1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: PG_zsmalloc, lower 16 bit locate the first object 24 * offset in a subpage of a zspage 25 * 26 * Usage of struct page flags: 27 * PG_private: identifies the first component page 28 * PG_owner_priv_1: identifies the huge component page 29 * 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 /* 35 * lock ordering: 36 * page_lock 37 * pool->migrate_lock 38 * class->lock 39 * zspage->lock 40 */ 41 42 #include <linux/module.h> 43 #include <linux/kernel.h> 44 #include <linux/sched.h> 45 #include <linux/bitops.h> 46 #include <linux/errno.h> 47 #include <linux/highmem.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/pgtable.h> 51 #include <asm/tlbflush.h> 52 #include <linux/cpumask.h> 53 #include <linux/cpu.h> 54 #include <linux/vmalloc.h> 55 #include <linux/preempt.h> 56 #include <linux/spinlock.h> 57 #include <linux/shrinker.h> 58 #include <linux/types.h> 59 #include <linux/debugfs.h> 60 #include <linux/zsmalloc.h> 61 #include <linux/zpool.h> 62 #include <linux/migrate.h> 63 #include <linux/wait.h> 64 #include <linux/pagemap.h> 65 #include <linux/fs.h> 66 #include <linux/local_lock.h> 67 68 #define ZSPAGE_MAGIC 0x58 69 70 /* 71 * This must be power of 2 and greater than or equal to sizeof(link_free). 72 * These two conditions ensure that any 'struct link_free' itself doesn't 73 * span more than 1 page which avoids complex case of mapping 2 pages simply 74 * to restore link_free pointer values. 75 */ 76 #define ZS_ALIGN 8 77 78 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 79 80 /* 81 * Object location (<PFN>, <obj_idx>) is encoded as 82 * a single (unsigned long) handle value. 83 * 84 * Note that object index <obj_idx> starts from 0. 85 * 86 * This is made more complicated by various memory models and PAE. 87 */ 88 89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 90 #ifdef MAX_PHYSMEM_BITS 91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 92 #else 93 /* 94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 95 * be PAGE_SHIFT 96 */ 97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 98 #endif 99 #endif 100 101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 102 103 /* 104 * Head in allocated object should have OBJ_ALLOCATED_TAG 105 * to identify the object was allocated or not. 106 * It's okay to add the status bit in the least bit because 107 * header keeps handle which is 4byte-aligned address so we 108 * have room for two bit at least. 109 */ 110 #define OBJ_ALLOCATED_TAG 1 111 112 #define OBJ_TAG_BITS 1 113 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 114 115 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 116 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 117 118 #define HUGE_BITS 1 119 #define FULLNESS_BITS 4 120 #define CLASS_BITS 8 121 #define MAGIC_VAL_BITS 8 122 123 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 124 125 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 126 127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 128 #define ZS_MIN_ALLOC_SIZE \ 129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 130 /* each chunk includes extra space to keep handle */ 131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 132 133 /* 134 * On systems with 4K page size, this gives 255 size classes! There is a 135 * trader-off here: 136 * - Large number of size classes is potentially wasteful as free page are 137 * spread across these classes 138 * - Small number of size classes causes large internal fragmentation 139 * - Probably its better to use specific size classes (empirically 140 * determined). NOTE: all those class sizes must be set as multiple of 141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 142 * 143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 144 * (reason above) 145 */ 146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 148 ZS_SIZE_CLASS_DELTA) + 1) 149 150 /* 151 * Pages are distinguished by the ratio of used memory (that is the ratio 152 * of ->inuse objects to all objects that page can store). For example, 153 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 154 * 155 * The number of fullness groups is not random. It allows us to keep 156 * difference between the least busy page in the group (minimum permitted 157 * number of ->inuse objects) and the most busy page (maximum permitted 158 * number of ->inuse objects) at a reasonable value. 159 */ 160 enum fullness_group { 161 ZS_INUSE_RATIO_0, 162 ZS_INUSE_RATIO_10, 163 /* NOTE: 8 more fullness groups here */ 164 ZS_INUSE_RATIO_99 = 10, 165 ZS_INUSE_RATIO_100, 166 NR_FULLNESS_GROUPS, 167 }; 168 169 enum class_stat_type { 170 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 171 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 172 ZS_OBJS_INUSE, 173 NR_CLASS_STAT_TYPES, 174 }; 175 176 struct zs_size_stat { 177 unsigned long objs[NR_CLASS_STAT_TYPES]; 178 }; 179 180 #ifdef CONFIG_ZSMALLOC_STAT 181 static struct dentry *zs_stat_root; 182 #endif 183 184 static size_t huge_class_size; 185 186 struct size_class { 187 spinlock_t lock; 188 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 189 /* 190 * Size of objects stored in this class. Must be multiple 191 * of ZS_ALIGN. 192 */ 193 int size; 194 int objs_per_zspage; 195 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 196 int pages_per_zspage; 197 198 unsigned int index; 199 struct zs_size_stat stats; 200 }; 201 202 /* 203 * Placed within free objects to form a singly linked list. 204 * For every zspage, zspage->freeobj gives head of this list. 205 * 206 * This must be power of 2 and less than or equal to ZS_ALIGN 207 */ 208 struct link_free { 209 union { 210 /* 211 * Free object index; 212 * It's valid for non-allocated object 213 */ 214 unsigned long next; 215 /* 216 * Handle of allocated object. 217 */ 218 unsigned long handle; 219 }; 220 }; 221 222 struct zs_pool { 223 const char *name; 224 225 struct size_class *size_class[ZS_SIZE_CLASSES]; 226 struct kmem_cache *handle_cachep; 227 struct kmem_cache *zspage_cachep; 228 229 atomic_long_t pages_allocated; 230 231 struct zs_pool_stats stats; 232 233 /* Compact classes */ 234 struct shrinker *shrinker; 235 236 #ifdef CONFIG_ZSMALLOC_STAT 237 struct dentry *stat_dentry; 238 #endif 239 #ifdef CONFIG_COMPACTION 240 struct work_struct free_work; 241 #endif 242 /* protect page/zspage migration */ 243 rwlock_t migrate_lock; 244 atomic_t compaction_in_progress; 245 }; 246 247 struct zspage { 248 struct { 249 unsigned int huge:HUGE_BITS; 250 unsigned int fullness:FULLNESS_BITS; 251 unsigned int class:CLASS_BITS + 1; 252 unsigned int magic:MAGIC_VAL_BITS; 253 }; 254 unsigned int inuse; 255 unsigned int freeobj; 256 struct page *first_page; 257 struct list_head list; /* fullness list */ 258 struct zs_pool *pool; 259 rwlock_t lock; 260 }; 261 262 struct mapping_area { 263 local_lock_t lock; 264 char *vm_buf; /* copy buffer for objects that span pages */ 265 char *vm_addr; /* address of kmap_atomic()'ed pages */ 266 enum zs_mapmode vm_mm; /* mapping mode */ 267 }; 268 269 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 270 static void SetZsHugePage(struct zspage *zspage) 271 { 272 zspage->huge = 1; 273 } 274 275 static bool ZsHugePage(struct zspage *zspage) 276 { 277 return zspage->huge; 278 } 279 280 static void migrate_lock_init(struct zspage *zspage); 281 static void migrate_read_lock(struct zspage *zspage); 282 static void migrate_read_unlock(struct zspage *zspage); 283 static void migrate_write_lock(struct zspage *zspage); 284 static void migrate_write_unlock(struct zspage *zspage); 285 286 #ifdef CONFIG_COMPACTION 287 static void kick_deferred_free(struct zs_pool *pool); 288 static void init_deferred_free(struct zs_pool *pool); 289 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 290 #else 291 static void kick_deferred_free(struct zs_pool *pool) {} 292 static void init_deferred_free(struct zs_pool *pool) {} 293 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 294 #endif 295 296 static int create_cache(struct zs_pool *pool) 297 { 298 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 299 0, 0, NULL); 300 if (!pool->handle_cachep) 301 return 1; 302 303 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 304 0, 0, NULL); 305 if (!pool->zspage_cachep) { 306 kmem_cache_destroy(pool->handle_cachep); 307 pool->handle_cachep = NULL; 308 return 1; 309 } 310 311 return 0; 312 } 313 314 static void destroy_cache(struct zs_pool *pool) 315 { 316 kmem_cache_destroy(pool->handle_cachep); 317 kmem_cache_destroy(pool->zspage_cachep); 318 } 319 320 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 321 { 322 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 323 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 324 } 325 326 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 327 { 328 kmem_cache_free(pool->handle_cachep, (void *)handle); 329 } 330 331 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 332 { 333 return kmem_cache_zalloc(pool->zspage_cachep, 334 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 335 } 336 337 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 338 { 339 kmem_cache_free(pool->zspage_cachep, zspage); 340 } 341 342 /* class->lock(which owns the handle) synchronizes races */ 343 static void record_obj(unsigned long handle, unsigned long obj) 344 { 345 *(unsigned long *)handle = obj; 346 } 347 348 /* zpool driver */ 349 350 #ifdef CONFIG_ZPOOL 351 352 static void *zs_zpool_create(const char *name, gfp_t gfp) 353 { 354 /* 355 * Ignore global gfp flags: zs_malloc() may be invoked from 356 * different contexts and its caller must provide a valid 357 * gfp mask. 358 */ 359 return zs_create_pool(name); 360 } 361 362 static void zs_zpool_destroy(void *pool) 363 { 364 zs_destroy_pool(pool); 365 } 366 367 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 368 unsigned long *handle) 369 { 370 *handle = zs_malloc(pool, size, gfp); 371 372 if (IS_ERR_VALUE(*handle)) 373 return PTR_ERR((void *)*handle); 374 return 0; 375 } 376 static void zs_zpool_free(void *pool, unsigned long handle) 377 { 378 zs_free(pool, handle); 379 } 380 381 static void *zs_zpool_map(void *pool, unsigned long handle, 382 enum zpool_mapmode mm) 383 { 384 enum zs_mapmode zs_mm; 385 386 switch (mm) { 387 case ZPOOL_MM_RO: 388 zs_mm = ZS_MM_RO; 389 break; 390 case ZPOOL_MM_WO: 391 zs_mm = ZS_MM_WO; 392 break; 393 case ZPOOL_MM_RW: 394 default: 395 zs_mm = ZS_MM_RW; 396 break; 397 } 398 399 return zs_map_object(pool, handle, zs_mm); 400 } 401 static void zs_zpool_unmap(void *pool, unsigned long handle) 402 { 403 zs_unmap_object(pool, handle); 404 } 405 406 static u64 zs_zpool_total_pages(void *pool) 407 { 408 return zs_get_total_pages(pool); 409 } 410 411 static struct zpool_driver zs_zpool_driver = { 412 .type = "zsmalloc", 413 .owner = THIS_MODULE, 414 .create = zs_zpool_create, 415 .destroy = zs_zpool_destroy, 416 .malloc_support_movable = true, 417 .malloc = zs_zpool_malloc, 418 .free = zs_zpool_free, 419 .map = zs_zpool_map, 420 .unmap = zs_zpool_unmap, 421 .total_pages = zs_zpool_total_pages, 422 }; 423 424 MODULE_ALIAS("zpool-zsmalloc"); 425 #endif /* CONFIG_ZPOOL */ 426 427 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 428 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 429 .lock = INIT_LOCAL_LOCK(lock), 430 }; 431 432 static __maybe_unused int is_first_page(struct page *page) 433 { 434 return PagePrivate(page); 435 } 436 437 /* Protected by class->lock */ 438 static inline int get_zspage_inuse(struct zspage *zspage) 439 { 440 return zspage->inuse; 441 } 442 443 444 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 445 { 446 zspage->inuse += val; 447 } 448 449 static inline struct page *get_first_page(struct zspage *zspage) 450 { 451 struct page *first_page = zspage->first_page; 452 453 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 454 return first_page; 455 } 456 457 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffff 458 459 static inline void reset_first_obj_offset(struct page *page) 460 { 461 VM_WARN_ON_ONCE(!PageZsmalloc(page)); 462 page->page_type |= FIRST_OBJ_PAGE_TYPE_MASK; 463 } 464 465 static inline unsigned int get_first_obj_offset(struct page *page) 466 { 467 VM_WARN_ON_ONCE(!PageZsmalloc(page)); 468 return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK; 469 } 470 471 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 472 { 473 /* With 16 bit available, we can support offsets into 64 KiB pages. */ 474 BUILD_BUG_ON(PAGE_SIZE > SZ_64K); 475 VM_WARN_ON_ONCE(!PageZsmalloc(page)); 476 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK); 477 page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK; 478 page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK; 479 } 480 481 static inline unsigned int get_freeobj(struct zspage *zspage) 482 { 483 return zspage->freeobj; 484 } 485 486 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 487 { 488 zspage->freeobj = obj; 489 } 490 491 static struct size_class *zspage_class(struct zs_pool *pool, 492 struct zspage *zspage) 493 { 494 return pool->size_class[zspage->class]; 495 } 496 497 /* 498 * zsmalloc divides the pool into various size classes where each 499 * class maintains a list of zspages where each zspage is divided 500 * into equal sized chunks. Each allocation falls into one of these 501 * classes depending on its size. This function returns index of the 502 * size class which has chunk size big enough to hold the given size. 503 */ 504 static int get_size_class_index(int size) 505 { 506 int idx = 0; 507 508 if (likely(size > ZS_MIN_ALLOC_SIZE)) 509 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 510 ZS_SIZE_CLASS_DELTA); 511 512 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 513 } 514 515 static inline void class_stat_add(struct size_class *class, int type, 516 unsigned long cnt) 517 { 518 class->stats.objs[type] += cnt; 519 } 520 521 static inline void class_stat_sub(struct size_class *class, int type, 522 unsigned long cnt) 523 { 524 class->stats.objs[type] -= cnt; 525 } 526 527 static inline unsigned long class_stat_read(struct size_class *class, int type) 528 { 529 return class->stats.objs[type]; 530 } 531 532 #ifdef CONFIG_ZSMALLOC_STAT 533 534 static void __init zs_stat_init(void) 535 { 536 if (!debugfs_initialized()) { 537 pr_warn("debugfs not available, stat dir not created\n"); 538 return; 539 } 540 541 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 542 } 543 544 static void __exit zs_stat_exit(void) 545 { 546 debugfs_remove_recursive(zs_stat_root); 547 } 548 549 static unsigned long zs_can_compact(struct size_class *class); 550 551 static int zs_stats_size_show(struct seq_file *s, void *v) 552 { 553 int i, fg; 554 struct zs_pool *pool = s->private; 555 struct size_class *class; 556 int objs_per_zspage; 557 unsigned long obj_allocated, obj_used, pages_used, freeable; 558 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 559 unsigned long total_freeable = 0; 560 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 561 562 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 563 "class", "size", "10%", "20%", "30%", "40%", 564 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 565 "obj_allocated", "obj_used", "pages_used", 566 "pages_per_zspage", "freeable"); 567 568 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 569 570 class = pool->size_class[i]; 571 572 if (class->index != i) 573 continue; 574 575 spin_lock(&class->lock); 576 577 seq_printf(s, " %5u %5u ", i, class->size); 578 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 579 inuse_totals[fg] += class_stat_read(class, fg); 580 seq_printf(s, "%9lu ", class_stat_read(class, fg)); 581 } 582 583 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 584 obj_used = class_stat_read(class, ZS_OBJS_INUSE); 585 freeable = zs_can_compact(class); 586 spin_unlock(&class->lock); 587 588 objs_per_zspage = class->objs_per_zspage; 589 pages_used = obj_allocated / objs_per_zspage * 590 class->pages_per_zspage; 591 592 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 593 obj_allocated, obj_used, pages_used, 594 class->pages_per_zspage, freeable); 595 596 total_objs += obj_allocated; 597 total_used_objs += obj_used; 598 total_pages += pages_used; 599 total_freeable += freeable; 600 } 601 602 seq_puts(s, "\n"); 603 seq_printf(s, " %5s %5s ", "Total", ""); 604 605 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 606 seq_printf(s, "%9lu ", inuse_totals[fg]); 607 608 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 609 total_objs, total_used_objs, total_pages, "", 610 total_freeable); 611 612 return 0; 613 } 614 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 615 616 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 617 { 618 if (!zs_stat_root) { 619 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 620 return; 621 } 622 623 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 624 625 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 626 &zs_stats_size_fops); 627 } 628 629 static void zs_pool_stat_destroy(struct zs_pool *pool) 630 { 631 debugfs_remove_recursive(pool->stat_dentry); 632 } 633 634 #else /* CONFIG_ZSMALLOC_STAT */ 635 static void __init zs_stat_init(void) 636 { 637 } 638 639 static void __exit zs_stat_exit(void) 640 { 641 } 642 643 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 644 { 645 } 646 647 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 648 { 649 } 650 #endif 651 652 653 /* 654 * For each size class, zspages are divided into different groups 655 * depending on their usage ratio. This function returns fullness 656 * status of the given page. 657 */ 658 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 659 { 660 int inuse, objs_per_zspage, ratio; 661 662 inuse = get_zspage_inuse(zspage); 663 objs_per_zspage = class->objs_per_zspage; 664 665 if (inuse == 0) 666 return ZS_INUSE_RATIO_0; 667 if (inuse == objs_per_zspage) 668 return ZS_INUSE_RATIO_100; 669 670 ratio = 100 * inuse / objs_per_zspage; 671 /* 672 * Take integer division into consideration: a page with one inuse 673 * object out of 127 possible, will end up having 0 usage ratio, 674 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 675 */ 676 return ratio / 10 + 1; 677 } 678 679 /* 680 * Each size class maintains various freelists and zspages are assigned 681 * to one of these freelists based on the number of live objects they 682 * have. This functions inserts the given zspage into the freelist 683 * identified by <class, fullness_group>. 684 */ 685 static void insert_zspage(struct size_class *class, 686 struct zspage *zspage, 687 int fullness) 688 { 689 class_stat_add(class, fullness, 1); 690 list_add(&zspage->list, &class->fullness_list[fullness]); 691 zspage->fullness = fullness; 692 } 693 694 /* 695 * This function removes the given zspage from the freelist identified 696 * by <class, fullness_group>. 697 */ 698 static void remove_zspage(struct size_class *class, struct zspage *zspage) 699 { 700 int fullness = zspage->fullness; 701 702 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 703 704 list_del_init(&zspage->list); 705 class_stat_sub(class, fullness, 1); 706 } 707 708 /* 709 * Each size class maintains zspages in different fullness groups depending 710 * on the number of live objects they contain. When allocating or freeing 711 * objects, the fullness status of the page can change, for instance, from 712 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 713 * checks if such a status change has occurred for the given page and 714 * accordingly moves the page from the list of the old fullness group to that 715 * of the new fullness group. 716 */ 717 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 718 { 719 int newfg; 720 721 newfg = get_fullness_group(class, zspage); 722 if (newfg == zspage->fullness) 723 goto out; 724 725 remove_zspage(class, zspage); 726 insert_zspage(class, zspage, newfg); 727 out: 728 return newfg; 729 } 730 731 static struct zspage *get_zspage(struct page *page) 732 { 733 struct zspage *zspage = (struct zspage *)page_private(page); 734 735 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 736 return zspage; 737 } 738 739 static struct page *get_next_page(struct page *page) 740 { 741 struct zspage *zspage = get_zspage(page); 742 743 if (unlikely(ZsHugePage(zspage))) 744 return NULL; 745 746 return (struct page *)page->index; 747 } 748 749 /** 750 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 751 * @obj: the encoded object value 752 * @page: page object resides in zspage 753 * @obj_idx: object index 754 */ 755 static void obj_to_location(unsigned long obj, struct page **page, 756 unsigned int *obj_idx) 757 { 758 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 759 *obj_idx = (obj & OBJ_INDEX_MASK); 760 } 761 762 static void obj_to_page(unsigned long obj, struct page **page) 763 { 764 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 765 } 766 767 /** 768 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 769 * @page: page object resides in zspage 770 * @obj_idx: object index 771 */ 772 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 773 { 774 unsigned long obj; 775 776 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 777 obj |= obj_idx & OBJ_INDEX_MASK; 778 779 return obj; 780 } 781 782 static unsigned long handle_to_obj(unsigned long handle) 783 { 784 return *(unsigned long *)handle; 785 } 786 787 static inline bool obj_allocated(struct page *page, void *obj, 788 unsigned long *phandle) 789 { 790 unsigned long handle; 791 struct zspage *zspage = get_zspage(page); 792 793 if (unlikely(ZsHugePage(zspage))) { 794 VM_BUG_ON_PAGE(!is_first_page(page), page); 795 handle = page->index; 796 } else 797 handle = *(unsigned long *)obj; 798 799 if (!(handle & OBJ_ALLOCATED_TAG)) 800 return false; 801 802 /* Clear all tags before returning the handle */ 803 *phandle = handle & ~OBJ_TAG_MASK; 804 return true; 805 } 806 807 static void reset_page(struct page *page) 808 { 809 __ClearPageMovable(page); 810 ClearPagePrivate(page); 811 set_page_private(page, 0); 812 page->index = 0; 813 reset_first_obj_offset(page); 814 __ClearPageZsmalloc(page); 815 } 816 817 static int trylock_zspage(struct zspage *zspage) 818 { 819 struct page *cursor, *fail; 820 821 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 822 get_next_page(cursor)) { 823 if (!trylock_page(cursor)) { 824 fail = cursor; 825 goto unlock; 826 } 827 } 828 829 return 1; 830 unlock: 831 for (cursor = get_first_page(zspage); cursor != fail; cursor = 832 get_next_page(cursor)) 833 unlock_page(cursor); 834 835 return 0; 836 } 837 838 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 839 struct zspage *zspage) 840 { 841 struct page *page, *next; 842 843 assert_spin_locked(&class->lock); 844 845 VM_BUG_ON(get_zspage_inuse(zspage)); 846 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0); 847 848 next = page = get_first_page(zspage); 849 do { 850 VM_BUG_ON_PAGE(!PageLocked(page), page); 851 next = get_next_page(page); 852 reset_page(page); 853 unlock_page(page); 854 dec_zone_page_state(page, NR_ZSPAGES); 855 put_page(page); 856 page = next; 857 } while (page != NULL); 858 859 cache_free_zspage(pool, zspage); 860 861 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 862 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 863 } 864 865 static void free_zspage(struct zs_pool *pool, struct size_class *class, 866 struct zspage *zspage) 867 { 868 VM_BUG_ON(get_zspage_inuse(zspage)); 869 VM_BUG_ON(list_empty(&zspage->list)); 870 871 /* 872 * Since zs_free couldn't be sleepable, this function cannot call 873 * lock_page. The page locks trylock_zspage got will be released 874 * by __free_zspage. 875 */ 876 if (!trylock_zspage(zspage)) { 877 kick_deferred_free(pool); 878 return; 879 } 880 881 remove_zspage(class, zspage); 882 __free_zspage(pool, class, zspage); 883 } 884 885 /* Initialize a newly allocated zspage */ 886 static void init_zspage(struct size_class *class, struct zspage *zspage) 887 { 888 unsigned int freeobj = 1; 889 unsigned long off = 0; 890 struct page *page = get_first_page(zspage); 891 892 while (page) { 893 struct page *next_page; 894 struct link_free *link; 895 void *vaddr; 896 897 set_first_obj_offset(page, off); 898 899 vaddr = kmap_atomic(page); 900 link = (struct link_free *)vaddr + off / sizeof(*link); 901 902 while ((off += class->size) < PAGE_SIZE) { 903 link->next = freeobj++ << OBJ_TAG_BITS; 904 link += class->size / sizeof(*link); 905 } 906 907 /* 908 * We now come to the last (full or partial) object on this 909 * page, which must point to the first object on the next 910 * page (if present) 911 */ 912 next_page = get_next_page(page); 913 if (next_page) { 914 link->next = freeobj++ << OBJ_TAG_BITS; 915 } else { 916 /* 917 * Reset OBJ_TAG_BITS bit to last link to tell 918 * whether it's allocated object or not. 919 */ 920 link->next = -1UL << OBJ_TAG_BITS; 921 } 922 kunmap_atomic(vaddr); 923 page = next_page; 924 off %= PAGE_SIZE; 925 } 926 927 set_freeobj(zspage, 0); 928 } 929 930 static void create_page_chain(struct size_class *class, struct zspage *zspage, 931 struct page *pages[]) 932 { 933 int i; 934 struct page *page; 935 struct page *prev_page = NULL; 936 int nr_pages = class->pages_per_zspage; 937 938 /* 939 * Allocate individual pages and link them together as: 940 * 1. all pages are linked together using page->index 941 * 2. each sub-page point to zspage using page->private 942 * 943 * we set PG_private to identify the first page (i.e. no other sub-page 944 * has this flag set). 945 */ 946 for (i = 0; i < nr_pages; i++) { 947 page = pages[i]; 948 set_page_private(page, (unsigned long)zspage); 949 page->index = 0; 950 if (i == 0) { 951 zspage->first_page = page; 952 SetPagePrivate(page); 953 if (unlikely(class->objs_per_zspage == 1 && 954 class->pages_per_zspage == 1)) 955 SetZsHugePage(zspage); 956 } else { 957 prev_page->index = (unsigned long)page; 958 } 959 prev_page = page; 960 } 961 } 962 963 /* 964 * Allocate a zspage for the given size class 965 */ 966 static struct zspage *alloc_zspage(struct zs_pool *pool, 967 struct size_class *class, 968 gfp_t gfp) 969 { 970 int i; 971 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 972 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 973 974 if (!zspage) 975 return NULL; 976 977 zspage->magic = ZSPAGE_MAGIC; 978 migrate_lock_init(zspage); 979 980 for (i = 0; i < class->pages_per_zspage; i++) { 981 struct page *page; 982 983 page = alloc_page(gfp); 984 if (!page) { 985 while (--i >= 0) { 986 dec_zone_page_state(pages[i], NR_ZSPAGES); 987 __ClearPageZsmalloc(pages[i]); 988 __free_page(pages[i]); 989 } 990 cache_free_zspage(pool, zspage); 991 return NULL; 992 } 993 __SetPageZsmalloc(page); 994 995 inc_zone_page_state(page, NR_ZSPAGES); 996 pages[i] = page; 997 } 998 999 create_page_chain(class, zspage, pages); 1000 init_zspage(class, zspage); 1001 zspage->pool = pool; 1002 zspage->class = class->index; 1003 1004 return zspage; 1005 } 1006 1007 static struct zspage *find_get_zspage(struct size_class *class) 1008 { 1009 int i; 1010 struct zspage *zspage; 1011 1012 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1013 zspage = list_first_entry_or_null(&class->fullness_list[i], 1014 struct zspage, list); 1015 if (zspage) 1016 break; 1017 } 1018 1019 return zspage; 1020 } 1021 1022 static inline int __zs_cpu_up(struct mapping_area *area) 1023 { 1024 /* 1025 * Make sure we don't leak memory if a cpu UP notification 1026 * and zs_init() race and both call zs_cpu_up() on the same cpu 1027 */ 1028 if (area->vm_buf) 1029 return 0; 1030 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1031 if (!area->vm_buf) 1032 return -ENOMEM; 1033 return 0; 1034 } 1035 1036 static inline void __zs_cpu_down(struct mapping_area *area) 1037 { 1038 kfree(area->vm_buf); 1039 area->vm_buf = NULL; 1040 } 1041 1042 static void *__zs_map_object(struct mapping_area *area, 1043 struct page *pages[2], int off, int size) 1044 { 1045 int sizes[2]; 1046 void *addr; 1047 char *buf = area->vm_buf; 1048 1049 /* disable page faults to match kmap_atomic() return conditions */ 1050 pagefault_disable(); 1051 1052 /* no read fastpath */ 1053 if (area->vm_mm == ZS_MM_WO) 1054 goto out; 1055 1056 sizes[0] = PAGE_SIZE - off; 1057 sizes[1] = size - sizes[0]; 1058 1059 /* copy object to per-cpu buffer */ 1060 addr = kmap_atomic(pages[0]); 1061 memcpy(buf, addr + off, sizes[0]); 1062 kunmap_atomic(addr); 1063 addr = kmap_atomic(pages[1]); 1064 memcpy(buf + sizes[0], addr, sizes[1]); 1065 kunmap_atomic(addr); 1066 out: 1067 return area->vm_buf; 1068 } 1069 1070 static void __zs_unmap_object(struct mapping_area *area, 1071 struct page *pages[2], int off, int size) 1072 { 1073 int sizes[2]; 1074 void *addr; 1075 char *buf; 1076 1077 /* no write fastpath */ 1078 if (area->vm_mm == ZS_MM_RO) 1079 goto out; 1080 1081 buf = area->vm_buf; 1082 buf = buf + ZS_HANDLE_SIZE; 1083 size -= ZS_HANDLE_SIZE; 1084 off += ZS_HANDLE_SIZE; 1085 1086 sizes[0] = PAGE_SIZE - off; 1087 sizes[1] = size - sizes[0]; 1088 1089 /* copy per-cpu buffer to object */ 1090 addr = kmap_atomic(pages[0]); 1091 memcpy(addr + off, buf, sizes[0]); 1092 kunmap_atomic(addr); 1093 addr = kmap_atomic(pages[1]); 1094 memcpy(addr, buf + sizes[0], sizes[1]); 1095 kunmap_atomic(addr); 1096 1097 out: 1098 /* enable page faults to match kunmap_atomic() return conditions */ 1099 pagefault_enable(); 1100 } 1101 1102 static int zs_cpu_prepare(unsigned int cpu) 1103 { 1104 struct mapping_area *area; 1105 1106 area = &per_cpu(zs_map_area, cpu); 1107 return __zs_cpu_up(area); 1108 } 1109 1110 static int zs_cpu_dead(unsigned int cpu) 1111 { 1112 struct mapping_area *area; 1113 1114 area = &per_cpu(zs_map_area, cpu); 1115 __zs_cpu_down(area); 1116 return 0; 1117 } 1118 1119 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1120 int objs_per_zspage) 1121 { 1122 if (prev->pages_per_zspage == pages_per_zspage && 1123 prev->objs_per_zspage == objs_per_zspage) 1124 return true; 1125 1126 return false; 1127 } 1128 1129 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1130 { 1131 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1132 } 1133 1134 static bool zspage_empty(struct zspage *zspage) 1135 { 1136 return get_zspage_inuse(zspage) == 0; 1137 } 1138 1139 /** 1140 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1141 * that hold objects of the provided size. 1142 * @pool: zsmalloc pool to use 1143 * @size: object size 1144 * 1145 * Context: Any context. 1146 * 1147 * Return: the index of the zsmalloc &size_class that hold objects of the 1148 * provided size. 1149 */ 1150 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1151 { 1152 struct size_class *class; 1153 1154 class = pool->size_class[get_size_class_index(size)]; 1155 1156 return class->index; 1157 } 1158 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1159 1160 unsigned long zs_get_total_pages(struct zs_pool *pool) 1161 { 1162 return atomic_long_read(&pool->pages_allocated); 1163 } 1164 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1165 1166 /** 1167 * zs_map_object - get address of allocated object from handle. 1168 * @pool: pool from which the object was allocated 1169 * @handle: handle returned from zs_malloc 1170 * @mm: mapping mode to use 1171 * 1172 * Before using an object allocated from zs_malloc, it must be mapped using 1173 * this function. When done with the object, it must be unmapped using 1174 * zs_unmap_object. 1175 * 1176 * Only one object can be mapped per cpu at a time. There is no protection 1177 * against nested mappings. 1178 * 1179 * This function returns with preemption and page faults disabled. 1180 */ 1181 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1182 enum zs_mapmode mm) 1183 { 1184 struct zspage *zspage; 1185 struct page *page; 1186 unsigned long obj, off; 1187 unsigned int obj_idx; 1188 1189 struct size_class *class; 1190 struct mapping_area *area; 1191 struct page *pages[2]; 1192 void *ret; 1193 1194 /* 1195 * Because we use per-cpu mapping areas shared among the 1196 * pools/users, we can't allow mapping in interrupt context 1197 * because it can corrupt another users mappings. 1198 */ 1199 BUG_ON(in_interrupt()); 1200 1201 /* It guarantees it can get zspage from handle safely */ 1202 read_lock(&pool->migrate_lock); 1203 obj = handle_to_obj(handle); 1204 obj_to_location(obj, &page, &obj_idx); 1205 zspage = get_zspage(page); 1206 1207 /* 1208 * migration cannot move any zpages in this zspage. Here, class->lock 1209 * is too heavy since callers would take some time until they calls 1210 * zs_unmap_object API so delegate the locking from class to zspage 1211 * which is smaller granularity. 1212 */ 1213 migrate_read_lock(zspage); 1214 read_unlock(&pool->migrate_lock); 1215 1216 class = zspage_class(pool, zspage); 1217 off = offset_in_page(class->size * obj_idx); 1218 1219 local_lock(&zs_map_area.lock); 1220 area = this_cpu_ptr(&zs_map_area); 1221 area->vm_mm = mm; 1222 if (off + class->size <= PAGE_SIZE) { 1223 /* this object is contained entirely within a page */ 1224 area->vm_addr = kmap_atomic(page); 1225 ret = area->vm_addr + off; 1226 goto out; 1227 } 1228 1229 /* this object spans two pages */ 1230 pages[0] = page; 1231 pages[1] = get_next_page(page); 1232 BUG_ON(!pages[1]); 1233 1234 ret = __zs_map_object(area, pages, off, class->size); 1235 out: 1236 if (likely(!ZsHugePage(zspage))) 1237 ret += ZS_HANDLE_SIZE; 1238 1239 return ret; 1240 } 1241 EXPORT_SYMBOL_GPL(zs_map_object); 1242 1243 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1244 { 1245 struct zspage *zspage; 1246 struct page *page; 1247 unsigned long obj, off; 1248 unsigned int obj_idx; 1249 1250 struct size_class *class; 1251 struct mapping_area *area; 1252 1253 obj = handle_to_obj(handle); 1254 obj_to_location(obj, &page, &obj_idx); 1255 zspage = get_zspage(page); 1256 class = zspage_class(pool, zspage); 1257 off = offset_in_page(class->size * obj_idx); 1258 1259 area = this_cpu_ptr(&zs_map_area); 1260 if (off + class->size <= PAGE_SIZE) 1261 kunmap_atomic(area->vm_addr); 1262 else { 1263 struct page *pages[2]; 1264 1265 pages[0] = page; 1266 pages[1] = get_next_page(page); 1267 BUG_ON(!pages[1]); 1268 1269 __zs_unmap_object(area, pages, off, class->size); 1270 } 1271 local_unlock(&zs_map_area.lock); 1272 1273 migrate_read_unlock(zspage); 1274 } 1275 EXPORT_SYMBOL_GPL(zs_unmap_object); 1276 1277 /** 1278 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1279 * zsmalloc &size_class. 1280 * @pool: zsmalloc pool to use 1281 * 1282 * The function returns the size of the first huge class - any object of equal 1283 * or bigger size will be stored in zspage consisting of a single physical 1284 * page. 1285 * 1286 * Context: Any context. 1287 * 1288 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1289 */ 1290 size_t zs_huge_class_size(struct zs_pool *pool) 1291 { 1292 return huge_class_size; 1293 } 1294 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1295 1296 static unsigned long obj_malloc(struct zs_pool *pool, 1297 struct zspage *zspage, unsigned long handle) 1298 { 1299 int i, nr_page, offset; 1300 unsigned long obj; 1301 struct link_free *link; 1302 struct size_class *class; 1303 1304 struct page *m_page; 1305 unsigned long m_offset; 1306 void *vaddr; 1307 1308 class = pool->size_class[zspage->class]; 1309 obj = get_freeobj(zspage); 1310 1311 offset = obj * class->size; 1312 nr_page = offset >> PAGE_SHIFT; 1313 m_offset = offset_in_page(offset); 1314 m_page = get_first_page(zspage); 1315 1316 for (i = 0; i < nr_page; i++) 1317 m_page = get_next_page(m_page); 1318 1319 vaddr = kmap_atomic(m_page); 1320 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1321 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1322 if (likely(!ZsHugePage(zspage))) 1323 /* record handle in the header of allocated chunk */ 1324 link->handle = handle | OBJ_ALLOCATED_TAG; 1325 else 1326 /* record handle to page->index */ 1327 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG; 1328 1329 kunmap_atomic(vaddr); 1330 mod_zspage_inuse(zspage, 1); 1331 1332 obj = location_to_obj(m_page, obj); 1333 record_obj(handle, obj); 1334 1335 return obj; 1336 } 1337 1338 1339 /** 1340 * zs_malloc - Allocate block of given size from pool. 1341 * @pool: pool to allocate from 1342 * @size: size of block to allocate 1343 * @gfp: gfp flags when allocating object 1344 * 1345 * On success, handle to the allocated object is returned, 1346 * otherwise an ERR_PTR(). 1347 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1348 */ 1349 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1350 { 1351 unsigned long handle; 1352 struct size_class *class; 1353 int newfg; 1354 struct zspage *zspage; 1355 1356 if (unlikely(!size)) 1357 return (unsigned long)ERR_PTR(-EINVAL); 1358 1359 if (unlikely(size > ZS_MAX_ALLOC_SIZE)) 1360 return (unsigned long)ERR_PTR(-ENOSPC); 1361 1362 handle = cache_alloc_handle(pool, gfp); 1363 if (!handle) 1364 return (unsigned long)ERR_PTR(-ENOMEM); 1365 1366 /* extra space in chunk to keep the handle */ 1367 size += ZS_HANDLE_SIZE; 1368 class = pool->size_class[get_size_class_index(size)]; 1369 1370 /* class->lock effectively protects the zpage migration */ 1371 spin_lock(&class->lock); 1372 zspage = find_get_zspage(class); 1373 if (likely(zspage)) { 1374 obj_malloc(pool, zspage, handle); 1375 /* Now move the zspage to another fullness group, if required */ 1376 fix_fullness_group(class, zspage); 1377 class_stat_add(class, ZS_OBJS_INUSE, 1); 1378 1379 goto out; 1380 } 1381 1382 spin_unlock(&class->lock); 1383 1384 zspage = alloc_zspage(pool, class, gfp); 1385 if (!zspage) { 1386 cache_free_handle(pool, handle); 1387 return (unsigned long)ERR_PTR(-ENOMEM); 1388 } 1389 1390 spin_lock(&class->lock); 1391 obj_malloc(pool, zspage, handle); 1392 newfg = get_fullness_group(class, zspage); 1393 insert_zspage(class, zspage, newfg); 1394 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1395 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1396 class_stat_add(class, ZS_OBJS_INUSE, 1); 1397 1398 /* We completely set up zspage so mark them as movable */ 1399 SetZsPageMovable(pool, zspage); 1400 out: 1401 spin_unlock(&class->lock); 1402 1403 return handle; 1404 } 1405 EXPORT_SYMBOL_GPL(zs_malloc); 1406 1407 static void obj_free(int class_size, unsigned long obj) 1408 { 1409 struct link_free *link; 1410 struct zspage *zspage; 1411 struct page *f_page; 1412 unsigned long f_offset; 1413 unsigned int f_objidx; 1414 void *vaddr; 1415 1416 obj_to_location(obj, &f_page, &f_objidx); 1417 f_offset = offset_in_page(class_size * f_objidx); 1418 zspage = get_zspage(f_page); 1419 1420 vaddr = kmap_atomic(f_page); 1421 link = (struct link_free *)(vaddr + f_offset); 1422 1423 /* Insert this object in containing zspage's freelist */ 1424 if (likely(!ZsHugePage(zspage))) 1425 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1426 else 1427 f_page->index = 0; 1428 set_freeobj(zspage, f_objidx); 1429 1430 kunmap_atomic(vaddr); 1431 mod_zspage_inuse(zspage, -1); 1432 } 1433 1434 void zs_free(struct zs_pool *pool, unsigned long handle) 1435 { 1436 struct zspage *zspage; 1437 struct page *f_page; 1438 unsigned long obj; 1439 struct size_class *class; 1440 int fullness; 1441 1442 if (IS_ERR_OR_NULL((void *)handle)) 1443 return; 1444 1445 /* 1446 * The pool->migrate_lock protects the race with zpage's migration 1447 * so it's safe to get the page from handle. 1448 */ 1449 read_lock(&pool->migrate_lock); 1450 obj = handle_to_obj(handle); 1451 obj_to_page(obj, &f_page); 1452 zspage = get_zspage(f_page); 1453 class = zspage_class(pool, zspage); 1454 spin_lock(&class->lock); 1455 read_unlock(&pool->migrate_lock); 1456 1457 class_stat_sub(class, ZS_OBJS_INUSE, 1); 1458 obj_free(class->size, obj); 1459 1460 fullness = fix_fullness_group(class, zspage); 1461 if (fullness == ZS_INUSE_RATIO_0) 1462 free_zspage(pool, class, zspage); 1463 1464 spin_unlock(&class->lock); 1465 cache_free_handle(pool, handle); 1466 } 1467 EXPORT_SYMBOL_GPL(zs_free); 1468 1469 static void zs_object_copy(struct size_class *class, unsigned long dst, 1470 unsigned long src) 1471 { 1472 struct page *s_page, *d_page; 1473 unsigned int s_objidx, d_objidx; 1474 unsigned long s_off, d_off; 1475 void *s_addr, *d_addr; 1476 int s_size, d_size, size; 1477 int written = 0; 1478 1479 s_size = d_size = class->size; 1480 1481 obj_to_location(src, &s_page, &s_objidx); 1482 obj_to_location(dst, &d_page, &d_objidx); 1483 1484 s_off = offset_in_page(class->size * s_objidx); 1485 d_off = offset_in_page(class->size * d_objidx); 1486 1487 if (s_off + class->size > PAGE_SIZE) 1488 s_size = PAGE_SIZE - s_off; 1489 1490 if (d_off + class->size > PAGE_SIZE) 1491 d_size = PAGE_SIZE - d_off; 1492 1493 s_addr = kmap_atomic(s_page); 1494 d_addr = kmap_atomic(d_page); 1495 1496 while (1) { 1497 size = min(s_size, d_size); 1498 memcpy(d_addr + d_off, s_addr + s_off, size); 1499 written += size; 1500 1501 if (written == class->size) 1502 break; 1503 1504 s_off += size; 1505 s_size -= size; 1506 d_off += size; 1507 d_size -= size; 1508 1509 /* 1510 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1511 * calls must occurs in reverse order of calls to kmap_atomic(). 1512 * So, to call kunmap_atomic(s_addr) we should first call 1513 * kunmap_atomic(d_addr). For more details see 1514 * Documentation/mm/highmem.rst. 1515 */ 1516 if (s_off >= PAGE_SIZE) { 1517 kunmap_atomic(d_addr); 1518 kunmap_atomic(s_addr); 1519 s_page = get_next_page(s_page); 1520 s_addr = kmap_atomic(s_page); 1521 d_addr = kmap_atomic(d_page); 1522 s_size = class->size - written; 1523 s_off = 0; 1524 } 1525 1526 if (d_off >= PAGE_SIZE) { 1527 kunmap_atomic(d_addr); 1528 d_page = get_next_page(d_page); 1529 d_addr = kmap_atomic(d_page); 1530 d_size = class->size - written; 1531 d_off = 0; 1532 } 1533 } 1534 1535 kunmap_atomic(d_addr); 1536 kunmap_atomic(s_addr); 1537 } 1538 1539 /* 1540 * Find alloced object in zspage from index object and 1541 * return handle. 1542 */ 1543 static unsigned long find_alloced_obj(struct size_class *class, 1544 struct page *page, int *obj_idx) 1545 { 1546 unsigned int offset; 1547 int index = *obj_idx; 1548 unsigned long handle = 0; 1549 void *addr = kmap_atomic(page); 1550 1551 offset = get_first_obj_offset(page); 1552 offset += class->size * index; 1553 1554 while (offset < PAGE_SIZE) { 1555 if (obj_allocated(page, addr + offset, &handle)) 1556 break; 1557 1558 offset += class->size; 1559 index++; 1560 } 1561 1562 kunmap_atomic(addr); 1563 1564 *obj_idx = index; 1565 1566 return handle; 1567 } 1568 1569 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, 1570 struct zspage *dst_zspage) 1571 { 1572 unsigned long used_obj, free_obj; 1573 unsigned long handle; 1574 int obj_idx = 0; 1575 struct page *s_page = get_first_page(src_zspage); 1576 struct size_class *class = pool->size_class[src_zspage->class]; 1577 1578 while (1) { 1579 handle = find_alloced_obj(class, s_page, &obj_idx); 1580 if (!handle) { 1581 s_page = get_next_page(s_page); 1582 if (!s_page) 1583 break; 1584 obj_idx = 0; 1585 continue; 1586 } 1587 1588 used_obj = handle_to_obj(handle); 1589 free_obj = obj_malloc(pool, dst_zspage, handle); 1590 zs_object_copy(class, free_obj, used_obj); 1591 obj_idx++; 1592 obj_free(class->size, used_obj); 1593 1594 /* Stop if there is no more space */ 1595 if (zspage_full(class, dst_zspage)) 1596 break; 1597 1598 /* Stop if there are no more objects to migrate */ 1599 if (zspage_empty(src_zspage)) 1600 break; 1601 } 1602 } 1603 1604 static struct zspage *isolate_src_zspage(struct size_class *class) 1605 { 1606 struct zspage *zspage; 1607 int fg; 1608 1609 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1610 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1611 struct zspage, list); 1612 if (zspage) { 1613 remove_zspage(class, zspage); 1614 return zspage; 1615 } 1616 } 1617 1618 return zspage; 1619 } 1620 1621 static struct zspage *isolate_dst_zspage(struct size_class *class) 1622 { 1623 struct zspage *zspage; 1624 int fg; 1625 1626 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1627 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1628 struct zspage, list); 1629 if (zspage) { 1630 remove_zspage(class, zspage); 1631 return zspage; 1632 } 1633 } 1634 1635 return zspage; 1636 } 1637 1638 /* 1639 * putback_zspage - add @zspage into right class's fullness list 1640 * @class: destination class 1641 * @zspage: target page 1642 * 1643 * Return @zspage's fullness status 1644 */ 1645 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1646 { 1647 int fullness; 1648 1649 fullness = get_fullness_group(class, zspage); 1650 insert_zspage(class, zspage, fullness); 1651 1652 return fullness; 1653 } 1654 1655 #ifdef CONFIG_COMPACTION 1656 /* 1657 * To prevent zspage destroy during migration, zspage freeing should 1658 * hold locks of all pages in the zspage. 1659 */ 1660 static void lock_zspage(struct zspage *zspage) 1661 { 1662 struct page *curr_page, *page; 1663 1664 /* 1665 * Pages we haven't locked yet can be migrated off the list while we're 1666 * trying to lock them, so we need to be careful and only attempt to 1667 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1668 * may no longer belong to the zspage. This means that we may wait for 1669 * the wrong page to unlock, so we must take a reference to the page 1670 * prior to waiting for it to unlock outside migrate_read_lock(). 1671 */ 1672 while (1) { 1673 migrate_read_lock(zspage); 1674 page = get_first_page(zspage); 1675 if (trylock_page(page)) 1676 break; 1677 get_page(page); 1678 migrate_read_unlock(zspage); 1679 wait_on_page_locked(page); 1680 put_page(page); 1681 } 1682 1683 curr_page = page; 1684 while ((page = get_next_page(curr_page))) { 1685 if (trylock_page(page)) { 1686 curr_page = page; 1687 } else { 1688 get_page(page); 1689 migrate_read_unlock(zspage); 1690 wait_on_page_locked(page); 1691 put_page(page); 1692 migrate_read_lock(zspage); 1693 } 1694 } 1695 migrate_read_unlock(zspage); 1696 } 1697 #endif /* CONFIG_COMPACTION */ 1698 1699 static void migrate_lock_init(struct zspage *zspage) 1700 { 1701 rwlock_init(&zspage->lock); 1702 } 1703 1704 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1705 { 1706 read_lock(&zspage->lock); 1707 } 1708 1709 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1710 { 1711 read_unlock(&zspage->lock); 1712 } 1713 1714 static void migrate_write_lock(struct zspage *zspage) 1715 { 1716 write_lock(&zspage->lock); 1717 } 1718 1719 static void migrate_write_unlock(struct zspage *zspage) 1720 { 1721 write_unlock(&zspage->lock); 1722 } 1723 1724 #ifdef CONFIG_COMPACTION 1725 1726 static const struct movable_operations zsmalloc_mops; 1727 1728 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1729 struct page *newpage, struct page *oldpage) 1730 { 1731 struct page *page; 1732 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1733 int idx = 0; 1734 1735 page = get_first_page(zspage); 1736 do { 1737 if (page == oldpage) 1738 pages[idx] = newpage; 1739 else 1740 pages[idx] = page; 1741 idx++; 1742 } while ((page = get_next_page(page)) != NULL); 1743 1744 create_page_chain(class, zspage, pages); 1745 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1746 if (unlikely(ZsHugePage(zspage))) 1747 newpage->index = oldpage->index; 1748 __SetPageMovable(newpage, &zsmalloc_mops); 1749 } 1750 1751 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1752 { 1753 /* 1754 * Page is locked so zspage couldn't be destroyed. For detail, look at 1755 * lock_zspage in free_zspage. 1756 */ 1757 VM_BUG_ON_PAGE(PageIsolated(page), page); 1758 1759 return true; 1760 } 1761 1762 static int zs_page_migrate(struct page *newpage, struct page *page, 1763 enum migrate_mode mode) 1764 { 1765 struct zs_pool *pool; 1766 struct size_class *class; 1767 struct zspage *zspage; 1768 struct page *dummy; 1769 void *s_addr, *d_addr, *addr; 1770 unsigned int offset; 1771 unsigned long handle; 1772 unsigned long old_obj, new_obj; 1773 unsigned int obj_idx; 1774 1775 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1776 1777 /* We're committed, tell the world that this is a Zsmalloc page. */ 1778 __SetPageZsmalloc(newpage); 1779 1780 /* The page is locked, so this pointer must remain valid */ 1781 zspage = get_zspage(page); 1782 pool = zspage->pool; 1783 1784 /* 1785 * The pool migrate_lock protects the race between zpage migration 1786 * and zs_free. 1787 */ 1788 write_lock(&pool->migrate_lock); 1789 class = zspage_class(pool, zspage); 1790 1791 /* 1792 * the class lock protects zpage alloc/free in the zspage. 1793 */ 1794 spin_lock(&class->lock); 1795 /* the migrate_write_lock protects zpage access via zs_map_object */ 1796 migrate_write_lock(zspage); 1797 1798 offset = get_first_obj_offset(page); 1799 s_addr = kmap_atomic(page); 1800 1801 /* 1802 * Here, any user cannot access all objects in the zspage so let's move. 1803 */ 1804 d_addr = kmap_atomic(newpage); 1805 copy_page(d_addr, s_addr); 1806 kunmap_atomic(d_addr); 1807 1808 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1809 addr += class->size) { 1810 if (obj_allocated(page, addr, &handle)) { 1811 1812 old_obj = handle_to_obj(handle); 1813 obj_to_location(old_obj, &dummy, &obj_idx); 1814 new_obj = (unsigned long)location_to_obj(newpage, 1815 obj_idx); 1816 record_obj(handle, new_obj); 1817 } 1818 } 1819 kunmap_atomic(s_addr); 1820 1821 replace_sub_page(class, zspage, newpage, page); 1822 /* 1823 * Since we complete the data copy and set up new zspage structure, 1824 * it's okay to release migration_lock. 1825 */ 1826 write_unlock(&pool->migrate_lock); 1827 spin_unlock(&class->lock); 1828 migrate_write_unlock(zspage); 1829 1830 get_page(newpage); 1831 if (page_zone(newpage) != page_zone(page)) { 1832 dec_zone_page_state(page, NR_ZSPAGES); 1833 inc_zone_page_state(newpage, NR_ZSPAGES); 1834 } 1835 1836 reset_page(page); 1837 put_page(page); 1838 1839 return MIGRATEPAGE_SUCCESS; 1840 } 1841 1842 static void zs_page_putback(struct page *page) 1843 { 1844 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1845 } 1846 1847 static const struct movable_operations zsmalloc_mops = { 1848 .isolate_page = zs_page_isolate, 1849 .migrate_page = zs_page_migrate, 1850 .putback_page = zs_page_putback, 1851 }; 1852 1853 /* 1854 * Caller should hold page_lock of all pages in the zspage 1855 * In here, we cannot use zspage meta data. 1856 */ 1857 static void async_free_zspage(struct work_struct *work) 1858 { 1859 int i; 1860 struct size_class *class; 1861 struct zspage *zspage, *tmp; 1862 LIST_HEAD(free_pages); 1863 struct zs_pool *pool = container_of(work, struct zs_pool, 1864 free_work); 1865 1866 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1867 class = pool->size_class[i]; 1868 if (class->index != i) 1869 continue; 1870 1871 spin_lock(&class->lock); 1872 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 1873 &free_pages); 1874 spin_unlock(&class->lock); 1875 } 1876 1877 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1878 list_del(&zspage->list); 1879 lock_zspage(zspage); 1880 1881 class = zspage_class(pool, zspage); 1882 spin_lock(&class->lock); 1883 class_stat_sub(class, ZS_INUSE_RATIO_0, 1); 1884 __free_zspage(pool, class, zspage); 1885 spin_unlock(&class->lock); 1886 } 1887 }; 1888 1889 static void kick_deferred_free(struct zs_pool *pool) 1890 { 1891 schedule_work(&pool->free_work); 1892 } 1893 1894 static void zs_flush_migration(struct zs_pool *pool) 1895 { 1896 flush_work(&pool->free_work); 1897 } 1898 1899 static void init_deferred_free(struct zs_pool *pool) 1900 { 1901 INIT_WORK(&pool->free_work, async_free_zspage); 1902 } 1903 1904 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1905 { 1906 struct page *page = get_first_page(zspage); 1907 1908 do { 1909 WARN_ON(!trylock_page(page)); 1910 __SetPageMovable(page, &zsmalloc_mops); 1911 unlock_page(page); 1912 } while ((page = get_next_page(page)) != NULL); 1913 } 1914 #else 1915 static inline void zs_flush_migration(struct zs_pool *pool) { } 1916 #endif 1917 1918 /* 1919 * 1920 * Based on the number of unused allocated objects calculate 1921 * and return the number of pages that we can free. 1922 */ 1923 static unsigned long zs_can_compact(struct size_class *class) 1924 { 1925 unsigned long obj_wasted; 1926 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 1927 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE); 1928 1929 if (obj_allocated <= obj_used) 1930 return 0; 1931 1932 obj_wasted = obj_allocated - obj_used; 1933 obj_wasted /= class->objs_per_zspage; 1934 1935 return obj_wasted * class->pages_per_zspage; 1936 } 1937 1938 static unsigned long __zs_compact(struct zs_pool *pool, 1939 struct size_class *class) 1940 { 1941 struct zspage *src_zspage = NULL; 1942 struct zspage *dst_zspage = NULL; 1943 unsigned long pages_freed = 0; 1944 1945 /* 1946 * protect the race between zpage migration and zs_free 1947 * as well as zpage allocation/free 1948 */ 1949 write_lock(&pool->migrate_lock); 1950 spin_lock(&class->lock); 1951 while (zs_can_compact(class)) { 1952 int fg; 1953 1954 if (!dst_zspage) { 1955 dst_zspage = isolate_dst_zspage(class); 1956 if (!dst_zspage) 1957 break; 1958 } 1959 1960 src_zspage = isolate_src_zspage(class); 1961 if (!src_zspage) 1962 break; 1963 1964 migrate_write_lock(src_zspage); 1965 migrate_zspage(pool, src_zspage, dst_zspage); 1966 migrate_write_unlock(src_zspage); 1967 1968 fg = putback_zspage(class, src_zspage); 1969 if (fg == ZS_INUSE_RATIO_0) { 1970 free_zspage(pool, class, src_zspage); 1971 pages_freed += class->pages_per_zspage; 1972 } 1973 src_zspage = NULL; 1974 1975 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 1976 || rwlock_is_contended(&pool->migrate_lock)) { 1977 putback_zspage(class, dst_zspage); 1978 dst_zspage = NULL; 1979 1980 spin_unlock(&class->lock); 1981 write_unlock(&pool->migrate_lock); 1982 cond_resched(); 1983 write_lock(&pool->migrate_lock); 1984 spin_lock(&class->lock); 1985 } 1986 } 1987 1988 if (src_zspage) 1989 putback_zspage(class, src_zspage); 1990 1991 if (dst_zspage) 1992 putback_zspage(class, dst_zspage); 1993 1994 spin_unlock(&class->lock); 1995 write_unlock(&pool->migrate_lock); 1996 1997 return pages_freed; 1998 } 1999 2000 unsigned long zs_compact(struct zs_pool *pool) 2001 { 2002 int i; 2003 struct size_class *class; 2004 unsigned long pages_freed = 0; 2005 2006 /* 2007 * Pool compaction is performed under pool->migrate_lock so it is basically 2008 * single-threaded. Having more than one thread in __zs_compact() 2009 * will increase pool->migrate_lock contention, which will impact other 2010 * zsmalloc operations that need pool->migrate_lock. 2011 */ 2012 if (atomic_xchg(&pool->compaction_in_progress, 1)) 2013 return 0; 2014 2015 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2016 class = pool->size_class[i]; 2017 if (class->index != i) 2018 continue; 2019 pages_freed += __zs_compact(pool, class); 2020 } 2021 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2022 atomic_set(&pool->compaction_in_progress, 0); 2023 2024 return pages_freed; 2025 } 2026 EXPORT_SYMBOL_GPL(zs_compact); 2027 2028 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2029 { 2030 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2031 } 2032 EXPORT_SYMBOL_GPL(zs_pool_stats); 2033 2034 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2035 struct shrink_control *sc) 2036 { 2037 unsigned long pages_freed; 2038 struct zs_pool *pool = shrinker->private_data; 2039 2040 /* 2041 * Compact classes and calculate compaction delta. 2042 * Can run concurrently with a manually triggered 2043 * (by user) compaction. 2044 */ 2045 pages_freed = zs_compact(pool); 2046 2047 return pages_freed ? pages_freed : SHRINK_STOP; 2048 } 2049 2050 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2051 struct shrink_control *sc) 2052 { 2053 int i; 2054 struct size_class *class; 2055 unsigned long pages_to_free = 0; 2056 struct zs_pool *pool = shrinker->private_data; 2057 2058 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2059 class = pool->size_class[i]; 2060 if (class->index != i) 2061 continue; 2062 2063 pages_to_free += zs_can_compact(class); 2064 } 2065 2066 return pages_to_free; 2067 } 2068 2069 static void zs_unregister_shrinker(struct zs_pool *pool) 2070 { 2071 shrinker_free(pool->shrinker); 2072 } 2073 2074 static int zs_register_shrinker(struct zs_pool *pool) 2075 { 2076 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); 2077 if (!pool->shrinker) 2078 return -ENOMEM; 2079 2080 pool->shrinker->scan_objects = zs_shrinker_scan; 2081 pool->shrinker->count_objects = zs_shrinker_count; 2082 pool->shrinker->batch = 0; 2083 pool->shrinker->private_data = pool; 2084 2085 shrinker_register(pool->shrinker); 2086 2087 return 0; 2088 } 2089 2090 static int calculate_zspage_chain_size(int class_size) 2091 { 2092 int i, min_waste = INT_MAX; 2093 int chain_size = 1; 2094 2095 if (is_power_of_2(class_size)) 2096 return chain_size; 2097 2098 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2099 int waste; 2100 2101 waste = (i * PAGE_SIZE) % class_size; 2102 if (waste < min_waste) { 2103 min_waste = waste; 2104 chain_size = i; 2105 } 2106 } 2107 2108 return chain_size; 2109 } 2110 2111 /** 2112 * zs_create_pool - Creates an allocation pool to work from. 2113 * @name: pool name to be created 2114 * 2115 * This function must be called before anything when using 2116 * the zsmalloc allocator. 2117 * 2118 * On success, a pointer to the newly created pool is returned, 2119 * otherwise NULL. 2120 */ 2121 struct zs_pool *zs_create_pool(const char *name) 2122 { 2123 int i; 2124 struct zs_pool *pool; 2125 struct size_class *prev_class = NULL; 2126 2127 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2128 if (!pool) 2129 return NULL; 2130 2131 init_deferred_free(pool); 2132 rwlock_init(&pool->migrate_lock); 2133 atomic_set(&pool->compaction_in_progress, 0); 2134 2135 pool->name = kstrdup(name, GFP_KERNEL); 2136 if (!pool->name) 2137 goto err; 2138 2139 if (create_cache(pool)) 2140 goto err; 2141 2142 /* 2143 * Iterate reversely, because, size of size_class that we want to use 2144 * for merging should be larger or equal to current size. 2145 */ 2146 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2147 int size; 2148 int pages_per_zspage; 2149 int objs_per_zspage; 2150 struct size_class *class; 2151 int fullness; 2152 2153 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2154 if (size > ZS_MAX_ALLOC_SIZE) 2155 size = ZS_MAX_ALLOC_SIZE; 2156 pages_per_zspage = calculate_zspage_chain_size(size); 2157 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2158 2159 /* 2160 * We iterate from biggest down to smallest classes, 2161 * so huge_class_size holds the size of the first huge 2162 * class. Any object bigger than or equal to that will 2163 * endup in the huge class. 2164 */ 2165 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2166 !huge_class_size) { 2167 huge_class_size = size; 2168 /* 2169 * The object uses ZS_HANDLE_SIZE bytes to store the 2170 * handle. We need to subtract it, because zs_malloc() 2171 * unconditionally adds handle size before it performs 2172 * size class search - so object may be smaller than 2173 * huge class size, yet it still can end up in the huge 2174 * class because it grows by ZS_HANDLE_SIZE extra bytes 2175 * right before class lookup. 2176 */ 2177 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2178 } 2179 2180 /* 2181 * size_class is used for normal zsmalloc operation such 2182 * as alloc/free for that size. Although it is natural that we 2183 * have one size_class for each size, there is a chance that we 2184 * can get more memory utilization if we use one size_class for 2185 * many different sizes whose size_class have same 2186 * characteristics. So, we makes size_class point to 2187 * previous size_class if possible. 2188 */ 2189 if (prev_class) { 2190 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2191 pool->size_class[i] = prev_class; 2192 continue; 2193 } 2194 } 2195 2196 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2197 if (!class) 2198 goto err; 2199 2200 class->size = size; 2201 class->index = i; 2202 class->pages_per_zspage = pages_per_zspage; 2203 class->objs_per_zspage = objs_per_zspage; 2204 spin_lock_init(&class->lock); 2205 pool->size_class[i] = class; 2206 2207 fullness = ZS_INUSE_RATIO_0; 2208 while (fullness < NR_FULLNESS_GROUPS) { 2209 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2210 fullness++; 2211 } 2212 2213 prev_class = class; 2214 } 2215 2216 /* debug only, don't abort if it fails */ 2217 zs_pool_stat_create(pool, name); 2218 2219 /* 2220 * Not critical since shrinker is only used to trigger internal 2221 * defragmentation of the pool which is pretty optional thing. If 2222 * registration fails we still can use the pool normally and user can 2223 * trigger compaction manually. Thus, ignore return code. 2224 */ 2225 zs_register_shrinker(pool); 2226 2227 return pool; 2228 2229 err: 2230 zs_destroy_pool(pool); 2231 return NULL; 2232 } 2233 EXPORT_SYMBOL_GPL(zs_create_pool); 2234 2235 void zs_destroy_pool(struct zs_pool *pool) 2236 { 2237 int i; 2238 2239 zs_unregister_shrinker(pool); 2240 zs_flush_migration(pool); 2241 zs_pool_stat_destroy(pool); 2242 2243 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2244 int fg; 2245 struct size_class *class = pool->size_class[i]; 2246 2247 if (!class) 2248 continue; 2249 2250 if (class->index != i) 2251 continue; 2252 2253 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2254 if (list_empty(&class->fullness_list[fg])) 2255 continue; 2256 2257 pr_err("Class-%d fullness group %d is not empty\n", 2258 class->size, fg); 2259 } 2260 kfree(class); 2261 } 2262 2263 destroy_cache(pool); 2264 kfree(pool->name); 2265 kfree(pool); 2266 } 2267 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2268 2269 static int __init zs_init(void) 2270 { 2271 int ret; 2272 2273 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2274 zs_cpu_prepare, zs_cpu_dead); 2275 if (ret) 2276 goto out; 2277 2278 #ifdef CONFIG_ZPOOL 2279 zpool_register_driver(&zs_zpool_driver); 2280 #endif 2281 2282 zs_stat_init(); 2283 2284 return 0; 2285 2286 out: 2287 return ret; 2288 } 2289 2290 static void __exit zs_exit(void) 2291 { 2292 #ifdef CONFIG_ZPOOL 2293 zpool_unregister_driver(&zs_zpool_driver); 2294 #endif 2295 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2296 2297 zs_stat_exit(); 2298 } 2299 2300 module_init(zs_init); 2301 module_exit(zs_exit); 2302 2303 MODULE_LICENSE("Dual BSD/GPL"); 2304 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2305 MODULE_DESCRIPTION("zsmalloc memory allocator"); 2306