xref: /linux/mm/zsmalloc.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58 
59 #define ZSPAGE_MAGIC	0x58
60 
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN		8
68 
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Memory for allocating for handle keeps object position by
103  * encoding <page, obj_idx> and the encoded value has a room
104  * in least bit(ie, look at obj_to_location).
105  * We use the bit to synchronize between object access by
106  * user and migration.
107  */
108 #define HANDLE_PIN_BIT	0
109 
110 /*
111  * Head in allocated object should have OBJ_ALLOCATED_TAG
112  * to identify the object was allocated or not.
113  * It's okay to add the status bit in the least bit because
114  * header keeps handle which is 4byte-aligned address so we
115  * have room for two bit at least.
116  */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121 
122 #define FULLNESS_BITS	2
123 #define CLASS_BITS	8
124 #define ISOLATED_BITS	3
125 #define MAGIC_VAL_BITS	8
126 
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
133 
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 				      ZS_SIZE_CLASS_DELTA) + 1)
150 
151 enum fullness_group {
152 	ZS_EMPTY,
153 	ZS_ALMOST_EMPTY,
154 	ZS_ALMOST_FULL,
155 	ZS_FULL,
156 	NR_ZS_FULLNESS,
157 };
158 
159 enum zs_stat_type {
160 	CLASS_EMPTY,
161 	CLASS_ALMOST_EMPTY,
162 	CLASS_ALMOST_FULL,
163 	CLASS_FULL,
164 	OBJ_ALLOCATED,
165 	OBJ_USED,
166 	NR_ZS_STAT_TYPE,
167 };
168 
169 struct zs_size_stat {
170 	unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172 
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176 
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
180 
181 /*
182  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183  *	n <= N / f, where
184  * n = number of allocated objects
185  * N = total number of objects zspage can store
186  * f = fullness_threshold_frac
187  *
188  * Similarly, we assign zspage to:
189  *	ZS_ALMOST_FULL	when n > N / f
190  *	ZS_EMPTY	when n == 0
191  *	ZS_FULL		when n == N
192  *
193  * (see: fix_fullness_group())
194  */
195 static const int fullness_threshold_frac = 4;
196 
197 struct size_class {
198 	spinlock_t lock;
199 	struct list_head fullness_list[NR_ZS_FULLNESS];
200 	/*
201 	 * Size of objects stored in this class. Must be multiple
202 	 * of ZS_ALIGN.
203 	 */
204 	int size;
205 	int objs_per_zspage;
206 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 	int pages_per_zspage;
208 
209 	unsigned int index;
210 	struct zs_size_stat stats;
211 };
212 
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 static void SetPageHugeObject(struct page *page)
215 {
216 	SetPageOwnerPriv1(page);
217 }
218 
219 static void ClearPageHugeObject(struct page *page)
220 {
221 	ClearPageOwnerPriv1(page);
222 }
223 
224 static int PageHugeObject(struct page *page)
225 {
226 	return PageOwnerPriv1(page);
227 }
228 
229 /*
230  * Placed within free objects to form a singly linked list.
231  * For every zspage, zspage->freeobj gives head of this list.
232  *
233  * This must be power of 2 and less than or equal to ZS_ALIGN
234  */
235 struct link_free {
236 	union {
237 		/*
238 		 * Free object index;
239 		 * It's valid for non-allocated object
240 		 */
241 		unsigned long next;
242 		/*
243 		 * Handle of allocated object.
244 		 */
245 		unsigned long handle;
246 	};
247 };
248 
249 struct zs_pool {
250 	const char *name;
251 
252 	struct size_class *size_class[ZS_SIZE_CLASSES];
253 	struct kmem_cache *handle_cachep;
254 	struct kmem_cache *zspage_cachep;
255 
256 	atomic_long_t pages_allocated;
257 
258 	struct zs_pool_stats stats;
259 
260 	/* Compact classes */
261 	struct shrinker shrinker;
262 
263 #ifdef CONFIG_ZSMALLOC_STAT
264 	struct dentry *stat_dentry;
265 #endif
266 #ifdef CONFIG_COMPACTION
267 	struct inode *inode;
268 	struct work_struct free_work;
269 #endif
270 };
271 
272 struct zspage {
273 	struct {
274 		unsigned int fullness:FULLNESS_BITS;
275 		unsigned int class:CLASS_BITS + 1;
276 		unsigned int isolated:ISOLATED_BITS;
277 		unsigned int magic:MAGIC_VAL_BITS;
278 	};
279 	unsigned int inuse;
280 	unsigned int freeobj;
281 	struct page *first_page;
282 	struct list_head list; /* fullness list */
283 #ifdef CONFIG_COMPACTION
284 	rwlock_t lock;
285 #endif
286 };
287 
288 struct mapping_area {
289 #ifdef CONFIG_PGTABLE_MAPPING
290 	struct vm_struct *vm; /* vm area for mapping object that span pages */
291 #else
292 	char *vm_buf; /* copy buffer for objects that span pages */
293 #endif
294 	char *vm_addr; /* address of kmap_atomic()'ed pages */
295 	enum zs_mapmode vm_mm; /* mapping mode */
296 };
297 
298 #ifdef CONFIG_COMPACTION
299 static int zs_register_migration(struct zs_pool *pool);
300 static void zs_unregister_migration(struct zs_pool *pool);
301 static void migrate_lock_init(struct zspage *zspage);
302 static void migrate_read_lock(struct zspage *zspage);
303 static void migrate_read_unlock(struct zspage *zspage);
304 static void kick_deferred_free(struct zs_pool *pool);
305 static void init_deferred_free(struct zs_pool *pool);
306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
307 #else
308 static int zsmalloc_mount(void) { return 0; }
309 static void zsmalloc_unmount(void) {}
310 static int zs_register_migration(struct zs_pool *pool) { return 0; }
311 static void zs_unregister_migration(struct zs_pool *pool) {}
312 static void migrate_lock_init(struct zspage *zspage) {}
313 static void migrate_read_lock(struct zspage *zspage) {}
314 static void migrate_read_unlock(struct zspage *zspage) {}
315 static void kick_deferred_free(struct zs_pool *pool) {}
316 static void init_deferred_free(struct zs_pool *pool) {}
317 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
318 #endif
319 
320 static int create_cache(struct zs_pool *pool)
321 {
322 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
323 					0, 0, NULL);
324 	if (!pool->handle_cachep)
325 		return 1;
326 
327 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
328 					0, 0, NULL);
329 	if (!pool->zspage_cachep) {
330 		kmem_cache_destroy(pool->handle_cachep);
331 		pool->handle_cachep = NULL;
332 		return 1;
333 	}
334 
335 	return 0;
336 }
337 
338 static void destroy_cache(struct zs_pool *pool)
339 {
340 	kmem_cache_destroy(pool->handle_cachep);
341 	kmem_cache_destroy(pool->zspage_cachep);
342 }
343 
344 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
345 {
346 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
347 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
348 }
349 
350 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
351 {
352 	kmem_cache_free(pool->handle_cachep, (void *)handle);
353 }
354 
355 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
356 {
357 	return kmem_cache_alloc(pool->zspage_cachep,
358 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
359 }
360 
361 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
362 {
363 	kmem_cache_free(pool->zspage_cachep, zspage);
364 }
365 
366 static void record_obj(unsigned long handle, unsigned long obj)
367 {
368 	/*
369 	 * lsb of @obj represents handle lock while other bits
370 	 * represent object value the handle is pointing so
371 	 * updating shouldn't do store tearing.
372 	 */
373 	WRITE_ONCE(*(unsigned long *)handle, obj);
374 }
375 
376 /* zpool driver */
377 
378 #ifdef CONFIG_ZPOOL
379 
380 static void *zs_zpool_create(const char *name, gfp_t gfp,
381 			     const struct zpool_ops *zpool_ops,
382 			     struct zpool *zpool)
383 {
384 	/*
385 	 * Ignore global gfp flags: zs_malloc() may be invoked from
386 	 * different contexts and its caller must provide a valid
387 	 * gfp mask.
388 	 */
389 	return zs_create_pool(name);
390 }
391 
392 static void zs_zpool_destroy(void *pool)
393 {
394 	zs_destroy_pool(pool);
395 }
396 
397 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
398 			unsigned long *handle)
399 {
400 	*handle = zs_malloc(pool, size, gfp);
401 	return *handle ? 0 : -1;
402 }
403 static void zs_zpool_free(void *pool, unsigned long handle)
404 {
405 	zs_free(pool, handle);
406 }
407 
408 static void *zs_zpool_map(void *pool, unsigned long handle,
409 			enum zpool_mapmode mm)
410 {
411 	enum zs_mapmode zs_mm;
412 
413 	switch (mm) {
414 	case ZPOOL_MM_RO:
415 		zs_mm = ZS_MM_RO;
416 		break;
417 	case ZPOOL_MM_WO:
418 		zs_mm = ZS_MM_WO;
419 		break;
420 	case ZPOOL_MM_RW: /* fallthru */
421 	default:
422 		zs_mm = ZS_MM_RW;
423 		break;
424 	}
425 
426 	return zs_map_object(pool, handle, zs_mm);
427 }
428 static void zs_zpool_unmap(void *pool, unsigned long handle)
429 {
430 	zs_unmap_object(pool, handle);
431 }
432 
433 static u64 zs_zpool_total_size(void *pool)
434 {
435 	return zs_get_total_pages(pool) << PAGE_SHIFT;
436 }
437 
438 static struct zpool_driver zs_zpool_driver = {
439 	.type =		"zsmalloc",
440 	.owner =	THIS_MODULE,
441 	.create =	zs_zpool_create,
442 	.destroy =	zs_zpool_destroy,
443 	.malloc =	zs_zpool_malloc,
444 	.free =		zs_zpool_free,
445 	.map =		zs_zpool_map,
446 	.unmap =	zs_zpool_unmap,
447 	.total_size =	zs_zpool_total_size,
448 };
449 
450 MODULE_ALIAS("zpool-zsmalloc");
451 #endif /* CONFIG_ZPOOL */
452 
453 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
455 
456 static bool is_zspage_isolated(struct zspage *zspage)
457 {
458 	return zspage->isolated;
459 }
460 
461 static __maybe_unused int is_first_page(struct page *page)
462 {
463 	return PagePrivate(page);
464 }
465 
466 /* Protected by class->lock */
467 static inline int get_zspage_inuse(struct zspage *zspage)
468 {
469 	return zspage->inuse;
470 }
471 
472 static inline void set_zspage_inuse(struct zspage *zspage, int val)
473 {
474 	zspage->inuse = val;
475 }
476 
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479 	zspage->inuse += val;
480 }
481 
482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484 	struct page *first_page = zspage->first_page;
485 
486 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 	return first_page;
488 }
489 
490 static inline int get_first_obj_offset(struct page *page)
491 {
492 	return page->units;
493 }
494 
495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497 	page->units = offset;
498 }
499 
500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502 	return zspage->freeobj;
503 }
504 
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507 	zspage->freeobj = obj;
508 }
509 
510 static void get_zspage_mapping(struct zspage *zspage,
511 				unsigned int *class_idx,
512 				enum fullness_group *fullness)
513 {
514 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515 
516 	*fullness = zspage->fullness;
517 	*class_idx = zspage->class;
518 }
519 
520 static void set_zspage_mapping(struct zspage *zspage,
521 				unsigned int class_idx,
522 				enum fullness_group fullness)
523 {
524 	zspage->class = class_idx;
525 	zspage->fullness = fullness;
526 }
527 
528 /*
529  * zsmalloc divides the pool into various size classes where each
530  * class maintains a list of zspages where each zspage is divided
531  * into equal sized chunks. Each allocation falls into one of these
532  * classes depending on its size. This function returns index of the
533  * size class which has chunk size big enough to hold the give size.
534  */
535 static int get_size_class_index(int size)
536 {
537 	int idx = 0;
538 
539 	if (likely(size > ZS_MIN_ALLOC_SIZE))
540 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 				ZS_SIZE_CLASS_DELTA);
542 
543 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545 
546 /* type can be of enum type zs_stat_type or fullness_group */
547 static inline void zs_stat_inc(struct size_class *class,
548 				int type, unsigned long cnt)
549 {
550 	class->stats.objs[type] += cnt;
551 }
552 
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_dec(struct size_class *class,
555 				int type, unsigned long cnt)
556 {
557 	class->stats.objs[type] -= cnt;
558 }
559 
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline unsigned long zs_stat_get(struct size_class *class,
562 				int type)
563 {
564 	return class->stats.objs[type];
565 }
566 
567 #ifdef CONFIG_ZSMALLOC_STAT
568 
569 static void __init zs_stat_init(void)
570 {
571 	if (!debugfs_initialized()) {
572 		pr_warn("debugfs not available, stat dir not created\n");
573 		return;
574 	}
575 
576 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 	if (!zs_stat_root)
578 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
579 }
580 
581 static void __exit zs_stat_exit(void)
582 {
583 	debugfs_remove_recursive(zs_stat_root);
584 }
585 
586 static unsigned long zs_can_compact(struct size_class *class);
587 
588 static int zs_stats_size_show(struct seq_file *s, void *v)
589 {
590 	int i;
591 	struct zs_pool *pool = s->private;
592 	struct size_class *class;
593 	int objs_per_zspage;
594 	unsigned long class_almost_full, class_almost_empty;
595 	unsigned long obj_allocated, obj_used, pages_used, freeable;
596 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
597 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
598 	unsigned long total_freeable = 0;
599 
600 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
601 			"class", "size", "almost_full", "almost_empty",
602 			"obj_allocated", "obj_used", "pages_used",
603 			"pages_per_zspage", "freeable");
604 
605 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
606 		class = pool->size_class[i];
607 
608 		if (class->index != i)
609 			continue;
610 
611 		spin_lock(&class->lock);
612 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
613 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
614 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
615 		obj_used = zs_stat_get(class, OBJ_USED);
616 		freeable = zs_can_compact(class);
617 		spin_unlock(&class->lock);
618 
619 		objs_per_zspage = class->objs_per_zspage;
620 		pages_used = obj_allocated / objs_per_zspage *
621 				class->pages_per_zspage;
622 
623 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
624 				" %10lu %10lu %16d %8lu\n",
625 			i, class->size, class_almost_full, class_almost_empty,
626 			obj_allocated, obj_used, pages_used,
627 			class->pages_per_zspage, freeable);
628 
629 		total_class_almost_full += class_almost_full;
630 		total_class_almost_empty += class_almost_empty;
631 		total_objs += obj_allocated;
632 		total_used_objs += obj_used;
633 		total_pages += pages_used;
634 		total_freeable += freeable;
635 	}
636 
637 	seq_puts(s, "\n");
638 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
639 			"Total", "", total_class_almost_full,
640 			total_class_almost_empty, total_objs,
641 			total_used_objs, total_pages, "", total_freeable);
642 
643 	return 0;
644 }
645 
646 static int zs_stats_size_open(struct inode *inode, struct file *file)
647 {
648 	return single_open(file, zs_stats_size_show, inode->i_private);
649 }
650 
651 static const struct file_operations zs_stat_size_ops = {
652 	.open           = zs_stats_size_open,
653 	.read           = seq_read,
654 	.llseek         = seq_lseek,
655 	.release        = single_release,
656 };
657 
658 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
659 {
660 	struct dentry *entry;
661 
662 	if (!zs_stat_root) {
663 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
664 		return;
665 	}
666 
667 	entry = debugfs_create_dir(name, zs_stat_root);
668 	if (!entry) {
669 		pr_warn("debugfs dir <%s> creation failed\n", name);
670 		return;
671 	}
672 	pool->stat_dentry = entry;
673 
674 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
675 			pool->stat_dentry, pool, &zs_stat_size_ops);
676 	if (!entry) {
677 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
678 				name, "classes");
679 		debugfs_remove_recursive(pool->stat_dentry);
680 		pool->stat_dentry = NULL;
681 	}
682 }
683 
684 static void zs_pool_stat_destroy(struct zs_pool *pool)
685 {
686 	debugfs_remove_recursive(pool->stat_dentry);
687 }
688 
689 #else /* CONFIG_ZSMALLOC_STAT */
690 static void __init zs_stat_init(void)
691 {
692 }
693 
694 static void __exit zs_stat_exit(void)
695 {
696 }
697 
698 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
699 {
700 }
701 
702 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
703 {
704 }
705 #endif
706 
707 
708 /*
709  * For each size class, zspages are divided into different groups
710  * depending on how "full" they are. This was done so that we could
711  * easily find empty or nearly empty zspages when we try to shrink
712  * the pool (not yet implemented). This function returns fullness
713  * status of the given page.
714  */
715 static enum fullness_group get_fullness_group(struct size_class *class,
716 						struct zspage *zspage)
717 {
718 	int inuse, objs_per_zspage;
719 	enum fullness_group fg;
720 
721 	inuse = get_zspage_inuse(zspage);
722 	objs_per_zspage = class->objs_per_zspage;
723 
724 	if (inuse == 0)
725 		fg = ZS_EMPTY;
726 	else if (inuse == objs_per_zspage)
727 		fg = ZS_FULL;
728 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
729 		fg = ZS_ALMOST_EMPTY;
730 	else
731 		fg = ZS_ALMOST_FULL;
732 
733 	return fg;
734 }
735 
736 /*
737  * Each size class maintains various freelists and zspages are assigned
738  * to one of these freelists based on the number of live objects they
739  * have. This functions inserts the given zspage into the freelist
740  * identified by <class, fullness_group>.
741  */
742 static void insert_zspage(struct size_class *class,
743 				struct zspage *zspage,
744 				enum fullness_group fullness)
745 {
746 	struct zspage *head;
747 
748 	zs_stat_inc(class, fullness, 1);
749 	head = list_first_entry_or_null(&class->fullness_list[fullness],
750 					struct zspage, list);
751 	/*
752 	 * We want to see more ZS_FULL pages and less almost empty/full.
753 	 * Put pages with higher ->inuse first.
754 	 */
755 	if (head) {
756 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
757 			list_add(&zspage->list, &head->list);
758 			return;
759 		}
760 	}
761 	list_add(&zspage->list, &class->fullness_list[fullness]);
762 }
763 
764 /*
765  * This function removes the given zspage from the freelist identified
766  * by <class, fullness_group>.
767  */
768 static void remove_zspage(struct size_class *class,
769 				struct zspage *zspage,
770 				enum fullness_group fullness)
771 {
772 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
773 	VM_BUG_ON(is_zspage_isolated(zspage));
774 
775 	list_del_init(&zspage->list);
776 	zs_stat_dec(class, fullness, 1);
777 }
778 
779 /*
780  * Each size class maintains zspages in different fullness groups depending
781  * on the number of live objects they contain. When allocating or freeing
782  * objects, the fullness status of the page can change, say, from ALMOST_FULL
783  * to ALMOST_EMPTY when freeing an object. This function checks if such
784  * a status change has occurred for the given page and accordingly moves the
785  * page from the freelist of the old fullness group to that of the new
786  * fullness group.
787  */
788 static enum fullness_group fix_fullness_group(struct size_class *class,
789 						struct zspage *zspage)
790 {
791 	int class_idx;
792 	enum fullness_group currfg, newfg;
793 
794 	get_zspage_mapping(zspage, &class_idx, &currfg);
795 	newfg = get_fullness_group(class, zspage);
796 	if (newfg == currfg)
797 		goto out;
798 
799 	if (!is_zspage_isolated(zspage)) {
800 		remove_zspage(class, zspage, currfg);
801 		insert_zspage(class, zspage, newfg);
802 	}
803 
804 	set_zspage_mapping(zspage, class_idx, newfg);
805 
806 out:
807 	return newfg;
808 }
809 
810 /*
811  * We have to decide on how many pages to link together
812  * to form a zspage for each size class. This is important
813  * to reduce wastage due to unusable space left at end of
814  * each zspage which is given as:
815  *     wastage = Zp % class_size
816  *     usage = Zp - wastage
817  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
818  *
819  * For example, for size class of 3/8 * PAGE_SIZE, we should
820  * link together 3 PAGE_SIZE sized pages to form a zspage
821  * since then we can perfectly fit in 8 such objects.
822  */
823 static int get_pages_per_zspage(int class_size)
824 {
825 	int i, max_usedpc = 0;
826 	/* zspage order which gives maximum used size per KB */
827 	int max_usedpc_order = 1;
828 
829 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
830 		int zspage_size;
831 		int waste, usedpc;
832 
833 		zspage_size = i * PAGE_SIZE;
834 		waste = zspage_size % class_size;
835 		usedpc = (zspage_size - waste) * 100 / zspage_size;
836 
837 		if (usedpc > max_usedpc) {
838 			max_usedpc = usedpc;
839 			max_usedpc_order = i;
840 		}
841 	}
842 
843 	return max_usedpc_order;
844 }
845 
846 static struct zspage *get_zspage(struct page *page)
847 {
848 	struct zspage *zspage = (struct zspage *)page->private;
849 
850 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
851 	return zspage;
852 }
853 
854 static struct page *get_next_page(struct page *page)
855 {
856 	if (unlikely(PageHugeObject(page)))
857 		return NULL;
858 
859 	return page->freelist;
860 }
861 
862 /**
863  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
864  * @page: page object resides in zspage
865  * @obj_idx: object index
866  */
867 static void obj_to_location(unsigned long obj, struct page **page,
868 				unsigned int *obj_idx)
869 {
870 	obj >>= OBJ_TAG_BITS;
871 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
872 	*obj_idx = (obj & OBJ_INDEX_MASK);
873 }
874 
875 /**
876  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
877  * @page: page object resides in zspage
878  * @obj_idx: object index
879  */
880 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
881 {
882 	unsigned long obj;
883 
884 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
885 	obj |= obj_idx & OBJ_INDEX_MASK;
886 	obj <<= OBJ_TAG_BITS;
887 
888 	return obj;
889 }
890 
891 static unsigned long handle_to_obj(unsigned long handle)
892 {
893 	return *(unsigned long *)handle;
894 }
895 
896 static unsigned long obj_to_head(struct page *page, void *obj)
897 {
898 	if (unlikely(PageHugeObject(page))) {
899 		VM_BUG_ON_PAGE(!is_first_page(page), page);
900 		return page->index;
901 	} else
902 		return *(unsigned long *)obj;
903 }
904 
905 static inline int testpin_tag(unsigned long handle)
906 {
907 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
908 }
909 
910 static inline int trypin_tag(unsigned long handle)
911 {
912 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
913 }
914 
915 static void pin_tag(unsigned long handle)
916 {
917 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
918 }
919 
920 static void unpin_tag(unsigned long handle)
921 {
922 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
923 }
924 
925 static void reset_page(struct page *page)
926 {
927 	__ClearPageMovable(page);
928 	ClearPagePrivate(page);
929 	set_page_private(page, 0);
930 	page_mapcount_reset(page);
931 	ClearPageHugeObject(page);
932 	page->freelist = NULL;
933 }
934 
935 /*
936  * To prevent zspage destroy during migration, zspage freeing should
937  * hold locks of all pages in the zspage.
938  */
939 void lock_zspage(struct zspage *zspage)
940 {
941 	struct page *page = get_first_page(zspage);
942 
943 	do {
944 		lock_page(page);
945 	} while ((page = get_next_page(page)) != NULL);
946 }
947 
948 int trylock_zspage(struct zspage *zspage)
949 {
950 	struct page *cursor, *fail;
951 
952 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
953 					get_next_page(cursor)) {
954 		if (!trylock_page(cursor)) {
955 			fail = cursor;
956 			goto unlock;
957 		}
958 	}
959 
960 	return 1;
961 unlock:
962 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
963 					get_next_page(cursor))
964 		unlock_page(cursor);
965 
966 	return 0;
967 }
968 
969 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
970 				struct zspage *zspage)
971 {
972 	struct page *page, *next;
973 	enum fullness_group fg;
974 	unsigned int class_idx;
975 
976 	get_zspage_mapping(zspage, &class_idx, &fg);
977 
978 	assert_spin_locked(&class->lock);
979 
980 	VM_BUG_ON(get_zspage_inuse(zspage));
981 	VM_BUG_ON(fg != ZS_EMPTY);
982 
983 	next = page = get_first_page(zspage);
984 	do {
985 		VM_BUG_ON_PAGE(!PageLocked(page), page);
986 		next = get_next_page(page);
987 		reset_page(page);
988 		unlock_page(page);
989 		dec_zone_page_state(page, NR_ZSPAGES);
990 		put_page(page);
991 		page = next;
992 	} while (page != NULL);
993 
994 	cache_free_zspage(pool, zspage);
995 
996 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
997 	atomic_long_sub(class->pages_per_zspage,
998 					&pool->pages_allocated);
999 }
1000 
1001 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1002 				struct zspage *zspage)
1003 {
1004 	VM_BUG_ON(get_zspage_inuse(zspage));
1005 	VM_BUG_ON(list_empty(&zspage->list));
1006 
1007 	if (!trylock_zspage(zspage)) {
1008 		kick_deferred_free(pool);
1009 		return;
1010 	}
1011 
1012 	remove_zspage(class, zspage, ZS_EMPTY);
1013 	__free_zspage(pool, class, zspage);
1014 }
1015 
1016 /* Initialize a newly allocated zspage */
1017 static void init_zspage(struct size_class *class, struct zspage *zspage)
1018 {
1019 	unsigned int freeobj = 1;
1020 	unsigned long off = 0;
1021 	struct page *page = get_first_page(zspage);
1022 
1023 	while (page) {
1024 		struct page *next_page;
1025 		struct link_free *link;
1026 		void *vaddr;
1027 
1028 		set_first_obj_offset(page, off);
1029 
1030 		vaddr = kmap_atomic(page);
1031 		link = (struct link_free *)vaddr + off / sizeof(*link);
1032 
1033 		while ((off += class->size) < PAGE_SIZE) {
1034 			link->next = freeobj++ << OBJ_TAG_BITS;
1035 			link += class->size / sizeof(*link);
1036 		}
1037 
1038 		/*
1039 		 * We now come to the last (full or partial) object on this
1040 		 * page, which must point to the first object on the next
1041 		 * page (if present)
1042 		 */
1043 		next_page = get_next_page(page);
1044 		if (next_page) {
1045 			link->next = freeobj++ << OBJ_TAG_BITS;
1046 		} else {
1047 			/*
1048 			 * Reset OBJ_TAG_BITS bit to last link to tell
1049 			 * whether it's allocated object or not.
1050 			 */
1051 			link->next = -1UL << OBJ_TAG_BITS;
1052 		}
1053 		kunmap_atomic(vaddr);
1054 		page = next_page;
1055 		off %= PAGE_SIZE;
1056 	}
1057 
1058 	set_freeobj(zspage, 0);
1059 }
1060 
1061 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1062 				struct page *pages[])
1063 {
1064 	int i;
1065 	struct page *page;
1066 	struct page *prev_page = NULL;
1067 	int nr_pages = class->pages_per_zspage;
1068 
1069 	/*
1070 	 * Allocate individual pages and link them together as:
1071 	 * 1. all pages are linked together using page->freelist
1072 	 * 2. each sub-page point to zspage using page->private
1073 	 *
1074 	 * we set PG_private to identify the first page (i.e. no other sub-page
1075 	 * has this flag set).
1076 	 */
1077 	for (i = 0; i < nr_pages; i++) {
1078 		page = pages[i];
1079 		set_page_private(page, (unsigned long)zspage);
1080 		page->freelist = NULL;
1081 		if (i == 0) {
1082 			zspage->first_page = page;
1083 			SetPagePrivate(page);
1084 			if (unlikely(class->objs_per_zspage == 1 &&
1085 					class->pages_per_zspage == 1))
1086 				SetPageHugeObject(page);
1087 		} else {
1088 			prev_page->freelist = page;
1089 		}
1090 		prev_page = page;
1091 	}
1092 }
1093 
1094 /*
1095  * Allocate a zspage for the given size class
1096  */
1097 static struct zspage *alloc_zspage(struct zs_pool *pool,
1098 					struct size_class *class,
1099 					gfp_t gfp)
1100 {
1101 	int i;
1102 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1103 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1104 
1105 	if (!zspage)
1106 		return NULL;
1107 
1108 	memset(zspage, 0, sizeof(struct zspage));
1109 	zspage->magic = ZSPAGE_MAGIC;
1110 	migrate_lock_init(zspage);
1111 
1112 	for (i = 0; i < class->pages_per_zspage; i++) {
1113 		struct page *page;
1114 
1115 		page = alloc_page(gfp);
1116 		if (!page) {
1117 			while (--i >= 0) {
1118 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1119 				__free_page(pages[i]);
1120 			}
1121 			cache_free_zspage(pool, zspage);
1122 			return NULL;
1123 		}
1124 
1125 		inc_zone_page_state(page, NR_ZSPAGES);
1126 		pages[i] = page;
1127 	}
1128 
1129 	create_page_chain(class, zspage, pages);
1130 	init_zspage(class, zspage);
1131 
1132 	return zspage;
1133 }
1134 
1135 static struct zspage *find_get_zspage(struct size_class *class)
1136 {
1137 	int i;
1138 	struct zspage *zspage;
1139 
1140 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1141 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1142 				struct zspage, list);
1143 		if (zspage)
1144 			break;
1145 	}
1146 
1147 	return zspage;
1148 }
1149 
1150 #ifdef CONFIG_PGTABLE_MAPPING
1151 static inline int __zs_cpu_up(struct mapping_area *area)
1152 {
1153 	/*
1154 	 * Make sure we don't leak memory if a cpu UP notification
1155 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1156 	 */
1157 	if (area->vm)
1158 		return 0;
1159 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1160 	if (!area->vm)
1161 		return -ENOMEM;
1162 	return 0;
1163 }
1164 
1165 static inline void __zs_cpu_down(struct mapping_area *area)
1166 {
1167 	if (area->vm)
1168 		free_vm_area(area->vm);
1169 	area->vm = NULL;
1170 }
1171 
1172 static inline void *__zs_map_object(struct mapping_area *area,
1173 				struct page *pages[2], int off, int size)
1174 {
1175 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1176 	area->vm_addr = area->vm->addr;
1177 	return area->vm_addr + off;
1178 }
1179 
1180 static inline void __zs_unmap_object(struct mapping_area *area,
1181 				struct page *pages[2], int off, int size)
1182 {
1183 	unsigned long addr = (unsigned long)area->vm_addr;
1184 
1185 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1186 }
1187 
1188 #else /* CONFIG_PGTABLE_MAPPING */
1189 
1190 static inline int __zs_cpu_up(struct mapping_area *area)
1191 {
1192 	/*
1193 	 * Make sure we don't leak memory if a cpu UP notification
1194 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1195 	 */
1196 	if (area->vm_buf)
1197 		return 0;
1198 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1199 	if (!area->vm_buf)
1200 		return -ENOMEM;
1201 	return 0;
1202 }
1203 
1204 static inline void __zs_cpu_down(struct mapping_area *area)
1205 {
1206 	kfree(area->vm_buf);
1207 	area->vm_buf = NULL;
1208 }
1209 
1210 static void *__zs_map_object(struct mapping_area *area,
1211 			struct page *pages[2], int off, int size)
1212 {
1213 	int sizes[2];
1214 	void *addr;
1215 	char *buf = area->vm_buf;
1216 
1217 	/* disable page faults to match kmap_atomic() return conditions */
1218 	pagefault_disable();
1219 
1220 	/* no read fastpath */
1221 	if (area->vm_mm == ZS_MM_WO)
1222 		goto out;
1223 
1224 	sizes[0] = PAGE_SIZE - off;
1225 	sizes[1] = size - sizes[0];
1226 
1227 	/* copy object to per-cpu buffer */
1228 	addr = kmap_atomic(pages[0]);
1229 	memcpy(buf, addr + off, sizes[0]);
1230 	kunmap_atomic(addr);
1231 	addr = kmap_atomic(pages[1]);
1232 	memcpy(buf + sizes[0], addr, sizes[1]);
1233 	kunmap_atomic(addr);
1234 out:
1235 	return area->vm_buf;
1236 }
1237 
1238 static void __zs_unmap_object(struct mapping_area *area,
1239 			struct page *pages[2], int off, int size)
1240 {
1241 	int sizes[2];
1242 	void *addr;
1243 	char *buf;
1244 
1245 	/* no write fastpath */
1246 	if (area->vm_mm == ZS_MM_RO)
1247 		goto out;
1248 
1249 	buf = area->vm_buf;
1250 	buf = buf + ZS_HANDLE_SIZE;
1251 	size -= ZS_HANDLE_SIZE;
1252 	off += ZS_HANDLE_SIZE;
1253 
1254 	sizes[0] = PAGE_SIZE - off;
1255 	sizes[1] = size - sizes[0];
1256 
1257 	/* copy per-cpu buffer to object */
1258 	addr = kmap_atomic(pages[0]);
1259 	memcpy(addr + off, buf, sizes[0]);
1260 	kunmap_atomic(addr);
1261 	addr = kmap_atomic(pages[1]);
1262 	memcpy(addr, buf + sizes[0], sizes[1]);
1263 	kunmap_atomic(addr);
1264 
1265 out:
1266 	/* enable page faults to match kunmap_atomic() return conditions */
1267 	pagefault_enable();
1268 }
1269 
1270 #endif /* CONFIG_PGTABLE_MAPPING */
1271 
1272 static int zs_cpu_prepare(unsigned int cpu)
1273 {
1274 	struct mapping_area *area;
1275 
1276 	area = &per_cpu(zs_map_area, cpu);
1277 	return __zs_cpu_up(area);
1278 }
1279 
1280 static int zs_cpu_dead(unsigned int cpu)
1281 {
1282 	struct mapping_area *area;
1283 
1284 	area = &per_cpu(zs_map_area, cpu);
1285 	__zs_cpu_down(area);
1286 	return 0;
1287 }
1288 
1289 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1290 					int objs_per_zspage)
1291 {
1292 	if (prev->pages_per_zspage == pages_per_zspage &&
1293 		prev->objs_per_zspage == objs_per_zspage)
1294 		return true;
1295 
1296 	return false;
1297 }
1298 
1299 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1300 {
1301 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1302 }
1303 
1304 unsigned long zs_get_total_pages(struct zs_pool *pool)
1305 {
1306 	return atomic_long_read(&pool->pages_allocated);
1307 }
1308 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1309 
1310 /**
1311  * zs_map_object - get address of allocated object from handle.
1312  * @pool: pool from which the object was allocated
1313  * @handle: handle returned from zs_malloc
1314  *
1315  * Before using an object allocated from zs_malloc, it must be mapped using
1316  * this function. When done with the object, it must be unmapped using
1317  * zs_unmap_object.
1318  *
1319  * Only one object can be mapped per cpu at a time. There is no protection
1320  * against nested mappings.
1321  *
1322  * This function returns with preemption and page faults disabled.
1323  */
1324 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1325 			enum zs_mapmode mm)
1326 {
1327 	struct zspage *zspage;
1328 	struct page *page;
1329 	unsigned long obj, off;
1330 	unsigned int obj_idx;
1331 
1332 	unsigned int class_idx;
1333 	enum fullness_group fg;
1334 	struct size_class *class;
1335 	struct mapping_area *area;
1336 	struct page *pages[2];
1337 	void *ret;
1338 
1339 	/*
1340 	 * Because we use per-cpu mapping areas shared among the
1341 	 * pools/users, we can't allow mapping in interrupt context
1342 	 * because it can corrupt another users mappings.
1343 	 */
1344 	BUG_ON(in_interrupt());
1345 
1346 	/* From now on, migration cannot move the object */
1347 	pin_tag(handle);
1348 
1349 	obj = handle_to_obj(handle);
1350 	obj_to_location(obj, &page, &obj_idx);
1351 	zspage = get_zspage(page);
1352 
1353 	/* migration cannot move any subpage in this zspage */
1354 	migrate_read_lock(zspage);
1355 
1356 	get_zspage_mapping(zspage, &class_idx, &fg);
1357 	class = pool->size_class[class_idx];
1358 	off = (class->size * obj_idx) & ~PAGE_MASK;
1359 
1360 	area = &get_cpu_var(zs_map_area);
1361 	area->vm_mm = mm;
1362 	if (off + class->size <= PAGE_SIZE) {
1363 		/* this object is contained entirely within a page */
1364 		area->vm_addr = kmap_atomic(page);
1365 		ret = area->vm_addr + off;
1366 		goto out;
1367 	}
1368 
1369 	/* this object spans two pages */
1370 	pages[0] = page;
1371 	pages[1] = get_next_page(page);
1372 	BUG_ON(!pages[1]);
1373 
1374 	ret = __zs_map_object(area, pages, off, class->size);
1375 out:
1376 	if (likely(!PageHugeObject(page)))
1377 		ret += ZS_HANDLE_SIZE;
1378 
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL_GPL(zs_map_object);
1382 
1383 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1384 {
1385 	struct zspage *zspage;
1386 	struct page *page;
1387 	unsigned long obj, off;
1388 	unsigned int obj_idx;
1389 
1390 	unsigned int class_idx;
1391 	enum fullness_group fg;
1392 	struct size_class *class;
1393 	struct mapping_area *area;
1394 
1395 	obj = handle_to_obj(handle);
1396 	obj_to_location(obj, &page, &obj_idx);
1397 	zspage = get_zspage(page);
1398 	get_zspage_mapping(zspage, &class_idx, &fg);
1399 	class = pool->size_class[class_idx];
1400 	off = (class->size * obj_idx) & ~PAGE_MASK;
1401 
1402 	area = this_cpu_ptr(&zs_map_area);
1403 	if (off + class->size <= PAGE_SIZE)
1404 		kunmap_atomic(area->vm_addr);
1405 	else {
1406 		struct page *pages[2];
1407 
1408 		pages[0] = page;
1409 		pages[1] = get_next_page(page);
1410 		BUG_ON(!pages[1]);
1411 
1412 		__zs_unmap_object(area, pages, off, class->size);
1413 	}
1414 	put_cpu_var(zs_map_area);
1415 
1416 	migrate_read_unlock(zspage);
1417 	unpin_tag(handle);
1418 }
1419 EXPORT_SYMBOL_GPL(zs_unmap_object);
1420 
1421 static unsigned long obj_malloc(struct size_class *class,
1422 				struct zspage *zspage, unsigned long handle)
1423 {
1424 	int i, nr_page, offset;
1425 	unsigned long obj;
1426 	struct link_free *link;
1427 
1428 	struct page *m_page;
1429 	unsigned long m_offset;
1430 	void *vaddr;
1431 
1432 	handle |= OBJ_ALLOCATED_TAG;
1433 	obj = get_freeobj(zspage);
1434 
1435 	offset = obj * class->size;
1436 	nr_page = offset >> PAGE_SHIFT;
1437 	m_offset = offset & ~PAGE_MASK;
1438 	m_page = get_first_page(zspage);
1439 
1440 	for (i = 0; i < nr_page; i++)
1441 		m_page = get_next_page(m_page);
1442 
1443 	vaddr = kmap_atomic(m_page);
1444 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1445 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1446 	if (likely(!PageHugeObject(m_page)))
1447 		/* record handle in the header of allocated chunk */
1448 		link->handle = handle;
1449 	else
1450 		/* record handle to page->index */
1451 		zspage->first_page->index = handle;
1452 
1453 	kunmap_atomic(vaddr);
1454 	mod_zspage_inuse(zspage, 1);
1455 	zs_stat_inc(class, OBJ_USED, 1);
1456 
1457 	obj = location_to_obj(m_page, obj);
1458 
1459 	return obj;
1460 }
1461 
1462 
1463 /**
1464  * zs_malloc - Allocate block of given size from pool.
1465  * @pool: pool to allocate from
1466  * @size: size of block to allocate
1467  * @gfp: gfp flags when allocating object
1468  *
1469  * On success, handle to the allocated object is returned,
1470  * otherwise 0.
1471  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1472  */
1473 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1474 {
1475 	unsigned long handle, obj;
1476 	struct size_class *class;
1477 	enum fullness_group newfg;
1478 	struct zspage *zspage;
1479 
1480 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1481 		return 0;
1482 
1483 	handle = cache_alloc_handle(pool, gfp);
1484 	if (!handle)
1485 		return 0;
1486 
1487 	/* extra space in chunk to keep the handle */
1488 	size += ZS_HANDLE_SIZE;
1489 	class = pool->size_class[get_size_class_index(size)];
1490 
1491 	spin_lock(&class->lock);
1492 	zspage = find_get_zspage(class);
1493 	if (likely(zspage)) {
1494 		obj = obj_malloc(class, zspage, handle);
1495 		/* Now move the zspage to another fullness group, if required */
1496 		fix_fullness_group(class, zspage);
1497 		record_obj(handle, obj);
1498 		spin_unlock(&class->lock);
1499 
1500 		return handle;
1501 	}
1502 
1503 	spin_unlock(&class->lock);
1504 
1505 	zspage = alloc_zspage(pool, class, gfp);
1506 	if (!zspage) {
1507 		cache_free_handle(pool, handle);
1508 		return 0;
1509 	}
1510 
1511 	spin_lock(&class->lock);
1512 	obj = obj_malloc(class, zspage, handle);
1513 	newfg = get_fullness_group(class, zspage);
1514 	insert_zspage(class, zspage, newfg);
1515 	set_zspage_mapping(zspage, class->index, newfg);
1516 	record_obj(handle, obj);
1517 	atomic_long_add(class->pages_per_zspage,
1518 				&pool->pages_allocated);
1519 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1520 
1521 	/* We completely set up zspage so mark them as movable */
1522 	SetZsPageMovable(pool, zspage);
1523 	spin_unlock(&class->lock);
1524 
1525 	return handle;
1526 }
1527 EXPORT_SYMBOL_GPL(zs_malloc);
1528 
1529 static void obj_free(struct size_class *class, unsigned long obj)
1530 {
1531 	struct link_free *link;
1532 	struct zspage *zspage;
1533 	struct page *f_page;
1534 	unsigned long f_offset;
1535 	unsigned int f_objidx;
1536 	void *vaddr;
1537 
1538 	obj &= ~OBJ_ALLOCATED_TAG;
1539 	obj_to_location(obj, &f_page, &f_objidx);
1540 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1541 	zspage = get_zspage(f_page);
1542 
1543 	vaddr = kmap_atomic(f_page);
1544 
1545 	/* Insert this object in containing zspage's freelist */
1546 	link = (struct link_free *)(vaddr + f_offset);
1547 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1548 	kunmap_atomic(vaddr);
1549 	set_freeobj(zspage, f_objidx);
1550 	mod_zspage_inuse(zspage, -1);
1551 	zs_stat_dec(class, OBJ_USED, 1);
1552 }
1553 
1554 void zs_free(struct zs_pool *pool, unsigned long handle)
1555 {
1556 	struct zspage *zspage;
1557 	struct page *f_page;
1558 	unsigned long obj;
1559 	unsigned int f_objidx;
1560 	int class_idx;
1561 	struct size_class *class;
1562 	enum fullness_group fullness;
1563 	bool isolated;
1564 
1565 	if (unlikely(!handle))
1566 		return;
1567 
1568 	pin_tag(handle);
1569 	obj = handle_to_obj(handle);
1570 	obj_to_location(obj, &f_page, &f_objidx);
1571 	zspage = get_zspage(f_page);
1572 
1573 	migrate_read_lock(zspage);
1574 
1575 	get_zspage_mapping(zspage, &class_idx, &fullness);
1576 	class = pool->size_class[class_idx];
1577 
1578 	spin_lock(&class->lock);
1579 	obj_free(class, obj);
1580 	fullness = fix_fullness_group(class, zspage);
1581 	if (fullness != ZS_EMPTY) {
1582 		migrate_read_unlock(zspage);
1583 		goto out;
1584 	}
1585 
1586 	isolated = is_zspage_isolated(zspage);
1587 	migrate_read_unlock(zspage);
1588 	/* If zspage is isolated, zs_page_putback will free the zspage */
1589 	if (likely(!isolated))
1590 		free_zspage(pool, class, zspage);
1591 out:
1592 
1593 	spin_unlock(&class->lock);
1594 	unpin_tag(handle);
1595 	cache_free_handle(pool, handle);
1596 }
1597 EXPORT_SYMBOL_GPL(zs_free);
1598 
1599 static void zs_object_copy(struct size_class *class, unsigned long dst,
1600 				unsigned long src)
1601 {
1602 	struct page *s_page, *d_page;
1603 	unsigned int s_objidx, d_objidx;
1604 	unsigned long s_off, d_off;
1605 	void *s_addr, *d_addr;
1606 	int s_size, d_size, size;
1607 	int written = 0;
1608 
1609 	s_size = d_size = class->size;
1610 
1611 	obj_to_location(src, &s_page, &s_objidx);
1612 	obj_to_location(dst, &d_page, &d_objidx);
1613 
1614 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1615 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1616 
1617 	if (s_off + class->size > PAGE_SIZE)
1618 		s_size = PAGE_SIZE - s_off;
1619 
1620 	if (d_off + class->size > PAGE_SIZE)
1621 		d_size = PAGE_SIZE - d_off;
1622 
1623 	s_addr = kmap_atomic(s_page);
1624 	d_addr = kmap_atomic(d_page);
1625 
1626 	while (1) {
1627 		size = min(s_size, d_size);
1628 		memcpy(d_addr + d_off, s_addr + s_off, size);
1629 		written += size;
1630 
1631 		if (written == class->size)
1632 			break;
1633 
1634 		s_off += size;
1635 		s_size -= size;
1636 		d_off += size;
1637 		d_size -= size;
1638 
1639 		if (s_off >= PAGE_SIZE) {
1640 			kunmap_atomic(d_addr);
1641 			kunmap_atomic(s_addr);
1642 			s_page = get_next_page(s_page);
1643 			s_addr = kmap_atomic(s_page);
1644 			d_addr = kmap_atomic(d_page);
1645 			s_size = class->size - written;
1646 			s_off = 0;
1647 		}
1648 
1649 		if (d_off >= PAGE_SIZE) {
1650 			kunmap_atomic(d_addr);
1651 			d_page = get_next_page(d_page);
1652 			d_addr = kmap_atomic(d_page);
1653 			d_size = class->size - written;
1654 			d_off = 0;
1655 		}
1656 	}
1657 
1658 	kunmap_atomic(d_addr);
1659 	kunmap_atomic(s_addr);
1660 }
1661 
1662 /*
1663  * Find alloced object in zspage from index object and
1664  * return handle.
1665  */
1666 static unsigned long find_alloced_obj(struct size_class *class,
1667 					struct page *page, int *obj_idx)
1668 {
1669 	unsigned long head;
1670 	int offset = 0;
1671 	int index = *obj_idx;
1672 	unsigned long handle = 0;
1673 	void *addr = kmap_atomic(page);
1674 
1675 	offset = get_first_obj_offset(page);
1676 	offset += class->size * index;
1677 
1678 	while (offset < PAGE_SIZE) {
1679 		head = obj_to_head(page, addr + offset);
1680 		if (head & OBJ_ALLOCATED_TAG) {
1681 			handle = head & ~OBJ_ALLOCATED_TAG;
1682 			if (trypin_tag(handle))
1683 				break;
1684 			handle = 0;
1685 		}
1686 
1687 		offset += class->size;
1688 		index++;
1689 	}
1690 
1691 	kunmap_atomic(addr);
1692 
1693 	*obj_idx = index;
1694 
1695 	return handle;
1696 }
1697 
1698 struct zs_compact_control {
1699 	/* Source spage for migration which could be a subpage of zspage */
1700 	struct page *s_page;
1701 	/* Destination page for migration which should be a first page
1702 	 * of zspage. */
1703 	struct page *d_page;
1704 	 /* Starting object index within @s_page which used for live object
1705 	  * in the subpage. */
1706 	int obj_idx;
1707 };
1708 
1709 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1710 				struct zs_compact_control *cc)
1711 {
1712 	unsigned long used_obj, free_obj;
1713 	unsigned long handle;
1714 	struct page *s_page = cc->s_page;
1715 	struct page *d_page = cc->d_page;
1716 	int obj_idx = cc->obj_idx;
1717 	int ret = 0;
1718 
1719 	while (1) {
1720 		handle = find_alloced_obj(class, s_page, &obj_idx);
1721 		if (!handle) {
1722 			s_page = get_next_page(s_page);
1723 			if (!s_page)
1724 				break;
1725 			obj_idx = 0;
1726 			continue;
1727 		}
1728 
1729 		/* Stop if there is no more space */
1730 		if (zspage_full(class, get_zspage(d_page))) {
1731 			unpin_tag(handle);
1732 			ret = -ENOMEM;
1733 			break;
1734 		}
1735 
1736 		used_obj = handle_to_obj(handle);
1737 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1738 		zs_object_copy(class, free_obj, used_obj);
1739 		obj_idx++;
1740 		/*
1741 		 * record_obj updates handle's value to free_obj and it will
1742 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1743 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1744 		 * let's keep the lock bit.
1745 		 */
1746 		free_obj |= BIT(HANDLE_PIN_BIT);
1747 		record_obj(handle, free_obj);
1748 		unpin_tag(handle);
1749 		obj_free(class, used_obj);
1750 	}
1751 
1752 	/* Remember last position in this iteration */
1753 	cc->s_page = s_page;
1754 	cc->obj_idx = obj_idx;
1755 
1756 	return ret;
1757 }
1758 
1759 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1760 {
1761 	int i;
1762 	struct zspage *zspage;
1763 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1764 
1765 	if (!source) {
1766 		fg[0] = ZS_ALMOST_FULL;
1767 		fg[1] = ZS_ALMOST_EMPTY;
1768 	}
1769 
1770 	for (i = 0; i < 2; i++) {
1771 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1772 							struct zspage, list);
1773 		if (zspage) {
1774 			VM_BUG_ON(is_zspage_isolated(zspage));
1775 			remove_zspage(class, zspage, fg[i]);
1776 			return zspage;
1777 		}
1778 	}
1779 
1780 	return zspage;
1781 }
1782 
1783 /*
1784  * putback_zspage - add @zspage into right class's fullness list
1785  * @class: destination class
1786  * @zspage: target page
1787  *
1788  * Return @zspage's fullness_group
1789  */
1790 static enum fullness_group putback_zspage(struct size_class *class,
1791 			struct zspage *zspage)
1792 {
1793 	enum fullness_group fullness;
1794 
1795 	VM_BUG_ON(is_zspage_isolated(zspage));
1796 
1797 	fullness = get_fullness_group(class, zspage);
1798 	insert_zspage(class, zspage, fullness);
1799 	set_zspage_mapping(zspage, class->index, fullness);
1800 
1801 	return fullness;
1802 }
1803 
1804 #ifdef CONFIG_COMPACTION
1805 static struct dentry *zs_mount(struct file_system_type *fs_type,
1806 				int flags, const char *dev_name, void *data)
1807 {
1808 	static const struct dentry_operations ops = {
1809 		.d_dname = simple_dname,
1810 	};
1811 
1812 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1813 }
1814 
1815 static struct file_system_type zsmalloc_fs = {
1816 	.name		= "zsmalloc",
1817 	.mount		= zs_mount,
1818 	.kill_sb	= kill_anon_super,
1819 };
1820 
1821 static int zsmalloc_mount(void)
1822 {
1823 	int ret = 0;
1824 
1825 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1826 	if (IS_ERR(zsmalloc_mnt))
1827 		ret = PTR_ERR(zsmalloc_mnt);
1828 
1829 	return ret;
1830 }
1831 
1832 static void zsmalloc_unmount(void)
1833 {
1834 	kern_unmount(zsmalloc_mnt);
1835 }
1836 
1837 static void migrate_lock_init(struct zspage *zspage)
1838 {
1839 	rwlock_init(&zspage->lock);
1840 }
1841 
1842 static void migrate_read_lock(struct zspage *zspage)
1843 {
1844 	read_lock(&zspage->lock);
1845 }
1846 
1847 static void migrate_read_unlock(struct zspage *zspage)
1848 {
1849 	read_unlock(&zspage->lock);
1850 }
1851 
1852 static void migrate_write_lock(struct zspage *zspage)
1853 {
1854 	write_lock(&zspage->lock);
1855 }
1856 
1857 static void migrate_write_unlock(struct zspage *zspage)
1858 {
1859 	write_unlock(&zspage->lock);
1860 }
1861 
1862 /* Number of isolated subpage for *page migration* in this zspage */
1863 static void inc_zspage_isolation(struct zspage *zspage)
1864 {
1865 	zspage->isolated++;
1866 }
1867 
1868 static void dec_zspage_isolation(struct zspage *zspage)
1869 {
1870 	zspage->isolated--;
1871 }
1872 
1873 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1874 				struct page *newpage, struct page *oldpage)
1875 {
1876 	struct page *page;
1877 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1878 	int idx = 0;
1879 
1880 	page = get_first_page(zspage);
1881 	do {
1882 		if (page == oldpage)
1883 			pages[idx] = newpage;
1884 		else
1885 			pages[idx] = page;
1886 		idx++;
1887 	} while ((page = get_next_page(page)) != NULL);
1888 
1889 	create_page_chain(class, zspage, pages);
1890 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1891 	if (unlikely(PageHugeObject(oldpage)))
1892 		newpage->index = oldpage->index;
1893 	__SetPageMovable(newpage, page_mapping(oldpage));
1894 }
1895 
1896 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1897 {
1898 	struct zs_pool *pool;
1899 	struct size_class *class;
1900 	int class_idx;
1901 	enum fullness_group fullness;
1902 	struct zspage *zspage;
1903 	struct address_space *mapping;
1904 
1905 	/*
1906 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1907 	 * lock_zspage in free_zspage.
1908 	 */
1909 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1910 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1911 
1912 	zspage = get_zspage(page);
1913 
1914 	/*
1915 	 * Without class lock, fullness could be stale while class_idx is okay
1916 	 * because class_idx is constant unless page is freed so we should get
1917 	 * fullness again under class lock.
1918 	 */
1919 	get_zspage_mapping(zspage, &class_idx, &fullness);
1920 	mapping = page_mapping(page);
1921 	pool = mapping->private_data;
1922 	class = pool->size_class[class_idx];
1923 
1924 	spin_lock(&class->lock);
1925 	if (get_zspage_inuse(zspage) == 0) {
1926 		spin_unlock(&class->lock);
1927 		return false;
1928 	}
1929 
1930 	/* zspage is isolated for object migration */
1931 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1932 		spin_unlock(&class->lock);
1933 		return false;
1934 	}
1935 
1936 	/*
1937 	 * If this is first time isolation for the zspage, isolate zspage from
1938 	 * size_class to prevent further object allocation from the zspage.
1939 	 */
1940 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941 		get_zspage_mapping(zspage, &class_idx, &fullness);
1942 		remove_zspage(class, zspage, fullness);
1943 	}
1944 
1945 	inc_zspage_isolation(zspage);
1946 	spin_unlock(&class->lock);
1947 
1948 	return true;
1949 }
1950 
1951 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1952 		struct page *page, enum migrate_mode mode)
1953 {
1954 	struct zs_pool *pool;
1955 	struct size_class *class;
1956 	int class_idx;
1957 	enum fullness_group fullness;
1958 	struct zspage *zspage;
1959 	struct page *dummy;
1960 	void *s_addr, *d_addr, *addr;
1961 	int offset, pos;
1962 	unsigned long handle, head;
1963 	unsigned long old_obj, new_obj;
1964 	unsigned int obj_idx;
1965 	int ret = -EAGAIN;
1966 
1967 	/*
1968 	 * We cannot support the _NO_COPY case here, because copy needs to
1969 	 * happen under the zs lock, which does not work with
1970 	 * MIGRATE_SYNC_NO_COPY workflow.
1971 	 */
1972 	if (mode == MIGRATE_SYNC_NO_COPY)
1973 		return -EINVAL;
1974 
1975 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1976 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1977 
1978 	zspage = get_zspage(page);
1979 
1980 	/* Concurrent compactor cannot migrate any subpage in zspage */
1981 	migrate_write_lock(zspage);
1982 	get_zspage_mapping(zspage, &class_idx, &fullness);
1983 	pool = mapping->private_data;
1984 	class = pool->size_class[class_idx];
1985 	offset = get_first_obj_offset(page);
1986 
1987 	spin_lock(&class->lock);
1988 	if (!get_zspage_inuse(zspage)) {
1989 		/*
1990 		 * Set "offset" to end of the page so that every loops
1991 		 * skips unnecessary object scanning.
1992 		 */
1993 		offset = PAGE_SIZE;
1994 	}
1995 
1996 	pos = offset;
1997 	s_addr = kmap_atomic(page);
1998 	while (pos < PAGE_SIZE) {
1999 		head = obj_to_head(page, s_addr + pos);
2000 		if (head & OBJ_ALLOCATED_TAG) {
2001 			handle = head & ~OBJ_ALLOCATED_TAG;
2002 			if (!trypin_tag(handle))
2003 				goto unpin_objects;
2004 		}
2005 		pos += class->size;
2006 	}
2007 
2008 	/*
2009 	 * Here, any user cannot access all objects in the zspage so let's move.
2010 	 */
2011 	d_addr = kmap_atomic(newpage);
2012 	memcpy(d_addr, s_addr, PAGE_SIZE);
2013 	kunmap_atomic(d_addr);
2014 
2015 	for (addr = s_addr + offset; addr < s_addr + pos;
2016 					addr += class->size) {
2017 		head = obj_to_head(page, addr);
2018 		if (head & OBJ_ALLOCATED_TAG) {
2019 			handle = head & ~OBJ_ALLOCATED_TAG;
2020 			if (!testpin_tag(handle))
2021 				BUG();
2022 
2023 			old_obj = handle_to_obj(handle);
2024 			obj_to_location(old_obj, &dummy, &obj_idx);
2025 			new_obj = (unsigned long)location_to_obj(newpage,
2026 								obj_idx);
2027 			new_obj |= BIT(HANDLE_PIN_BIT);
2028 			record_obj(handle, new_obj);
2029 		}
2030 	}
2031 
2032 	replace_sub_page(class, zspage, newpage, page);
2033 	get_page(newpage);
2034 
2035 	dec_zspage_isolation(zspage);
2036 
2037 	/*
2038 	 * Page migration is done so let's putback isolated zspage to
2039 	 * the list if @page is final isolated subpage in the zspage.
2040 	 */
2041 	if (!is_zspage_isolated(zspage))
2042 		putback_zspage(class, zspage);
2043 
2044 	reset_page(page);
2045 	put_page(page);
2046 	page = newpage;
2047 
2048 	ret = MIGRATEPAGE_SUCCESS;
2049 unpin_objects:
2050 	for (addr = s_addr + offset; addr < s_addr + pos;
2051 						addr += class->size) {
2052 		head = obj_to_head(page, addr);
2053 		if (head & OBJ_ALLOCATED_TAG) {
2054 			handle = head & ~OBJ_ALLOCATED_TAG;
2055 			if (!testpin_tag(handle))
2056 				BUG();
2057 			unpin_tag(handle);
2058 		}
2059 	}
2060 	kunmap_atomic(s_addr);
2061 	spin_unlock(&class->lock);
2062 	migrate_write_unlock(zspage);
2063 
2064 	return ret;
2065 }
2066 
2067 void zs_page_putback(struct page *page)
2068 {
2069 	struct zs_pool *pool;
2070 	struct size_class *class;
2071 	int class_idx;
2072 	enum fullness_group fg;
2073 	struct address_space *mapping;
2074 	struct zspage *zspage;
2075 
2076 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2077 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2078 
2079 	zspage = get_zspage(page);
2080 	get_zspage_mapping(zspage, &class_idx, &fg);
2081 	mapping = page_mapping(page);
2082 	pool = mapping->private_data;
2083 	class = pool->size_class[class_idx];
2084 
2085 	spin_lock(&class->lock);
2086 	dec_zspage_isolation(zspage);
2087 	if (!is_zspage_isolated(zspage)) {
2088 		fg = putback_zspage(class, zspage);
2089 		/*
2090 		 * Due to page_lock, we cannot free zspage immediately
2091 		 * so let's defer.
2092 		 */
2093 		if (fg == ZS_EMPTY)
2094 			schedule_work(&pool->free_work);
2095 	}
2096 	spin_unlock(&class->lock);
2097 }
2098 
2099 const struct address_space_operations zsmalloc_aops = {
2100 	.isolate_page = zs_page_isolate,
2101 	.migratepage = zs_page_migrate,
2102 	.putback_page = zs_page_putback,
2103 };
2104 
2105 static int zs_register_migration(struct zs_pool *pool)
2106 {
2107 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2108 	if (IS_ERR(pool->inode)) {
2109 		pool->inode = NULL;
2110 		return 1;
2111 	}
2112 
2113 	pool->inode->i_mapping->private_data = pool;
2114 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2115 	return 0;
2116 }
2117 
2118 static void zs_unregister_migration(struct zs_pool *pool)
2119 {
2120 	flush_work(&pool->free_work);
2121 	iput(pool->inode);
2122 }
2123 
2124 /*
2125  * Caller should hold page_lock of all pages in the zspage
2126  * In here, we cannot use zspage meta data.
2127  */
2128 static void async_free_zspage(struct work_struct *work)
2129 {
2130 	int i;
2131 	struct size_class *class;
2132 	unsigned int class_idx;
2133 	enum fullness_group fullness;
2134 	struct zspage *zspage, *tmp;
2135 	LIST_HEAD(free_pages);
2136 	struct zs_pool *pool = container_of(work, struct zs_pool,
2137 					free_work);
2138 
2139 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2140 		class = pool->size_class[i];
2141 		if (class->index != i)
2142 			continue;
2143 
2144 		spin_lock(&class->lock);
2145 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2146 		spin_unlock(&class->lock);
2147 	}
2148 
2149 
2150 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2151 		list_del(&zspage->list);
2152 		lock_zspage(zspage);
2153 
2154 		get_zspage_mapping(zspage, &class_idx, &fullness);
2155 		VM_BUG_ON(fullness != ZS_EMPTY);
2156 		class = pool->size_class[class_idx];
2157 		spin_lock(&class->lock);
2158 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2159 		spin_unlock(&class->lock);
2160 	}
2161 };
2162 
2163 static void kick_deferred_free(struct zs_pool *pool)
2164 {
2165 	schedule_work(&pool->free_work);
2166 }
2167 
2168 static void init_deferred_free(struct zs_pool *pool)
2169 {
2170 	INIT_WORK(&pool->free_work, async_free_zspage);
2171 }
2172 
2173 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2174 {
2175 	struct page *page = get_first_page(zspage);
2176 
2177 	do {
2178 		WARN_ON(!trylock_page(page));
2179 		__SetPageMovable(page, pool->inode->i_mapping);
2180 		unlock_page(page);
2181 	} while ((page = get_next_page(page)) != NULL);
2182 }
2183 #endif
2184 
2185 /*
2186  *
2187  * Based on the number of unused allocated objects calculate
2188  * and return the number of pages that we can free.
2189  */
2190 static unsigned long zs_can_compact(struct size_class *class)
2191 {
2192 	unsigned long obj_wasted;
2193 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2194 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2195 
2196 	if (obj_allocated <= obj_used)
2197 		return 0;
2198 
2199 	obj_wasted = obj_allocated - obj_used;
2200 	obj_wasted /= class->objs_per_zspage;
2201 
2202 	return obj_wasted * class->pages_per_zspage;
2203 }
2204 
2205 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2206 {
2207 	struct zs_compact_control cc;
2208 	struct zspage *src_zspage;
2209 	struct zspage *dst_zspage = NULL;
2210 
2211 	spin_lock(&class->lock);
2212 	while ((src_zspage = isolate_zspage(class, true))) {
2213 
2214 		if (!zs_can_compact(class))
2215 			break;
2216 
2217 		cc.obj_idx = 0;
2218 		cc.s_page = get_first_page(src_zspage);
2219 
2220 		while ((dst_zspage = isolate_zspage(class, false))) {
2221 			cc.d_page = get_first_page(dst_zspage);
2222 			/*
2223 			 * If there is no more space in dst_page, resched
2224 			 * and see if anyone had allocated another zspage.
2225 			 */
2226 			if (!migrate_zspage(pool, class, &cc))
2227 				break;
2228 
2229 			putback_zspage(class, dst_zspage);
2230 		}
2231 
2232 		/* Stop if we couldn't find slot */
2233 		if (dst_zspage == NULL)
2234 			break;
2235 
2236 		putback_zspage(class, dst_zspage);
2237 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2238 			free_zspage(pool, class, src_zspage);
2239 			pool->stats.pages_compacted += class->pages_per_zspage;
2240 		}
2241 		spin_unlock(&class->lock);
2242 		cond_resched();
2243 		spin_lock(&class->lock);
2244 	}
2245 
2246 	if (src_zspage)
2247 		putback_zspage(class, src_zspage);
2248 
2249 	spin_unlock(&class->lock);
2250 }
2251 
2252 unsigned long zs_compact(struct zs_pool *pool)
2253 {
2254 	int i;
2255 	struct size_class *class;
2256 
2257 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2258 		class = pool->size_class[i];
2259 		if (!class)
2260 			continue;
2261 		if (class->index != i)
2262 			continue;
2263 		__zs_compact(pool, class);
2264 	}
2265 
2266 	return pool->stats.pages_compacted;
2267 }
2268 EXPORT_SYMBOL_GPL(zs_compact);
2269 
2270 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2271 {
2272 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2273 }
2274 EXPORT_SYMBOL_GPL(zs_pool_stats);
2275 
2276 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2277 		struct shrink_control *sc)
2278 {
2279 	unsigned long pages_freed;
2280 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2281 			shrinker);
2282 
2283 	pages_freed = pool->stats.pages_compacted;
2284 	/*
2285 	 * Compact classes and calculate compaction delta.
2286 	 * Can run concurrently with a manually triggered
2287 	 * (by user) compaction.
2288 	 */
2289 	pages_freed = zs_compact(pool) - pages_freed;
2290 
2291 	return pages_freed ? pages_freed : SHRINK_STOP;
2292 }
2293 
2294 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2295 		struct shrink_control *sc)
2296 {
2297 	int i;
2298 	struct size_class *class;
2299 	unsigned long pages_to_free = 0;
2300 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2301 			shrinker);
2302 
2303 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2304 		class = pool->size_class[i];
2305 		if (!class)
2306 			continue;
2307 		if (class->index != i)
2308 			continue;
2309 
2310 		pages_to_free += zs_can_compact(class);
2311 	}
2312 
2313 	return pages_to_free;
2314 }
2315 
2316 static void zs_unregister_shrinker(struct zs_pool *pool)
2317 {
2318 	unregister_shrinker(&pool->shrinker);
2319 }
2320 
2321 static int zs_register_shrinker(struct zs_pool *pool)
2322 {
2323 	pool->shrinker.scan_objects = zs_shrinker_scan;
2324 	pool->shrinker.count_objects = zs_shrinker_count;
2325 	pool->shrinker.batch = 0;
2326 	pool->shrinker.seeks = DEFAULT_SEEKS;
2327 
2328 	return register_shrinker(&pool->shrinker);
2329 }
2330 
2331 /**
2332  * zs_create_pool - Creates an allocation pool to work from.
2333  * @name: pool name to be created
2334  *
2335  * This function must be called before anything when using
2336  * the zsmalloc allocator.
2337  *
2338  * On success, a pointer to the newly created pool is returned,
2339  * otherwise NULL.
2340  */
2341 struct zs_pool *zs_create_pool(const char *name)
2342 {
2343 	int i;
2344 	struct zs_pool *pool;
2345 	struct size_class *prev_class = NULL;
2346 
2347 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2348 	if (!pool)
2349 		return NULL;
2350 
2351 	init_deferred_free(pool);
2352 
2353 	pool->name = kstrdup(name, GFP_KERNEL);
2354 	if (!pool->name)
2355 		goto err;
2356 
2357 	if (create_cache(pool))
2358 		goto err;
2359 
2360 	/*
2361 	 * Iterate reversely, because, size of size_class that we want to use
2362 	 * for merging should be larger or equal to current size.
2363 	 */
2364 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2365 		int size;
2366 		int pages_per_zspage;
2367 		int objs_per_zspage;
2368 		struct size_class *class;
2369 		int fullness = 0;
2370 
2371 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2372 		if (size > ZS_MAX_ALLOC_SIZE)
2373 			size = ZS_MAX_ALLOC_SIZE;
2374 		pages_per_zspage = get_pages_per_zspage(size);
2375 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2376 
2377 		/*
2378 		 * size_class is used for normal zsmalloc operation such
2379 		 * as alloc/free for that size. Although it is natural that we
2380 		 * have one size_class for each size, there is a chance that we
2381 		 * can get more memory utilization if we use one size_class for
2382 		 * many different sizes whose size_class have same
2383 		 * characteristics. So, we makes size_class point to
2384 		 * previous size_class if possible.
2385 		 */
2386 		if (prev_class) {
2387 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2388 				pool->size_class[i] = prev_class;
2389 				continue;
2390 			}
2391 		}
2392 
2393 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2394 		if (!class)
2395 			goto err;
2396 
2397 		class->size = size;
2398 		class->index = i;
2399 		class->pages_per_zspage = pages_per_zspage;
2400 		class->objs_per_zspage = objs_per_zspage;
2401 		spin_lock_init(&class->lock);
2402 		pool->size_class[i] = class;
2403 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2404 							fullness++)
2405 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2406 
2407 		prev_class = class;
2408 	}
2409 
2410 	/* debug only, don't abort if it fails */
2411 	zs_pool_stat_create(pool, name);
2412 
2413 	if (zs_register_migration(pool))
2414 		goto err;
2415 
2416 	/*
2417 	 * Not critical since shrinker is only used to trigger internal
2418 	 * defragmentation of the pool which is pretty optional thing.  If
2419 	 * registration fails we still can use the pool normally and user can
2420 	 * trigger compaction manually. Thus, ignore return code.
2421 	 */
2422 	zs_register_shrinker(pool);
2423 
2424 	return pool;
2425 
2426 err:
2427 	zs_destroy_pool(pool);
2428 	return NULL;
2429 }
2430 EXPORT_SYMBOL_GPL(zs_create_pool);
2431 
2432 void zs_destroy_pool(struct zs_pool *pool)
2433 {
2434 	int i;
2435 
2436 	zs_unregister_shrinker(pool);
2437 	zs_unregister_migration(pool);
2438 	zs_pool_stat_destroy(pool);
2439 
2440 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2441 		int fg;
2442 		struct size_class *class = pool->size_class[i];
2443 
2444 		if (!class)
2445 			continue;
2446 
2447 		if (class->index != i)
2448 			continue;
2449 
2450 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2451 			if (!list_empty(&class->fullness_list[fg])) {
2452 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2453 					class->size, fg);
2454 			}
2455 		}
2456 		kfree(class);
2457 	}
2458 
2459 	destroy_cache(pool);
2460 	kfree(pool->name);
2461 	kfree(pool);
2462 }
2463 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2464 
2465 static int __init zs_init(void)
2466 {
2467 	int ret;
2468 
2469 	ret = zsmalloc_mount();
2470 	if (ret)
2471 		goto out;
2472 
2473 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2474 				zs_cpu_prepare, zs_cpu_dead);
2475 	if (ret)
2476 		goto hp_setup_fail;
2477 
2478 #ifdef CONFIG_ZPOOL
2479 	zpool_register_driver(&zs_zpool_driver);
2480 #endif
2481 
2482 	zs_stat_init();
2483 
2484 	return 0;
2485 
2486 hp_setup_fail:
2487 	zsmalloc_unmount();
2488 out:
2489 	return ret;
2490 }
2491 
2492 static void __exit zs_exit(void)
2493 {
2494 #ifdef CONFIG_ZPOOL
2495 	zpool_unregister_driver(&zs_zpool_driver);
2496 #endif
2497 	zsmalloc_unmount();
2498 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2499 
2500 	zs_stat_exit();
2501 }
2502 
2503 module_init(zs_init);
2504 module_exit(zs_exit);
2505 
2506 MODULE_LICENSE("Dual BSD/GPL");
2507 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2508