xref: /linux/mm/zsmalloc.c (revision 8b6aaf65d3b001ec9b5dcba0992b3b68cbf6057f)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * This allocator is designed for use with zram. Thus, the allocator is
16  * supposed to work well under low memory conditions. In particular, it
17  * never attempts higher order page allocation which is very likely to
18  * fail under memory pressure. On the other hand, if we just use single
19  * (0-order) pages, it would suffer from very high fragmentation --
20  * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21  * This was one of the major issues with its predecessor (xvmalloc).
22  *
23  * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24  * and links them together using various 'struct page' fields. These linked
25  * pages act as a single higher-order page i.e. an object can span 0-order
26  * page boundaries. The code refers to these linked pages as a single entity
27  * called zspage.
28  *
29  * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30  * since this satisfies the requirements of all its current users (in the
31  * worst case, page is incompressible and is thus stored "as-is" i.e. in
32  * uncompressed form). For allocation requests larger than this size, failure
33  * is returned (see zs_malloc).
34  *
35  * Additionally, zs_malloc() does not return a dereferenceable pointer.
36  * Instead, it returns an opaque handle (unsigned long) which encodes actual
37  * location of the allocated object. The reason for this indirection is that
38  * zsmalloc does not keep zspages permanently mapped since that would cause
39  * issues on 32-bit systems where the VA region for kernel space mappings
40  * is very small. So, before using the allocating memory, the object has to
41  * be mapped using zs_map_object() to get a usable pointer and subsequently
42  * unmapped using zs_unmap_object().
43  *
44  * Following is how we use various fields and flags of underlying
45  * struct page(s) to form a zspage.
46  *
47  * Usage of struct page fields:
48  *	page->first_page: points to the first component (0-order) page
49  *	page->index (union with page->freelist): offset of the first object
50  *		starting in this page. For the first page, this is
51  *		always 0, so we use this field (aka freelist) to point
52  *		to the first free object in zspage.
53  *	page->lru: links together all component pages (except the first page)
54  *		of a zspage
55  *
56  *	For _first_ page only:
57  *
58  *	page->private (union with page->first_page): refers to the
59  *		component page after the first page
60  *	page->freelist: points to the first free object in zspage.
61  *		Free objects are linked together using in-place
62  *		metadata.
63  *	page->objects: maximum number of objects we can store in this
64  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
65  *	page->lru: links together first pages of various zspages.
66  *		Basically forming list of zspages in a fullness group.
67  *	page->mapping: class index and fullness group of the zspage
68  *
69  * Usage of struct page flags:
70  *	PG_private: identifies the first component page
71  *	PG_private2: identifies the last component page
72  *
73  */
74 
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78 
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
96 
97 /*
98  * This must be power of 2 and greater than of equal to sizeof(link_free).
99  * These two conditions ensure that any 'struct link_free' itself doesn't
100  * span more than 1 page which avoids complex case of mapping 2 pages simply
101  * to restore link_free pointer values.
102  */
103 #define ZS_ALIGN		8
104 
105 /*
106  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
108  */
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
111 
112 /*
113  * Object location (<PFN>, <obj_idx>) is encoded as
114  * as single (unsigned long) handle value.
115  *
116  * Note that object index <obj_idx> is relative to system
117  * page <PFN> it is stored in, so for each sub-page belonging
118  * to a zspage, obj_idx starts with 0.
119  *
120  * This is made more complicated by various memory models and PAE.
121  */
122 
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
127 /*
128  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129  * be PAGE_SHIFT
130  */
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137 
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
143 
144 /*
145  * On systems with 4K page size, this gives 255 size classes! There is a
146  * trader-off here:
147  *  - Large number of size classes is potentially wasteful as free page are
148  *    spread across these classes
149  *  - Small number of size classes causes large internal fragmentation
150  *  - Probably its better to use specific size classes (empirically
151  *    determined). NOTE: all those class sizes must be set as multiple of
152  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
153  *
154  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155  *  (reason above)
156  */
157 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
158 #define ZS_SIZE_CLASSES		((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 					ZS_SIZE_CLASS_DELTA + 1)
160 
161 /*
162  * We do not maintain any list for completely empty or full pages
163  */
164 enum fullness_group {
165 	ZS_ALMOST_FULL,
166 	ZS_ALMOST_EMPTY,
167 	_ZS_NR_FULLNESS_GROUPS,
168 
169 	ZS_EMPTY,
170 	ZS_FULL
171 };
172 
173 /*
174  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175  *	n <= N / f, where
176  * n = number of allocated objects
177  * N = total number of objects zspage can store
178  * f = 1/fullness_threshold_frac
179  *
180  * Similarly, we assign zspage to:
181  *	ZS_ALMOST_FULL	when n > N / f
182  *	ZS_EMPTY	when n == 0
183  *	ZS_FULL		when n == N
184  *
185  * (see: fix_fullness_group())
186  */
187 static const int fullness_threshold_frac = 4;
188 
189 struct size_class {
190 	/*
191 	 * Size of objects stored in this class. Must be multiple
192 	 * of ZS_ALIGN.
193 	 */
194 	int size;
195 	unsigned int index;
196 
197 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
198 	int pages_per_zspage;
199 
200 	spinlock_t lock;
201 
202 	/* stats */
203 	u64 pages_allocated;
204 
205 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
206 };
207 
208 /*
209  * Placed within free objects to form a singly linked list.
210  * For every zspage, first_page->freelist gives head of this list.
211  *
212  * This must be power of 2 and less than or equal to ZS_ALIGN
213  */
214 struct link_free {
215 	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
216 	void *next;
217 };
218 
219 struct zs_pool {
220 	struct size_class size_class[ZS_SIZE_CLASSES];
221 
222 	gfp_t flags;	/* allocation flags used when growing pool */
223 };
224 
225 /*
226  * A zspage's class index and fullness group
227  * are encoded in its (first)page->mapping
228  */
229 #define CLASS_IDX_BITS	28
230 #define FULLNESS_BITS	4
231 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
232 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
233 
234 struct mapping_area {
235 #ifdef CONFIG_PGTABLE_MAPPING
236 	struct vm_struct *vm; /* vm area for mapping object that span pages */
237 #else
238 	char *vm_buf; /* copy buffer for objects that span pages */
239 #endif
240 	char *vm_addr; /* address of kmap_atomic()'ed pages */
241 	enum zs_mapmode vm_mm; /* mapping mode */
242 };
243 
244 /* zpool driver */
245 
246 #ifdef CONFIG_ZPOOL
247 
248 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
249 {
250 	return zs_create_pool(gfp);
251 }
252 
253 static void zs_zpool_destroy(void *pool)
254 {
255 	zs_destroy_pool(pool);
256 }
257 
258 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
259 			unsigned long *handle)
260 {
261 	*handle = zs_malloc(pool, size);
262 	return *handle ? 0 : -1;
263 }
264 static void zs_zpool_free(void *pool, unsigned long handle)
265 {
266 	zs_free(pool, handle);
267 }
268 
269 static int zs_zpool_shrink(void *pool, unsigned int pages,
270 			unsigned int *reclaimed)
271 {
272 	return -EINVAL;
273 }
274 
275 static void *zs_zpool_map(void *pool, unsigned long handle,
276 			enum zpool_mapmode mm)
277 {
278 	enum zs_mapmode zs_mm;
279 
280 	switch (mm) {
281 	case ZPOOL_MM_RO:
282 		zs_mm = ZS_MM_RO;
283 		break;
284 	case ZPOOL_MM_WO:
285 		zs_mm = ZS_MM_WO;
286 		break;
287 	case ZPOOL_MM_RW: /* fallthru */
288 	default:
289 		zs_mm = ZS_MM_RW;
290 		break;
291 	}
292 
293 	return zs_map_object(pool, handle, zs_mm);
294 }
295 static void zs_zpool_unmap(void *pool, unsigned long handle)
296 {
297 	zs_unmap_object(pool, handle);
298 }
299 
300 static u64 zs_zpool_total_size(void *pool)
301 {
302 	return zs_get_total_size_bytes(pool);
303 }
304 
305 static struct zpool_driver zs_zpool_driver = {
306 	.type =		"zsmalloc",
307 	.owner =	THIS_MODULE,
308 	.create =	zs_zpool_create,
309 	.destroy =	zs_zpool_destroy,
310 	.malloc =	zs_zpool_malloc,
311 	.free =		zs_zpool_free,
312 	.shrink =	zs_zpool_shrink,
313 	.map =		zs_zpool_map,
314 	.unmap =	zs_zpool_unmap,
315 	.total_size =	zs_zpool_total_size,
316 };
317 
318 #endif /* CONFIG_ZPOOL */
319 
320 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
321 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
322 
323 static int is_first_page(struct page *page)
324 {
325 	return PagePrivate(page);
326 }
327 
328 static int is_last_page(struct page *page)
329 {
330 	return PagePrivate2(page);
331 }
332 
333 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
334 				enum fullness_group *fullness)
335 {
336 	unsigned long m;
337 	BUG_ON(!is_first_page(page));
338 
339 	m = (unsigned long)page->mapping;
340 	*fullness = m & FULLNESS_MASK;
341 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
342 }
343 
344 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
345 				enum fullness_group fullness)
346 {
347 	unsigned long m;
348 	BUG_ON(!is_first_page(page));
349 
350 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
351 			(fullness & FULLNESS_MASK);
352 	page->mapping = (struct address_space *)m;
353 }
354 
355 /*
356  * zsmalloc divides the pool into various size classes where each
357  * class maintains a list of zspages where each zspage is divided
358  * into equal sized chunks. Each allocation falls into one of these
359  * classes depending on its size. This function returns index of the
360  * size class which has chunk size big enough to hold the give size.
361  */
362 static int get_size_class_index(int size)
363 {
364 	int idx = 0;
365 
366 	if (likely(size > ZS_MIN_ALLOC_SIZE))
367 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
368 				ZS_SIZE_CLASS_DELTA);
369 
370 	return idx;
371 }
372 
373 /*
374  * For each size class, zspages are divided into different groups
375  * depending on how "full" they are. This was done so that we could
376  * easily find empty or nearly empty zspages when we try to shrink
377  * the pool (not yet implemented). This function returns fullness
378  * status of the given page.
379  */
380 static enum fullness_group get_fullness_group(struct page *page)
381 {
382 	int inuse, max_objects;
383 	enum fullness_group fg;
384 	BUG_ON(!is_first_page(page));
385 
386 	inuse = page->inuse;
387 	max_objects = page->objects;
388 
389 	if (inuse == 0)
390 		fg = ZS_EMPTY;
391 	else if (inuse == max_objects)
392 		fg = ZS_FULL;
393 	else if (inuse <= max_objects / fullness_threshold_frac)
394 		fg = ZS_ALMOST_EMPTY;
395 	else
396 		fg = ZS_ALMOST_FULL;
397 
398 	return fg;
399 }
400 
401 /*
402  * Each size class maintains various freelists and zspages are assigned
403  * to one of these freelists based on the number of live objects they
404  * have. This functions inserts the given zspage into the freelist
405  * identified by <class, fullness_group>.
406  */
407 static void insert_zspage(struct page *page, struct size_class *class,
408 				enum fullness_group fullness)
409 {
410 	struct page **head;
411 
412 	BUG_ON(!is_first_page(page));
413 
414 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
415 		return;
416 
417 	head = &class->fullness_list[fullness];
418 	if (*head)
419 		list_add_tail(&page->lru, &(*head)->lru);
420 
421 	*head = page;
422 }
423 
424 /*
425  * This function removes the given zspage from the freelist identified
426  * by <class, fullness_group>.
427  */
428 static void remove_zspage(struct page *page, struct size_class *class,
429 				enum fullness_group fullness)
430 {
431 	struct page **head;
432 
433 	BUG_ON(!is_first_page(page));
434 
435 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
436 		return;
437 
438 	head = &class->fullness_list[fullness];
439 	BUG_ON(!*head);
440 	if (list_empty(&(*head)->lru))
441 		*head = NULL;
442 	else if (*head == page)
443 		*head = (struct page *)list_entry((*head)->lru.next,
444 					struct page, lru);
445 
446 	list_del_init(&page->lru);
447 }
448 
449 /*
450  * Each size class maintains zspages in different fullness groups depending
451  * on the number of live objects they contain. When allocating or freeing
452  * objects, the fullness status of the page can change, say, from ALMOST_FULL
453  * to ALMOST_EMPTY when freeing an object. This function checks if such
454  * a status change has occurred for the given page and accordingly moves the
455  * page from the freelist of the old fullness group to that of the new
456  * fullness group.
457  */
458 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
459 						struct page *page)
460 {
461 	int class_idx;
462 	struct size_class *class;
463 	enum fullness_group currfg, newfg;
464 
465 	BUG_ON(!is_first_page(page));
466 
467 	get_zspage_mapping(page, &class_idx, &currfg);
468 	newfg = get_fullness_group(page);
469 	if (newfg == currfg)
470 		goto out;
471 
472 	class = &pool->size_class[class_idx];
473 	remove_zspage(page, class, currfg);
474 	insert_zspage(page, class, newfg);
475 	set_zspage_mapping(page, class_idx, newfg);
476 
477 out:
478 	return newfg;
479 }
480 
481 /*
482  * We have to decide on how many pages to link together
483  * to form a zspage for each size class. This is important
484  * to reduce wastage due to unusable space left at end of
485  * each zspage which is given as:
486  *	wastage = Zp - Zp % size_class
487  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
488  *
489  * For example, for size class of 3/8 * PAGE_SIZE, we should
490  * link together 3 PAGE_SIZE sized pages to form a zspage
491  * since then we can perfectly fit in 8 such objects.
492  */
493 static int get_pages_per_zspage(int class_size)
494 {
495 	int i, max_usedpc = 0;
496 	/* zspage order which gives maximum used size per KB */
497 	int max_usedpc_order = 1;
498 
499 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
500 		int zspage_size;
501 		int waste, usedpc;
502 
503 		zspage_size = i * PAGE_SIZE;
504 		waste = zspage_size % class_size;
505 		usedpc = (zspage_size - waste) * 100 / zspage_size;
506 
507 		if (usedpc > max_usedpc) {
508 			max_usedpc = usedpc;
509 			max_usedpc_order = i;
510 		}
511 	}
512 
513 	return max_usedpc_order;
514 }
515 
516 /*
517  * A single 'zspage' is composed of many system pages which are
518  * linked together using fields in struct page. This function finds
519  * the first/head page, given any component page of a zspage.
520  */
521 static struct page *get_first_page(struct page *page)
522 {
523 	if (is_first_page(page))
524 		return page;
525 	else
526 		return page->first_page;
527 }
528 
529 static struct page *get_next_page(struct page *page)
530 {
531 	struct page *next;
532 
533 	if (is_last_page(page))
534 		next = NULL;
535 	else if (is_first_page(page))
536 		next = (struct page *)page_private(page);
537 	else
538 		next = list_entry(page->lru.next, struct page, lru);
539 
540 	return next;
541 }
542 
543 /*
544  * Encode <page, obj_idx> as a single handle value.
545  * On hardware platforms with physical memory starting at 0x0 the pfn
546  * could be 0 so we ensure that the handle will never be 0 by adjusting the
547  * encoded obj_idx value before encoding.
548  */
549 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
550 {
551 	unsigned long handle;
552 
553 	if (!page) {
554 		BUG_ON(obj_idx);
555 		return NULL;
556 	}
557 
558 	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
559 	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
560 
561 	return (void *)handle;
562 }
563 
564 /*
565  * Decode <page, obj_idx> pair from the given object handle. We adjust the
566  * decoded obj_idx back to its original value since it was adjusted in
567  * obj_location_to_handle().
568  */
569 static void obj_handle_to_location(unsigned long handle, struct page **page,
570 				unsigned long *obj_idx)
571 {
572 	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
573 	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
574 }
575 
576 static unsigned long obj_idx_to_offset(struct page *page,
577 				unsigned long obj_idx, int class_size)
578 {
579 	unsigned long off = 0;
580 
581 	if (!is_first_page(page))
582 		off = page->index;
583 
584 	return off + obj_idx * class_size;
585 }
586 
587 static void reset_page(struct page *page)
588 {
589 	clear_bit(PG_private, &page->flags);
590 	clear_bit(PG_private_2, &page->flags);
591 	set_page_private(page, 0);
592 	page->mapping = NULL;
593 	page->freelist = NULL;
594 	page_mapcount_reset(page);
595 }
596 
597 static void free_zspage(struct page *first_page)
598 {
599 	struct page *nextp, *tmp, *head_extra;
600 
601 	BUG_ON(!is_first_page(first_page));
602 	BUG_ON(first_page->inuse);
603 
604 	head_extra = (struct page *)page_private(first_page);
605 
606 	reset_page(first_page);
607 	__free_page(first_page);
608 
609 	/* zspage with only 1 system page */
610 	if (!head_extra)
611 		return;
612 
613 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
614 		list_del(&nextp->lru);
615 		reset_page(nextp);
616 		__free_page(nextp);
617 	}
618 	reset_page(head_extra);
619 	__free_page(head_extra);
620 }
621 
622 /* Initialize a newly allocated zspage */
623 static void init_zspage(struct page *first_page, struct size_class *class)
624 {
625 	unsigned long off = 0;
626 	struct page *page = first_page;
627 
628 	BUG_ON(!is_first_page(first_page));
629 	while (page) {
630 		struct page *next_page;
631 		struct link_free *link;
632 		unsigned int i, objs_on_page;
633 
634 		/*
635 		 * page->index stores offset of first object starting
636 		 * in the page. For the first page, this is always 0,
637 		 * so we use first_page->index (aka ->freelist) to store
638 		 * head of corresponding zspage's freelist.
639 		 */
640 		if (page != first_page)
641 			page->index = off;
642 
643 		link = (struct link_free *)kmap_atomic(page) +
644 						off / sizeof(*link);
645 		objs_on_page = (PAGE_SIZE - off) / class->size;
646 
647 		for (i = 1; i <= objs_on_page; i++) {
648 			off += class->size;
649 			if (off < PAGE_SIZE) {
650 				link->next = obj_location_to_handle(page, i);
651 				link += class->size / sizeof(*link);
652 			}
653 		}
654 
655 		/*
656 		 * We now come to the last (full or partial) object on this
657 		 * page, which must point to the first object on the next
658 		 * page (if present)
659 		 */
660 		next_page = get_next_page(page);
661 		link->next = obj_location_to_handle(next_page, 0);
662 		kunmap_atomic(link);
663 		page = next_page;
664 		off = (off + class->size) % PAGE_SIZE;
665 	}
666 }
667 
668 /*
669  * Allocate a zspage for the given size class
670  */
671 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
672 {
673 	int i, error;
674 	struct page *first_page = NULL, *uninitialized_var(prev_page);
675 
676 	/*
677 	 * Allocate individual pages and link them together as:
678 	 * 1. first page->private = first sub-page
679 	 * 2. all sub-pages are linked together using page->lru
680 	 * 3. each sub-page is linked to the first page using page->first_page
681 	 *
682 	 * For each size class, First/Head pages are linked together using
683 	 * page->lru. Also, we set PG_private to identify the first page
684 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
685 	 * identify the last page.
686 	 */
687 	error = -ENOMEM;
688 	for (i = 0; i < class->pages_per_zspage; i++) {
689 		struct page *page;
690 
691 		page = alloc_page(flags);
692 		if (!page)
693 			goto cleanup;
694 
695 		INIT_LIST_HEAD(&page->lru);
696 		if (i == 0) {	/* first page */
697 			SetPagePrivate(page);
698 			set_page_private(page, 0);
699 			first_page = page;
700 			first_page->inuse = 0;
701 		}
702 		if (i == 1)
703 			set_page_private(first_page, (unsigned long)page);
704 		if (i >= 1)
705 			page->first_page = first_page;
706 		if (i >= 2)
707 			list_add(&page->lru, &prev_page->lru);
708 		if (i == class->pages_per_zspage - 1)	/* last page */
709 			SetPagePrivate2(page);
710 		prev_page = page;
711 	}
712 
713 	init_zspage(first_page, class);
714 
715 	first_page->freelist = obj_location_to_handle(first_page, 0);
716 	/* Maximum number of objects we can store in this zspage */
717 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
718 
719 	error = 0; /* Success */
720 
721 cleanup:
722 	if (unlikely(error) && first_page) {
723 		free_zspage(first_page);
724 		first_page = NULL;
725 	}
726 
727 	return first_page;
728 }
729 
730 static struct page *find_get_zspage(struct size_class *class)
731 {
732 	int i;
733 	struct page *page;
734 
735 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
736 		page = class->fullness_list[i];
737 		if (page)
738 			break;
739 	}
740 
741 	return page;
742 }
743 
744 #ifdef CONFIG_PGTABLE_MAPPING
745 static inline int __zs_cpu_up(struct mapping_area *area)
746 {
747 	/*
748 	 * Make sure we don't leak memory if a cpu UP notification
749 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
750 	 */
751 	if (area->vm)
752 		return 0;
753 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
754 	if (!area->vm)
755 		return -ENOMEM;
756 	return 0;
757 }
758 
759 static inline void __zs_cpu_down(struct mapping_area *area)
760 {
761 	if (area->vm)
762 		free_vm_area(area->vm);
763 	area->vm = NULL;
764 }
765 
766 static inline void *__zs_map_object(struct mapping_area *area,
767 				struct page *pages[2], int off, int size)
768 {
769 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
770 	area->vm_addr = area->vm->addr;
771 	return area->vm_addr + off;
772 }
773 
774 static inline void __zs_unmap_object(struct mapping_area *area,
775 				struct page *pages[2], int off, int size)
776 {
777 	unsigned long addr = (unsigned long)area->vm_addr;
778 
779 	unmap_kernel_range(addr, PAGE_SIZE * 2);
780 }
781 
782 #else /* CONFIG_PGTABLE_MAPPING */
783 
784 static inline int __zs_cpu_up(struct mapping_area *area)
785 {
786 	/*
787 	 * Make sure we don't leak memory if a cpu UP notification
788 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
789 	 */
790 	if (area->vm_buf)
791 		return 0;
792 	area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
793 	if (!area->vm_buf)
794 		return -ENOMEM;
795 	return 0;
796 }
797 
798 static inline void __zs_cpu_down(struct mapping_area *area)
799 {
800 	if (area->vm_buf)
801 		free_page((unsigned long)area->vm_buf);
802 	area->vm_buf = NULL;
803 }
804 
805 static void *__zs_map_object(struct mapping_area *area,
806 			struct page *pages[2], int off, int size)
807 {
808 	int sizes[2];
809 	void *addr;
810 	char *buf = area->vm_buf;
811 
812 	/* disable page faults to match kmap_atomic() return conditions */
813 	pagefault_disable();
814 
815 	/* no read fastpath */
816 	if (area->vm_mm == ZS_MM_WO)
817 		goto out;
818 
819 	sizes[0] = PAGE_SIZE - off;
820 	sizes[1] = size - sizes[0];
821 
822 	/* copy object to per-cpu buffer */
823 	addr = kmap_atomic(pages[0]);
824 	memcpy(buf, addr + off, sizes[0]);
825 	kunmap_atomic(addr);
826 	addr = kmap_atomic(pages[1]);
827 	memcpy(buf + sizes[0], addr, sizes[1]);
828 	kunmap_atomic(addr);
829 out:
830 	return area->vm_buf;
831 }
832 
833 static void __zs_unmap_object(struct mapping_area *area,
834 			struct page *pages[2], int off, int size)
835 {
836 	int sizes[2];
837 	void *addr;
838 	char *buf = area->vm_buf;
839 
840 	/* no write fastpath */
841 	if (area->vm_mm == ZS_MM_RO)
842 		goto out;
843 
844 	sizes[0] = PAGE_SIZE - off;
845 	sizes[1] = size - sizes[0];
846 
847 	/* copy per-cpu buffer to object */
848 	addr = kmap_atomic(pages[0]);
849 	memcpy(addr + off, buf, sizes[0]);
850 	kunmap_atomic(addr);
851 	addr = kmap_atomic(pages[1]);
852 	memcpy(addr, buf + sizes[0], sizes[1]);
853 	kunmap_atomic(addr);
854 
855 out:
856 	/* enable page faults to match kunmap_atomic() return conditions */
857 	pagefault_enable();
858 }
859 
860 #endif /* CONFIG_PGTABLE_MAPPING */
861 
862 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
863 				void *pcpu)
864 {
865 	int ret, cpu = (long)pcpu;
866 	struct mapping_area *area;
867 
868 	switch (action) {
869 	case CPU_UP_PREPARE:
870 		area = &per_cpu(zs_map_area, cpu);
871 		ret = __zs_cpu_up(area);
872 		if (ret)
873 			return notifier_from_errno(ret);
874 		break;
875 	case CPU_DEAD:
876 	case CPU_UP_CANCELED:
877 		area = &per_cpu(zs_map_area, cpu);
878 		__zs_cpu_down(area);
879 		break;
880 	}
881 
882 	return NOTIFY_OK;
883 }
884 
885 static struct notifier_block zs_cpu_nb = {
886 	.notifier_call = zs_cpu_notifier
887 };
888 
889 static void zs_exit(void)
890 {
891 	int cpu;
892 
893 #ifdef CONFIG_ZPOOL
894 	zpool_unregister_driver(&zs_zpool_driver);
895 #endif
896 
897 	cpu_notifier_register_begin();
898 
899 	for_each_online_cpu(cpu)
900 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
901 	__unregister_cpu_notifier(&zs_cpu_nb);
902 
903 	cpu_notifier_register_done();
904 }
905 
906 static int zs_init(void)
907 {
908 	int cpu, ret;
909 
910 	cpu_notifier_register_begin();
911 
912 	__register_cpu_notifier(&zs_cpu_nb);
913 	for_each_online_cpu(cpu) {
914 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
915 		if (notifier_to_errno(ret)) {
916 			cpu_notifier_register_done();
917 			goto fail;
918 		}
919 	}
920 
921 	cpu_notifier_register_done();
922 
923 #ifdef CONFIG_ZPOOL
924 	zpool_register_driver(&zs_zpool_driver);
925 #endif
926 
927 	return 0;
928 fail:
929 	zs_exit();
930 	return notifier_to_errno(ret);
931 }
932 
933 /**
934  * zs_create_pool - Creates an allocation pool to work from.
935  * @flags: allocation flags used to allocate pool metadata
936  *
937  * This function must be called before anything when using
938  * the zsmalloc allocator.
939  *
940  * On success, a pointer to the newly created pool is returned,
941  * otherwise NULL.
942  */
943 struct zs_pool *zs_create_pool(gfp_t flags)
944 {
945 	int i, ovhd_size;
946 	struct zs_pool *pool;
947 
948 	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
949 	pool = kzalloc(ovhd_size, GFP_KERNEL);
950 	if (!pool)
951 		return NULL;
952 
953 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
954 		int size;
955 		struct size_class *class;
956 
957 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
958 		if (size > ZS_MAX_ALLOC_SIZE)
959 			size = ZS_MAX_ALLOC_SIZE;
960 
961 		class = &pool->size_class[i];
962 		class->size = size;
963 		class->index = i;
964 		spin_lock_init(&class->lock);
965 		class->pages_per_zspage = get_pages_per_zspage(size);
966 
967 	}
968 
969 	pool->flags = flags;
970 
971 	return pool;
972 }
973 EXPORT_SYMBOL_GPL(zs_create_pool);
974 
975 void zs_destroy_pool(struct zs_pool *pool)
976 {
977 	int i;
978 
979 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
980 		int fg;
981 		struct size_class *class = &pool->size_class[i];
982 
983 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
984 			if (class->fullness_list[fg]) {
985 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
986 					class->size, fg);
987 			}
988 		}
989 	}
990 	kfree(pool);
991 }
992 EXPORT_SYMBOL_GPL(zs_destroy_pool);
993 
994 /**
995  * zs_malloc - Allocate block of given size from pool.
996  * @pool: pool to allocate from
997  * @size: size of block to allocate
998  *
999  * On success, handle to the allocated object is returned,
1000  * otherwise 0.
1001  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1002  */
1003 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1004 {
1005 	unsigned long obj;
1006 	struct link_free *link;
1007 	int class_idx;
1008 	struct size_class *class;
1009 
1010 	struct page *first_page, *m_page;
1011 	unsigned long m_objidx, m_offset;
1012 
1013 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1014 		return 0;
1015 
1016 	class_idx = get_size_class_index(size);
1017 	class = &pool->size_class[class_idx];
1018 	BUG_ON(class_idx != class->index);
1019 
1020 	spin_lock(&class->lock);
1021 	first_page = find_get_zspage(class);
1022 
1023 	if (!first_page) {
1024 		spin_unlock(&class->lock);
1025 		first_page = alloc_zspage(class, pool->flags);
1026 		if (unlikely(!first_page))
1027 			return 0;
1028 
1029 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1030 		spin_lock(&class->lock);
1031 		class->pages_allocated += class->pages_per_zspage;
1032 	}
1033 
1034 	obj = (unsigned long)first_page->freelist;
1035 	obj_handle_to_location(obj, &m_page, &m_objidx);
1036 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1037 
1038 	link = (struct link_free *)kmap_atomic(m_page) +
1039 					m_offset / sizeof(*link);
1040 	first_page->freelist = link->next;
1041 	memset(link, POISON_INUSE, sizeof(*link));
1042 	kunmap_atomic(link);
1043 
1044 	first_page->inuse++;
1045 	/* Now move the zspage to another fullness group, if required */
1046 	fix_fullness_group(pool, first_page);
1047 	spin_unlock(&class->lock);
1048 
1049 	return obj;
1050 }
1051 EXPORT_SYMBOL_GPL(zs_malloc);
1052 
1053 void zs_free(struct zs_pool *pool, unsigned long obj)
1054 {
1055 	struct link_free *link;
1056 	struct page *first_page, *f_page;
1057 	unsigned long f_objidx, f_offset;
1058 
1059 	int class_idx;
1060 	struct size_class *class;
1061 	enum fullness_group fullness;
1062 
1063 	if (unlikely(!obj))
1064 		return;
1065 
1066 	obj_handle_to_location(obj, &f_page, &f_objidx);
1067 	first_page = get_first_page(f_page);
1068 
1069 	get_zspage_mapping(first_page, &class_idx, &fullness);
1070 	class = &pool->size_class[class_idx];
1071 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1072 
1073 	spin_lock(&class->lock);
1074 
1075 	/* Insert this object in containing zspage's freelist */
1076 	link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
1077 							+ f_offset);
1078 	link->next = first_page->freelist;
1079 	kunmap_atomic(link);
1080 	first_page->freelist = (void *)obj;
1081 
1082 	first_page->inuse--;
1083 	fullness = fix_fullness_group(pool, first_page);
1084 
1085 	if (fullness == ZS_EMPTY)
1086 		class->pages_allocated -= class->pages_per_zspage;
1087 
1088 	spin_unlock(&class->lock);
1089 
1090 	if (fullness == ZS_EMPTY)
1091 		free_zspage(first_page);
1092 }
1093 EXPORT_SYMBOL_GPL(zs_free);
1094 
1095 /**
1096  * zs_map_object - get address of allocated object from handle.
1097  * @pool: pool from which the object was allocated
1098  * @handle: handle returned from zs_malloc
1099  *
1100  * Before using an object allocated from zs_malloc, it must be mapped using
1101  * this function. When done with the object, it must be unmapped using
1102  * zs_unmap_object.
1103  *
1104  * Only one object can be mapped per cpu at a time. There is no protection
1105  * against nested mappings.
1106  *
1107  * This function returns with preemption and page faults disabled.
1108  */
1109 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1110 			enum zs_mapmode mm)
1111 {
1112 	struct page *page;
1113 	unsigned long obj_idx, off;
1114 
1115 	unsigned int class_idx;
1116 	enum fullness_group fg;
1117 	struct size_class *class;
1118 	struct mapping_area *area;
1119 	struct page *pages[2];
1120 
1121 	BUG_ON(!handle);
1122 
1123 	/*
1124 	 * Because we use per-cpu mapping areas shared among the
1125 	 * pools/users, we can't allow mapping in interrupt context
1126 	 * because it can corrupt another users mappings.
1127 	 */
1128 	BUG_ON(in_interrupt());
1129 
1130 	obj_handle_to_location(handle, &page, &obj_idx);
1131 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1132 	class = &pool->size_class[class_idx];
1133 	off = obj_idx_to_offset(page, obj_idx, class->size);
1134 
1135 	area = &get_cpu_var(zs_map_area);
1136 	area->vm_mm = mm;
1137 	if (off + class->size <= PAGE_SIZE) {
1138 		/* this object is contained entirely within a page */
1139 		area->vm_addr = kmap_atomic(page);
1140 		return area->vm_addr + off;
1141 	}
1142 
1143 	/* this object spans two pages */
1144 	pages[0] = page;
1145 	pages[1] = get_next_page(page);
1146 	BUG_ON(!pages[1]);
1147 
1148 	return __zs_map_object(area, pages, off, class->size);
1149 }
1150 EXPORT_SYMBOL_GPL(zs_map_object);
1151 
1152 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1153 {
1154 	struct page *page;
1155 	unsigned long obj_idx, off;
1156 
1157 	unsigned int class_idx;
1158 	enum fullness_group fg;
1159 	struct size_class *class;
1160 	struct mapping_area *area;
1161 
1162 	BUG_ON(!handle);
1163 
1164 	obj_handle_to_location(handle, &page, &obj_idx);
1165 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1166 	class = &pool->size_class[class_idx];
1167 	off = obj_idx_to_offset(page, obj_idx, class->size);
1168 
1169 	area = this_cpu_ptr(&zs_map_area);
1170 	if (off + class->size <= PAGE_SIZE)
1171 		kunmap_atomic(area->vm_addr);
1172 	else {
1173 		struct page *pages[2];
1174 
1175 		pages[0] = page;
1176 		pages[1] = get_next_page(page);
1177 		BUG_ON(!pages[1]);
1178 
1179 		__zs_unmap_object(area, pages, off, class->size);
1180 	}
1181 	put_cpu_var(zs_map_area);
1182 }
1183 EXPORT_SYMBOL_GPL(zs_unmap_object);
1184 
1185 u64 zs_get_total_size_bytes(struct zs_pool *pool)
1186 {
1187 	int i;
1188 	u64 npages = 0;
1189 
1190 	for (i = 0; i < ZS_SIZE_CLASSES; i++)
1191 		npages += pool->size_class[i].pages_allocated;
1192 
1193 	return npages << PAGE_SHIFT;
1194 }
1195 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
1196 
1197 module_init(zs_init);
1198 module_exit(zs_exit);
1199 
1200 MODULE_LICENSE("Dual BSD/GPL");
1201 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1202