xref: /linux/mm/zsmalloc.c (revision a0c04a3243f1db6cb47b04ba05b65af97f75a278)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->lock
37  *	zspage->lock
38  */
39 
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65 
66 #define ZSPAGE_MAGIC	0x58
67 
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * a single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Head in allocated object should have OBJ_ALLOCATED_TAG
103  * to identify the object was allocated or not.
104  * It's okay to add the status bit in the least bit because
105  * header keeps handle which is 4byte-aligned address so we
106  * have room for two bit at least.
107  */
108 #define OBJ_ALLOCATED_TAG 1
109 
110 #define OBJ_TAG_BITS	1
111 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
112 
113 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
114 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
115 
116 #define HUGE_BITS	1
117 #define FULLNESS_BITS	4
118 #define CLASS_BITS	8
119 #define ISOLATED_BITS	5
120 #define MAGIC_VAL_BITS	8
121 
122 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
123 
124 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
125 
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
131 
132 /*
133  * On systems with 4K page size, this gives 255 size classes! There is a
134  * trader-off here:
135  *  - Large number of size classes is potentially wasteful as free page are
136  *    spread across these classes
137  *  - Small number of size classes causes large internal fragmentation
138  *  - Probably its better to use specific size classes (empirically
139  *    determined). NOTE: all those class sizes must be set as multiple of
140  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141  *
142  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143  *  (reason above)
144  */
145 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 				      ZS_SIZE_CLASS_DELTA) + 1)
148 
149 /*
150  * Pages are distinguished by the ratio of used memory (that is the ratio
151  * of ->inuse objects to all objects that page can store). For example,
152  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
153  *
154  * The number of fullness groups is not random. It allows us to keep
155  * difference between the least busy page in the group (minimum permitted
156  * number of ->inuse objects) and the most busy page (maximum permitted
157  * number of ->inuse objects) at a reasonable value.
158  */
159 enum fullness_group {
160 	ZS_INUSE_RATIO_0,
161 	ZS_INUSE_RATIO_10,
162 	/* NOTE: 8 more fullness groups here */
163 	ZS_INUSE_RATIO_99       = 10,
164 	ZS_INUSE_RATIO_100,
165 	NR_FULLNESS_GROUPS,
166 };
167 
168 enum class_stat_type {
169 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
170 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
171 	ZS_OBJS_INUSE,
172 	NR_CLASS_STAT_TYPES,
173 };
174 
175 struct zs_size_stat {
176 	unsigned long objs[NR_CLASS_STAT_TYPES];
177 };
178 
179 #ifdef CONFIG_ZSMALLOC_STAT
180 static struct dentry *zs_stat_root;
181 #endif
182 
183 static size_t huge_class_size;
184 
185 struct size_class {
186 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
187 	/*
188 	 * Size of objects stored in this class. Must be multiple
189 	 * of ZS_ALIGN.
190 	 */
191 	int size;
192 	int objs_per_zspage;
193 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
194 	int pages_per_zspage;
195 
196 	unsigned int index;
197 	struct zs_size_stat stats;
198 };
199 
200 /*
201  * Placed within free objects to form a singly linked list.
202  * For every zspage, zspage->freeobj gives head of this list.
203  *
204  * This must be power of 2 and less than or equal to ZS_ALIGN
205  */
206 struct link_free {
207 	union {
208 		/*
209 		 * Free object index;
210 		 * It's valid for non-allocated object
211 		 */
212 		unsigned long next;
213 		/*
214 		 * Handle of allocated object.
215 		 */
216 		unsigned long handle;
217 	};
218 };
219 
220 struct zs_pool {
221 	const char *name;
222 
223 	struct size_class *size_class[ZS_SIZE_CLASSES];
224 	struct kmem_cache *handle_cachep;
225 	struct kmem_cache *zspage_cachep;
226 
227 	atomic_long_t pages_allocated;
228 
229 	struct zs_pool_stats stats;
230 
231 	/* Compact classes */
232 	struct shrinker shrinker;
233 
234 #ifdef CONFIG_ZSMALLOC_STAT
235 	struct dentry *stat_dentry;
236 #endif
237 #ifdef CONFIG_COMPACTION
238 	struct work_struct free_work;
239 #endif
240 	spinlock_t lock;
241 	atomic_t compaction_in_progress;
242 };
243 
244 struct zspage {
245 	struct {
246 		unsigned int huge:HUGE_BITS;
247 		unsigned int fullness:FULLNESS_BITS;
248 		unsigned int class:CLASS_BITS + 1;
249 		unsigned int isolated:ISOLATED_BITS;
250 		unsigned int magic:MAGIC_VAL_BITS;
251 	};
252 	unsigned int inuse;
253 	unsigned int freeobj;
254 	struct page *first_page;
255 	struct list_head list; /* fullness list */
256 	struct zs_pool *pool;
257 	rwlock_t lock;
258 };
259 
260 struct mapping_area {
261 	local_lock_t lock;
262 	char *vm_buf; /* copy buffer for objects that span pages */
263 	char *vm_addr; /* address of kmap_atomic()'ed pages */
264 	enum zs_mapmode vm_mm; /* mapping mode */
265 };
266 
267 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
268 static void SetZsHugePage(struct zspage *zspage)
269 {
270 	zspage->huge = 1;
271 }
272 
273 static bool ZsHugePage(struct zspage *zspage)
274 {
275 	return zspage->huge;
276 }
277 
278 static void migrate_lock_init(struct zspage *zspage);
279 static void migrate_read_lock(struct zspage *zspage);
280 static void migrate_read_unlock(struct zspage *zspage);
281 
282 #ifdef CONFIG_COMPACTION
283 static void migrate_write_lock(struct zspage *zspage);
284 static void migrate_write_lock_nested(struct zspage *zspage);
285 static void migrate_write_unlock(struct zspage *zspage);
286 static void kick_deferred_free(struct zs_pool *pool);
287 static void init_deferred_free(struct zs_pool *pool);
288 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
289 #else
290 static void migrate_write_lock(struct zspage *zspage) {}
291 static void migrate_write_lock_nested(struct zspage *zspage) {}
292 static void migrate_write_unlock(struct zspage *zspage) {}
293 static void kick_deferred_free(struct zs_pool *pool) {}
294 static void init_deferred_free(struct zs_pool *pool) {}
295 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
296 #endif
297 
298 static int create_cache(struct zs_pool *pool)
299 {
300 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
301 					0, 0, NULL);
302 	if (!pool->handle_cachep)
303 		return 1;
304 
305 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
306 					0, 0, NULL);
307 	if (!pool->zspage_cachep) {
308 		kmem_cache_destroy(pool->handle_cachep);
309 		pool->handle_cachep = NULL;
310 		return 1;
311 	}
312 
313 	return 0;
314 }
315 
316 static void destroy_cache(struct zs_pool *pool)
317 {
318 	kmem_cache_destroy(pool->handle_cachep);
319 	kmem_cache_destroy(pool->zspage_cachep);
320 }
321 
322 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
323 {
324 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
325 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
326 }
327 
328 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
329 {
330 	kmem_cache_free(pool->handle_cachep, (void *)handle);
331 }
332 
333 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
334 {
335 	return kmem_cache_zalloc(pool->zspage_cachep,
336 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
337 }
338 
339 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
340 {
341 	kmem_cache_free(pool->zspage_cachep, zspage);
342 }
343 
344 /* pool->lock(which owns the handle) synchronizes races */
345 static void record_obj(unsigned long handle, unsigned long obj)
346 {
347 	*(unsigned long *)handle = obj;
348 }
349 
350 /* zpool driver */
351 
352 #ifdef CONFIG_ZPOOL
353 
354 static void *zs_zpool_create(const char *name, gfp_t gfp)
355 {
356 	/*
357 	 * Ignore global gfp flags: zs_malloc() may be invoked from
358 	 * different contexts and its caller must provide a valid
359 	 * gfp mask.
360 	 */
361 	return zs_create_pool(name);
362 }
363 
364 static void zs_zpool_destroy(void *pool)
365 {
366 	zs_destroy_pool(pool);
367 }
368 
369 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
370 			unsigned long *handle)
371 {
372 	*handle = zs_malloc(pool, size, gfp);
373 
374 	if (IS_ERR_VALUE(*handle))
375 		return PTR_ERR((void *)*handle);
376 	return 0;
377 }
378 static void zs_zpool_free(void *pool, unsigned long handle)
379 {
380 	zs_free(pool, handle);
381 }
382 
383 static void *zs_zpool_map(void *pool, unsigned long handle,
384 			enum zpool_mapmode mm)
385 {
386 	enum zs_mapmode zs_mm;
387 
388 	switch (mm) {
389 	case ZPOOL_MM_RO:
390 		zs_mm = ZS_MM_RO;
391 		break;
392 	case ZPOOL_MM_WO:
393 		zs_mm = ZS_MM_WO;
394 		break;
395 	case ZPOOL_MM_RW:
396 	default:
397 		zs_mm = ZS_MM_RW;
398 		break;
399 	}
400 
401 	return zs_map_object(pool, handle, zs_mm);
402 }
403 static void zs_zpool_unmap(void *pool, unsigned long handle)
404 {
405 	zs_unmap_object(pool, handle);
406 }
407 
408 static u64 zs_zpool_total_size(void *pool)
409 {
410 	return zs_get_total_pages(pool) << PAGE_SHIFT;
411 }
412 
413 static struct zpool_driver zs_zpool_driver = {
414 	.type =			  "zsmalloc",
415 	.owner =		  THIS_MODULE,
416 	.create =		  zs_zpool_create,
417 	.destroy =		  zs_zpool_destroy,
418 	.malloc_support_movable = true,
419 	.malloc =		  zs_zpool_malloc,
420 	.free =			  zs_zpool_free,
421 	.map =			  zs_zpool_map,
422 	.unmap =		  zs_zpool_unmap,
423 	.total_size =		  zs_zpool_total_size,
424 };
425 
426 MODULE_ALIAS("zpool-zsmalloc");
427 #endif /* CONFIG_ZPOOL */
428 
429 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
430 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
431 	.lock	= INIT_LOCAL_LOCK(lock),
432 };
433 
434 static __maybe_unused int is_first_page(struct page *page)
435 {
436 	return PagePrivate(page);
437 }
438 
439 /* Protected by pool->lock */
440 static inline int get_zspage_inuse(struct zspage *zspage)
441 {
442 	return zspage->inuse;
443 }
444 
445 
446 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
447 {
448 	zspage->inuse += val;
449 }
450 
451 static inline struct page *get_first_page(struct zspage *zspage)
452 {
453 	struct page *first_page = zspage->first_page;
454 
455 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
456 	return first_page;
457 }
458 
459 static inline unsigned int get_first_obj_offset(struct page *page)
460 {
461 	return page->page_type;
462 }
463 
464 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
465 {
466 	page->page_type = offset;
467 }
468 
469 static inline unsigned int get_freeobj(struct zspage *zspage)
470 {
471 	return zspage->freeobj;
472 }
473 
474 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
475 {
476 	zspage->freeobj = obj;
477 }
478 
479 static void get_zspage_mapping(struct zspage *zspage,
480 			       unsigned int *class_idx,
481 			       int *fullness)
482 {
483 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
484 
485 	*fullness = zspage->fullness;
486 	*class_idx = zspage->class;
487 }
488 
489 static struct size_class *zspage_class(struct zs_pool *pool,
490 				       struct zspage *zspage)
491 {
492 	return pool->size_class[zspage->class];
493 }
494 
495 static void set_zspage_mapping(struct zspage *zspage,
496 			       unsigned int class_idx,
497 			       int fullness)
498 {
499 	zspage->class = class_idx;
500 	zspage->fullness = fullness;
501 }
502 
503 /*
504  * zsmalloc divides the pool into various size classes where each
505  * class maintains a list of zspages where each zspage is divided
506  * into equal sized chunks. Each allocation falls into one of these
507  * classes depending on its size. This function returns index of the
508  * size class which has chunk size big enough to hold the given size.
509  */
510 static int get_size_class_index(int size)
511 {
512 	int idx = 0;
513 
514 	if (likely(size > ZS_MIN_ALLOC_SIZE))
515 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
516 				ZS_SIZE_CLASS_DELTA);
517 
518 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
519 }
520 
521 static inline void class_stat_inc(struct size_class *class,
522 				int type, unsigned long cnt)
523 {
524 	class->stats.objs[type] += cnt;
525 }
526 
527 static inline void class_stat_dec(struct size_class *class,
528 				int type, unsigned long cnt)
529 {
530 	class->stats.objs[type] -= cnt;
531 }
532 
533 static inline unsigned long zs_stat_get(struct size_class *class, int type)
534 {
535 	return class->stats.objs[type];
536 }
537 
538 #ifdef CONFIG_ZSMALLOC_STAT
539 
540 static void __init zs_stat_init(void)
541 {
542 	if (!debugfs_initialized()) {
543 		pr_warn("debugfs not available, stat dir not created\n");
544 		return;
545 	}
546 
547 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
548 }
549 
550 static void __exit zs_stat_exit(void)
551 {
552 	debugfs_remove_recursive(zs_stat_root);
553 }
554 
555 static unsigned long zs_can_compact(struct size_class *class);
556 
557 static int zs_stats_size_show(struct seq_file *s, void *v)
558 {
559 	int i, fg;
560 	struct zs_pool *pool = s->private;
561 	struct size_class *class;
562 	int objs_per_zspage;
563 	unsigned long obj_allocated, obj_used, pages_used, freeable;
564 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
565 	unsigned long total_freeable = 0;
566 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
567 
568 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
569 			"class", "size", "10%", "20%", "30%", "40%",
570 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
571 			"obj_allocated", "obj_used", "pages_used",
572 			"pages_per_zspage", "freeable");
573 
574 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
575 
576 		class = pool->size_class[i];
577 
578 		if (class->index != i)
579 			continue;
580 
581 		spin_lock(&pool->lock);
582 
583 		seq_printf(s, " %5u %5u ", i, class->size);
584 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
585 			inuse_totals[fg] += zs_stat_get(class, fg);
586 			seq_printf(s, "%9lu ", zs_stat_get(class, fg));
587 		}
588 
589 		obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
590 		obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
591 		freeable = zs_can_compact(class);
592 		spin_unlock(&pool->lock);
593 
594 		objs_per_zspage = class->objs_per_zspage;
595 		pages_used = obj_allocated / objs_per_zspage *
596 				class->pages_per_zspage;
597 
598 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
599 			   obj_allocated, obj_used, pages_used,
600 			   class->pages_per_zspage, freeable);
601 
602 		total_objs += obj_allocated;
603 		total_used_objs += obj_used;
604 		total_pages += pages_used;
605 		total_freeable += freeable;
606 	}
607 
608 	seq_puts(s, "\n");
609 	seq_printf(s, " %5s %5s ", "Total", "");
610 
611 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
612 		seq_printf(s, "%9lu ", inuse_totals[fg]);
613 
614 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
615 		   total_objs, total_used_objs, total_pages, "",
616 		   total_freeable);
617 
618 	return 0;
619 }
620 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
621 
622 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
623 {
624 	if (!zs_stat_root) {
625 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
626 		return;
627 	}
628 
629 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
630 
631 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
632 			    &zs_stats_size_fops);
633 }
634 
635 static void zs_pool_stat_destroy(struct zs_pool *pool)
636 {
637 	debugfs_remove_recursive(pool->stat_dentry);
638 }
639 
640 #else /* CONFIG_ZSMALLOC_STAT */
641 static void __init zs_stat_init(void)
642 {
643 }
644 
645 static void __exit zs_stat_exit(void)
646 {
647 }
648 
649 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650 {
651 }
652 
653 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
654 {
655 }
656 #endif
657 
658 
659 /*
660  * For each size class, zspages are divided into different groups
661  * depending on their usage ratio. This function returns fullness
662  * status of the given page.
663  */
664 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
665 {
666 	int inuse, objs_per_zspage, ratio;
667 
668 	inuse = get_zspage_inuse(zspage);
669 	objs_per_zspage = class->objs_per_zspage;
670 
671 	if (inuse == 0)
672 		return ZS_INUSE_RATIO_0;
673 	if (inuse == objs_per_zspage)
674 		return ZS_INUSE_RATIO_100;
675 
676 	ratio = 100 * inuse / objs_per_zspage;
677 	/*
678 	 * Take integer division into consideration: a page with one inuse
679 	 * object out of 127 possible, will end up having 0 usage ratio,
680 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
681 	 */
682 	return ratio / 10 + 1;
683 }
684 
685 /*
686  * Each size class maintains various freelists and zspages are assigned
687  * to one of these freelists based on the number of live objects they
688  * have. This functions inserts the given zspage into the freelist
689  * identified by <class, fullness_group>.
690  */
691 static void insert_zspage(struct size_class *class,
692 				struct zspage *zspage,
693 				int fullness)
694 {
695 	class_stat_inc(class, fullness, 1);
696 	list_add(&zspage->list, &class->fullness_list[fullness]);
697 }
698 
699 /*
700  * This function removes the given zspage from the freelist identified
701  * by <class, fullness_group>.
702  */
703 static void remove_zspage(struct size_class *class,
704 				struct zspage *zspage,
705 				int fullness)
706 {
707 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
708 
709 	list_del_init(&zspage->list);
710 	class_stat_dec(class, fullness, 1);
711 }
712 
713 /*
714  * Each size class maintains zspages in different fullness groups depending
715  * on the number of live objects they contain. When allocating or freeing
716  * objects, the fullness status of the page can change, for instance, from
717  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
718  * checks if such a status change has occurred for the given page and
719  * accordingly moves the page from the list of the old fullness group to that
720  * of the new fullness group.
721  */
722 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
723 {
724 	int class_idx;
725 	int currfg, newfg;
726 
727 	get_zspage_mapping(zspage, &class_idx, &currfg);
728 	newfg = get_fullness_group(class, zspage);
729 	if (newfg == currfg)
730 		goto out;
731 
732 	remove_zspage(class, zspage, currfg);
733 	insert_zspage(class, zspage, newfg);
734 	set_zspage_mapping(zspage, class_idx, newfg);
735 out:
736 	return newfg;
737 }
738 
739 static struct zspage *get_zspage(struct page *page)
740 {
741 	struct zspage *zspage = (struct zspage *)page_private(page);
742 
743 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
744 	return zspage;
745 }
746 
747 static struct page *get_next_page(struct page *page)
748 {
749 	struct zspage *zspage = get_zspage(page);
750 
751 	if (unlikely(ZsHugePage(zspage)))
752 		return NULL;
753 
754 	return (struct page *)page->index;
755 }
756 
757 /**
758  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
759  * @obj: the encoded object value
760  * @page: page object resides in zspage
761  * @obj_idx: object index
762  */
763 static void obj_to_location(unsigned long obj, struct page **page,
764 				unsigned int *obj_idx)
765 {
766 	obj >>= OBJ_TAG_BITS;
767 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
768 	*obj_idx = (obj & OBJ_INDEX_MASK);
769 }
770 
771 static void obj_to_page(unsigned long obj, struct page **page)
772 {
773 	obj >>= OBJ_TAG_BITS;
774 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
775 }
776 
777 /**
778  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
779  * @page: page object resides in zspage
780  * @obj_idx: object index
781  */
782 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
783 {
784 	unsigned long obj;
785 
786 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
787 	obj |= obj_idx & OBJ_INDEX_MASK;
788 	obj <<= OBJ_TAG_BITS;
789 
790 	return obj;
791 }
792 
793 static unsigned long handle_to_obj(unsigned long handle)
794 {
795 	return *(unsigned long *)handle;
796 }
797 
798 static inline bool obj_allocated(struct page *page, void *obj,
799 				 unsigned long *phandle)
800 {
801 	unsigned long handle;
802 	struct zspage *zspage = get_zspage(page);
803 
804 	if (unlikely(ZsHugePage(zspage))) {
805 		VM_BUG_ON_PAGE(!is_first_page(page), page);
806 		handle = page->index;
807 	} else
808 		handle = *(unsigned long *)obj;
809 
810 	if (!(handle & OBJ_ALLOCATED_TAG))
811 		return false;
812 
813 	/* Clear all tags before returning the handle */
814 	*phandle = handle & ~OBJ_TAG_MASK;
815 	return true;
816 }
817 
818 static void reset_page(struct page *page)
819 {
820 	__ClearPageMovable(page);
821 	ClearPagePrivate(page);
822 	set_page_private(page, 0);
823 	page_mapcount_reset(page);
824 	page->index = 0;
825 }
826 
827 static int trylock_zspage(struct zspage *zspage)
828 {
829 	struct page *cursor, *fail;
830 
831 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
832 					get_next_page(cursor)) {
833 		if (!trylock_page(cursor)) {
834 			fail = cursor;
835 			goto unlock;
836 		}
837 	}
838 
839 	return 1;
840 unlock:
841 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
842 					get_next_page(cursor))
843 		unlock_page(cursor);
844 
845 	return 0;
846 }
847 
848 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
849 				struct zspage *zspage)
850 {
851 	struct page *page, *next;
852 	int fg;
853 	unsigned int class_idx;
854 
855 	get_zspage_mapping(zspage, &class_idx, &fg);
856 
857 	assert_spin_locked(&pool->lock);
858 
859 	VM_BUG_ON(get_zspage_inuse(zspage));
860 	VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
861 
862 	next = page = get_first_page(zspage);
863 	do {
864 		VM_BUG_ON_PAGE(!PageLocked(page), page);
865 		next = get_next_page(page);
866 		reset_page(page);
867 		unlock_page(page);
868 		dec_zone_page_state(page, NR_ZSPAGES);
869 		put_page(page);
870 		page = next;
871 	} while (page != NULL);
872 
873 	cache_free_zspage(pool, zspage);
874 
875 	class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
876 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
877 }
878 
879 static void free_zspage(struct zs_pool *pool, struct size_class *class,
880 				struct zspage *zspage)
881 {
882 	VM_BUG_ON(get_zspage_inuse(zspage));
883 	VM_BUG_ON(list_empty(&zspage->list));
884 
885 	/*
886 	 * Since zs_free couldn't be sleepable, this function cannot call
887 	 * lock_page. The page locks trylock_zspage got will be released
888 	 * by __free_zspage.
889 	 */
890 	if (!trylock_zspage(zspage)) {
891 		kick_deferred_free(pool);
892 		return;
893 	}
894 
895 	remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
896 	__free_zspage(pool, class, zspage);
897 }
898 
899 /* Initialize a newly allocated zspage */
900 static void init_zspage(struct size_class *class, struct zspage *zspage)
901 {
902 	unsigned int freeobj = 1;
903 	unsigned long off = 0;
904 	struct page *page = get_first_page(zspage);
905 
906 	while (page) {
907 		struct page *next_page;
908 		struct link_free *link;
909 		void *vaddr;
910 
911 		set_first_obj_offset(page, off);
912 
913 		vaddr = kmap_atomic(page);
914 		link = (struct link_free *)vaddr + off / sizeof(*link);
915 
916 		while ((off += class->size) < PAGE_SIZE) {
917 			link->next = freeobj++ << OBJ_TAG_BITS;
918 			link += class->size / sizeof(*link);
919 		}
920 
921 		/*
922 		 * We now come to the last (full or partial) object on this
923 		 * page, which must point to the first object on the next
924 		 * page (if present)
925 		 */
926 		next_page = get_next_page(page);
927 		if (next_page) {
928 			link->next = freeobj++ << OBJ_TAG_BITS;
929 		} else {
930 			/*
931 			 * Reset OBJ_TAG_BITS bit to last link to tell
932 			 * whether it's allocated object or not.
933 			 */
934 			link->next = -1UL << OBJ_TAG_BITS;
935 		}
936 		kunmap_atomic(vaddr);
937 		page = next_page;
938 		off %= PAGE_SIZE;
939 	}
940 
941 	set_freeobj(zspage, 0);
942 }
943 
944 static void create_page_chain(struct size_class *class, struct zspage *zspage,
945 				struct page *pages[])
946 {
947 	int i;
948 	struct page *page;
949 	struct page *prev_page = NULL;
950 	int nr_pages = class->pages_per_zspage;
951 
952 	/*
953 	 * Allocate individual pages and link them together as:
954 	 * 1. all pages are linked together using page->index
955 	 * 2. each sub-page point to zspage using page->private
956 	 *
957 	 * we set PG_private to identify the first page (i.e. no other sub-page
958 	 * has this flag set).
959 	 */
960 	for (i = 0; i < nr_pages; i++) {
961 		page = pages[i];
962 		set_page_private(page, (unsigned long)zspage);
963 		page->index = 0;
964 		if (i == 0) {
965 			zspage->first_page = page;
966 			SetPagePrivate(page);
967 			if (unlikely(class->objs_per_zspage == 1 &&
968 					class->pages_per_zspage == 1))
969 				SetZsHugePage(zspage);
970 		} else {
971 			prev_page->index = (unsigned long)page;
972 		}
973 		prev_page = page;
974 	}
975 }
976 
977 /*
978  * Allocate a zspage for the given size class
979  */
980 static struct zspage *alloc_zspage(struct zs_pool *pool,
981 					struct size_class *class,
982 					gfp_t gfp)
983 {
984 	int i;
985 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
986 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
987 
988 	if (!zspage)
989 		return NULL;
990 
991 	zspage->magic = ZSPAGE_MAGIC;
992 	migrate_lock_init(zspage);
993 
994 	for (i = 0; i < class->pages_per_zspage; i++) {
995 		struct page *page;
996 
997 		page = alloc_page(gfp);
998 		if (!page) {
999 			while (--i >= 0) {
1000 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1001 				__free_page(pages[i]);
1002 			}
1003 			cache_free_zspage(pool, zspage);
1004 			return NULL;
1005 		}
1006 
1007 		inc_zone_page_state(page, NR_ZSPAGES);
1008 		pages[i] = page;
1009 	}
1010 
1011 	create_page_chain(class, zspage, pages);
1012 	init_zspage(class, zspage);
1013 	zspage->pool = pool;
1014 
1015 	return zspage;
1016 }
1017 
1018 static struct zspage *find_get_zspage(struct size_class *class)
1019 {
1020 	int i;
1021 	struct zspage *zspage;
1022 
1023 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1024 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1025 						  struct zspage, list);
1026 		if (zspage)
1027 			break;
1028 	}
1029 
1030 	return zspage;
1031 }
1032 
1033 static inline int __zs_cpu_up(struct mapping_area *area)
1034 {
1035 	/*
1036 	 * Make sure we don't leak memory if a cpu UP notification
1037 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1038 	 */
1039 	if (area->vm_buf)
1040 		return 0;
1041 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1042 	if (!area->vm_buf)
1043 		return -ENOMEM;
1044 	return 0;
1045 }
1046 
1047 static inline void __zs_cpu_down(struct mapping_area *area)
1048 {
1049 	kfree(area->vm_buf);
1050 	area->vm_buf = NULL;
1051 }
1052 
1053 static void *__zs_map_object(struct mapping_area *area,
1054 			struct page *pages[2], int off, int size)
1055 {
1056 	int sizes[2];
1057 	void *addr;
1058 	char *buf = area->vm_buf;
1059 
1060 	/* disable page faults to match kmap_atomic() return conditions */
1061 	pagefault_disable();
1062 
1063 	/* no read fastpath */
1064 	if (area->vm_mm == ZS_MM_WO)
1065 		goto out;
1066 
1067 	sizes[0] = PAGE_SIZE - off;
1068 	sizes[1] = size - sizes[0];
1069 
1070 	/* copy object to per-cpu buffer */
1071 	addr = kmap_atomic(pages[0]);
1072 	memcpy(buf, addr + off, sizes[0]);
1073 	kunmap_atomic(addr);
1074 	addr = kmap_atomic(pages[1]);
1075 	memcpy(buf + sizes[0], addr, sizes[1]);
1076 	kunmap_atomic(addr);
1077 out:
1078 	return area->vm_buf;
1079 }
1080 
1081 static void __zs_unmap_object(struct mapping_area *area,
1082 			struct page *pages[2], int off, int size)
1083 {
1084 	int sizes[2];
1085 	void *addr;
1086 	char *buf;
1087 
1088 	/* no write fastpath */
1089 	if (area->vm_mm == ZS_MM_RO)
1090 		goto out;
1091 
1092 	buf = area->vm_buf;
1093 	buf = buf + ZS_HANDLE_SIZE;
1094 	size -= ZS_HANDLE_SIZE;
1095 	off += ZS_HANDLE_SIZE;
1096 
1097 	sizes[0] = PAGE_SIZE - off;
1098 	sizes[1] = size - sizes[0];
1099 
1100 	/* copy per-cpu buffer to object */
1101 	addr = kmap_atomic(pages[0]);
1102 	memcpy(addr + off, buf, sizes[0]);
1103 	kunmap_atomic(addr);
1104 	addr = kmap_atomic(pages[1]);
1105 	memcpy(addr, buf + sizes[0], sizes[1]);
1106 	kunmap_atomic(addr);
1107 
1108 out:
1109 	/* enable page faults to match kunmap_atomic() return conditions */
1110 	pagefault_enable();
1111 }
1112 
1113 static int zs_cpu_prepare(unsigned int cpu)
1114 {
1115 	struct mapping_area *area;
1116 
1117 	area = &per_cpu(zs_map_area, cpu);
1118 	return __zs_cpu_up(area);
1119 }
1120 
1121 static int zs_cpu_dead(unsigned int cpu)
1122 {
1123 	struct mapping_area *area;
1124 
1125 	area = &per_cpu(zs_map_area, cpu);
1126 	__zs_cpu_down(area);
1127 	return 0;
1128 }
1129 
1130 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1131 					int objs_per_zspage)
1132 {
1133 	if (prev->pages_per_zspage == pages_per_zspage &&
1134 		prev->objs_per_zspage == objs_per_zspage)
1135 		return true;
1136 
1137 	return false;
1138 }
1139 
1140 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1141 {
1142 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1143 }
1144 
1145 static bool zspage_empty(struct zspage *zspage)
1146 {
1147 	return get_zspage_inuse(zspage) == 0;
1148 }
1149 
1150 /**
1151  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1152  * that hold objects of the provided size.
1153  * @pool: zsmalloc pool to use
1154  * @size: object size
1155  *
1156  * Context: Any context.
1157  *
1158  * Return: the index of the zsmalloc &size_class that hold objects of the
1159  * provided size.
1160  */
1161 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1162 {
1163 	struct size_class *class;
1164 
1165 	class = pool->size_class[get_size_class_index(size)];
1166 
1167 	return class->index;
1168 }
1169 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1170 
1171 unsigned long zs_get_total_pages(struct zs_pool *pool)
1172 {
1173 	return atomic_long_read(&pool->pages_allocated);
1174 }
1175 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1176 
1177 /**
1178  * zs_map_object - get address of allocated object from handle.
1179  * @pool: pool from which the object was allocated
1180  * @handle: handle returned from zs_malloc
1181  * @mm: mapping mode to use
1182  *
1183  * Before using an object allocated from zs_malloc, it must be mapped using
1184  * this function. When done with the object, it must be unmapped using
1185  * zs_unmap_object.
1186  *
1187  * Only one object can be mapped per cpu at a time. There is no protection
1188  * against nested mappings.
1189  *
1190  * This function returns with preemption and page faults disabled.
1191  */
1192 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1193 			enum zs_mapmode mm)
1194 {
1195 	struct zspage *zspage;
1196 	struct page *page;
1197 	unsigned long obj, off;
1198 	unsigned int obj_idx;
1199 
1200 	struct size_class *class;
1201 	struct mapping_area *area;
1202 	struct page *pages[2];
1203 	void *ret;
1204 
1205 	/*
1206 	 * Because we use per-cpu mapping areas shared among the
1207 	 * pools/users, we can't allow mapping in interrupt context
1208 	 * because it can corrupt another users mappings.
1209 	 */
1210 	BUG_ON(in_interrupt());
1211 
1212 	/* It guarantees it can get zspage from handle safely */
1213 	spin_lock(&pool->lock);
1214 	obj = handle_to_obj(handle);
1215 	obj_to_location(obj, &page, &obj_idx);
1216 	zspage = get_zspage(page);
1217 
1218 	/*
1219 	 * migration cannot move any zpages in this zspage. Here, pool->lock
1220 	 * is too heavy since callers would take some time until they calls
1221 	 * zs_unmap_object API so delegate the locking from class to zspage
1222 	 * which is smaller granularity.
1223 	 */
1224 	migrate_read_lock(zspage);
1225 	spin_unlock(&pool->lock);
1226 
1227 	class = zspage_class(pool, zspage);
1228 	off = offset_in_page(class->size * obj_idx);
1229 
1230 	local_lock(&zs_map_area.lock);
1231 	area = this_cpu_ptr(&zs_map_area);
1232 	area->vm_mm = mm;
1233 	if (off + class->size <= PAGE_SIZE) {
1234 		/* this object is contained entirely within a page */
1235 		area->vm_addr = kmap_atomic(page);
1236 		ret = area->vm_addr + off;
1237 		goto out;
1238 	}
1239 
1240 	/* this object spans two pages */
1241 	pages[0] = page;
1242 	pages[1] = get_next_page(page);
1243 	BUG_ON(!pages[1]);
1244 
1245 	ret = __zs_map_object(area, pages, off, class->size);
1246 out:
1247 	if (likely(!ZsHugePage(zspage)))
1248 		ret += ZS_HANDLE_SIZE;
1249 
1250 	return ret;
1251 }
1252 EXPORT_SYMBOL_GPL(zs_map_object);
1253 
1254 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1255 {
1256 	struct zspage *zspage;
1257 	struct page *page;
1258 	unsigned long obj, off;
1259 	unsigned int obj_idx;
1260 
1261 	struct size_class *class;
1262 	struct mapping_area *area;
1263 
1264 	obj = handle_to_obj(handle);
1265 	obj_to_location(obj, &page, &obj_idx);
1266 	zspage = get_zspage(page);
1267 	class = zspage_class(pool, zspage);
1268 	off = offset_in_page(class->size * obj_idx);
1269 
1270 	area = this_cpu_ptr(&zs_map_area);
1271 	if (off + class->size <= PAGE_SIZE)
1272 		kunmap_atomic(area->vm_addr);
1273 	else {
1274 		struct page *pages[2];
1275 
1276 		pages[0] = page;
1277 		pages[1] = get_next_page(page);
1278 		BUG_ON(!pages[1]);
1279 
1280 		__zs_unmap_object(area, pages, off, class->size);
1281 	}
1282 	local_unlock(&zs_map_area.lock);
1283 
1284 	migrate_read_unlock(zspage);
1285 }
1286 EXPORT_SYMBOL_GPL(zs_unmap_object);
1287 
1288 /**
1289  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1290  *                        zsmalloc &size_class.
1291  * @pool: zsmalloc pool to use
1292  *
1293  * The function returns the size of the first huge class - any object of equal
1294  * or bigger size will be stored in zspage consisting of a single physical
1295  * page.
1296  *
1297  * Context: Any context.
1298  *
1299  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1300  */
1301 size_t zs_huge_class_size(struct zs_pool *pool)
1302 {
1303 	return huge_class_size;
1304 }
1305 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1306 
1307 static unsigned long obj_malloc(struct zs_pool *pool,
1308 				struct zspage *zspage, unsigned long handle)
1309 {
1310 	int i, nr_page, offset;
1311 	unsigned long obj;
1312 	struct link_free *link;
1313 	struct size_class *class;
1314 
1315 	struct page *m_page;
1316 	unsigned long m_offset;
1317 	void *vaddr;
1318 
1319 	class = pool->size_class[zspage->class];
1320 	handle |= OBJ_ALLOCATED_TAG;
1321 	obj = get_freeobj(zspage);
1322 
1323 	offset = obj * class->size;
1324 	nr_page = offset >> PAGE_SHIFT;
1325 	m_offset = offset_in_page(offset);
1326 	m_page = get_first_page(zspage);
1327 
1328 	for (i = 0; i < nr_page; i++)
1329 		m_page = get_next_page(m_page);
1330 
1331 	vaddr = kmap_atomic(m_page);
1332 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1333 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1334 	if (likely(!ZsHugePage(zspage)))
1335 		/* record handle in the header of allocated chunk */
1336 		link->handle = handle;
1337 	else
1338 		/* record handle to page->index */
1339 		zspage->first_page->index = handle;
1340 
1341 	kunmap_atomic(vaddr);
1342 	mod_zspage_inuse(zspage, 1);
1343 
1344 	obj = location_to_obj(m_page, obj);
1345 
1346 	return obj;
1347 }
1348 
1349 
1350 /**
1351  * zs_malloc - Allocate block of given size from pool.
1352  * @pool: pool to allocate from
1353  * @size: size of block to allocate
1354  * @gfp: gfp flags when allocating object
1355  *
1356  * On success, handle to the allocated object is returned,
1357  * otherwise an ERR_PTR().
1358  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1359  */
1360 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1361 {
1362 	unsigned long handle, obj;
1363 	struct size_class *class;
1364 	int newfg;
1365 	struct zspage *zspage;
1366 
1367 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1368 		return (unsigned long)ERR_PTR(-EINVAL);
1369 
1370 	handle = cache_alloc_handle(pool, gfp);
1371 	if (!handle)
1372 		return (unsigned long)ERR_PTR(-ENOMEM);
1373 
1374 	/* extra space in chunk to keep the handle */
1375 	size += ZS_HANDLE_SIZE;
1376 	class = pool->size_class[get_size_class_index(size)];
1377 
1378 	/* pool->lock effectively protects the zpage migration */
1379 	spin_lock(&pool->lock);
1380 	zspage = find_get_zspage(class);
1381 	if (likely(zspage)) {
1382 		obj = obj_malloc(pool, zspage, handle);
1383 		/* Now move the zspage to another fullness group, if required */
1384 		fix_fullness_group(class, zspage);
1385 		record_obj(handle, obj);
1386 		class_stat_inc(class, ZS_OBJS_INUSE, 1);
1387 
1388 		goto out;
1389 	}
1390 
1391 	spin_unlock(&pool->lock);
1392 
1393 	zspage = alloc_zspage(pool, class, gfp);
1394 	if (!zspage) {
1395 		cache_free_handle(pool, handle);
1396 		return (unsigned long)ERR_PTR(-ENOMEM);
1397 	}
1398 
1399 	spin_lock(&pool->lock);
1400 	obj = obj_malloc(pool, zspage, handle);
1401 	newfg = get_fullness_group(class, zspage);
1402 	insert_zspage(class, zspage, newfg);
1403 	set_zspage_mapping(zspage, class->index, newfg);
1404 	record_obj(handle, obj);
1405 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1406 	class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1407 	class_stat_inc(class, ZS_OBJS_INUSE, 1);
1408 
1409 	/* We completely set up zspage so mark them as movable */
1410 	SetZsPageMovable(pool, zspage);
1411 out:
1412 	spin_unlock(&pool->lock);
1413 
1414 	return handle;
1415 }
1416 EXPORT_SYMBOL_GPL(zs_malloc);
1417 
1418 static void obj_free(int class_size, unsigned long obj)
1419 {
1420 	struct link_free *link;
1421 	struct zspage *zspage;
1422 	struct page *f_page;
1423 	unsigned long f_offset;
1424 	unsigned int f_objidx;
1425 	void *vaddr;
1426 
1427 	obj_to_location(obj, &f_page, &f_objidx);
1428 	f_offset = offset_in_page(class_size * f_objidx);
1429 	zspage = get_zspage(f_page);
1430 
1431 	vaddr = kmap_atomic(f_page);
1432 	link = (struct link_free *)(vaddr + f_offset);
1433 
1434 	/* Insert this object in containing zspage's freelist */
1435 	if (likely(!ZsHugePage(zspage)))
1436 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1437 	else
1438 		f_page->index = 0;
1439 	set_freeobj(zspage, f_objidx);
1440 
1441 	kunmap_atomic(vaddr);
1442 	mod_zspage_inuse(zspage, -1);
1443 }
1444 
1445 void zs_free(struct zs_pool *pool, unsigned long handle)
1446 {
1447 	struct zspage *zspage;
1448 	struct page *f_page;
1449 	unsigned long obj;
1450 	struct size_class *class;
1451 	int fullness;
1452 
1453 	if (IS_ERR_OR_NULL((void *)handle))
1454 		return;
1455 
1456 	/*
1457 	 * The pool->lock protects the race with zpage's migration
1458 	 * so it's safe to get the page from handle.
1459 	 */
1460 	spin_lock(&pool->lock);
1461 	obj = handle_to_obj(handle);
1462 	obj_to_page(obj, &f_page);
1463 	zspage = get_zspage(f_page);
1464 	class = zspage_class(pool, zspage);
1465 
1466 	class_stat_dec(class, ZS_OBJS_INUSE, 1);
1467 	obj_free(class->size, obj);
1468 
1469 	fullness = fix_fullness_group(class, zspage);
1470 	if (fullness == ZS_INUSE_RATIO_0)
1471 		free_zspage(pool, class, zspage);
1472 
1473 	spin_unlock(&pool->lock);
1474 	cache_free_handle(pool, handle);
1475 }
1476 EXPORT_SYMBOL_GPL(zs_free);
1477 
1478 static void zs_object_copy(struct size_class *class, unsigned long dst,
1479 				unsigned long src)
1480 {
1481 	struct page *s_page, *d_page;
1482 	unsigned int s_objidx, d_objidx;
1483 	unsigned long s_off, d_off;
1484 	void *s_addr, *d_addr;
1485 	int s_size, d_size, size;
1486 	int written = 0;
1487 
1488 	s_size = d_size = class->size;
1489 
1490 	obj_to_location(src, &s_page, &s_objidx);
1491 	obj_to_location(dst, &d_page, &d_objidx);
1492 
1493 	s_off = offset_in_page(class->size * s_objidx);
1494 	d_off = offset_in_page(class->size * d_objidx);
1495 
1496 	if (s_off + class->size > PAGE_SIZE)
1497 		s_size = PAGE_SIZE - s_off;
1498 
1499 	if (d_off + class->size > PAGE_SIZE)
1500 		d_size = PAGE_SIZE - d_off;
1501 
1502 	s_addr = kmap_atomic(s_page);
1503 	d_addr = kmap_atomic(d_page);
1504 
1505 	while (1) {
1506 		size = min(s_size, d_size);
1507 		memcpy(d_addr + d_off, s_addr + s_off, size);
1508 		written += size;
1509 
1510 		if (written == class->size)
1511 			break;
1512 
1513 		s_off += size;
1514 		s_size -= size;
1515 		d_off += size;
1516 		d_size -= size;
1517 
1518 		/*
1519 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1520 		 * calls must occurs in reverse order of calls to kmap_atomic().
1521 		 * So, to call kunmap_atomic(s_addr) we should first call
1522 		 * kunmap_atomic(d_addr). For more details see
1523 		 * Documentation/mm/highmem.rst.
1524 		 */
1525 		if (s_off >= PAGE_SIZE) {
1526 			kunmap_atomic(d_addr);
1527 			kunmap_atomic(s_addr);
1528 			s_page = get_next_page(s_page);
1529 			s_addr = kmap_atomic(s_page);
1530 			d_addr = kmap_atomic(d_page);
1531 			s_size = class->size - written;
1532 			s_off = 0;
1533 		}
1534 
1535 		if (d_off >= PAGE_SIZE) {
1536 			kunmap_atomic(d_addr);
1537 			d_page = get_next_page(d_page);
1538 			d_addr = kmap_atomic(d_page);
1539 			d_size = class->size - written;
1540 			d_off = 0;
1541 		}
1542 	}
1543 
1544 	kunmap_atomic(d_addr);
1545 	kunmap_atomic(s_addr);
1546 }
1547 
1548 /*
1549  * Find alloced object in zspage from index object and
1550  * return handle.
1551  */
1552 static unsigned long find_alloced_obj(struct size_class *class,
1553 				      struct page *page, int *obj_idx)
1554 {
1555 	unsigned int offset;
1556 	int index = *obj_idx;
1557 	unsigned long handle = 0;
1558 	void *addr = kmap_atomic(page);
1559 
1560 	offset = get_first_obj_offset(page);
1561 	offset += class->size * index;
1562 
1563 	while (offset < PAGE_SIZE) {
1564 		if (obj_allocated(page, addr + offset, &handle))
1565 			break;
1566 
1567 		offset += class->size;
1568 		index++;
1569 	}
1570 
1571 	kunmap_atomic(addr);
1572 
1573 	*obj_idx = index;
1574 
1575 	return handle;
1576 }
1577 
1578 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1579 			   struct zspage *dst_zspage)
1580 {
1581 	unsigned long used_obj, free_obj;
1582 	unsigned long handle;
1583 	int obj_idx = 0;
1584 	struct page *s_page = get_first_page(src_zspage);
1585 	struct size_class *class = pool->size_class[src_zspage->class];
1586 
1587 	while (1) {
1588 		handle = find_alloced_obj(class, s_page, &obj_idx);
1589 		if (!handle) {
1590 			s_page = get_next_page(s_page);
1591 			if (!s_page)
1592 				break;
1593 			obj_idx = 0;
1594 			continue;
1595 		}
1596 
1597 		used_obj = handle_to_obj(handle);
1598 		free_obj = obj_malloc(pool, dst_zspage, handle);
1599 		zs_object_copy(class, free_obj, used_obj);
1600 		obj_idx++;
1601 		record_obj(handle, free_obj);
1602 		obj_free(class->size, used_obj);
1603 
1604 		/* Stop if there is no more space */
1605 		if (zspage_full(class, dst_zspage))
1606 			break;
1607 
1608 		/* Stop if there are no more objects to migrate */
1609 		if (zspage_empty(src_zspage))
1610 			break;
1611 	}
1612 }
1613 
1614 static struct zspage *isolate_src_zspage(struct size_class *class)
1615 {
1616 	struct zspage *zspage;
1617 	int fg;
1618 
1619 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1620 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1621 						  struct zspage, list);
1622 		if (zspage) {
1623 			remove_zspage(class, zspage, fg);
1624 			return zspage;
1625 		}
1626 	}
1627 
1628 	return zspage;
1629 }
1630 
1631 static struct zspage *isolate_dst_zspage(struct size_class *class)
1632 {
1633 	struct zspage *zspage;
1634 	int fg;
1635 
1636 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1637 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1638 						  struct zspage, list);
1639 		if (zspage) {
1640 			remove_zspage(class, zspage, fg);
1641 			return zspage;
1642 		}
1643 	}
1644 
1645 	return zspage;
1646 }
1647 
1648 /*
1649  * putback_zspage - add @zspage into right class's fullness list
1650  * @class: destination class
1651  * @zspage: target page
1652  *
1653  * Return @zspage's fullness status
1654  */
1655 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1656 {
1657 	int fullness;
1658 
1659 	fullness = get_fullness_group(class, zspage);
1660 	insert_zspage(class, zspage, fullness);
1661 	set_zspage_mapping(zspage, class->index, fullness);
1662 
1663 	return fullness;
1664 }
1665 
1666 #ifdef CONFIG_COMPACTION
1667 /*
1668  * To prevent zspage destroy during migration, zspage freeing should
1669  * hold locks of all pages in the zspage.
1670  */
1671 static void lock_zspage(struct zspage *zspage)
1672 {
1673 	struct page *curr_page, *page;
1674 
1675 	/*
1676 	 * Pages we haven't locked yet can be migrated off the list while we're
1677 	 * trying to lock them, so we need to be careful and only attempt to
1678 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1679 	 * may no longer belong to the zspage. This means that we may wait for
1680 	 * the wrong page to unlock, so we must take a reference to the page
1681 	 * prior to waiting for it to unlock outside migrate_read_lock().
1682 	 */
1683 	while (1) {
1684 		migrate_read_lock(zspage);
1685 		page = get_first_page(zspage);
1686 		if (trylock_page(page))
1687 			break;
1688 		get_page(page);
1689 		migrate_read_unlock(zspage);
1690 		wait_on_page_locked(page);
1691 		put_page(page);
1692 	}
1693 
1694 	curr_page = page;
1695 	while ((page = get_next_page(curr_page))) {
1696 		if (trylock_page(page)) {
1697 			curr_page = page;
1698 		} else {
1699 			get_page(page);
1700 			migrate_read_unlock(zspage);
1701 			wait_on_page_locked(page);
1702 			put_page(page);
1703 			migrate_read_lock(zspage);
1704 		}
1705 	}
1706 	migrate_read_unlock(zspage);
1707 }
1708 #endif /* CONFIG_COMPACTION */
1709 
1710 static void migrate_lock_init(struct zspage *zspage)
1711 {
1712 	rwlock_init(&zspage->lock);
1713 }
1714 
1715 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1716 {
1717 	read_lock(&zspage->lock);
1718 }
1719 
1720 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1721 {
1722 	read_unlock(&zspage->lock);
1723 }
1724 
1725 #ifdef CONFIG_COMPACTION
1726 static void migrate_write_lock(struct zspage *zspage)
1727 {
1728 	write_lock(&zspage->lock);
1729 }
1730 
1731 static void migrate_write_lock_nested(struct zspage *zspage)
1732 {
1733 	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1734 }
1735 
1736 static void migrate_write_unlock(struct zspage *zspage)
1737 {
1738 	write_unlock(&zspage->lock);
1739 }
1740 
1741 /* Number of isolated subpage for *page migration* in this zspage */
1742 static void inc_zspage_isolation(struct zspage *zspage)
1743 {
1744 	zspage->isolated++;
1745 }
1746 
1747 static void dec_zspage_isolation(struct zspage *zspage)
1748 {
1749 	VM_BUG_ON(zspage->isolated == 0);
1750 	zspage->isolated--;
1751 }
1752 
1753 static const struct movable_operations zsmalloc_mops;
1754 
1755 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1756 				struct page *newpage, struct page *oldpage)
1757 {
1758 	struct page *page;
1759 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1760 	int idx = 0;
1761 
1762 	page = get_first_page(zspage);
1763 	do {
1764 		if (page == oldpage)
1765 			pages[idx] = newpage;
1766 		else
1767 			pages[idx] = page;
1768 		idx++;
1769 	} while ((page = get_next_page(page)) != NULL);
1770 
1771 	create_page_chain(class, zspage, pages);
1772 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1773 	if (unlikely(ZsHugePage(zspage)))
1774 		newpage->index = oldpage->index;
1775 	__SetPageMovable(newpage, &zsmalloc_mops);
1776 }
1777 
1778 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1779 {
1780 	struct zs_pool *pool;
1781 	struct zspage *zspage;
1782 
1783 	/*
1784 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1785 	 * lock_zspage in free_zspage.
1786 	 */
1787 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1788 
1789 	zspage = get_zspage(page);
1790 	pool = zspage->pool;
1791 	spin_lock(&pool->lock);
1792 	inc_zspage_isolation(zspage);
1793 	spin_unlock(&pool->lock);
1794 
1795 	return true;
1796 }
1797 
1798 static int zs_page_migrate(struct page *newpage, struct page *page,
1799 		enum migrate_mode mode)
1800 {
1801 	struct zs_pool *pool;
1802 	struct size_class *class;
1803 	struct zspage *zspage;
1804 	struct page *dummy;
1805 	void *s_addr, *d_addr, *addr;
1806 	unsigned int offset;
1807 	unsigned long handle;
1808 	unsigned long old_obj, new_obj;
1809 	unsigned int obj_idx;
1810 
1811 	/*
1812 	 * We cannot support the _NO_COPY case here, because copy needs to
1813 	 * happen under the zs lock, which does not work with
1814 	 * MIGRATE_SYNC_NO_COPY workflow.
1815 	 */
1816 	if (mode == MIGRATE_SYNC_NO_COPY)
1817 		return -EINVAL;
1818 
1819 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1820 
1821 	/* The page is locked, so this pointer must remain valid */
1822 	zspage = get_zspage(page);
1823 	pool = zspage->pool;
1824 
1825 	/*
1826 	 * The pool's lock protects the race between zpage migration
1827 	 * and zs_free.
1828 	 */
1829 	spin_lock(&pool->lock);
1830 	class = zspage_class(pool, zspage);
1831 
1832 	/* the migrate_write_lock protects zpage access via zs_map_object */
1833 	migrate_write_lock(zspage);
1834 
1835 	offset = get_first_obj_offset(page);
1836 	s_addr = kmap_atomic(page);
1837 
1838 	/*
1839 	 * Here, any user cannot access all objects in the zspage so let's move.
1840 	 */
1841 	d_addr = kmap_atomic(newpage);
1842 	memcpy(d_addr, s_addr, PAGE_SIZE);
1843 	kunmap_atomic(d_addr);
1844 
1845 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1846 					addr += class->size) {
1847 		if (obj_allocated(page, addr, &handle)) {
1848 
1849 			old_obj = handle_to_obj(handle);
1850 			obj_to_location(old_obj, &dummy, &obj_idx);
1851 			new_obj = (unsigned long)location_to_obj(newpage,
1852 								obj_idx);
1853 			record_obj(handle, new_obj);
1854 		}
1855 	}
1856 	kunmap_atomic(s_addr);
1857 
1858 	replace_sub_page(class, zspage, newpage, page);
1859 	dec_zspage_isolation(zspage);
1860 	/*
1861 	 * Since we complete the data copy and set up new zspage structure,
1862 	 * it's okay to release the pool's lock.
1863 	 */
1864 	spin_unlock(&pool->lock);
1865 	migrate_write_unlock(zspage);
1866 
1867 	get_page(newpage);
1868 	if (page_zone(newpage) != page_zone(page)) {
1869 		dec_zone_page_state(page, NR_ZSPAGES);
1870 		inc_zone_page_state(newpage, NR_ZSPAGES);
1871 	}
1872 
1873 	reset_page(page);
1874 	put_page(page);
1875 
1876 	return MIGRATEPAGE_SUCCESS;
1877 }
1878 
1879 static void zs_page_putback(struct page *page)
1880 {
1881 	struct zs_pool *pool;
1882 	struct zspage *zspage;
1883 
1884 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1885 
1886 	zspage = get_zspage(page);
1887 	pool = zspage->pool;
1888 	spin_lock(&pool->lock);
1889 	dec_zspage_isolation(zspage);
1890 	spin_unlock(&pool->lock);
1891 }
1892 
1893 static const struct movable_operations zsmalloc_mops = {
1894 	.isolate_page = zs_page_isolate,
1895 	.migrate_page = zs_page_migrate,
1896 	.putback_page = zs_page_putback,
1897 };
1898 
1899 /*
1900  * Caller should hold page_lock of all pages in the zspage
1901  * In here, we cannot use zspage meta data.
1902  */
1903 static void async_free_zspage(struct work_struct *work)
1904 {
1905 	int i;
1906 	struct size_class *class;
1907 	unsigned int class_idx;
1908 	int fullness;
1909 	struct zspage *zspage, *tmp;
1910 	LIST_HEAD(free_pages);
1911 	struct zs_pool *pool = container_of(work, struct zs_pool,
1912 					free_work);
1913 
1914 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1915 		class = pool->size_class[i];
1916 		if (class->index != i)
1917 			continue;
1918 
1919 		spin_lock(&pool->lock);
1920 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1921 				 &free_pages);
1922 		spin_unlock(&pool->lock);
1923 	}
1924 
1925 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1926 		list_del(&zspage->list);
1927 		lock_zspage(zspage);
1928 
1929 		get_zspage_mapping(zspage, &class_idx, &fullness);
1930 		VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
1931 		class = pool->size_class[class_idx];
1932 		spin_lock(&pool->lock);
1933 		__free_zspage(pool, class, zspage);
1934 		spin_unlock(&pool->lock);
1935 	}
1936 };
1937 
1938 static void kick_deferred_free(struct zs_pool *pool)
1939 {
1940 	schedule_work(&pool->free_work);
1941 }
1942 
1943 static void zs_flush_migration(struct zs_pool *pool)
1944 {
1945 	flush_work(&pool->free_work);
1946 }
1947 
1948 static void init_deferred_free(struct zs_pool *pool)
1949 {
1950 	INIT_WORK(&pool->free_work, async_free_zspage);
1951 }
1952 
1953 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1954 {
1955 	struct page *page = get_first_page(zspage);
1956 
1957 	do {
1958 		WARN_ON(!trylock_page(page));
1959 		__SetPageMovable(page, &zsmalloc_mops);
1960 		unlock_page(page);
1961 	} while ((page = get_next_page(page)) != NULL);
1962 }
1963 #else
1964 static inline void zs_flush_migration(struct zs_pool *pool) { }
1965 #endif
1966 
1967 /*
1968  *
1969  * Based on the number of unused allocated objects calculate
1970  * and return the number of pages that we can free.
1971  */
1972 static unsigned long zs_can_compact(struct size_class *class)
1973 {
1974 	unsigned long obj_wasted;
1975 	unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
1976 	unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1977 
1978 	if (obj_allocated <= obj_used)
1979 		return 0;
1980 
1981 	obj_wasted = obj_allocated - obj_used;
1982 	obj_wasted /= class->objs_per_zspage;
1983 
1984 	return obj_wasted * class->pages_per_zspage;
1985 }
1986 
1987 static unsigned long __zs_compact(struct zs_pool *pool,
1988 				  struct size_class *class)
1989 {
1990 	struct zspage *src_zspage = NULL;
1991 	struct zspage *dst_zspage = NULL;
1992 	unsigned long pages_freed = 0;
1993 
1994 	/*
1995 	 * protect the race between zpage migration and zs_free
1996 	 * as well as zpage allocation/free
1997 	 */
1998 	spin_lock(&pool->lock);
1999 	while (zs_can_compact(class)) {
2000 		int fg;
2001 
2002 		if (!dst_zspage) {
2003 			dst_zspage = isolate_dst_zspage(class);
2004 			if (!dst_zspage)
2005 				break;
2006 			migrate_write_lock(dst_zspage);
2007 		}
2008 
2009 		src_zspage = isolate_src_zspage(class);
2010 		if (!src_zspage)
2011 			break;
2012 
2013 		migrate_write_lock_nested(src_zspage);
2014 
2015 		migrate_zspage(pool, src_zspage, dst_zspage);
2016 		fg = putback_zspage(class, src_zspage);
2017 		migrate_write_unlock(src_zspage);
2018 
2019 		if (fg == ZS_INUSE_RATIO_0) {
2020 			free_zspage(pool, class, src_zspage);
2021 			pages_freed += class->pages_per_zspage;
2022 		}
2023 		src_zspage = NULL;
2024 
2025 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2026 		    || spin_is_contended(&pool->lock)) {
2027 			putback_zspage(class, dst_zspage);
2028 			migrate_write_unlock(dst_zspage);
2029 			dst_zspage = NULL;
2030 
2031 			spin_unlock(&pool->lock);
2032 			cond_resched();
2033 			spin_lock(&pool->lock);
2034 		}
2035 	}
2036 
2037 	if (src_zspage) {
2038 		putback_zspage(class, src_zspage);
2039 		migrate_write_unlock(src_zspage);
2040 	}
2041 
2042 	if (dst_zspage) {
2043 		putback_zspage(class, dst_zspage);
2044 		migrate_write_unlock(dst_zspage);
2045 	}
2046 	spin_unlock(&pool->lock);
2047 
2048 	return pages_freed;
2049 }
2050 
2051 unsigned long zs_compact(struct zs_pool *pool)
2052 {
2053 	int i;
2054 	struct size_class *class;
2055 	unsigned long pages_freed = 0;
2056 
2057 	/*
2058 	 * Pool compaction is performed under pool->lock so it is basically
2059 	 * single-threaded. Having more than one thread in __zs_compact()
2060 	 * will increase pool->lock contention, which will impact other
2061 	 * zsmalloc operations that need pool->lock.
2062 	 */
2063 	if (atomic_xchg(&pool->compaction_in_progress, 1))
2064 		return 0;
2065 
2066 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2067 		class = pool->size_class[i];
2068 		if (class->index != i)
2069 			continue;
2070 		pages_freed += __zs_compact(pool, class);
2071 	}
2072 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2073 	atomic_set(&pool->compaction_in_progress, 0);
2074 
2075 	return pages_freed;
2076 }
2077 EXPORT_SYMBOL_GPL(zs_compact);
2078 
2079 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2080 {
2081 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2082 }
2083 EXPORT_SYMBOL_GPL(zs_pool_stats);
2084 
2085 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2086 		struct shrink_control *sc)
2087 {
2088 	unsigned long pages_freed;
2089 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2090 			shrinker);
2091 
2092 	/*
2093 	 * Compact classes and calculate compaction delta.
2094 	 * Can run concurrently with a manually triggered
2095 	 * (by user) compaction.
2096 	 */
2097 	pages_freed = zs_compact(pool);
2098 
2099 	return pages_freed ? pages_freed : SHRINK_STOP;
2100 }
2101 
2102 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2103 		struct shrink_control *sc)
2104 {
2105 	int i;
2106 	struct size_class *class;
2107 	unsigned long pages_to_free = 0;
2108 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2109 			shrinker);
2110 
2111 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2112 		class = pool->size_class[i];
2113 		if (class->index != i)
2114 			continue;
2115 
2116 		pages_to_free += zs_can_compact(class);
2117 	}
2118 
2119 	return pages_to_free;
2120 }
2121 
2122 static void zs_unregister_shrinker(struct zs_pool *pool)
2123 {
2124 	unregister_shrinker(&pool->shrinker);
2125 }
2126 
2127 static int zs_register_shrinker(struct zs_pool *pool)
2128 {
2129 	pool->shrinker.scan_objects = zs_shrinker_scan;
2130 	pool->shrinker.count_objects = zs_shrinker_count;
2131 	pool->shrinker.batch = 0;
2132 	pool->shrinker.seeks = DEFAULT_SEEKS;
2133 
2134 	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2135 				 pool->name);
2136 }
2137 
2138 static int calculate_zspage_chain_size(int class_size)
2139 {
2140 	int i, min_waste = INT_MAX;
2141 	int chain_size = 1;
2142 
2143 	if (is_power_of_2(class_size))
2144 		return chain_size;
2145 
2146 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2147 		int waste;
2148 
2149 		waste = (i * PAGE_SIZE) % class_size;
2150 		if (waste < min_waste) {
2151 			min_waste = waste;
2152 			chain_size = i;
2153 		}
2154 	}
2155 
2156 	return chain_size;
2157 }
2158 
2159 /**
2160  * zs_create_pool - Creates an allocation pool to work from.
2161  * @name: pool name to be created
2162  *
2163  * This function must be called before anything when using
2164  * the zsmalloc allocator.
2165  *
2166  * On success, a pointer to the newly created pool is returned,
2167  * otherwise NULL.
2168  */
2169 struct zs_pool *zs_create_pool(const char *name)
2170 {
2171 	int i;
2172 	struct zs_pool *pool;
2173 	struct size_class *prev_class = NULL;
2174 
2175 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2176 	if (!pool)
2177 		return NULL;
2178 
2179 	init_deferred_free(pool);
2180 	spin_lock_init(&pool->lock);
2181 	atomic_set(&pool->compaction_in_progress, 0);
2182 
2183 	pool->name = kstrdup(name, GFP_KERNEL);
2184 	if (!pool->name)
2185 		goto err;
2186 
2187 	if (create_cache(pool))
2188 		goto err;
2189 
2190 	/*
2191 	 * Iterate reversely, because, size of size_class that we want to use
2192 	 * for merging should be larger or equal to current size.
2193 	 */
2194 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2195 		int size;
2196 		int pages_per_zspage;
2197 		int objs_per_zspage;
2198 		struct size_class *class;
2199 		int fullness;
2200 
2201 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2202 		if (size > ZS_MAX_ALLOC_SIZE)
2203 			size = ZS_MAX_ALLOC_SIZE;
2204 		pages_per_zspage = calculate_zspage_chain_size(size);
2205 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2206 
2207 		/*
2208 		 * We iterate from biggest down to smallest classes,
2209 		 * so huge_class_size holds the size of the first huge
2210 		 * class. Any object bigger than or equal to that will
2211 		 * endup in the huge class.
2212 		 */
2213 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2214 				!huge_class_size) {
2215 			huge_class_size = size;
2216 			/*
2217 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2218 			 * handle. We need to subtract it, because zs_malloc()
2219 			 * unconditionally adds handle size before it performs
2220 			 * size class search - so object may be smaller than
2221 			 * huge class size, yet it still can end up in the huge
2222 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2223 			 * right before class lookup.
2224 			 */
2225 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2226 		}
2227 
2228 		/*
2229 		 * size_class is used for normal zsmalloc operation such
2230 		 * as alloc/free for that size. Although it is natural that we
2231 		 * have one size_class for each size, there is a chance that we
2232 		 * can get more memory utilization if we use one size_class for
2233 		 * many different sizes whose size_class have same
2234 		 * characteristics. So, we makes size_class point to
2235 		 * previous size_class if possible.
2236 		 */
2237 		if (prev_class) {
2238 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2239 				pool->size_class[i] = prev_class;
2240 				continue;
2241 			}
2242 		}
2243 
2244 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2245 		if (!class)
2246 			goto err;
2247 
2248 		class->size = size;
2249 		class->index = i;
2250 		class->pages_per_zspage = pages_per_zspage;
2251 		class->objs_per_zspage = objs_per_zspage;
2252 		pool->size_class[i] = class;
2253 
2254 		fullness = ZS_INUSE_RATIO_0;
2255 		while (fullness < NR_FULLNESS_GROUPS) {
2256 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2257 			fullness++;
2258 		}
2259 
2260 		prev_class = class;
2261 	}
2262 
2263 	/* debug only, don't abort if it fails */
2264 	zs_pool_stat_create(pool, name);
2265 
2266 	/*
2267 	 * Not critical since shrinker is only used to trigger internal
2268 	 * defragmentation of the pool which is pretty optional thing.  If
2269 	 * registration fails we still can use the pool normally and user can
2270 	 * trigger compaction manually. Thus, ignore return code.
2271 	 */
2272 	zs_register_shrinker(pool);
2273 
2274 	return pool;
2275 
2276 err:
2277 	zs_destroy_pool(pool);
2278 	return NULL;
2279 }
2280 EXPORT_SYMBOL_GPL(zs_create_pool);
2281 
2282 void zs_destroy_pool(struct zs_pool *pool)
2283 {
2284 	int i;
2285 
2286 	zs_unregister_shrinker(pool);
2287 	zs_flush_migration(pool);
2288 	zs_pool_stat_destroy(pool);
2289 
2290 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2291 		int fg;
2292 		struct size_class *class = pool->size_class[i];
2293 
2294 		if (!class)
2295 			continue;
2296 
2297 		if (class->index != i)
2298 			continue;
2299 
2300 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2301 			if (list_empty(&class->fullness_list[fg]))
2302 				continue;
2303 
2304 			pr_err("Class-%d fullness group %d is not empty\n",
2305 			       class->size, fg);
2306 		}
2307 		kfree(class);
2308 	}
2309 
2310 	destroy_cache(pool);
2311 	kfree(pool->name);
2312 	kfree(pool);
2313 }
2314 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2315 
2316 static int __init zs_init(void)
2317 {
2318 	int ret;
2319 
2320 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2321 				zs_cpu_prepare, zs_cpu_dead);
2322 	if (ret)
2323 		goto out;
2324 
2325 #ifdef CONFIG_ZPOOL
2326 	zpool_register_driver(&zs_zpool_driver);
2327 #endif
2328 
2329 	zs_stat_init();
2330 
2331 	return 0;
2332 
2333 out:
2334 	return ret;
2335 }
2336 
2337 static void __exit zs_exit(void)
2338 {
2339 #ifdef CONFIG_ZPOOL
2340 	zpool_unregister_driver(&zs_zpool_driver);
2341 #endif
2342 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2343 
2344 	zs_stat_exit();
2345 }
2346 
2347 module_init(zs_init);
2348 module_exit(zs_exit);
2349 
2350 MODULE_LICENSE("Dual BSD/GPL");
2351 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2352