079 set_page_private(page, (unsigned long)zspage); 1080 page->freelist = NULL; 1081 if (i == 0) { 1082 zspage->first_page = page; 1083 SetPagePrivate(page); 1084 if (unlikely(class->objs_per_zspage == 1 && 1085 class->pages_per_zspage == 1)) 1086 SetPageHugeObject(page); 1087 } else { 1088 prev_page->freelist = page; 1089 } 1090 prev_page = page; 1091 } 1092 } 1093 1094 /* 1095 * Allocate a zspage for the given size class 1096 */ 1097 static struct zspage *alloc_zspage(struct zs_pool *pool, 1098 struct size_class *class, 1099 gfp_t gfp) 1100 { 1101 int i; 1102 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1103 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1104 1105 if (!zspage) 1106 return NULL; 1107 1108 memset(zspage, 0, sizeof(struct zspage)); 1109 zspage->magic = ZSPAGE_MAGIC; 1110 migrate_lock_init(zspage); 1111 1112 for (i = 0; i < class->pages_per_zspage; i++) { 1113 struct page *page; 1114 1115 page = alloc_page(gfp); 1116 if (!page) { 1117 while (--i >= 0) { 1118 dec_zone_page_state(pages[i], NR_ZSPAGES); 1119 __free_page(pages[i]); 1120 } 1121 cache_free_zspage(pool, zspage); 1122 return NULL; 1123 } 1124 1125 inc_zone_page_state(page, NR_ZSPAGES); 1126 pages[i] = page; 1127 } 1128 1129 create_page_chain(class, zspage, pages); 1130 init_zspage(class, zspage); 1131 1132 return zspage; 1133 } 1134 1135 static struct zspage *find_get_zspage(struct size_class *class) 1136 { 1137 int i; 1138 struct zspage *zspage; 1139 1140 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1141 zspage = list_first_entry_or_null(&class->fullness_list[i], 1142 struct zspage, list); 1143 if (zspage) 1144 break; 1145 } 1146 1147 return zspage; 1148 } 1149 1150 #ifdef CONFIG_PGTABLE_MAPPING 1151 static inline int __zs_cpu_up(struct mapping_area *area) 1152 { 1153 /* 1154 * Make sure we don't leak memory if a cpu UP notification 1155 * and zs_init() race and both call zs_cpu_up() on the same cpu 1156 */ 1157 if (area->vm) 1158 return 0; 1159 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1160 if (!area->vm) 1161 return -ENOMEM; 1162 return 0; 1163 } 1164 1165 static inline void __zs_cpu_down(struct mapping_area *area) 1166 { 1167 if (area->vm) 1168 free_vm_area(area->vm); 1169 area->vm = NULL; 1170 } 1171 1172 static inline void *__zs_map_object(struct mapping_area *area, 1173 struct page *pages[2], int off, int size) 1174 { 1175 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1176 area->vm_addr = area->vm->addr; 1177 return area->vm_addr + off; 1178 } 1179 1180 static inline void __zs_unmap_object(struct mapping_area *area, 1181 struct page *pages[2], int off, int size) 1182 { 1183 unsigned long addr = (unsigned long)area->vm_addr; 1184 1185 unmap_kernel_range(addr, PAGE_SIZE * 2); 1186 } 1187 1188 #else /* CONFIG_PGTABLE_MAPPING */ 1189 1190 static inline int __zs_cpu_up(struct mapping_area *area) 1191 { 1192 /* 1193 * Make sure we don't leak memory if a cpu UP notification 1194 * and zs_init() race and both call zs_cpu_up() on the same cpu 1195 */ 1196 if (area->vm_buf) 1197 return 0; 1198 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1199 if (!area->vm_buf) 1200 return -ENOMEM; 1201 return 0; 1202 } 1203 1204 static inline void __zs_cpu_down(struct mapping_area *area) 1205 { 1206 kfree(area->vm_buf); 1207 area->vm_buf = NULL; 1208 } 1209 1210 static void *__zs_map_object(struct mapping_area *area, 1211 struct page *pages[2], int off, int size) 1212 { 1213 int sizes[2]; 1214 void *addr; 1215 char *buf = area->vm_buf; 1216 1217 /* disable page faults to match kmap_atomic() return conditions */ 1218 pagefault_disable(); 1219 1220 /* no read fastpath */ 1221 if (area->vm_mm == ZS_MM_WO) 1222 goto out; 1223 1224 sizes[0] = PAGE_SIZE - off; 1225 sizes[1] = size - sizes[0]; 1226 1227 /* copy object to per-cpu buffer */ 1228 addr = kmap_atomic(pages[0]); 1229 memcpy(buf, addr + off, sizes[0]); 1230 kunmap_atomic(addr); 1231 addr = kmap_atomic(pages[1]); 1232 memcpy(buf + sizes[0], addr, sizes[1]); 1233 kunmap_atomic(addr); 1234 out: 1235 return area->vm_buf; 1236 } 1237 1238 static void __zs_unmap_object(struct mapping_area *area, 1239 struct page *pages[2], int off, int size) 1240 { 1241 int sizes[2]; 1242 void *addr; 1243 char *buf; 1244 1245 /* no write fastpath */ 1246 if (area->vm_mm == ZS_MM_RO) 1247 goto out; 1248 1249 buf = area->vm_buf; 1250 buf = buf + ZS_HANDLE_SIZE; 1251 size -= ZS_HANDLE_SIZE; 1252 off += ZS_HANDLE_SIZE; 1253 1254 sizes[0] = PAGE_SIZE - off; 1255 sizes[1] = size - sizes[0]; 1256 1257 /* copy per-cpu buffer to object */ 1258 addr = kmap_atomic(pages[0]); 1259 memcpy(addr + off, buf, sizes[0]); 1260 kunmap_atomic(addr); 1261 addr = kmap_atomic(pages[1]); 1262 memcpy(addr, buf + sizes[0], sizes[1]); 1263 kunmap_atomic(addr); 1264 1265 out: 1266 /* enable page faults to match kunmap_atomic() return conditions */ 1267 pagefault_enable(); 1268 } 1269 1270 #endif /* CONFIG_PGTABLE_MAPPING */ 1271 1272 static int zs_cpu_prepare(unsigned int cpu) 1273 { 1274 struct mapping_area *area; 1275 1276 area = &per_cpu(zs_map_area, cpu); 1277 return __zs_cpu_up(area); 1278 } 1279 1280 static int zs_cpu_dead(unsigned int cpu) 1281 { 1282 struct mapping_area *area; 1283 1284 area = &per_cpu(zs_map_area, cpu); 1285 __zs_cpu_down(area); 1286 return 0; 1287 } 1288 1289 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1290 int objs_per_zspage) 1291 { 1292 if (prev->pages_per_zspage == pages_per_zspage && 1293 prev->objs_per_zspage == objs_per_zspage) 1294 return true; 1295 1296 return false; 1297 } 1298 1299 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1300 { 1301 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1302 } 1303 1304 unsigned long zs_get_total_pages(struct zs_pool *pool) 1305 { 1306 return atomic_long_read(&pool->pages_allocated); 1307 } 1308 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1309 1310 /** 1311 * zs_map_object - get address of allocated object from handle. 1312 * @pool: pool from which the object was allocated 1313 * @handle: handle returned from zs_malloc 1314 * 1315 * Before using an object allocated from zs_malloc, it must be mapped using 1316 * this function. When done with the object, it must be unmapped using 1317 * zs_unmap_object. 1318 * 1319 * Only one object can be mapped per cpu at a time. There is no protection 1320 * against nested mappings. 1321 * 1322 * This function returns with preemption and page faults disabled. 1323 */ 1324 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1325 enum zs_mapmode mm) 1326 { 1327 struct zspage *zspage; 1328 struct page *page; 1329 unsigned long obj, off; 1330 unsigned int obj_idx; 1331 1332 unsigned int class_idx; 1333 enum fullness_group fg; 1334 struct size_class *class; 1335 struct mapping_area *area; 1336 struct page *pages[2]; 1337 void *ret; 1338 1339 /* 1340 * Because we use per-cpu mapping areas shared among the 1341 * pools/users, we can't allow mapping in interrupt context 1342 * because it can corrupt another users mappings. 1343 */ 1344 BUG_ON(in_interrupt()); 1345 1346 /* From now on, migration cannot move the object */ 1347 pin_tag(handle); 1348 1349 obj = handle_to_obj(handle); 1350 obj_to_location(obj, &page, &obj_idx); 1351 zspage = get_zspage(page); 1352 1353 /* migration cannot move any subpage in this zspage */ 1354 migrate_read_lock(zspage); 1355 1356 get_zspage_mapping(zspage, &class_idx, &fg); 1357 class = pool->size_class[class_idx]; 1358 off = (class->size * obj_idx) & ~PAGE_MASK; 1359 1360 area = &get_cpu_var(zs_map_area); 1361 area->vm_mm = mm; 1362 if (off + class->size <= PAGE_SIZE) { 1363 /* this object is contained entirely within a page */ 1364 area->vm_addr = kmap_atomic(page); 1365 ret = area->vm_addr + off; 1366 goto out; 1367 } 1368 1369 /* this object spans two pages */ 1370 pages[0] = page; 1371 pages[1] = get_next_page(page); 1372 BUG_ON(!pages[1]); 1373 1374 ret = __zs_map_object(area, pages, off, class->size); 1375 out: 1376 if (likely(!PageHugeObject(page))) 1377 ret += ZS_HANDLE_SIZE; 1378 1379 return ret; 1380 } 1381 EXPORT_SYMBOL_GPL(zs_map_object); 1382 1383 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1384 { 1385 struct zspage *zspage; 1386 struct page *page; 1387 unsigned long obj, off; 1388 unsigned int obj_idx; 1389 1390 unsigned int class_idx; 1391 enum fullness_group fg; 1392 struct size_class *class; 1393 struct mapping_area *area; 1394 1395 obj = handle_to_obj(handle); 1396 obj_to_location(obj, &page, &obj_idx); 1397 zspage = get_zspage(page); 1398 get_zspage_mapping(zspage, &class_idx, &fg); 1399 class = pool->size_class[class_idx]; 1400 off = (class->size * obj_idx) & ~PAGE_MASK; 1401 1402 area = this_cpu_ptr(&zs_map_area); 1403 if (off + class->size <= PAGE_SIZE) 1404 kunmap_atomic(area->vm_addr); 1405 else { 1406 struct page *pages[2]; 1407 1408 pages[0] = page; 1409 pages[1] = get_next_page(page); 1410 BUG_ON(!pages[1]); 1411 1412 __zs_unmap_object(area, pages, off, class->size); 1413 } 1414 put_cpu_var(zs_map_area); 1415 1416 migrate_read_unlock(zspage); 1417 unpin_tag(handle); 1418 } 1419 EXPORT_SYMBOL_GPL(zs_unmap_object); 1420 1421 static unsigned long obj_malloc(struct size_class *class, 1422 struct zspage *zspage, unsigned long handle) 1423 { 1424 int i, nr_page, offset; 1425 unsigned long obj; 1426 struct link_free *link; 1427 1428 struct page *m_page; 1429 unsigned long m_offset; 1430 void *vaddr; 1431 1432 handle |= OBJ_ALLOCATED_TAG; 1433 obj = get_freeobj(zspage); 1434 1435 offset = obj * class->size; 1436 nr_page = offset >> PAGE_SHIFT; 1437 m_offset = offset & ~PAGE_MASK; 1438 m_page = get_first_page(zspage); 1439 1440 for (i = 0; i < nr_page; i++) 1441 m_page = get_next_page(m_page); 1442 1443 vaddr = kmap_atomic(m_page); 1444 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1445 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1446 if (likely(!PageHugeObject(m_page))) 1447 /* record handle in the header of allocated chunk */ 1448 link->handle = handle; 1449 else 1450 /* record handle to page->index */ 1451 zspage->first_page->index = handle; 1452 1453 kunmap_atomic(vaddr); 1454 mod_zspage_inuse(zspage, 1); 1455 zs_stat_inc(class, OBJ_USED, 1); 1456 1457 obj = location_to_obj(m_page, obj); 1458 1459 return obj; 1460 } 1461 1462 1463 /** 1464 * zs_malloc - Allocate block of given size from pool. 1465 * @pool: pool to allocate from 1466 * @size: size of block to allocate 1467 * @gfp: gfp flags when allocating object 1468 * 1469 * On success, handle to the allocated object is returned, 1470 * otherwise 0. 1471 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1472 */ 1473 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1474 { 1475 unsigned long handle, obj; 1476 struct size_class *class; 1477 enum fullness_group newfg; 1478 struct zspage *zspage; 1479 1480 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1481 return 0; 1482 1483 handle = cache_alloc_handle(pool, gfp); 1484 if (!handle) 1485 return 0; 1486 1487 /* extra space in chunk to keep the handle */ 1488 size += ZS_HANDLE_SIZE; 1489 class = pool->size_class[get_size_class_index(size)]; 1490 1491 spin_lock(&class->lock); 1492 zspage = find_get_zspage(class); 1493 if (likely(zspage)) { 1494 obj = obj_malloc(class, zspage, handle); 1495 /* Now move the zspage to another fullness group, if required */ 1496 fix_fullness_group(class, zspage); 1497 record_obj(handle, obj); 1498 spin_unlock(&class->lock); 1499 1500 return handle; 1501 } 1502 1503 spin_unlock(&class->lock); 1504 1505 zspage = alloc_zspage(pool, class, gfp); 1506 if (!zspage) { 1507 cache_free_handle(pool, handle); 1508 return 0; 1509 } 1510 1511 spin_lock(&class->lock); 1512 obj = obj_malloc(class, zspage, handle); 1513 newfg = get_fullness_group(class, zspage); 1514 insert_zspage(class, zspage, newfg); 1515 set_zspage_mapping(zspage, class->index, newfg); 1516 record_obj(handle, obj); 1517 atomic_long_add(class->pages_per_zspage, 1518 &pool->pages_allocated); 1519 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1520 1521 /* We completely set up zspage so mark them as movable */ 1522 SetZsPageMovable(pool, zspage); 1523 spin_unlock(&class->lock); 1524 1525 return handle; 1526 } 1527 EXPORT_SYMBOL_GPL(zs_malloc); 1528 1529 static void obj_free(struct size_class *class, unsigned long obj) 1530 { 1531 struct link_free *link; 1532 struct zspage *zspage; 1533 struct page *f_page; 1534 unsigned long f_offset; 1535 unsigned int f_objidx; 1536 void *vaddr; 1537 1538 obj &= ~OBJ_ALLOCATED_TAG; 1539 obj_to_location(obj, &f_page, &f_objidx); 1540 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1541 zspage = get_zspage(f_page); 1542 1543 vaddr = kmap_atomic(f_page); 1544 1545 /* Insert this object in containing zspage's freelist */ 1546 link = (struct link_free *)(vaddr + f_offset); 1547 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1548 kunmap_atomic(vaddr); 1549 set_freeobj(zspage, f_objidx); 1550 mod_zspage_inuse(zspage, -1); 1551 zs_stat_dec(class, OBJ_USED, 1); 1552 } 1553 1554 void zs_free(struct zs_pool *pool, unsigned long handle) 1555 { 1556 struct zspage *zspage; 1557 struct page *f_page; 1558 unsigned long obj; 1559 unsigned int f_objidx; 1560 int class_idx; 1561 struct size_class *class; 1562 enum fullness_group fullness; 1563 bool isolated; 1564 1565 if (unlikely(!handle)) 1566 return; 1567 1568 pin_tag(handle); 1569 obj = handle_to_obj(handle); 1570 obj_to_location(obj, &f_page, &f_objidx); 1571 zspage = get_zspage(f_page); 1572 1573 migrate_read_lock(zspage); 1574 1575 get_zspage_mapping(zspage, &class_idx, &fullness); 1576 class = pool->size_class[class_idx]; 1577 1578 spin_lock(&class->lock); 1579 obj_free(class, obj); 1580 fullness = fix_fullness_group(class, zspage); 1581 if (fullness != ZS_EMPTY) { 1582 migrate_read_unlock(zspage); 1583 goto out; 1584 } 1585 1586 isolated = is_zspage_isolated(zspage); 1587 migrate_read_unlock(zspage); 1588 /* If zspage is isolated, zs_page_putback will free the zspage */ 1589 if (likely(!isolated)) 1590 free_zspage(pool, class, zspage); 1591 out: 1592 1593 spin_unlock(&class->lock); 1594 unpin_tag(handle); 1595 cache_free_handle(pool, handle); 1596 } 1597 EXPORT_SYMBOL_GPL(zs_free); 1598 1599 static void zs_object_copy(struct size_class *class, unsigned long dst, 1600 unsigned long src) 1601 { 1602 struct page *s_page, *d_page; 1603 unsigned int s_objidx, d_objidx; 1604 unsigned long s_off, d_off; 1605 void *s_addr, *d_addr; 1606 int s_size, d_size, size; 1607 int written = 0; 1608 1609 s_size = d_size = class->size; 1610 1611 obj_to_location(src, &s_page, &s_objidx); 1612 obj_to_location(dst, &d_page, &d_objidx); 1613 1614 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1615 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1616 1617 if (s_off + class->size > PAGE_SIZE) 1618 s_size = PAGE_SIZE - s_off; 1619 1620 if (d_off + class->size > PAGE_SIZE) 1621 d_size = PAGE_SIZE - d_off; 1622 1623 s_addr = kmap_atomic(s_page); 1624 d_addr = kmap_atomic(d_page); 1625 1626 while (1) { 1627 size = min(s_size, d_size); 1628 memcpy(d_addr + d_off, s_addr + s_off, size); 1629 written += size; 1630 1631 if (written == class->size) 1632 break; 1633 1634 s_off += size; 1635 s_size -= size; 1636 d_off += size; 1637 d_size -= size; 1638 1639 if (s_off >= PAGE_SIZE) { 1640 kunmap_atomic(d_addr); 1641 kunmap_atomic(s_addr); 1642 s_page = get_next_page(s_page); 1643 s_addr = kmap_atomic(s_page); 1644 d_addr = kmap_atomic(d_page); 1645 s_size = class->size - written; 1646 s_off = 0; 1647 } 1648 1649 if (d_off >= PAGE_SIZE) { 1650 kunmap_atomic(d_addr); 1651 d_page = get_next_page(d_page); 1652 d_addr = kmap_atomic(d_page); 1653 d_size = class->size - written; 1654 d_off = 0; 1655 } 1656 } 1657 1658 kunmap_atomic(d_addr); 1659 kunmap_atomic(s_addr); 1660 } 1661 1662 /* 1663 * Find alloced object in zspage from index object and 1664 * return handle. 1665 */ 1666 static unsigned long find_alloced_obj(struct size_class *class, 1667 struct page *page, int *obj_idx) 1668 { 1669 unsigned long head; 1670 int offset = 0; 1671 int index = *obj_idx; 1672 unsigned long handle = 0; 1673 void *addr = kmap_atomic(page); 1674 1675 offset = get_first_obj_offset(page); 1676 offset += class->size * index; 1677 1678 while (offset < PAGE_SIZE) { 1679 head = obj_to_head(page, addr + offset); 1680 if (head & OBJ_ALLOCATED_TAG) { 1681 handle = head & ~OBJ_ALLOCATED_TAG; 1682 if (trypin_tag(handle)) 1683 break; 1684 handle = 0; 1685 } 1686 1687 offset += class->size; 1688 index++; 1689 } 1690 1691 kunmap_atomic(addr); 1692 1693 *obj_idx = index; 1694 1695 return handle; 1696 } 1697 1698 struct zs_compact_control { 1699 /* Source spage for migration which could be a subpage of zspage */ 1700 struct page *s_page; 1701 /* Destination page for migration which should be a first page 1702 * of zspage. */ 1703 struct page *d_page; 1704 /* Starting object index within @s_page which used for live object 1705 * in the subpage. */ 1706 int obj_idx; 1707 }; 1708 1709 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1710 struct zs_compact_control *cc) 1711 { 1712 unsigned long used_obj, free_obj; 1713 unsigned long handle; 1714 struct page *s_page = cc->s_page; 1715 struct page *d_page = cc->d_page; 1716 int obj_idx = cc->obj_idx; 1717 int ret = 0; 1718 1719 while (1) { 1720 handle = find_alloced_obj(class, s_page, &obj_idx); 1721 if (!handle) { 1722 s_page = get_next_page(s_page); 1723 if (!s_page) 1724 break; 1725 obj_idx = 0; 1726 continue; 1727 } 1728 1729 /* Stop if there is no more space */ 1730 if (zspage_full(class, get_zspage(d_page))) { 1731 unpin_tag(handle); 1732 ret = -ENOMEM; 1733 break; 1734 } 1735 1736 used_obj = handle_to_obj(handle); 1737 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1738 zs_object_copy(class, free_obj, used_obj); 1739 obj_idx++; 1740 /* 1741 * record_obj updates handle's value to free_obj and it will 1742 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1743 * breaks synchronization using pin_tag(e,g, zs_free) so 1744 * let's keep the lock bit. 1745 */ 1746 free_obj |= BIT(HANDLE_PIN_BIT); 1747 record_obj(handle, free_obj); 1748 unpin_tag(handle); 1749 obj_free(class, used_obj); 1750 } 1751 1752 /* Remember last position in this iteration */ 1753 cc->s_page = s_page; 1754 cc->obj_idx = obj_idx; 1755 1756 return ret; 1757 } 1758 1759 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1760 { 1761 int i; 1762 struct zspage *zspage; 1763 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1764 1765 if (!source) { 1766 fg[0] = ZS_ALMOST_FULL; 1767 fg[1] = ZS_ALMOST_EMPTY; 1768 } 1769 1770 for (i = 0; i < 2; i++) { 1771 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1772 struct zspage, list); 1773 if (zspage) { 1774 VM_BUG_ON(is_zspage_isolated(zspage)); 1775 remove_zspage(class, zspage, fg[i]); 1776 return zspage; 1777 } 1778 } 1779 1780 return zspage; 1781 } 1782 1783 /* 1784 * putback_zspage - add @zspage into right class's fullness list 1785 * @class: destination class 1786 * @zspage: target page 1787 * 1788 * Return @zspage's fullness_group 1789 */ 1790 static enum fullness_group putback_zspage(struct size_class *class, 1791 struct zspage *zspage) 1792 { 1793 enum fullness_group fullness; 1794 1795 VM_BUG_ON(is_zspage_isolated(zspage)); 1796 1797 fullness = get_fullness_group(class, zspage); 1798 insert_zspage(class, zspage, fullness); 1799 set_zspage_mapping(zspage, class->index, fullness); 1800 1801 return fullness; 1802 } 1803 1804 #ifdef CONFIG_COMPACTION 1805 static struct dentry *zs_mount(struct file_system_type *fs_type, 1806 int flags, const char *dev_name, void *data) 1807 { 1808 static const struct dentry_operations ops = { 1809 .d_dname = simple_dname, 1810 }; 1811 1812 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1813 } 1814 1815 static struct file_system_type zsmalloc_fs = { 1816 .name = "zsmalloc", 1817 .mount = zs_mount, 1818 .kill_sb = kill_anon_super, 1819 }; 1820 1821 static int zsmalloc_mount(void) 1822 { 1823 int ret = 0; 1824 1825 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1826 if (IS_ERR(zsmalloc_mnt)) 1827 ret = PTR_ERR(zsmalloc_mnt); 1828 1829 return ret; 1830 } 1831 1832 static void zsmalloc_unmount(void) 1833 { 1834 kern_unmount(zsmalloc_mnt); 1835 } 1836 1837 static void migrate_lock_init(struct zspage *zspage) 1838 { 1839 rwlock_init(&zspage->lock); 1840 } 1841 1842 static void migrate_read_lock(struct zspage *zspage) 1843 { 1844 read_lock(&zspage->lock); 1845 } 1846 1847 static void migrate_read_unlock(struct zspage *zspage) 1848 { 1849 read_unlock(&zspage->lock); 1850 } 1851 1852 static void migrate_write_lock(struct zspage *zspage) 1853 { 1854 write_lock(&zspage->lock); 1855 } 1856 1857 static void migrate_write_unlock(struct zspage *zspage) 1858 { 1859 write_unlock(&zspage->lock); 1860 } 1861 1862 /* Number of isolated subpage for *page migration* in this zspage */ 1863 static void inc_zspage_isolation(struct zspage *zspage) 1864 { 1865 zspage->isolated++; 1866 } 1867 1868 static void dec_zspage_isolation(struct zspage *zspage) 1869 { 1870 zspage->isolated--; 1871 } 1872 1873 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1874 struct page *newpage, struct page *oldpage) 1875 { 1876 struct page *page; 1877 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1878 int idx = 0; 1879 1880 page = get_first_page(zspage); 1881 do { 1882 if (page == oldpage) 1883 pages[idx] = newpage; 1884 else 1885 pages[idx] = page; 1886 idx++; 1887 } while ((page = get_next_page(page)) != NULL); 1888 1889 create_page_chain(class, zspage, pages); 1890 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1891 if (unlikely(PageHugeObject(oldpage))) 1892 newpage->index = oldpage->index; 1893 __SetPageMovable(newpage, page_mapping(oldpage)); 1894 } 1895 1896 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1897 { 1898 struct zs_pool *pool; 1899 struct size_class *class; 1900 int class_idx; 1901 enum fullness_group fullness; 1902 struct zspage *zspage; 1903 struct address_space *mapping; 1904 1905 /* 1906 * Page is locked so zspage couldn't be destroyed. For detail, look at 1907 * lock_zspage in free_zspage. 1908 */ 1909 VM_BUG_ON_PAGE(!PageMovable(page), page); 1910 VM_BUG_ON_PAGE(PageIsolated(page), page); 1911 1912 zspage = get_zspage(page); 1913 1914 /* 1915 * Without class lock, fullness could be stale while class_idx is okay 1916 * because class_idx is constant unless page is freed so we should get 1917 * fullness again under class lock. 1918 */ 1919 get_zspage_mapping(zspage, &class_idx, &fullness); 1920 mapping = page_mapping(page); 1921 pool = mapping->private_data; 1922 class = pool->size_class[class_idx]; 1923 1924 spin_lock(&class->lock); 1925 if (get_zspage_inuse(zspage) == 0) { 1926 spin_unlock(&class->lock); 1927 return false; 1928 } 1929 1930 /* zspage is isolated for object migration */ 1931 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1932 spin_unlock(&class->lock); 1933 return false; 1934 } 1935 1936 /* 1937 * If this is first time isolation for the zspage, isolate zspage from 1938 * size_class to prevent further object allocation from the zspage. 1939 */ 1940 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1941 get_zspage_mapping(zspage, &class_idx, &fullness); 1942 remove_zspage(class, zspage, fullness); 1943 } 1944 1945 inc_zspage_isolation(zspage); 1946 spin_unlock(&class->lock); 1947 1948 return true; 1949 } 1950 1951 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1952 struct page *page, enum migrate_mode mode) 1953 { 1954 struct zs_pool *pool; 1955 struct size_class *class; 1956 int class_idx; 1957 enum fullness_group fullness; 1958 struct zspage *zspage; 1959 struct page *dummy; 1960 void *s_addr, *d_addr, *addr; 1961 int offset, pos; 1962 unsigned long handle, head; 1963 unsigned long old_obj, new_obj; 1964 unsigned int obj_idx; 1965 int ret = -EAGAIN; 1966 1967 /* 1968 * We cannot support the _NO_COPY case here, because copy needs to 1969 * happen under the zs lock, which does not work with 1970 * MIGRATE_SYNC_NO_COPY workflow. 1971 */ 1972 if (mode == MIGRATE_SYNC_NO_COPY) 1973 return -EINVAL; 1974 1975 VM_BUG_ON_PAGE(!PageMovable(page), page); 1976 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1977 1978 zspage = get_zspage(page); 1979 1980 /* Concurrent compactor cannot migrate any subpage in zspage */ 1981 migrate_write_lock(zspage); 1982 get_zspage_mapping(zspage, &class_idx, &fullness); 1983 pool = mapping->private_data; 1984 class = pool->size_class[class_idx]; 1985 offset = get_first_obj_offset(page); 1986 1987 spin_lock(&class->lock); 1988 if (!get_zspage_inuse(zspage)) { 1989 /* 1990 * Set "offset" to end of the page so that every loops 1991 * skips unnecessary object scanning. 1992 */ 1993 offset = PAGE_SIZE; 1994 } 1995 1996 pos = offset; 1997 s_addr = kmap_atomic(page); 1998 while (pos < PAGE_SIZE) { 1999 head = obj_to_head(page, s_addr + pos); 2000 if (head & OBJ_ALLOCATED_TAG) { 2001 handle = head & ~OBJ_ALLOCATED_TAG; 2002 if (!trypin_tag(handle)) 2003 goto unpin_objects; 2004 } 2005 pos += class->size; 2006 } 2007 2008 /* 2009 * Here, any user cannot access all objects in the zspage so let's move. 2010 */ 2011 d_addr = kmap_atomic(newpage); 2012 memcpy(d_addr, s_addr, PAGE_SIZE); 2013 kunmap_atomic(d_addr); 2014 2015 for (addr = s_addr + offset; addr < s_addr + pos; 2016 addr += class->size) { 2017 head = obj_to_head(page, addr); 2018 if (head & OBJ_ALLOCATED_TAG) { 2019 handle = head & ~OBJ_ALLOCATED_TAG; 2020 if (!testpin_tag(handle)) 2021 BUG(); 2022 2023 old_obj = handle_to_obj(handle); 2024 obj_to_location(old_obj, &dummy, &obj_idx); 2025 new_obj = (unsigned long)location_to_obj(newpage, 2026 obj_idx); 2027 new_obj |= BIT(HANDLE_PIN_BIT); 2028 record_obj(handle, new_obj); 2029 } 2030 } 2031 2032 replace_sub_page(class, zspage, newpage, page); 2033 get_page(newpage); 2034 2035 dec_zspage_isolation(zspage); 2036 2037 /* 2038 * Page migration is done so let's putback isolated zspage to 2039 * the list if @page is final isolated subpage in the zspage. 2040 */ 2041 if (!is_zspage_isolated(zspage)) 2042 putback_zspage(class, zspage); 2043 2044 reset_page(page); 2045 put_page(page); 2046 page = newpage; 2047 2048 ret = MIGRATEPAGE_SUCCESS; 2049 unpin_objects: 2050 for (addr = s_addr + offset; addr < s_addr + pos; 2051 addr += class->size) { 2052 head = obj_to_head(page, addr); 2053 if (head & OBJ_ALLOCATED_TAG) { 2054 handle = head & ~OBJ_ALLOCATED_TAG; 2055 if (!testpin_tag(handle)) 2056 BUG(); 2057 unpin_tag(handle); 2058 } 2059 } 2060 kunmap_atomic(s_addr); 2061 spin_unlock(&class->lock); 2062 migrate_write_unlock(zspage); 2063 2064 return ret; 2065 } 2066 2067 void zs_page_putback(struct page *page) 2068 { 2069 struct zs_pool *pool; 2070 struct size_class *class; 2071 int class_idx; 2072 enum fullness_group fg; 2073 struct address_space *mapping; 2074 struct zspage *zspage; 2075 2076 VM_BUG_ON_PAGE(!PageMovable(page), page); 2077 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2078 2079 zspage = get_zspage(page); 2080 get_zspage_mapping(zspage, &class_idx, &fg); 2081 mapping = page_mapping(page); 2082 pool = mapping->private_data; 2083 class = pool->size_class[class_idx]; 2084 2085 spin_lock(&class->lock); 2086 dec_zspage_isolation(zspage); 2087 if (!is_zspage_isolated(zspage)) { 2088 fg = putback_zspage(class, zspage); 2089 /* 2090 * Due to page_lock, we cannot free zspage immediately 2091 * so let's defer. 2092 */ 2093 if (fg == ZS_EMPTY) 2094 schedule_work(&pool->free_work); 2095 } 2096 spin_unlock(&class->lock); 2097 } 2098 2099 const struct address_space_operations zsmalloc_aops = { 2100 .isolate_page = zs_page_isolate, 2101 .migratepage = zs_page_migrate, 2102 .putback_page = zs_page_putback, 2103 }; 2104 2105 static int zs_register_migration(struct zs_pool *pool) 2106 { 2107 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2108 if (IS_ERR(pool->inode)) { 2109 pool->inode = NULL; 2110 return 1; 2111 } 2112 2113 pool->inode->i_mapping->private_data = pool; 2114 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2115 return 0; 2116 } 2117 2118 static void zs_unregister_migration(struct zs_pool *pool) 2119 { 2120 flush_work(&pool->free_work); 2121 iput(pool->inode); 2122 } 2123 2124 /* 2125 * Caller should hold page_lock of all pages in the zspage 2126 * In here, we cannot use zspage meta data. 2127 */ 2128 static void async_free_zspage(struct work_struct *work) 2129 { 2130 int i; 2131 struct size_class *class; 2132 unsigned int class_idx; 2133 enum fullness_group fullness; 2134 struct zspage *zspage, *tmp; 2135 LIST_HEAD(free_pages); 2136 struct zs_pool *pool = container_of(work, struct zs_pool, 2137 free_work); 2138 2139 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2140 class = pool->size_class[i]; 2141 if (class->index != i) 2142 continue; 2143 2144 spin_lock(&class->lock); 2145 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2146 spin_unlock(&class->lock); 2147 } 2148 2149 2150 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2151 list_del(&zspage->list); 2152 lock_zspage(zspage); 2153 2154 get_zspage_mapping(zspage, &class_idx, &fullness); 2155 VM_BUG_ON(fullness != ZS_EMPTY); 2156 class = pool->size_class[class_idx]; 2157 spin_lock(&class->lock); 2158 __free_zspage(pool, pool->size_class[class_idx], zspage); 2159 spin_unlock(&class->lock); 2160 } 2161 }; 2162 2163 static void kick_deferred_free(struct zs_pool *pool) 2164 { 2165 schedule_work(&pool->free_work); 2166 } 2167 2168 static void init_deferred_free(struct zs_pool *pool) 2169 { 2170 INIT_WORK(&pool->free_work, async_free_zspage); 2171 } 2172 2173 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2174 { 2175 struct page *page = get_first_page(zspage); 2176 2177 do { 2178 WARN_ON(!trylock_page(page)); 2179 __SetPageMovable(page, pool->inode->i_mapping); 2180 unlock_page(page); 2181 } while ((page = get_next_page(page)) != NULL); 2182 } 2183 #endif 2184 2185 /* 2186 * 2187 * Based on the number of unused allocated objects calculate 2188 * and return the number of pages that we can free. 2189 */ 2190 static unsigned long zs_can_compact(struct size_class *class) 2191 { 2192 unsigned long obj_wasted; 2193 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2194 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2195 2196 if (obj_allocated <= obj_used) 2197 return 0; 2198 2199 obj_wasted = obj_allocated - obj_used; 2200 obj_wasted /= class->objs_per_zspage; 2201 2202 return obj_wasted * class->pages_per_zspage; 2203 } 2204 2205 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2206 { 2207 struct zs_compact_control cc; 2208 struct zspage *src_zspage; 2209 struct zspage *dst_zspage = NULL; 2210 2211 spin_lock(&class->lock); 2212 while ((src_zspage = isolate_zspage(class, true))) { 2213 2214 if (!zs_can_compact(class)) 2215 break; 2216 2217 cc.obj_idx = 0; 2218 cc.s_page = get_first_page(src_zspage); 2219 2220 while ((dst_zspage = isolate_zspage(class, false))) { 2221 cc.d_page = get_first_page(dst_zspage); 2222 /* 2223 * If there is no more space in dst_page, resched 2224 * and see if anyone had allocated another zspage. 2225 */ 2226 if (!migrate_zspage(pool, class, &cc)) 2227 break; 2228 2229 putback_zspage(class, dst_zspage); 2230 } 2231 2232 /* Stop if we couldn't find slot */ 2233 if (dst_zspage == NULL) 2234 break; 2235 2236 putback_zspage(class, dst_zspage); 2237 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2238 free_zspage(pool, class, src_zspage); 2239 pool->stats.pages_compacted += class->pages_per_zspage; 2240 } 2241 spin_unlock(&class->lock); 2242 cond_resched(); 2243 spin_lock(&class->lock); 2244 } 2245 2246 if (src_zspage) 2247 putback_zspage(class, src_zspage); 2248 2249 spin_unlock(&class->lock); 2250 } 2251 2252 unsigned long zs_compact(struct zs_pool *pool) 2253 { 2254 int i; 2255 struct size_class *class; 2256 2257 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2258 class = pool->size_class[i]; 2259 if (!class) 2260 continue; 2261 if (class->index != i) 2262 continue; 2263 __zs_compact(pool, class); 2264 } 2265 2266 return pool->stats.pages_compacted; 2267 } 2268 EXPORT_SYMBOL_GPL(zs_compact); 2269 2270 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2271 { 2272 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2273 } 2274 EXPORT_SYMBOL_GPL(zs_pool_stats); 2275 2276 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2277 struct shrink_control *sc) 2278 { 2279 unsigned long pages_freed; 2280 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2281 shrinker); 2282 2283 pages_freed = pool->stats.pages_compacted; 2284 /* 2285 * Compact classes and calculate compaction delta. 2286 * Can run concurrently with a manually triggered 2287 * (by user) compaction. 2288 */ 2289 pages_freed = zs_compact(pool) - pages_freed; 2290 2291 return pages_freed ? pages_freed : SHRINK_STOP; 2292 } 2293 2294 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2295 struct shrink_control *sc) 2296 { 2297 int i; 2298 struct size_class *class; 2299 unsigned long pages_to_free = 0; 2300 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2301 shrinker); 2302 2303 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2304 class = pool->size_class[i]; 2305 if (!class) 2306 continue; 2307 if (class->index != i) 2308 continue; 2309 2310 pages_to_free += zs_can_compact(class); 2311 } 2312 2313 return pages_to_free; 2314 } 2315 2316 static void zs_unregister_shrinker(struct zs_pool *pool) 2317 { 2318 unregister_shrinker(&pool->shrinker); 2319 } 2320 2321 static int zs_register_shrinker(struct zs_pool *pool) 2322 { 2323 pool->shrinker.scan_objects = zs_shrinker_scan; 2324 pool->shrinker.count_objects = zs_shrinker_count; 2325 pool->shrinker.batch = 0; 2326 pool->shrinker.seeks = DEFAULT_SEEKS; 2327 2328 return register_shrinker(&pool->shrinker); 2329 } 2330 2331 /** 2332 * zs_create_pool - Creates an allocation pool to work from. 2333 * @name: pool name to be created 2334 * 2335 * This function must be called before anything when using 2336 * the zsmalloc allocator. 2337 * 2338 * On success, a pointer to the newly created pool is returned, 2339 * otherwise NULL. 2340 */ 2341 struct zs_pool *zs_create_pool(const char *name) 2342 { 2343 int i; 2344 struct zs_pool *pool; 2345 struct size_class *prev_class = NULL; 2346 2347 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2348 if (!pool) 2349 return NULL; 2350 2351 init_deferred_free(pool); 2352 2353 pool->name = kstrdup(name, GFP_KERNEL); 2354 if (!pool->name) 2355 goto err; 2356 2357 if (create_cache(pool)) 2358 goto err; 2359 2360 /* 2361 * Iterate reversely, because, size of size_class that we want to use 2362 * for merging should be larger or equal to current size. 2363 */ 2364 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2365 int size; 2366 int pages_per_zspage; 2367 int objs_per_zspage; 2368 struct size_class *class; 2369 int fullness = 0; 2370 2371 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2372 if (size > ZS_MAX_ALLOC_SIZE) 2373 size = ZS_MAX_ALLOC_SIZE; 2374 pages_per_zspage = get_pages_per_zspage(size); 2375 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2376 2377 /* 2378 * size_class is used for normal zsmalloc operation such 2379 * as alloc/free for that size. Although it is natural that we 2380 * have one size_class for each size, there is a chance that we 2381 * can get more memory utilization if we use one size_class for 2382 * many different sizes whose size_class have same 2383 * characteristics. So, we makes size_class point to 2384 * previous size_class if possible. 2385 */ 2386 if (prev_class) { 2387 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2388 pool->size_class[i] = prev_class; 2389 continue; 2390 } 2391 } 2392 2393 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2394 if (!class) 2395 goto err; 2396 2397 class->size = size; 2398 class->index = i; 2399 class->pages_per_zspage = pages_per_zspage; 2400 class->objs_per_zspage = objs_per_zspage; 2401 spin_lock_init(&class->lock); 2402 pool->size_class[i] = class; 2403 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2404 fullness++) 2405 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2406 2407 prev_class = class; 2408 } 2409 2410 /* debug only, don't abort if it fails */ 2411 zs_pool_stat_create(pool, name); 2412 2413 if (zs_register_migration(pool)) 2414 goto err; 2415 2416 /* 2417 * Not critical since shrinker is only used to trigger internal 2418 * defragmentation of the pool which is pretty optional thing. If 2419 * registration fails we still can use the pool normally and user can 2420 * trigger compaction manually. Thus, ignore return code. 2421 */ 2422 zs_register_shrinker(pool); 2423 2424 return pool; 2425 2426 err: 2427 zs_destroy_pool(pool); 2428 return NULL; 2429 } 2430 EXPORT_SYMBOL_GPL(zs_create_pool); 2431 2432 void zs_destroy_pool(struct zs_pool *pool) 2433 { 2434 int i; 2435 2436 zs_unregister_shrinker(pool); 2437 zs_unregister_migration(pool); 2438 zs_pool_stat_destroy(pool); 2439 2440 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2441 int fg; 2442 struct size_class *class = pool->size_class[i]; 2443 2444 if (!class) 2445 continue; 2446 2447 if (class->index != i) 2448 continue; 2449 2450 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2451 if (!list_empty(&class->fullness_list[fg])) { 2452 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2453 class->size, fg); 2454 } 2455 } 2456 kfree(class); 2457 } 2458 2459 destroy_cache(pool); 2460 kfree(pool->name); 2461 kfree(pool); 2462 } 2463 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2464 2465 static int __init zs_init(void) 2466 { 2467 int ret; 2468 2469 ret = zsmalloc_mount(); 2470 if (ret) 2471 goto out; 2472 2473 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2474 zs_cpu_prepare, zs_cpu_dead); 2475 if (ret) 2476 goto hp_setup_fail; 2477 2478 #ifdef CONFIG_ZPOOL 2479 zpool_register_driver(&zs_zpool_driver); 2480 #endif 2481 2482 zs_stat_init(); 2483 2484 return 0; 2485 2486 hp_setup_fail: 2487 zsmalloc_unmount(); 2488 out: 2489 return ret; 2490 } 2491 2492 static void __exit zs_exit(void) 2493 { 2494 #ifdef CONFIG_ZPOOL 2495 zpool_unregister_driver(&zs_zpool_driver); 2496 #endif 2497 zsmalloc_unmount(); 2498 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2499 2500 zs_stat_exit(); 2501 } 2502 2503 module_init(zs_init); 2504 module_exit(zs_exit); 2505 2506 MODULE_LICENSE("Dual BSD/GPL"); 2507 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2508