xref: /linux/mm/zsmalloc.c (revision a58f3dcf20ea9e7e968ee8369fd782bbb53dff73)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * zsmalloc memory allocator
5  *
6  * Copyright (C) 2011  Nitin Gupta
7  * Copyright (C) 2012, 2013 Minchan Kim
8  *
9  * This code is released using a dual license strategy: BSD/GPL
10  * You can choose the license that better fits your requirements.
11  *
12  * Released under the terms of 3-clause BSD License
13  * Released under the terms of GNU General Public License Version 2.0
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 /*
19  * lock ordering:
20  *	page_lock
21  *	pool->lock
22  *	class->lock
23  *	zspage->lock
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/bitops.h>
30 #include <linux/errno.h>
31 #include <linux/highmem.h>
32 #include <linux/string.h>
33 #include <linux/slab.h>
34 #include <linux/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/cpumask.h>
37 #include <linux/cpu.h>
38 #include <linux/vmalloc.h>
39 #include <linux/preempt.h>
40 #include <linux/spinlock.h>
41 #include <linux/sprintf.h>
42 #include <linux/shrinker.h>
43 #include <linux/types.h>
44 #include <linux/debugfs.h>
45 #include <linux/zsmalloc.h>
46 #include <linux/zpool.h>
47 #include <linux/migrate.h>
48 #include <linux/wait.h>
49 #include <linux/pagemap.h>
50 #include <linux/fs.h>
51 #include <linux/local_lock.h>
52 #include "zpdesc.h"
53 
54 #define ZSPAGE_MAGIC	0x58
55 
56 /*
57  * This must be power of 2 and greater than or equal to sizeof(link_free).
58  * These two conditions ensure that any 'struct link_free' itself doesn't
59  * span more than 1 page which avoids complex case of mapping 2 pages simply
60  * to restore link_free pointer values.
61  */
62 #define ZS_ALIGN		8
63 
64 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
65 
66 /*
67  * Object location (<PFN>, <obj_idx>) is encoded as
68  * a single (unsigned long) handle value.
69  *
70  * Note that object index <obj_idx> starts from 0.
71  *
72  * This is made more complicated by various memory models and PAE.
73  */
74 
75 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
76 #ifdef MAX_PHYSMEM_BITS
77 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
78 #else
79 /*
80  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
81  * be PAGE_SHIFT
82  */
83 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
84 #endif
85 #endif
86 
87 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
88 
89 /*
90  * Head in allocated object should have OBJ_ALLOCATED_TAG
91  * to identify the object was allocated or not.
92  * It's okay to add the status bit in the least bit because
93  * header keeps handle which is 4byte-aligned address so we
94  * have room for two bit at least.
95  */
96 #define OBJ_ALLOCATED_TAG 1
97 
98 #define OBJ_TAG_BITS	1
99 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
100 
101 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
102 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
103 
104 #define HUGE_BITS	1
105 #define FULLNESS_BITS	4
106 #define CLASS_BITS	8
107 #define MAGIC_VAL_BITS	8
108 
109 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
110 
111 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
112 #define ZS_MIN_ALLOC_SIZE \
113 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
114 /* each chunk includes extra space to keep handle */
115 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
116 
117 /*
118  * On systems with 4K page size, this gives 255 size classes! There is a
119  * trader-off here:
120  *  - Large number of size classes is potentially wasteful as free page are
121  *    spread across these classes
122  *  - Small number of size classes causes large internal fragmentation
123  *  - Probably its better to use specific size classes (empirically
124  *    determined). NOTE: all those class sizes must be set as multiple of
125  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
126  *
127  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
128  *  (reason above)
129  */
130 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
131 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
132 				      ZS_SIZE_CLASS_DELTA) + 1)
133 
134 /*
135  * Pages are distinguished by the ratio of used memory (that is the ratio
136  * of ->inuse objects to all objects that page can store). For example,
137  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
138  *
139  * The number of fullness groups is not random. It allows us to keep
140  * difference between the least busy page in the group (minimum permitted
141  * number of ->inuse objects) and the most busy page (maximum permitted
142  * number of ->inuse objects) at a reasonable value.
143  */
144 enum fullness_group {
145 	ZS_INUSE_RATIO_0,
146 	ZS_INUSE_RATIO_10,
147 	/* NOTE: 8 more fullness groups here */
148 	ZS_INUSE_RATIO_99       = 10,
149 	ZS_INUSE_RATIO_100,
150 	NR_FULLNESS_GROUPS,
151 };
152 
153 enum class_stat_type {
154 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
155 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
156 	ZS_OBJS_INUSE,
157 	NR_CLASS_STAT_TYPES,
158 };
159 
160 struct zs_size_stat {
161 	unsigned long objs[NR_CLASS_STAT_TYPES];
162 };
163 
164 #ifdef CONFIG_ZSMALLOC_STAT
165 static struct dentry *zs_stat_root;
166 #endif
167 
168 static size_t huge_class_size;
169 
170 struct size_class {
171 	spinlock_t lock;
172 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
173 	/*
174 	 * Size of objects stored in this class. Must be multiple
175 	 * of ZS_ALIGN.
176 	 */
177 	int size;
178 	int objs_per_zspage;
179 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
180 	int pages_per_zspage;
181 
182 	unsigned int index;
183 	struct zs_size_stat stats;
184 };
185 
186 /*
187  * Placed within free objects to form a singly linked list.
188  * For every zspage, zspage->freeobj gives head of this list.
189  *
190  * This must be power of 2 and less than or equal to ZS_ALIGN
191  */
192 struct link_free {
193 	union {
194 		/*
195 		 * Free object index;
196 		 * It's valid for non-allocated object
197 		 */
198 		unsigned long next;
199 		/*
200 		 * Handle of allocated object.
201 		 */
202 		unsigned long handle;
203 	};
204 };
205 
206 struct zs_pool {
207 	const char *name;
208 
209 	struct size_class *size_class[ZS_SIZE_CLASSES];
210 	struct kmem_cache *handle_cachep;
211 	struct kmem_cache *zspage_cachep;
212 
213 	atomic_long_t pages_allocated;
214 
215 	struct zs_pool_stats stats;
216 
217 	/* Compact classes */
218 	struct shrinker *shrinker;
219 
220 #ifdef CONFIG_ZSMALLOC_STAT
221 	struct dentry *stat_dentry;
222 #endif
223 #ifdef CONFIG_COMPACTION
224 	struct work_struct free_work;
225 #endif
226 	/* protect zspage migration/compaction */
227 	rwlock_t lock;
228 	atomic_t compaction_in_progress;
229 };
230 
231 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
232 {
233 	SetPagePrivate(zpdesc_page(zpdesc));
234 }
235 
236 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
237 {
238 	inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
239 }
240 
241 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
242 {
243 	dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
244 }
245 
246 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp)
247 {
248 	struct page *page = alloc_page(gfp);
249 
250 	return page_zpdesc(page);
251 }
252 
253 static inline void free_zpdesc(struct zpdesc *zpdesc)
254 {
255 	struct page *page = zpdesc_page(zpdesc);
256 
257 	__free_page(page);
258 }
259 
260 #define ZS_PAGE_UNLOCKED	0
261 #define ZS_PAGE_WRLOCKED	-1
262 
263 struct zspage_lock {
264 	spinlock_t lock;
265 	int cnt;
266 	struct lockdep_map dep_map;
267 };
268 
269 struct zspage {
270 	struct {
271 		unsigned int huge:HUGE_BITS;
272 		unsigned int fullness:FULLNESS_BITS;
273 		unsigned int class:CLASS_BITS + 1;
274 		unsigned int magic:MAGIC_VAL_BITS;
275 	};
276 	unsigned int inuse;
277 	unsigned int freeobj;
278 	struct zpdesc *first_zpdesc;
279 	struct list_head list; /* fullness list */
280 	struct zs_pool *pool;
281 	struct zspage_lock zsl;
282 };
283 
284 struct mapping_area {
285 	local_lock_t lock;
286 	char *vm_buf; /* copy buffer for objects that span pages */
287 	char *vm_addr; /* address of kmap_local_page()'ed pages */
288 	enum zs_mapmode vm_mm; /* mapping mode */
289 };
290 
291 static void zspage_lock_init(struct zspage *zspage)
292 {
293 	static struct lock_class_key __key;
294 	struct zspage_lock *zsl = &zspage->zsl;
295 
296 	lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
297 	spin_lock_init(&zsl->lock);
298 	zsl->cnt = ZS_PAGE_UNLOCKED;
299 }
300 
301 /*
302  * The zspage lock can be held from atomic contexts, but it needs to remain
303  * preemptible when held for reading because it remains held outside of those
304  * atomic contexts, otherwise we unnecessarily lose preemptibility.
305  *
306  * To achieve this, the following rules are enforced on readers and writers:
307  *
308  * - Writers are blocked by both writers and readers, while readers are only
309  *   blocked by writers (i.e. normal rwlock semantics).
310  *
311  * - Writers are always atomic (to allow readers to spin waiting for them).
312  *
313  * - Writers always use trylock (as the lock may be held be sleeping readers).
314  *
315  * - Readers may spin on the lock (as they can only wait for atomic writers).
316  *
317  * - Readers may sleep while holding the lock (as writes only use trylock).
318  */
319 static void zspage_read_lock(struct zspage *zspage)
320 {
321 	struct zspage_lock *zsl = &zspage->zsl;
322 
323 	rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
324 
325 	spin_lock(&zsl->lock);
326 	zsl->cnt++;
327 	spin_unlock(&zsl->lock);
328 
329 	lock_acquired(&zsl->dep_map, _RET_IP_);
330 }
331 
332 static void zspage_read_unlock(struct zspage *zspage)
333 {
334 	struct zspage_lock *zsl = &zspage->zsl;
335 
336 	rwsem_release(&zsl->dep_map, _RET_IP_);
337 
338 	spin_lock(&zsl->lock);
339 	zsl->cnt--;
340 	spin_unlock(&zsl->lock);
341 }
342 
343 static __must_check bool zspage_write_trylock(struct zspage *zspage)
344 {
345 	struct zspage_lock *zsl = &zspage->zsl;
346 
347 	spin_lock(&zsl->lock);
348 	if (zsl->cnt == ZS_PAGE_UNLOCKED) {
349 		zsl->cnt = ZS_PAGE_WRLOCKED;
350 		rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
351 		lock_acquired(&zsl->dep_map, _RET_IP_);
352 		return true;
353 	}
354 
355 	spin_unlock(&zsl->lock);
356 	return false;
357 }
358 
359 static void zspage_write_unlock(struct zspage *zspage)
360 {
361 	struct zspage_lock *zsl = &zspage->zsl;
362 
363 	rwsem_release(&zsl->dep_map, _RET_IP_);
364 
365 	zsl->cnt = ZS_PAGE_UNLOCKED;
366 	spin_unlock(&zsl->lock);
367 }
368 
369 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
370 static void SetZsHugePage(struct zspage *zspage)
371 {
372 	zspage->huge = 1;
373 }
374 
375 static bool ZsHugePage(struct zspage *zspage)
376 {
377 	return zspage->huge;
378 }
379 
380 #ifdef CONFIG_COMPACTION
381 static void kick_deferred_free(struct zs_pool *pool);
382 static void init_deferred_free(struct zs_pool *pool);
383 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
384 #else
385 static void kick_deferred_free(struct zs_pool *pool) {}
386 static void init_deferred_free(struct zs_pool *pool) {}
387 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
388 #endif
389 
390 static int create_cache(struct zs_pool *pool)
391 {
392 	char *name;
393 
394 	name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
395 	if (!name)
396 		return -ENOMEM;
397 	pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
398 						0, 0, NULL);
399 	kfree(name);
400 	if (!pool->handle_cachep)
401 		return -EINVAL;
402 
403 	name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
404 	if (!name)
405 		return -ENOMEM;
406 	pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
407 						0, 0, NULL);
408 	kfree(name);
409 	if (!pool->zspage_cachep) {
410 		kmem_cache_destroy(pool->handle_cachep);
411 		pool->handle_cachep = NULL;
412 		return -EINVAL;
413 	}
414 
415 	return 0;
416 }
417 
418 static void destroy_cache(struct zs_pool *pool)
419 {
420 	kmem_cache_destroy(pool->handle_cachep);
421 	kmem_cache_destroy(pool->zspage_cachep);
422 }
423 
424 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
425 {
426 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
427 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
428 }
429 
430 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
431 {
432 	kmem_cache_free(pool->handle_cachep, (void *)handle);
433 }
434 
435 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
436 {
437 	return kmem_cache_zalloc(pool->zspage_cachep,
438 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
439 }
440 
441 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
442 {
443 	kmem_cache_free(pool->zspage_cachep, zspage);
444 }
445 
446 /* class->lock(which owns the handle) synchronizes races */
447 static void record_obj(unsigned long handle, unsigned long obj)
448 {
449 	*(unsigned long *)handle = obj;
450 }
451 
452 /* zpool driver */
453 
454 #ifdef CONFIG_ZPOOL
455 
456 static void *zs_zpool_create(const char *name, gfp_t gfp)
457 {
458 	/*
459 	 * Ignore global gfp flags: zs_malloc() may be invoked from
460 	 * different contexts and its caller must provide a valid
461 	 * gfp mask.
462 	 */
463 	return zs_create_pool(name);
464 }
465 
466 static void zs_zpool_destroy(void *pool)
467 {
468 	zs_destroy_pool(pool);
469 }
470 
471 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
472 			unsigned long *handle)
473 {
474 	*handle = zs_malloc(pool, size, gfp);
475 
476 	if (IS_ERR_VALUE(*handle))
477 		return PTR_ERR((void *)*handle);
478 	return 0;
479 }
480 static void zs_zpool_free(void *pool, unsigned long handle)
481 {
482 	zs_free(pool, handle);
483 }
484 
485 static void *zs_zpool_map(void *pool, unsigned long handle,
486 			enum zpool_mapmode mm)
487 {
488 	enum zs_mapmode zs_mm;
489 
490 	switch (mm) {
491 	case ZPOOL_MM_RO:
492 		zs_mm = ZS_MM_RO;
493 		break;
494 	case ZPOOL_MM_WO:
495 		zs_mm = ZS_MM_WO;
496 		break;
497 	case ZPOOL_MM_RW:
498 	default:
499 		zs_mm = ZS_MM_RW;
500 		break;
501 	}
502 
503 	return zs_map_object(pool, handle, zs_mm);
504 }
505 static void zs_zpool_unmap(void *pool, unsigned long handle)
506 {
507 	zs_unmap_object(pool, handle);
508 }
509 
510 static u64 zs_zpool_total_pages(void *pool)
511 {
512 	return zs_get_total_pages(pool);
513 }
514 
515 static struct zpool_driver zs_zpool_driver = {
516 	.type =			  "zsmalloc",
517 	.owner =		  THIS_MODULE,
518 	.create =		  zs_zpool_create,
519 	.destroy =		  zs_zpool_destroy,
520 	.malloc_support_movable = true,
521 	.malloc =		  zs_zpool_malloc,
522 	.free =			  zs_zpool_free,
523 	.map =			  zs_zpool_map,
524 	.unmap =		  zs_zpool_unmap,
525 	.total_pages =		  zs_zpool_total_pages,
526 };
527 
528 MODULE_ALIAS("zpool-zsmalloc");
529 #endif /* CONFIG_ZPOOL */
530 
531 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
532 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
533 	.lock	= INIT_LOCAL_LOCK(lock),
534 };
535 
536 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
537 {
538 	return PagePrivate(zpdesc_page(zpdesc));
539 }
540 
541 /* Protected by class->lock */
542 static inline int get_zspage_inuse(struct zspage *zspage)
543 {
544 	return zspage->inuse;
545 }
546 
547 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
548 {
549 	zspage->inuse += val;
550 }
551 
552 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
553 {
554 	struct zpdesc *first_zpdesc = zspage->first_zpdesc;
555 
556 	VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
557 	return first_zpdesc;
558 }
559 
560 #define FIRST_OBJ_PAGE_TYPE_MASK	0xffffff
561 
562 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
563 {
564 	VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
565 	return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
566 }
567 
568 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
569 {
570 	/* With 24 bits available, we can support offsets into 16 MiB pages. */
571 	BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
572 	VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
573 	VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
574 	zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
575 	zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
576 }
577 
578 static inline unsigned int get_freeobj(struct zspage *zspage)
579 {
580 	return zspage->freeobj;
581 }
582 
583 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
584 {
585 	zspage->freeobj = obj;
586 }
587 
588 static struct size_class *zspage_class(struct zs_pool *pool,
589 				       struct zspage *zspage)
590 {
591 	return pool->size_class[zspage->class];
592 }
593 
594 /*
595  * zsmalloc divides the pool into various size classes where each
596  * class maintains a list of zspages where each zspage is divided
597  * into equal sized chunks. Each allocation falls into one of these
598  * classes depending on its size. This function returns index of the
599  * size class which has chunk size big enough to hold the given size.
600  */
601 static int get_size_class_index(int size)
602 {
603 	int idx = 0;
604 
605 	if (likely(size > ZS_MIN_ALLOC_SIZE))
606 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
607 				ZS_SIZE_CLASS_DELTA);
608 
609 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
610 }
611 
612 static inline void class_stat_add(struct size_class *class, int type,
613 				  unsigned long cnt)
614 {
615 	class->stats.objs[type] += cnt;
616 }
617 
618 static inline void class_stat_sub(struct size_class *class, int type,
619 				  unsigned long cnt)
620 {
621 	class->stats.objs[type] -= cnt;
622 }
623 
624 static inline unsigned long class_stat_read(struct size_class *class, int type)
625 {
626 	return class->stats.objs[type];
627 }
628 
629 #ifdef CONFIG_ZSMALLOC_STAT
630 
631 static void __init zs_stat_init(void)
632 {
633 	if (!debugfs_initialized()) {
634 		pr_warn("debugfs not available, stat dir not created\n");
635 		return;
636 	}
637 
638 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
639 }
640 
641 static void __exit zs_stat_exit(void)
642 {
643 	debugfs_remove_recursive(zs_stat_root);
644 }
645 
646 static unsigned long zs_can_compact(struct size_class *class);
647 
648 static int zs_stats_size_show(struct seq_file *s, void *v)
649 {
650 	int i, fg;
651 	struct zs_pool *pool = s->private;
652 	struct size_class *class;
653 	int objs_per_zspage;
654 	unsigned long obj_allocated, obj_used, pages_used, freeable;
655 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
656 	unsigned long total_freeable = 0;
657 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
658 
659 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
660 			"class", "size", "10%", "20%", "30%", "40%",
661 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
662 			"obj_allocated", "obj_used", "pages_used",
663 			"pages_per_zspage", "freeable");
664 
665 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
666 
667 		class = pool->size_class[i];
668 
669 		if (class->index != i)
670 			continue;
671 
672 		spin_lock(&class->lock);
673 
674 		seq_printf(s, " %5u %5u ", i, class->size);
675 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
676 			inuse_totals[fg] += class_stat_read(class, fg);
677 			seq_printf(s, "%9lu ", class_stat_read(class, fg));
678 		}
679 
680 		obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
681 		obj_used = class_stat_read(class, ZS_OBJS_INUSE);
682 		freeable = zs_can_compact(class);
683 		spin_unlock(&class->lock);
684 
685 		objs_per_zspage = class->objs_per_zspage;
686 		pages_used = obj_allocated / objs_per_zspage *
687 				class->pages_per_zspage;
688 
689 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
690 			   obj_allocated, obj_used, pages_used,
691 			   class->pages_per_zspage, freeable);
692 
693 		total_objs += obj_allocated;
694 		total_used_objs += obj_used;
695 		total_pages += pages_used;
696 		total_freeable += freeable;
697 	}
698 
699 	seq_puts(s, "\n");
700 	seq_printf(s, " %5s %5s ", "Total", "");
701 
702 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
703 		seq_printf(s, "%9lu ", inuse_totals[fg]);
704 
705 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
706 		   total_objs, total_used_objs, total_pages, "",
707 		   total_freeable);
708 
709 	return 0;
710 }
711 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
712 
713 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
714 {
715 	if (!zs_stat_root) {
716 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
717 		return;
718 	}
719 
720 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
721 
722 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
723 			    &zs_stats_size_fops);
724 }
725 
726 static void zs_pool_stat_destroy(struct zs_pool *pool)
727 {
728 	debugfs_remove_recursive(pool->stat_dentry);
729 }
730 
731 #else /* CONFIG_ZSMALLOC_STAT */
732 static void __init zs_stat_init(void)
733 {
734 }
735 
736 static void __exit zs_stat_exit(void)
737 {
738 }
739 
740 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
741 {
742 }
743 
744 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
745 {
746 }
747 #endif
748 
749 
750 /*
751  * For each size class, zspages are divided into different groups
752  * depending on their usage ratio. This function returns fullness
753  * status of the given page.
754  */
755 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
756 {
757 	int inuse, objs_per_zspage, ratio;
758 
759 	inuse = get_zspage_inuse(zspage);
760 	objs_per_zspage = class->objs_per_zspage;
761 
762 	if (inuse == 0)
763 		return ZS_INUSE_RATIO_0;
764 	if (inuse == objs_per_zspage)
765 		return ZS_INUSE_RATIO_100;
766 
767 	ratio = 100 * inuse / objs_per_zspage;
768 	/*
769 	 * Take integer division into consideration: a page with one inuse
770 	 * object out of 127 possible, will end up having 0 usage ratio,
771 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
772 	 */
773 	return ratio / 10 + 1;
774 }
775 
776 /*
777  * Each size class maintains various freelists and zspages are assigned
778  * to one of these freelists based on the number of live objects they
779  * have. This functions inserts the given zspage into the freelist
780  * identified by <class, fullness_group>.
781  */
782 static void insert_zspage(struct size_class *class,
783 				struct zspage *zspage,
784 				int fullness)
785 {
786 	class_stat_add(class, fullness, 1);
787 	list_add(&zspage->list, &class->fullness_list[fullness]);
788 	zspage->fullness = fullness;
789 }
790 
791 /*
792  * This function removes the given zspage from the freelist identified
793  * by <class, fullness_group>.
794  */
795 static void remove_zspage(struct size_class *class, struct zspage *zspage)
796 {
797 	int fullness = zspage->fullness;
798 
799 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
800 
801 	list_del_init(&zspage->list);
802 	class_stat_sub(class, fullness, 1);
803 }
804 
805 /*
806  * Each size class maintains zspages in different fullness groups depending
807  * on the number of live objects they contain. When allocating or freeing
808  * objects, the fullness status of the page can change, for instance, from
809  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
810  * checks if such a status change has occurred for the given page and
811  * accordingly moves the page from the list of the old fullness group to that
812  * of the new fullness group.
813  */
814 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
815 {
816 	int newfg;
817 
818 	newfg = get_fullness_group(class, zspage);
819 	if (newfg == zspage->fullness)
820 		goto out;
821 
822 	remove_zspage(class, zspage);
823 	insert_zspage(class, zspage, newfg);
824 out:
825 	return newfg;
826 }
827 
828 static struct zspage *get_zspage(struct zpdesc *zpdesc)
829 {
830 	struct zspage *zspage = zpdesc->zspage;
831 
832 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
833 	return zspage;
834 }
835 
836 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
837 {
838 	struct zspage *zspage = get_zspage(zpdesc);
839 
840 	if (unlikely(ZsHugePage(zspage)))
841 		return NULL;
842 
843 	return zpdesc->next;
844 }
845 
846 /**
847  * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
848  * @obj: the encoded object value
849  * @zpdesc: zpdesc object resides in zspage
850  * @obj_idx: object index
851  */
852 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
853 				unsigned int *obj_idx)
854 {
855 	*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
856 	*obj_idx = (obj & OBJ_INDEX_MASK);
857 }
858 
859 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
860 {
861 	*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
862 }
863 
864 /**
865  * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
866  * @zpdesc: zpdesc object resides in zspage
867  * @obj_idx: object index
868  */
869 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
870 {
871 	unsigned long obj;
872 
873 	obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
874 	obj |= obj_idx & OBJ_INDEX_MASK;
875 
876 	return obj;
877 }
878 
879 static unsigned long handle_to_obj(unsigned long handle)
880 {
881 	return *(unsigned long *)handle;
882 }
883 
884 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
885 				 unsigned long *phandle)
886 {
887 	unsigned long handle;
888 	struct zspage *zspage = get_zspage(zpdesc);
889 
890 	if (unlikely(ZsHugePage(zspage))) {
891 		VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
892 		handle = zpdesc->handle;
893 	} else
894 		handle = *(unsigned long *)obj;
895 
896 	if (!(handle & OBJ_ALLOCATED_TAG))
897 		return false;
898 
899 	/* Clear all tags before returning the handle */
900 	*phandle = handle & ~OBJ_TAG_MASK;
901 	return true;
902 }
903 
904 static void reset_zpdesc(struct zpdesc *zpdesc)
905 {
906 	struct page *page = zpdesc_page(zpdesc);
907 
908 	__ClearPageMovable(page);
909 	ClearPagePrivate(page);
910 	zpdesc->zspage = NULL;
911 	zpdesc->next = NULL;
912 	__ClearPageZsmalloc(page);
913 }
914 
915 static int trylock_zspage(struct zspage *zspage)
916 {
917 	struct zpdesc *cursor, *fail;
918 
919 	for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
920 					get_next_zpdesc(cursor)) {
921 		if (!zpdesc_trylock(cursor)) {
922 			fail = cursor;
923 			goto unlock;
924 		}
925 	}
926 
927 	return 1;
928 unlock:
929 	for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
930 					get_next_zpdesc(cursor))
931 		zpdesc_unlock(cursor);
932 
933 	return 0;
934 }
935 
936 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
937 				struct zspage *zspage)
938 {
939 	struct zpdesc *zpdesc, *next;
940 
941 	assert_spin_locked(&class->lock);
942 
943 	VM_BUG_ON(get_zspage_inuse(zspage));
944 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
945 
946 	next = zpdesc = get_first_zpdesc(zspage);
947 	do {
948 		VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
949 		next = get_next_zpdesc(zpdesc);
950 		reset_zpdesc(zpdesc);
951 		zpdesc_unlock(zpdesc);
952 		zpdesc_dec_zone_page_state(zpdesc);
953 		zpdesc_put(zpdesc);
954 		zpdesc = next;
955 	} while (zpdesc != NULL);
956 
957 	cache_free_zspage(pool, zspage);
958 
959 	class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
960 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
961 }
962 
963 static void free_zspage(struct zs_pool *pool, struct size_class *class,
964 				struct zspage *zspage)
965 {
966 	VM_BUG_ON(get_zspage_inuse(zspage));
967 	VM_BUG_ON(list_empty(&zspage->list));
968 
969 	/*
970 	 * Since zs_free couldn't be sleepable, this function cannot call
971 	 * lock_page. The page locks trylock_zspage got will be released
972 	 * by __free_zspage.
973 	 */
974 	if (!trylock_zspage(zspage)) {
975 		kick_deferred_free(pool);
976 		return;
977 	}
978 
979 	remove_zspage(class, zspage);
980 	__free_zspage(pool, class, zspage);
981 }
982 
983 /* Initialize a newly allocated zspage */
984 static void init_zspage(struct size_class *class, struct zspage *zspage)
985 {
986 	unsigned int freeobj = 1;
987 	unsigned long off = 0;
988 	struct zpdesc *zpdesc = get_first_zpdesc(zspage);
989 
990 	while (zpdesc) {
991 		struct zpdesc *next_zpdesc;
992 		struct link_free *link;
993 		void *vaddr;
994 
995 		set_first_obj_offset(zpdesc, off);
996 
997 		vaddr = kmap_local_zpdesc(zpdesc);
998 		link = (struct link_free *)vaddr + off / sizeof(*link);
999 
1000 		while ((off += class->size) < PAGE_SIZE) {
1001 			link->next = freeobj++ << OBJ_TAG_BITS;
1002 			link += class->size / sizeof(*link);
1003 		}
1004 
1005 		/*
1006 		 * We now come to the last (full or partial) object on this
1007 		 * page, which must point to the first object on the next
1008 		 * page (if present)
1009 		 */
1010 		next_zpdesc = get_next_zpdesc(zpdesc);
1011 		if (next_zpdesc) {
1012 			link->next = freeobj++ << OBJ_TAG_BITS;
1013 		} else {
1014 			/*
1015 			 * Reset OBJ_TAG_BITS bit to last link to tell
1016 			 * whether it's allocated object or not.
1017 			 */
1018 			link->next = -1UL << OBJ_TAG_BITS;
1019 		}
1020 		kunmap_local(vaddr);
1021 		zpdesc = next_zpdesc;
1022 		off %= PAGE_SIZE;
1023 	}
1024 
1025 	set_freeobj(zspage, 0);
1026 }
1027 
1028 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1029 				struct zpdesc *zpdescs[])
1030 {
1031 	int i;
1032 	struct zpdesc *zpdesc;
1033 	struct zpdesc *prev_zpdesc = NULL;
1034 	int nr_zpdescs = class->pages_per_zspage;
1035 
1036 	/*
1037 	 * Allocate individual pages and link them together as:
1038 	 * 1. all pages are linked together using zpdesc->next
1039 	 * 2. each sub-page point to zspage using zpdesc->zspage
1040 	 *
1041 	 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
1042 	 * has this flag set).
1043 	 */
1044 	for (i = 0; i < nr_zpdescs; i++) {
1045 		zpdesc = zpdescs[i];
1046 		zpdesc->zspage = zspage;
1047 		zpdesc->next = NULL;
1048 		if (i == 0) {
1049 			zspage->first_zpdesc = zpdesc;
1050 			zpdesc_set_first(zpdesc);
1051 			if (unlikely(class->objs_per_zspage == 1 &&
1052 					class->pages_per_zspage == 1))
1053 				SetZsHugePage(zspage);
1054 		} else {
1055 			prev_zpdesc->next = zpdesc;
1056 		}
1057 		prev_zpdesc = zpdesc;
1058 	}
1059 }
1060 
1061 /*
1062  * Allocate a zspage for the given size class
1063  */
1064 static struct zspage *alloc_zspage(struct zs_pool *pool,
1065 					struct size_class *class,
1066 					gfp_t gfp)
1067 {
1068 	int i;
1069 	struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
1070 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1071 
1072 	if (!zspage)
1073 		return NULL;
1074 
1075 	zspage->magic = ZSPAGE_MAGIC;
1076 	zspage->pool = pool;
1077 	zspage->class = class->index;
1078 	zspage_lock_init(zspage);
1079 
1080 	for (i = 0; i < class->pages_per_zspage; i++) {
1081 		struct zpdesc *zpdesc;
1082 
1083 		zpdesc = alloc_zpdesc(gfp);
1084 		if (!zpdesc) {
1085 			while (--i >= 0) {
1086 				zpdesc_dec_zone_page_state(zpdescs[i]);
1087 				__zpdesc_clear_zsmalloc(zpdescs[i]);
1088 				free_zpdesc(zpdescs[i]);
1089 			}
1090 			cache_free_zspage(pool, zspage);
1091 			return NULL;
1092 		}
1093 		__zpdesc_set_zsmalloc(zpdesc);
1094 
1095 		zpdesc_inc_zone_page_state(zpdesc);
1096 		zpdescs[i] = zpdesc;
1097 	}
1098 
1099 	create_page_chain(class, zspage, zpdescs);
1100 	init_zspage(class, zspage);
1101 
1102 	return zspage;
1103 }
1104 
1105 static struct zspage *find_get_zspage(struct size_class *class)
1106 {
1107 	int i;
1108 	struct zspage *zspage;
1109 
1110 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1111 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1112 						  struct zspage, list);
1113 		if (zspage)
1114 			break;
1115 	}
1116 
1117 	return zspage;
1118 }
1119 
1120 static inline int __zs_cpu_up(struct mapping_area *area)
1121 {
1122 	/*
1123 	 * Make sure we don't leak memory if a cpu UP notification
1124 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1125 	 */
1126 	if (area->vm_buf)
1127 		return 0;
1128 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1129 	if (!area->vm_buf)
1130 		return -ENOMEM;
1131 	return 0;
1132 }
1133 
1134 static inline void __zs_cpu_down(struct mapping_area *area)
1135 {
1136 	kfree(area->vm_buf);
1137 	area->vm_buf = NULL;
1138 }
1139 
1140 static void *__zs_map_object(struct mapping_area *area,
1141 			struct zpdesc *zpdescs[2], int off, int size)
1142 {
1143 	size_t sizes[2];
1144 	char *buf = area->vm_buf;
1145 
1146 	/* disable page faults to match kmap_local_page() return conditions */
1147 	pagefault_disable();
1148 
1149 	/* no read fastpath */
1150 	if (area->vm_mm == ZS_MM_WO)
1151 		goto out;
1152 
1153 	sizes[0] = PAGE_SIZE - off;
1154 	sizes[1] = size - sizes[0];
1155 
1156 	/* copy object to per-cpu buffer */
1157 	memcpy_from_page(buf, zpdesc_page(zpdescs[0]), off, sizes[0]);
1158 	memcpy_from_page(buf + sizes[0], zpdesc_page(zpdescs[1]), 0, sizes[1]);
1159 out:
1160 	return area->vm_buf;
1161 }
1162 
1163 static void __zs_unmap_object(struct mapping_area *area,
1164 			struct zpdesc *zpdescs[2], int off, int size)
1165 {
1166 	size_t sizes[2];
1167 	char *buf;
1168 
1169 	/* no write fastpath */
1170 	if (area->vm_mm == ZS_MM_RO)
1171 		goto out;
1172 
1173 	buf = area->vm_buf;
1174 	buf = buf + ZS_HANDLE_SIZE;
1175 	size -= ZS_HANDLE_SIZE;
1176 	off += ZS_HANDLE_SIZE;
1177 
1178 	sizes[0] = PAGE_SIZE - off;
1179 	sizes[1] = size - sizes[0];
1180 
1181 	/* copy per-cpu buffer to object */
1182 	memcpy_to_page(zpdesc_page(zpdescs[0]), off, buf, sizes[0]);
1183 	memcpy_to_page(zpdesc_page(zpdescs[1]), 0, buf + sizes[0], sizes[1]);
1184 
1185 out:
1186 	/* enable page faults to match kunmap_local() return conditions */
1187 	pagefault_enable();
1188 }
1189 
1190 static int zs_cpu_prepare(unsigned int cpu)
1191 {
1192 	struct mapping_area *area;
1193 
1194 	area = &per_cpu(zs_map_area, cpu);
1195 	return __zs_cpu_up(area);
1196 }
1197 
1198 static int zs_cpu_dead(unsigned int cpu)
1199 {
1200 	struct mapping_area *area;
1201 
1202 	area = &per_cpu(zs_map_area, cpu);
1203 	__zs_cpu_down(area);
1204 	return 0;
1205 }
1206 
1207 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1208 					int objs_per_zspage)
1209 {
1210 	if (prev->pages_per_zspage == pages_per_zspage &&
1211 		prev->objs_per_zspage == objs_per_zspage)
1212 		return true;
1213 
1214 	return false;
1215 }
1216 
1217 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1218 {
1219 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1220 }
1221 
1222 static bool zspage_empty(struct zspage *zspage)
1223 {
1224 	return get_zspage_inuse(zspage) == 0;
1225 }
1226 
1227 /**
1228  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1229  * that hold objects of the provided size.
1230  * @pool: zsmalloc pool to use
1231  * @size: object size
1232  *
1233  * Context: Any context.
1234  *
1235  * Return: the index of the zsmalloc &size_class that hold objects of the
1236  * provided size.
1237  */
1238 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1239 {
1240 	struct size_class *class;
1241 
1242 	class = pool->size_class[get_size_class_index(size)];
1243 
1244 	return class->index;
1245 }
1246 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1247 
1248 unsigned long zs_get_total_pages(struct zs_pool *pool)
1249 {
1250 	return atomic_long_read(&pool->pages_allocated);
1251 }
1252 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1253 
1254 /**
1255  * zs_map_object - get address of allocated object from handle.
1256  * @pool: pool from which the object was allocated
1257  * @handle: handle returned from zs_malloc
1258  * @mm: mapping mode to use
1259  *
1260  * Before using an object allocated from zs_malloc, it must be mapped using
1261  * this function. When done with the object, it must be unmapped using
1262  * zs_unmap_object.
1263  *
1264  * Only one object can be mapped per cpu at a time. There is no protection
1265  * against nested mappings.
1266  *
1267  * This function returns with preemption and page faults disabled.
1268  */
1269 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1270 			enum zs_mapmode mm)
1271 {
1272 	struct zspage *zspage;
1273 	struct zpdesc *zpdesc;
1274 	unsigned long obj, off;
1275 	unsigned int obj_idx;
1276 
1277 	struct size_class *class;
1278 	struct mapping_area *area;
1279 	struct zpdesc *zpdescs[2];
1280 	void *ret;
1281 
1282 	/*
1283 	 * Because we use per-cpu mapping areas shared among the
1284 	 * pools/users, we can't allow mapping in interrupt context
1285 	 * because it can corrupt another users mappings.
1286 	 */
1287 	BUG_ON(in_interrupt());
1288 
1289 	/* It guarantees it can get zspage from handle safely */
1290 	read_lock(&pool->lock);
1291 	obj = handle_to_obj(handle);
1292 	obj_to_location(obj, &zpdesc, &obj_idx);
1293 	zspage = get_zspage(zpdesc);
1294 
1295 	/*
1296 	 * migration cannot move any zpages in this zspage. Here, class->lock
1297 	 * is too heavy since callers would take some time until they calls
1298 	 * zs_unmap_object API so delegate the locking from class to zspage
1299 	 * which is smaller granularity.
1300 	 */
1301 	zspage_read_lock(zspage);
1302 	read_unlock(&pool->lock);
1303 
1304 	class = zspage_class(pool, zspage);
1305 	off = offset_in_page(class->size * obj_idx);
1306 
1307 	local_lock(&zs_map_area.lock);
1308 	area = this_cpu_ptr(&zs_map_area);
1309 	area->vm_mm = mm;
1310 	if (off + class->size <= PAGE_SIZE) {
1311 		/* this object is contained entirely within a page */
1312 		area->vm_addr = kmap_local_zpdesc(zpdesc);
1313 		ret = area->vm_addr + off;
1314 		goto out;
1315 	}
1316 
1317 	/* this object spans two pages */
1318 	zpdescs[0] = zpdesc;
1319 	zpdescs[1] = get_next_zpdesc(zpdesc);
1320 	BUG_ON(!zpdescs[1]);
1321 
1322 	ret = __zs_map_object(area, zpdescs, off, class->size);
1323 out:
1324 	if (likely(!ZsHugePage(zspage)))
1325 		ret += ZS_HANDLE_SIZE;
1326 
1327 	return ret;
1328 }
1329 EXPORT_SYMBOL_GPL(zs_map_object);
1330 
1331 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1332 {
1333 	struct zspage *zspage;
1334 	struct zpdesc *zpdesc;
1335 	unsigned long obj, off;
1336 	unsigned int obj_idx;
1337 
1338 	struct size_class *class;
1339 	struct mapping_area *area;
1340 
1341 	obj = handle_to_obj(handle);
1342 	obj_to_location(obj, &zpdesc, &obj_idx);
1343 	zspage = get_zspage(zpdesc);
1344 	class = zspage_class(pool, zspage);
1345 	off = offset_in_page(class->size * obj_idx);
1346 
1347 	area = this_cpu_ptr(&zs_map_area);
1348 	if (off + class->size <= PAGE_SIZE)
1349 		kunmap_local(area->vm_addr);
1350 	else {
1351 		struct zpdesc *zpdescs[2];
1352 
1353 		zpdescs[0] = zpdesc;
1354 		zpdescs[1] = get_next_zpdesc(zpdesc);
1355 		BUG_ON(!zpdescs[1]);
1356 
1357 		__zs_unmap_object(area, zpdescs, off, class->size);
1358 	}
1359 	local_unlock(&zs_map_area.lock);
1360 
1361 	zspage_read_unlock(zspage);
1362 }
1363 EXPORT_SYMBOL_GPL(zs_unmap_object);
1364 
1365 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1366 			void *local_copy)
1367 {
1368 	struct zspage *zspage;
1369 	struct zpdesc *zpdesc;
1370 	unsigned long obj, off;
1371 	unsigned int obj_idx;
1372 	struct size_class *class;
1373 	void *addr;
1374 
1375 	/* Guarantee we can get zspage from handle safely */
1376 	read_lock(&pool->lock);
1377 	obj = handle_to_obj(handle);
1378 	obj_to_location(obj, &zpdesc, &obj_idx);
1379 	zspage = get_zspage(zpdesc);
1380 
1381 	/* Make sure migration doesn't move any pages in this zspage */
1382 	zspage_read_lock(zspage);
1383 	read_unlock(&pool->lock);
1384 
1385 	class = zspage_class(pool, zspage);
1386 	off = offset_in_page(class->size * obj_idx);
1387 
1388 	if (off + class->size <= PAGE_SIZE) {
1389 		/* this object is contained entirely within a page */
1390 		addr = kmap_local_zpdesc(zpdesc);
1391 		addr += off;
1392 	} else {
1393 		size_t sizes[2];
1394 
1395 		/* this object spans two pages */
1396 		sizes[0] = PAGE_SIZE - off;
1397 		sizes[1] = class->size - sizes[0];
1398 		addr = local_copy;
1399 
1400 		memcpy_from_page(addr, zpdesc_page(zpdesc),
1401 				 off, sizes[0]);
1402 		zpdesc = get_next_zpdesc(zpdesc);
1403 		memcpy_from_page(addr + sizes[0],
1404 				 zpdesc_page(zpdesc),
1405 				 0, sizes[1]);
1406 	}
1407 
1408 	if (!ZsHugePage(zspage))
1409 		addr += ZS_HANDLE_SIZE;
1410 
1411 	return addr;
1412 }
1413 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1414 
1415 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1416 		     void *handle_mem)
1417 {
1418 	struct zspage *zspage;
1419 	struct zpdesc *zpdesc;
1420 	unsigned long obj, off;
1421 	unsigned int obj_idx;
1422 	struct size_class *class;
1423 
1424 	obj = handle_to_obj(handle);
1425 	obj_to_location(obj, &zpdesc, &obj_idx);
1426 	zspage = get_zspage(zpdesc);
1427 	class = zspage_class(pool, zspage);
1428 	off = offset_in_page(class->size * obj_idx);
1429 
1430 	if (off + class->size <= PAGE_SIZE) {
1431 		if (!ZsHugePage(zspage))
1432 			off += ZS_HANDLE_SIZE;
1433 		handle_mem -= off;
1434 		kunmap_local(handle_mem);
1435 	}
1436 
1437 	zspage_read_unlock(zspage);
1438 }
1439 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1440 
1441 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1442 		  void *handle_mem, size_t mem_len)
1443 {
1444 	struct zspage *zspage;
1445 	struct zpdesc *zpdesc;
1446 	unsigned long obj, off;
1447 	unsigned int obj_idx;
1448 	struct size_class *class;
1449 
1450 	/* Guarantee we can get zspage from handle safely */
1451 	read_lock(&pool->lock);
1452 	obj = handle_to_obj(handle);
1453 	obj_to_location(obj, &zpdesc, &obj_idx);
1454 	zspage = get_zspage(zpdesc);
1455 
1456 	/* Make sure migration doesn't move any pages in this zspage */
1457 	zspage_read_lock(zspage);
1458 	read_unlock(&pool->lock);
1459 
1460 	class = zspage_class(pool, zspage);
1461 	off = offset_in_page(class->size * obj_idx);
1462 
1463 	if (off + class->size <= PAGE_SIZE) {
1464 		/* this object is contained entirely within a page */
1465 		void *dst = kmap_local_zpdesc(zpdesc);
1466 
1467 		if (!ZsHugePage(zspage))
1468 			off += ZS_HANDLE_SIZE;
1469 		memcpy(dst + off, handle_mem, mem_len);
1470 		kunmap_local(dst);
1471 	} else {
1472 		/* this object spans two pages */
1473 		size_t sizes[2];
1474 
1475 		off += ZS_HANDLE_SIZE;
1476 		sizes[0] = PAGE_SIZE - off;
1477 		sizes[1] = mem_len - sizes[0];
1478 
1479 		memcpy_to_page(zpdesc_page(zpdesc), off,
1480 			       handle_mem, sizes[0]);
1481 		zpdesc = get_next_zpdesc(zpdesc);
1482 		memcpy_to_page(zpdesc_page(zpdesc), 0,
1483 			       handle_mem + sizes[0], sizes[1]);
1484 	}
1485 
1486 	zspage_read_unlock(zspage);
1487 }
1488 EXPORT_SYMBOL_GPL(zs_obj_write);
1489 
1490 /**
1491  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1492  *                        zsmalloc &size_class.
1493  * @pool: zsmalloc pool to use
1494  *
1495  * The function returns the size of the first huge class - any object of equal
1496  * or bigger size will be stored in zspage consisting of a single physical
1497  * page.
1498  *
1499  * Context: Any context.
1500  *
1501  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1502  */
1503 size_t zs_huge_class_size(struct zs_pool *pool)
1504 {
1505 	return huge_class_size;
1506 }
1507 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1508 
1509 static unsigned long obj_malloc(struct zs_pool *pool,
1510 				struct zspage *zspage, unsigned long handle)
1511 {
1512 	int i, nr_zpdesc, offset;
1513 	unsigned long obj;
1514 	struct link_free *link;
1515 	struct size_class *class;
1516 
1517 	struct zpdesc *m_zpdesc;
1518 	unsigned long m_offset;
1519 	void *vaddr;
1520 
1521 	class = pool->size_class[zspage->class];
1522 	obj = get_freeobj(zspage);
1523 
1524 	offset = obj * class->size;
1525 	nr_zpdesc = offset >> PAGE_SHIFT;
1526 	m_offset = offset_in_page(offset);
1527 	m_zpdesc = get_first_zpdesc(zspage);
1528 
1529 	for (i = 0; i < nr_zpdesc; i++)
1530 		m_zpdesc = get_next_zpdesc(m_zpdesc);
1531 
1532 	vaddr = kmap_local_zpdesc(m_zpdesc);
1533 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1534 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1535 	if (likely(!ZsHugePage(zspage)))
1536 		/* record handle in the header of allocated chunk */
1537 		link->handle = handle | OBJ_ALLOCATED_TAG;
1538 	else
1539 		zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1540 
1541 	kunmap_local(vaddr);
1542 	mod_zspage_inuse(zspage, 1);
1543 
1544 	obj = location_to_obj(m_zpdesc, obj);
1545 	record_obj(handle, obj);
1546 
1547 	return obj;
1548 }
1549 
1550 
1551 /**
1552  * zs_malloc - Allocate block of given size from pool.
1553  * @pool: pool to allocate from
1554  * @size: size of block to allocate
1555  * @gfp: gfp flags when allocating object
1556  *
1557  * On success, handle to the allocated object is returned,
1558  * otherwise an ERR_PTR().
1559  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1560  */
1561 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1562 {
1563 	unsigned long handle;
1564 	struct size_class *class;
1565 	int newfg;
1566 	struct zspage *zspage;
1567 
1568 	if (unlikely(!size))
1569 		return (unsigned long)ERR_PTR(-EINVAL);
1570 
1571 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1572 		return (unsigned long)ERR_PTR(-ENOSPC);
1573 
1574 	handle = cache_alloc_handle(pool, gfp);
1575 	if (!handle)
1576 		return (unsigned long)ERR_PTR(-ENOMEM);
1577 
1578 	/* extra space in chunk to keep the handle */
1579 	size += ZS_HANDLE_SIZE;
1580 	class = pool->size_class[get_size_class_index(size)];
1581 
1582 	/* class->lock effectively protects the zpage migration */
1583 	spin_lock(&class->lock);
1584 	zspage = find_get_zspage(class);
1585 	if (likely(zspage)) {
1586 		obj_malloc(pool, zspage, handle);
1587 		/* Now move the zspage to another fullness group, if required */
1588 		fix_fullness_group(class, zspage);
1589 		class_stat_add(class, ZS_OBJS_INUSE, 1);
1590 
1591 		goto out;
1592 	}
1593 
1594 	spin_unlock(&class->lock);
1595 
1596 	zspage = alloc_zspage(pool, class, gfp);
1597 	if (!zspage) {
1598 		cache_free_handle(pool, handle);
1599 		return (unsigned long)ERR_PTR(-ENOMEM);
1600 	}
1601 
1602 	spin_lock(&class->lock);
1603 	obj_malloc(pool, zspage, handle);
1604 	newfg = get_fullness_group(class, zspage);
1605 	insert_zspage(class, zspage, newfg);
1606 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1607 	class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1608 	class_stat_add(class, ZS_OBJS_INUSE, 1);
1609 
1610 	/* We completely set up zspage so mark them as movable */
1611 	SetZsPageMovable(pool, zspage);
1612 out:
1613 	spin_unlock(&class->lock);
1614 
1615 	return handle;
1616 }
1617 EXPORT_SYMBOL_GPL(zs_malloc);
1618 
1619 static void obj_free(int class_size, unsigned long obj)
1620 {
1621 	struct link_free *link;
1622 	struct zspage *zspage;
1623 	struct zpdesc *f_zpdesc;
1624 	unsigned long f_offset;
1625 	unsigned int f_objidx;
1626 	void *vaddr;
1627 
1628 
1629 	obj_to_location(obj, &f_zpdesc, &f_objidx);
1630 	f_offset = offset_in_page(class_size * f_objidx);
1631 	zspage = get_zspage(f_zpdesc);
1632 
1633 	vaddr = kmap_local_zpdesc(f_zpdesc);
1634 	link = (struct link_free *)(vaddr + f_offset);
1635 
1636 	/* Insert this object in containing zspage's freelist */
1637 	if (likely(!ZsHugePage(zspage)))
1638 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1639 	else
1640 		f_zpdesc->handle = 0;
1641 	set_freeobj(zspage, f_objidx);
1642 
1643 	kunmap_local(vaddr);
1644 	mod_zspage_inuse(zspage, -1);
1645 }
1646 
1647 void zs_free(struct zs_pool *pool, unsigned long handle)
1648 {
1649 	struct zspage *zspage;
1650 	struct zpdesc *f_zpdesc;
1651 	unsigned long obj;
1652 	struct size_class *class;
1653 	int fullness;
1654 
1655 	if (IS_ERR_OR_NULL((void *)handle))
1656 		return;
1657 
1658 	/*
1659 	 * The pool->lock protects the race with zpage's migration
1660 	 * so it's safe to get the page from handle.
1661 	 */
1662 	read_lock(&pool->lock);
1663 	obj = handle_to_obj(handle);
1664 	obj_to_zpdesc(obj, &f_zpdesc);
1665 	zspage = get_zspage(f_zpdesc);
1666 	class = zspage_class(pool, zspage);
1667 	spin_lock(&class->lock);
1668 	read_unlock(&pool->lock);
1669 
1670 	class_stat_sub(class, ZS_OBJS_INUSE, 1);
1671 	obj_free(class->size, obj);
1672 
1673 	fullness = fix_fullness_group(class, zspage);
1674 	if (fullness == ZS_INUSE_RATIO_0)
1675 		free_zspage(pool, class, zspage);
1676 
1677 	spin_unlock(&class->lock);
1678 	cache_free_handle(pool, handle);
1679 }
1680 EXPORT_SYMBOL_GPL(zs_free);
1681 
1682 static void zs_object_copy(struct size_class *class, unsigned long dst,
1683 				unsigned long src)
1684 {
1685 	struct zpdesc *s_zpdesc, *d_zpdesc;
1686 	unsigned int s_objidx, d_objidx;
1687 	unsigned long s_off, d_off;
1688 	void *s_addr, *d_addr;
1689 	int s_size, d_size, size;
1690 	int written = 0;
1691 
1692 	s_size = d_size = class->size;
1693 
1694 	obj_to_location(src, &s_zpdesc, &s_objidx);
1695 	obj_to_location(dst, &d_zpdesc, &d_objidx);
1696 
1697 	s_off = offset_in_page(class->size * s_objidx);
1698 	d_off = offset_in_page(class->size * d_objidx);
1699 
1700 	if (s_off + class->size > PAGE_SIZE)
1701 		s_size = PAGE_SIZE - s_off;
1702 
1703 	if (d_off + class->size > PAGE_SIZE)
1704 		d_size = PAGE_SIZE - d_off;
1705 
1706 	s_addr = kmap_local_zpdesc(s_zpdesc);
1707 	d_addr = kmap_local_zpdesc(d_zpdesc);
1708 
1709 	while (1) {
1710 		size = min(s_size, d_size);
1711 		memcpy(d_addr + d_off, s_addr + s_off, size);
1712 		written += size;
1713 
1714 		if (written == class->size)
1715 			break;
1716 
1717 		s_off += size;
1718 		s_size -= size;
1719 		d_off += size;
1720 		d_size -= size;
1721 
1722 		/*
1723 		 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1724 		 * calls must occurs in reverse order of calls to kmap_local_page().
1725 		 * So, to call kunmap_local(s_addr) we should first call
1726 		 * kunmap_local(d_addr). For more details see
1727 		 * Documentation/mm/highmem.rst.
1728 		 */
1729 		if (s_off >= PAGE_SIZE) {
1730 			kunmap_local(d_addr);
1731 			kunmap_local(s_addr);
1732 			s_zpdesc = get_next_zpdesc(s_zpdesc);
1733 			s_addr = kmap_local_zpdesc(s_zpdesc);
1734 			d_addr = kmap_local_zpdesc(d_zpdesc);
1735 			s_size = class->size - written;
1736 			s_off = 0;
1737 		}
1738 
1739 		if (d_off >= PAGE_SIZE) {
1740 			kunmap_local(d_addr);
1741 			d_zpdesc = get_next_zpdesc(d_zpdesc);
1742 			d_addr = kmap_local_zpdesc(d_zpdesc);
1743 			d_size = class->size - written;
1744 			d_off = 0;
1745 		}
1746 	}
1747 
1748 	kunmap_local(d_addr);
1749 	kunmap_local(s_addr);
1750 }
1751 
1752 /*
1753  * Find alloced object in zspage from index object and
1754  * return handle.
1755  */
1756 static unsigned long find_alloced_obj(struct size_class *class,
1757 				      struct zpdesc *zpdesc, int *obj_idx)
1758 {
1759 	unsigned int offset;
1760 	int index = *obj_idx;
1761 	unsigned long handle = 0;
1762 	void *addr = kmap_local_zpdesc(zpdesc);
1763 
1764 	offset = get_first_obj_offset(zpdesc);
1765 	offset += class->size * index;
1766 
1767 	while (offset < PAGE_SIZE) {
1768 		if (obj_allocated(zpdesc, addr + offset, &handle))
1769 			break;
1770 
1771 		offset += class->size;
1772 		index++;
1773 	}
1774 
1775 	kunmap_local(addr);
1776 
1777 	*obj_idx = index;
1778 
1779 	return handle;
1780 }
1781 
1782 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1783 			   struct zspage *dst_zspage)
1784 {
1785 	unsigned long used_obj, free_obj;
1786 	unsigned long handle;
1787 	int obj_idx = 0;
1788 	struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1789 	struct size_class *class = pool->size_class[src_zspage->class];
1790 
1791 	while (1) {
1792 		handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1793 		if (!handle) {
1794 			s_zpdesc = get_next_zpdesc(s_zpdesc);
1795 			if (!s_zpdesc)
1796 				break;
1797 			obj_idx = 0;
1798 			continue;
1799 		}
1800 
1801 		used_obj = handle_to_obj(handle);
1802 		free_obj = obj_malloc(pool, dst_zspage, handle);
1803 		zs_object_copy(class, free_obj, used_obj);
1804 		obj_idx++;
1805 		obj_free(class->size, used_obj);
1806 
1807 		/* Stop if there is no more space */
1808 		if (zspage_full(class, dst_zspage))
1809 			break;
1810 
1811 		/* Stop if there are no more objects to migrate */
1812 		if (zspage_empty(src_zspage))
1813 			break;
1814 	}
1815 }
1816 
1817 static struct zspage *isolate_src_zspage(struct size_class *class)
1818 {
1819 	struct zspage *zspage;
1820 	int fg;
1821 
1822 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1823 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1824 						  struct zspage, list);
1825 		if (zspage) {
1826 			remove_zspage(class, zspage);
1827 			return zspage;
1828 		}
1829 	}
1830 
1831 	return zspage;
1832 }
1833 
1834 static struct zspage *isolate_dst_zspage(struct size_class *class)
1835 {
1836 	struct zspage *zspage;
1837 	int fg;
1838 
1839 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1840 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1841 						  struct zspage, list);
1842 		if (zspage) {
1843 			remove_zspage(class, zspage);
1844 			return zspage;
1845 		}
1846 	}
1847 
1848 	return zspage;
1849 }
1850 
1851 /*
1852  * putback_zspage - add @zspage into right class's fullness list
1853  * @class: destination class
1854  * @zspage: target page
1855  *
1856  * Return @zspage's fullness status
1857  */
1858 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1859 {
1860 	int fullness;
1861 
1862 	fullness = get_fullness_group(class, zspage);
1863 	insert_zspage(class, zspage, fullness);
1864 
1865 	return fullness;
1866 }
1867 
1868 #ifdef CONFIG_COMPACTION
1869 /*
1870  * To prevent zspage destroy during migration, zspage freeing should
1871  * hold locks of all pages in the zspage.
1872  */
1873 static void lock_zspage(struct zspage *zspage)
1874 {
1875 	struct zpdesc *curr_zpdesc, *zpdesc;
1876 
1877 	/*
1878 	 * Pages we haven't locked yet can be migrated off the list while we're
1879 	 * trying to lock them, so we need to be careful and only attempt to
1880 	 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1881 	 * may no longer belong to the zspage. This means that we may wait for
1882 	 * the wrong page to unlock, so we must take a reference to the page
1883 	 * prior to waiting for it to unlock outside zspage_read_lock().
1884 	 */
1885 	while (1) {
1886 		zspage_read_lock(zspage);
1887 		zpdesc = get_first_zpdesc(zspage);
1888 		if (zpdesc_trylock(zpdesc))
1889 			break;
1890 		zpdesc_get(zpdesc);
1891 		zspage_read_unlock(zspage);
1892 		zpdesc_wait_locked(zpdesc);
1893 		zpdesc_put(zpdesc);
1894 	}
1895 
1896 	curr_zpdesc = zpdesc;
1897 	while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1898 		if (zpdesc_trylock(zpdesc)) {
1899 			curr_zpdesc = zpdesc;
1900 		} else {
1901 			zpdesc_get(zpdesc);
1902 			zspage_read_unlock(zspage);
1903 			zpdesc_wait_locked(zpdesc);
1904 			zpdesc_put(zpdesc);
1905 			zspage_read_lock(zspage);
1906 		}
1907 	}
1908 	zspage_read_unlock(zspage);
1909 }
1910 #endif /* CONFIG_COMPACTION */
1911 
1912 #ifdef CONFIG_COMPACTION
1913 
1914 static const struct movable_operations zsmalloc_mops;
1915 
1916 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1917 				struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1918 {
1919 	struct zpdesc *zpdesc;
1920 	struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1921 	unsigned int first_obj_offset;
1922 	int idx = 0;
1923 
1924 	zpdesc = get_first_zpdesc(zspage);
1925 	do {
1926 		if (zpdesc == oldzpdesc)
1927 			zpdescs[idx] = newzpdesc;
1928 		else
1929 			zpdescs[idx] = zpdesc;
1930 		idx++;
1931 	} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1932 
1933 	create_page_chain(class, zspage, zpdescs);
1934 	first_obj_offset = get_first_obj_offset(oldzpdesc);
1935 	set_first_obj_offset(newzpdesc, first_obj_offset);
1936 	if (unlikely(ZsHugePage(zspage)))
1937 		newzpdesc->handle = oldzpdesc->handle;
1938 	__zpdesc_set_movable(newzpdesc, &zsmalloc_mops);
1939 }
1940 
1941 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1942 {
1943 	/*
1944 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1945 	 * lock_zspage in free_zspage.
1946 	 */
1947 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1948 
1949 	return true;
1950 }
1951 
1952 static int zs_page_migrate(struct page *newpage, struct page *page,
1953 		enum migrate_mode mode)
1954 {
1955 	struct zs_pool *pool;
1956 	struct size_class *class;
1957 	struct zspage *zspage;
1958 	struct zpdesc *dummy;
1959 	struct zpdesc *newzpdesc = page_zpdesc(newpage);
1960 	struct zpdesc *zpdesc = page_zpdesc(page);
1961 	void *s_addr, *d_addr, *addr;
1962 	unsigned int offset;
1963 	unsigned long handle;
1964 	unsigned long old_obj, new_obj;
1965 	unsigned int obj_idx;
1966 
1967 	VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc));
1968 
1969 	/* The page is locked, so this pointer must remain valid */
1970 	zspage = get_zspage(zpdesc);
1971 	pool = zspage->pool;
1972 
1973 	/*
1974 	 * The pool migrate_lock protects the race between zpage migration
1975 	 * and zs_free.
1976 	 */
1977 	write_lock(&pool->lock);
1978 	class = zspage_class(pool, zspage);
1979 
1980 	/*
1981 	 * the class lock protects zpage alloc/free in the zspage.
1982 	 */
1983 	spin_lock(&class->lock);
1984 	/* the zspage write_lock protects zpage access via zs_map_object */
1985 	if (!zspage_write_trylock(zspage)) {
1986 		spin_unlock(&class->lock);
1987 		write_unlock(&pool->lock);
1988 		return -EINVAL;
1989 	}
1990 
1991 	/* We're committed, tell the world that this is a Zsmalloc page. */
1992 	__zpdesc_set_zsmalloc(newzpdesc);
1993 
1994 	offset = get_first_obj_offset(zpdesc);
1995 	s_addr = kmap_local_zpdesc(zpdesc);
1996 
1997 	/*
1998 	 * Here, any user cannot access all objects in the zspage so let's move.
1999 	 */
2000 	d_addr = kmap_local_zpdesc(newzpdesc);
2001 	copy_page(d_addr, s_addr);
2002 	kunmap_local(d_addr);
2003 
2004 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2005 					addr += class->size) {
2006 		if (obj_allocated(zpdesc, addr, &handle)) {
2007 
2008 			old_obj = handle_to_obj(handle);
2009 			obj_to_location(old_obj, &dummy, &obj_idx);
2010 			new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
2011 			record_obj(handle, new_obj);
2012 		}
2013 	}
2014 	kunmap_local(s_addr);
2015 
2016 	replace_sub_page(class, zspage, newzpdesc, zpdesc);
2017 	/*
2018 	 * Since we complete the data copy and set up new zspage structure,
2019 	 * it's okay to release migration_lock.
2020 	 */
2021 	write_unlock(&pool->lock);
2022 	spin_unlock(&class->lock);
2023 	zspage_write_unlock(zspage);
2024 
2025 	zpdesc_get(newzpdesc);
2026 	if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
2027 		zpdesc_dec_zone_page_state(zpdesc);
2028 		zpdesc_inc_zone_page_state(newzpdesc);
2029 	}
2030 
2031 	reset_zpdesc(zpdesc);
2032 	zpdesc_put(zpdesc);
2033 
2034 	return MIGRATEPAGE_SUCCESS;
2035 }
2036 
2037 static void zs_page_putback(struct page *page)
2038 {
2039 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2040 }
2041 
2042 static const struct movable_operations zsmalloc_mops = {
2043 	.isolate_page = zs_page_isolate,
2044 	.migrate_page = zs_page_migrate,
2045 	.putback_page = zs_page_putback,
2046 };
2047 
2048 /*
2049  * Caller should hold page_lock of all pages in the zspage
2050  * In here, we cannot use zspage meta data.
2051  */
2052 static void async_free_zspage(struct work_struct *work)
2053 {
2054 	int i;
2055 	struct size_class *class;
2056 	struct zspage *zspage, *tmp;
2057 	LIST_HEAD(free_pages);
2058 	struct zs_pool *pool = container_of(work, struct zs_pool,
2059 					free_work);
2060 
2061 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2062 		class = pool->size_class[i];
2063 		if (class->index != i)
2064 			continue;
2065 
2066 		spin_lock(&class->lock);
2067 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
2068 				 &free_pages);
2069 		spin_unlock(&class->lock);
2070 	}
2071 
2072 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2073 		list_del(&zspage->list);
2074 		lock_zspage(zspage);
2075 
2076 		class = zspage_class(pool, zspage);
2077 		spin_lock(&class->lock);
2078 		class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
2079 		__free_zspage(pool, class, zspage);
2080 		spin_unlock(&class->lock);
2081 	}
2082 };
2083 
2084 static void kick_deferred_free(struct zs_pool *pool)
2085 {
2086 	schedule_work(&pool->free_work);
2087 }
2088 
2089 static void zs_flush_migration(struct zs_pool *pool)
2090 {
2091 	flush_work(&pool->free_work);
2092 }
2093 
2094 static void init_deferred_free(struct zs_pool *pool)
2095 {
2096 	INIT_WORK(&pool->free_work, async_free_zspage);
2097 }
2098 
2099 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2100 {
2101 	struct zpdesc *zpdesc = get_first_zpdesc(zspage);
2102 
2103 	do {
2104 		WARN_ON(!zpdesc_trylock(zpdesc));
2105 		__zpdesc_set_movable(zpdesc, &zsmalloc_mops);
2106 		zpdesc_unlock(zpdesc);
2107 	} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
2108 }
2109 #else
2110 static inline void zs_flush_migration(struct zs_pool *pool) { }
2111 #endif
2112 
2113 /*
2114  *
2115  * Based on the number of unused allocated objects calculate
2116  * and return the number of pages that we can free.
2117  */
2118 static unsigned long zs_can_compact(struct size_class *class)
2119 {
2120 	unsigned long obj_wasted;
2121 	unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
2122 	unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
2123 
2124 	if (obj_allocated <= obj_used)
2125 		return 0;
2126 
2127 	obj_wasted = obj_allocated - obj_used;
2128 	obj_wasted /= class->objs_per_zspage;
2129 
2130 	return obj_wasted * class->pages_per_zspage;
2131 }
2132 
2133 static unsigned long __zs_compact(struct zs_pool *pool,
2134 				  struct size_class *class)
2135 {
2136 	struct zspage *src_zspage = NULL;
2137 	struct zspage *dst_zspage = NULL;
2138 	unsigned long pages_freed = 0;
2139 
2140 	/*
2141 	 * protect the race between zpage migration and zs_free
2142 	 * as well as zpage allocation/free
2143 	 */
2144 	write_lock(&pool->lock);
2145 	spin_lock(&class->lock);
2146 	while (zs_can_compact(class)) {
2147 		int fg;
2148 
2149 		if (!dst_zspage) {
2150 			dst_zspage = isolate_dst_zspage(class);
2151 			if (!dst_zspage)
2152 				break;
2153 		}
2154 
2155 		src_zspage = isolate_src_zspage(class);
2156 		if (!src_zspage)
2157 			break;
2158 
2159 		if (!zspage_write_trylock(src_zspage))
2160 			break;
2161 
2162 		migrate_zspage(pool, src_zspage, dst_zspage);
2163 		zspage_write_unlock(src_zspage);
2164 
2165 		fg = putback_zspage(class, src_zspage);
2166 		if (fg == ZS_INUSE_RATIO_0) {
2167 			free_zspage(pool, class, src_zspage);
2168 			pages_freed += class->pages_per_zspage;
2169 		}
2170 		src_zspage = NULL;
2171 
2172 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2173 		    || rwlock_is_contended(&pool->lock)) {
2174 			putback_zspage(class, dst_zspage);
2175 			dst_zspage = NULL;
2176 
2177 			spin_unlock(&class->lock);
2178 			write_unlock(&pool->lock);
2179 			cond_resched();
2180 			write_lock(&pool->lock);
2181 			spin_lock(&class->lock);
2182 		}
2183 	}
2184 
2185 	if (src_zspage)
2186 		putback_zspage(class, src_zspage);
2187 
2188 	if (dst_zspage)
2189 		putback_zspage(class, dst_zspage);
2190 
2191 	spin_unlock(&class->lock);
2192 	write_unlock(&pool->lock);
2193 
2194 	return pages_freed;
2195 }
2196 
2197 unsigned long zs_compact(struct zs_pool *pool)
2198 {
2199 	int i;
2200 	struct size_class *class;
2201 	unsigned long pages_freed = 0;
2202 
2203 	/*
2204 	 * Pool compaction is performed under pool->lock so it is basically
2205 	 * single-threaded. Having more than one thread in __zs_compact()
2206 	 * will increase pool->lock contention, which will impact other
2207 	 * zsmalloc operations that need pool->lock.
2208 	 */
2209 	if (atomic_xchg(&pool->compaction_in_progress, 1))
2210 		return 0;
2211 
2212 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2213 		class = pool->size_class[i];
2214 		if (class->index != i)
2215 			continue;
2216 		pages_freed += __zs_compact(pool, class);
2217 	}
2218 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2219 	atomic_set(&pool->compaction_in_progress, 0);
2220 
2221 	return pages_freed;
2222 }
2223 EXPORT_SYMBOL_GPL(zs_compact);
2224 
2225 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2226 {
2227 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2228 }
2229 EXPORT_SYMBOL_GPL(zs_pool_stats);
2230 
2231 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2232 		struct shrink_control *sc)
2233 {
2234 	unsigned long pages_freed;
2235 	struct zs_pool *pool = shrinker->private_data;
2236 
2237 	/*
2238 	 * Compact classes and calculate compaction delta.
2239 	 * Can run concurrently with a manually triggered
2240 	 * (by user) compaction.
2241 	 */
2242 	pages_freed = zs_compact(pool);
2243 
2244 	return pages_freed ? pages_freed : SHRINK_STOP;
2245 }
2246 
2247 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2248 		struct shrink_control *sc)
2249 {
2250 	int i;
2251 	struct size_class *class;
2252 	unsigned long pages_to_free = 0;
2253 	struct zs_pool *pool = shrinker->private_data;
2254 
2255 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2256 		class = pool->size_class[i];
2257 		if (class->index != i)
2258 			continue;
2259 
2260 		pages_to_free += zs_can_compact(class);
2261 	}
2262 
2263 	return pages_to_free;
2264 }
2265 
2266 static void zs_unregister_shrinker(struct zs_pool *pool)
2267 {
2268 	shrinker_free(pool->shrinker);
2269 }
2270 
2271 static int zs_register_shrinker(struct zs_pool *pool)
2272 {
2273 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2274 	if (!pool->shrinker)
2275 		return -ENOMEM;
2276 
2277 	pool->shrinker->scan_objects = zs_shrinker_scan;
2278 	pool->shrinker->count_objects = zs_shrinker_count;
2279 	pool->shrinker->batch = 0;
2280 	pool->shrinker->private_data = pool;
2281 
2282 	shrinker_register(pool->shrinker);
2283 
2284 	return 0;
2285 }
2286 
2287 static int calculate_zspage_chain_size(int class_size)
2288 {
2289 	int i, min_waste = INT_MAX;
2290 	int chain_size = 1;
2291 
2292 	if (is_power_of_2(class_size))
2293 		return chain_size;
2294 
2295 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2296 		int waste;
2297 
2298 		waste = (i * PAGE_SIZE) % class_size;
2299 		if (waste < min_waste) {
2300 			min_waste = waste;
2301 			chain_size = i;
2302 		}
2303 	}
2304 
2305 	return chain_size;
2306 }
2307 
2308 /**
2309  * zs_create_pool - Creates an allocation pool to work from.
2310  * @name: pool name to be created
2311  *
2312  * This function must be called before anything when using
2313  * the zsmalloc allocator.
2314  *
2315  * On success, a pointer to the newly created pool is returned,
2316  * otherwise NULL.
2317  */
2318 struct zs_pool *zs_create_pool(const char *name)
2319 {
2320 	int i;
2321 	struct zs_pool *pool;
2322 	struct size_class *prev_class = NULL;
2323 
2324 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2325 	if (!pool)
2326 		return NULL;
2327 
2328 	init_deferred_free(pool);
2329 	rwlock_init(&pool->lock);
2330 	atomic_set(&pool->compaction_in_progress, 0);
2331 
2332 	pool->name = kstrdup(name, GFP_KERNEL);
2333 	if (!pool->name)
2334 		goto err;
2335 
2336 	if (create_cache(pool))
2337 		goto err;
2338 
2339 	/*
2340 	 * Iterate reversely, because, size of size_class that we want to use
2341 	 * for merging should be larger or equal to current size.
2342 	 */
2343 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2344 		int size;
2345 		int pages_per_zspage;
2346 		int objs_per_zspage;
2347 		struct size_class *class;
2348 		int fullness;
2349 
2350 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2351 		if (size > ZS_MAX_ALLOC_SIZE)
2352 			size = ZS_MAX_ALLOC_SIZE;
2353 		pages_per_zspage = calculate_zspage_chain_size(size);
2354 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2355 
2356 		/*
2357 		 * We iterate from biggest down to smallest classes,
2358 		 * so huge_class_size holds the size of the first huge
2359 		 * class. Any object bigger than or equal to that will
2360 		 * endup in the huge class.
2361 		 */
2362 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2363 				!huge_class_size) {
2364 			huge_class_size = size;
2365 			/*
2366 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2367 			 * handle. We need to subtract it, because zs_malloc()
2368 			 * unconditionally adds handle size before it performs
2369 			 * size class search - so object may be smaller than
2370 			 * huge class size, yet it still can end up in the huge
2371 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2372 			 * right before class lookup.
2373 			 */
2374 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2375 		}
2376 
2377 		/*
2378 		 * size_class is used for normal zsmalloc operation such
2379 		 * as alloc/free for that size. Although it is natural that we
2380 		 * have one size_class for each size, there is a chance that we
2381 		 * can get more memory utilization if we use one size_class for
2382 		 * many different sizes whose size_class have same
2383 		 * characteristics. So, we makes size_class point to
2384 		 * previous size_class if possible.
2385 		 */
2386 		if (prev_class) {
2387 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2388 				pool->size_class[i] = prev_class;
2389 				continue;
2390 			}
2391 		}
2392 
2393 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2394 		if (!class)
2395 			goto err;
2396 
2397 		class->size = size;
2398 		class->index = i;
2399 		class->pages_per_zspage = pages_per_zspage;
2400 		class->objs_per_zspage = objs_per_zspage;
2401 		spin_lock_init(&class->lock);
2402 		pool->size_class[i] = class;
2403 
2404 		fullness = ZS_INUSE_RATIO_0;
2405 		while (fullness < NR_FULLNESS_GROUPS) {
2406 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2407 			fullness++;
2408 		}
2409 
2410 		prev_class = class;
2411 	}
2412 
2413 	/* debug only, don't abort if it fails */
2414 	zs_pool_stat_create(pool, name);
2415 
2416 	/*
2417 	 * Not critical since shrinker is only used to trigger internal
2418 	 * defragmentation of the pool which is pretty optional thing.  If
2419 	 * registration fails we still can use the pool normally and user can
2420 	 * trigger compaction manually. Thus, ignore return code.
2421 	 */
2422 	zs_register_shrinker(pool);
2423 
2424 	return pool;
2425 
2426 err:
2427 	zs_destroy_pool(pool);
2428 	return NULL;
2429 }
2430 EXPORT_SYMBOL_GPL(zs_create_pool);
2431 
2432 void zs_destroy_pool(struct zs_pool *pool)
2433 {
2434 	int i;
2435 
2436 	zs_unregister_shrinker(pool);
2437 	zs_flush_migration(pool);
2438 	zs_pool_stat_destroy(pool);
2439 
2440 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2441 		int fg;
2442 		struct size_class *class = pool->size_class[i];
2443 
2444 		if (!class)
2445 			continue;
2446 
2447 		if (class->index != i)
2448 			continue;
2449 
2450 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2451 			if (list_empty(&class->fullness_list[fg]))
2452 				continue;
2453 
2454 			pr_err("Class-%d fullness group %d is not empty\n",
2455 			       class->size, fg);
2456 		}
2457 		kfree(class);
2458 	}
2459 
2460 	destroy_cache(pool);
2461 	kfree(pool->name);
2462 	kfree(pool);
2463 }
2464 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2465 
2466 static int __init zs_init(void)
2467 {
2468 	int ret;
2469 
2470 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2471 				zs_cpu_prepare, zs_cpu_dead);
2472 	if (ret)
2473 		goto out;
2474 
2475 #ifdef CONFIG_ZPOOL
2476 	zpool_register_driver(&zs_zpool_driver);
2477 #endif
2478 
2479 	zs_stat_init();
2480 
2481 	return 0;
2482 
2483 out:
2484 	return ret;
2485 }
2486 
2487 static void __exit zs_exit(void)
2488 {
2489 #ifdef CONFIG_ZPOOL
2490 	zpool_unregister_driver(&zs_zpool_driver);
2491 #endif
2492 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2493 
2494 	zs_stat_exit();
2495 }
2496 
2497 module_init(zs_init);
2498 module_exit(zs_exit);
2499 
2500 MODULE_LICENSE("Dual BSD/GPL");
2501 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2502 MODULE_DESCRIPTION("zsmalloc memory allocator");
2503