1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * zsmalloc memory allocator 5 * 6 * Copyright (C) 2011 Nitin Gupta 7 * Copyright (C) 2012, 2013 Minchan Kim 8 * 9 * This code is released using a dual license strategy: BSD/GPL 10 * You can choose the license that better fits your requirements. 11 * 12 * Released under the terms of 3-clause BSD License 13 * Released under the terms of GNU General Public License Version 2.0 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 /* 19 * lock ordering: 20 * page_lock 21 * pool->migrate_lock 22 * class->lock 23 * zspage->lock 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/bitops.h> 30 #include <linux/errno.h> 31 #include <linux/highmem.h> 32 #include <linux/string.h> 33 #include <linux/slab.h> 34 #include <linux/pgtable.h> 35 #include <asm/tlbflush.h> 36 #include <linux/cpumask.h> 37 #include <linux/cpu.h> 38 #include <linux/vmalloc.h> 39 #include <linux/preempt.h> 40 #include <linux/spinlock.h> 41 #include <linux/sprintf.h> 42 #include <linux/shrinker.h> 43 #include <linux/types.h> 44 #include <linux/debugfs.h> 45 #include <linux/zsmalloc.h> 46 #include <linux/zpool.h> 47 #include <linux/migrate.h> 48 #include <linux/wait.h> 49 #include <linux/pagemap.h> 50 #include <linux/fs.h> 51 #include <linux/local_lock.h> 52 #include "zpdesc.h" 53 54 #define ZSPAGE_MAGIC 0x58 55 56 /* 57 * This must be power of 2 and greater than or equal to sizeof(link_free). 58 * These two conditions ensure that any 'struct link_free' itself doesn't 59 * span more than 1 page which avoids complex case of mapping 2 pages simply 60 * to restore link_free pointer values. 61 */ 62 #define ZS_ALIGN 8 63 64 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 65 66 /* 67 * Object location (<PFN>, <obj_idx>) is encoded as 68 * a single (unsigned long) handle value. 69 * 70 * Note that object index <obj_idx> starts from 0. 71 * 72 * This is made more complicated by various memory models and PAE. 73 */ 74 75 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 76 #ifdef MAX_PHYSMEM_BITS 77 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 78 #else 79 /* 80 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 81 * be PAGE_SHIFT 82 */ 83 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 84 #endif 85 #endif 86 87 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 88 89 /* 90 * Head in allocated object should have OBJ_ALLOCATED_TAG 91 * to identify the object was allocated or not. 92 * It's okay to add the status bit in the least bit because 93 * header keeps handle which is 4byte-aligned address so we 94 * have room for two bit at least. 95 */ 96 #define OBJ_ALLOCATED_TAG 1 97 98 #define OBJ_TAG_BITS 1 99 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 100 101 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 102 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 103 104 #define HUGE_BITS 1 105 #define FULLNESS_BITS 4 106 #define CLASS_BITS 8 107 #define MAGIC_VAL_BITS 8 108 109 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 110 111 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 112 #define ZS_MIN_ALLOC_SIZE \ 113 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 114 /* each chunk includes extra space to keep handle */ 115 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 116 117 /* 118 * On systems with 4K page size, this gives 255 size classes! There is a 119 * trader-off here: 120 * - Large number of size classes is potentially wasteful as free page are 121 * spread across these classes 122 * - Small number of size classes causes large internal fragmentation 123 * - Probably its better to use specific size classes (empirically 124 * determined). NOTE: all those class sizes must be set as multiple of 125 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 126 * 127 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 128 * (reason above) 129 */ 130 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 131 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 132 ZS_SIZE_CLASS_DELTA) + 1) 133 134 /* 135 * Pages are distinguished by the ratio of used memory (that is the ratio 136 * of ->inuse objects to all objects that page can store). For example, 137 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 138 * 139 * The number of fullness groups is not random. It allows us to keep 140 * difference between the least busy page in the group (minimum permitted 141 * number of ->inuse objects) and the most busy page (maximum permitted 142 * number of ->inuse objects) at a reasonable value. 143 */ 144 enum fullness_group { 145 ZS_INUSE_RATIO_0, 146 ZS_INUSE_RATIO_10, 147 /* NOTE: 8 more fullness groups here */ 148 ZS_INUSE_RATIO_99 = 10, 149 ZS_INUSE_RATIO_100, 150 NR_FULLNESS_GROUPS, 151 }; 152 153 enum class_stat_type { 154 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 155 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 156 ZS_OBJS_INUSE, 157 NR_CLASS_STAT_TYPES, 158 }; 159 160 struct zs_size_stat { 161 unsigned long objs[NR_CLASS_STAT_TYPES]; 162 }; 163 164 #ifdef CONFIG_ZSMALLOC_STAT 165 static struct dentry *zs_stat_root; 166 #endif 167 168 static size_t huge_class_size; 169 170 struct size_class { 171 spinlock_t lock; 172 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 173 /* 174 * Size of objects stored in this class. Must be multiple 175 * of ZS_ALIGN. 176 */ 177 int size; 178 int objs_per_zspage; 179 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 180 int pages_per_zspage; 181 182 unsigned int index; 183 struct zs_size_stat stats; 184 }; 185 186 /* 187 * Placed within free objects to form a singly linked list. 188 * For every zspage, zspage->freeobj gives head of this list. 189 * 190 * This must be power of 2 and less than or equal to ZS_ALIGN 191 */ 192 struct link_free { 193 union { 194 /* 195 * Free object index; 196 * It's valid for non-allocated object 197 */ 198 unsigned long next; 199 /* 200 * Handle of allocated object. 201 */ 202 unsigned long handle; 203 }; 204 }; 205 206 struct zs_pool { 207 const char *name; 208 209 struct size_class *size_class[ZS_SIZE_CLASSES]; 210 struct kmem_cache *handle_cachep; 211 struct kmem_cache *zspage_cachep; 212 213 atomic_long_t pages_allocated; 214 215 struct zs_pool_stats stats; 216 217 /* Compact classes */ 218 struct shrinker *shrinker; 219 220 #ifdef CONFIG_ZSMALLOC_STAT 221 struct dentry *stat_dentry; 222 #endif 223 #ifdef CONFIG_COMPACTION 224 struct work_struct free_work; 225 #endif 226 /* protect page/zspage migration */ 227 rwlock_t migrate_lock; 228 atomic_t compaction_in_progress; 229 }; 230 231 static inline void zpdesc_set_first(struct zpdesc *zpdesc) 232 { 233 SetPagePrivate(zpdesc_page(zpdesc)); 234 } 235 236 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc) 237 { 238 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES); 239 } 240 241 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc) 242 { 243 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES); 244 } 245 246 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp) 247 { 248 struct page *page = alloc_page(gfp); 249 250 return page_zpdesc(page); 251 } 252 253 static inline void free_zpdesc(struct zpdesc *zpdesc) 254 { 255 struct page *page = zpdesc_page(zpdesc); 256 257 __free_page(page); 258 } 259 260 struct zspage { 261 struct { 262 unsigned int huge:HUGE_BITS; 263 unsigned int fullness:FULLNESS_BITS; 264 unsigned int class:CLASS_BITS + 1; 265 unsigned int magic:MAGIC_VAL_BITS; 266 }; 267 unsigned int inuse; 268 unsigned int freeobj; 269 struct zpdesc *first_zpdesc; 270 struct list_head list; /* fullness list */ 271 struct zs_pool *pool; 272 rwlock_t lock; 273 }; 274 275 struct mapping_area { 276 local_lock_t lock; 277 char *vm_buf; /* copy buffer for objects that span pages */ 278 char *vm_addr; /* address of kmap_local_page()'ed pages */ 279 enum zs_mapmode vm_mm; /* mapping mode */ 280 }; 281 282 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 283 static void SetZsHugePage(struct zspage *zspage) 284 { 285 zspage->huge = 1; 286 } 287 288 static bool ZsHugePage(struct zspage *zspage) 289 { 290 return zspage->huge; 291 } 292 293 static void migrate_lock_init(struct zspage *zspage); 294 static void migrate_read_lock(struct zspage *zspage); 295 static void migrate_read_unlock(struct zspage *zspage); 296 static void migrate_write_lock(struct zspage *zspage); 297 static void migrate_write_unlock(struct zspage *zspage); 298 299 #ifdef CONFIG_COMPACTION 300 static void kick_deferred_free(struct zs_pool *pool); 301 static void init_deferred_free(struct zs_pool *pool); 302 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 303 #else 304 static void kick_deferred_free(struct zs_pool *pool) {} 305 static void init_deferred_free(struct zs_pool *pool) {} 306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 307 #endif 308 309 static int create_cache(struct zs_pool *pool) 310 { 311 char *name; 312 313 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name); 314 if (!name) 315 return -ENOMEM; 316 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE, 317 0, 0, NULL); 318 kfree(name); 319 if (!pool->handle_cachep) 320 return -EINVAL; 321 322 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name); 323 if (!name) 324 return -ENOMEM; 325 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage), 326 0, 0, NULL); 327 kfree(name); 328 if (!pool->zspage_cachep) { 329 kmem_cache_destroy(pool->handle_cachep); 330 pool->handle_cachep = NULL; 331 return -EINVAL; 332 } 333 334 return 0; 335 } 336 337 static void destroy_cache(struct zs_pool *pool) 338 { 339 kmem_cache_destroy(pool->handle_cachep); 340 kmem_cache_destroy(pool->zspage_cachep); 341 } 342 343 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 344 { 345 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 346 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 347 } 348 349 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 350 { 351 kmem_cache_free(pool->handle_cachep, (void *)handle); 352 } 353 354 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 355 { 356 return kmem_cache_zalloc(pool->zspage_cachep, 357 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 358 } 359 360 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 361 { 362 kmem_cache_free(pool->zspage_cachep, zspage); 363 } 364 365 /* class->lock(which owns the handle) synchronizes races */ 366 static void record_obj(unsigned long handle, unsigned long obj) 367 { 368 *(unsigned long *)handle = obj; 369 } 370 371 /* zpool driver */ 372 373 #ifdef CONFIG_ZPOOL 374 375 static void *zs_zpool_create(const char *name, gfp_t gfp) 376 { 377 /* 378 * Ignore global gfp flags: zs_malloc() may be invoked from 379 * different contexts and its caller must provide a valid 380 * gfp mask. 381 */ 382 return zs_create_pool(name); 383 } 384 385 static void zs_zpool_destroy(void *pool) 386 { 387 zs_destroy_pool(pool); 388 } 389 390 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 391 unsigned long *handle) 392 { 393 *handle = zs_malloc(pool, size, gfp); 394 395 if (IS_ERR_VALUE(*handle)) 396 return PTR_ERR((void *)*handle); 397 return 0; 398 } 399 static void zs_zpool_free(void *pool, unsigned long handle) 400 { 401 zs_free(pool, handle); 402 } 403 404 static void *zs_zpool_map(void *pool, unsigned long handle, 405 enum zpool_mapmode mm) 406 { 407 enum zs_mapmode zs_mm; 408 409 switch (mm) { 410 case ZPOOL_MM_RO: 411 zs_mm = ZS_MM_RO; 412 break; 413 case ZPOOL_MM_WO: 414 zs_mm = ZS_MM_WO; 415 break; 416 case ZPOOL_MM_RW: 417 default: 418 zs_mm = ZS_MM_RW; 419 break; 420 } 421 422 return zs_map_object(pool, handle, zs_mm); 423 } 424 static void zs_zpool_unmap(void *pool, unsigned long handle) 425 { 426 zs_unmap_object(pool, handle); 427 } 428 429 static u64 zs_zpool_total_pages(void *pool) 430 { 431 return zs_get_total_pages(pool); 432 } 433 434 static struct zpool_driver zs_zpool_driver = { 435 .type = "zsmalloc", 436 .owner = THIS_MODULE, 437 .create = zs_zpool_create, 438 .destroy = zs_zpool_destroy, 439 .malloc_support_movable = true, 440 .malloc = zs_zpool_malloc, 441 .free = zs_zpool_free, 442 .map = zs_zpool_map, 443 .unmap = zs_zpool_unmap, 444 .total_pages = zs_zpool_total_pages, 445 }; 446 447 MODULE_ALIAS("zpool-zsmalloc"); 448 #endif /* CONFIG_ZPOOL */ 449 450 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 451 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 452 .lock = INIT_LOCAL_LOCK(lock), 453 }; 454 455 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc) 456 { 457 return PagePrivate(zpdesc_page(zpdesc)); 458 } 459 460 /* Protected by class->lock */ 461 static inline int get_zspage_inuse(struct zspage *zspage) 462 { 463 return zspage->inuse; 464 } 465 466 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 467 { 468 zspage->inuse += val; 469 } 470 471 static struct zpdesc *get_first_zpdesc(struct zspage *zspage) 472 { 473 struct zpdesc *first_zpdesc = zspage->first_zpdesc; 474 475 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc)); 476 return first_zpdesc; 477 } 478 479 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff 480 481 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc) 482 { 483 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc))); 484 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK; 485 } 486 487 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset) 488 { 489 /* With 24 bits available, we can support offsets into 16 MiB pages. */ 490 BUILD_BUG_ON(PAGE_SIZE > SZ_16M); 491 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc))); 492 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK); 493 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK; 494 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK; 495 } 496 497 static inline unsigned int get_freeobj(struct zspage *zspage) 498 { 499 return zspage->freeobj; 500 } 501 502 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 503 { 504 zspage->freeobj = obj; 505 } 506 507 static struct size_class *zspage_class(struct zs_pool *pool, 508 struct zspage *zspage) 509 { 510 return pool->size_class[zspage->class]; 511 } 512 513 /* 514 * zsmalloc divides the pool into various size classes where each 515 * class maintains a list of zspages where each zspage is divided 516 * into equal sized chunks. Each allocation falls into one of these 517 * classes depending on its size. This function returns index of the 518 * size class which has chunk size big enough to hold the given size. 519 */ 520 static int get_size_class_index(int size) 521 { 522 int idx = 0; 523 524 if (likely(size > ZS_MIN_ALLOC_SIZE)) 525 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 526 ZS_SIZE_CLASS_DELTA); 527 528 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 529 } 530 531 static inline void class_stat_add(struct size_class *class, int type, 532 unsigned long cnt) 533 { 534 class->stats.objs[type] += cnt; 535 } 536 537 static inline void class_stat_sub(struct size_class *class, int type, 538 unsigned long cnt) 539 { 540 class->stats.objs[type] -= cnt; 541 } 542 543 static inline unsigned long class_stat_read(struct size_class *class, int type) 544 { 545 return class->stats.objs[type]; 546 } 547 548 #ifdef CONFIG_ZSMALLOC_STAT 549 550 static void __init zs_stat_init(void) 551 { 552 if (!debugfs_initialized()) { 553 pr_warn("debugfs not available, stat dir not created\n"); 554 return; 555 } 556 557 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 558 } 559 560 static void __exit zs_stat_exit(void) 561 { 562 debugfs_remove_recursive(zs_stat_root); 563 } 564 565 static unsigned long zs_can_compact(struct size_class *class); 566 567 static int zs_stats_size_show(struct seq_file *s, void *v) 568 { 569 int i, fg; 570 struct zs_pool *pool = s->private; 571 struct size_class *class; 572 int objs_per_zspage; 573 unsigned long obj_allocated, obj_used, pages_used, freeable; 574 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 575 unsigned long total_freeable = 0; 576 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 577 578 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 579 "class", "size", "10%", "20%", "30%", "40%", 580 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 581 "obj_allocated", "obj_used", "pages_used", 582 "pages_per_zspage", "freeable"); 583 584 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 585 586 class = pool->size_class[i]; 587 588 if (class->index != i) 589 continue; 590 591 spin_lock(&class->lock); 592 593 seq_printf(s, " %5u %5u ", i, class->size); 594 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 595 inuse_totals[fg] += class_stat_read(class, fg); 596 seq_printf(s, "%9lu ", class_stat_read(class, fg)); 597 } 598 599 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 600 obj_used = class_stat_read(class, ZS_OBJS_INUSE); 601 freeable = zs_can_compact(class); 602 spin_unlock(&class->lock); 603 604 objs_per_zspage = class->objs_per_zspage; 605 pages_used = obj_allocated / objs_per_zspage * 606 class->pages_per_zspage; 607 608 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 609 obj_allocated, obj_used, pages_used, 610 class->pages_per_zspage, freeable); 611 612 total_objs += obj_allocated; 613 total_used_objs += obj_used; 614 total_pages += pages_used; 615 total_freeable += freeable; 616 } 617 618 seq_puts(s, "\n"); 619 seq_printf(s, " %5s %5s ", "Total", ""); 620 621 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 622 seq_printf(s, "%9lu ", inuse_totals[fg]); 623 624 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 625 total_objs, total_used_objs, total_pages, "", 626 total_freeable); 627 628 return 0; 629 } 630 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 631 632 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 633 { 634 if (!zs_stat_root) { 635 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 636 return; 637 } 638 639 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 640 641 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 642 &zs_stats_size_fops); 643 } 644 645 static void zs_pool_stat_destroy(struct zs_pool *pool) 646 { 647 debugfs_remove_recursive(pool->stat_dentry); 648 } 649 650 #else /* CONFIG_ZSMALLOC_STAT */ 651 static void __init zs_stat_init(void) 652 { 653 } 654 655 static void __exit zs_stat_exit(void) 656 { 657 } 658 659 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 660 { 661 } 662 663 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 664 { 665 } 666 #endif 667 668 669 /* 670 * For each size class, zspages are divided into different groups 671 * depending on their usage ratio. This function returns fullness 672 * status of the given page. 673 */ 674 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 675 { 676 int inuse, objs_per_zspage, ratio; 677 678 inuse = get_zspage_inuse(zspage); 679 objs_per_zspage = class->objs_per_zspage; 680 681 if (inuse == 0) 682 return ZS_INUSE_RATIO_0; 683 if (inuse == objs_per_zspage) 684 return ZS_INUSE_RATIO_100; 685 686 ratio = 100 * inuse / objs_per_zspage; 687 /* 688 * Take integer division into consideration: a page with one inuse 689 * object out of 127 possible, will end up having 0 usage ratio, 690 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 691 */ 692 return ratio / 10 + 1; 693 } 694 695 /* 696 * Each size class maintains various freelists and zspages are assigned 697 * to one of these freelists based on the number of live objects they 698 * have. This functions inserts the given zspage into the freelist 699 * identified by <class, fullness_group>. 700 */ 701 static void insert_zspage(struct size_class *class, 702 struct zspage *zspage, 703 int fullness) 704 { 705 class_stat_add(class, fullness, 1); 706 list_add(&zspage->list, &class->fullness_list[fullness]); 707 zspage->fullness = fullness; 708 } 709 710 /* 711 * This function removes the given zspage from the freelist identified 712 * by <class, fullness_group>. 713 */ 714 static void remove_zspage(struct size_class *class, struct zspage *zspage) 715 { 716 int fullness = zspage->fullness; 717 718 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 719 720 list_del_init(&zspage->list); 721 class_stat_sub(class, fullness, 1); 722 } 723 724 /* 725 * Each size class maintains zspages in different fullness groups depending 726 * on the number of live objects they contain. When allocating or freeing 727 * objects, the fullness status of the page can change, for instance, from 728 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 729 * checks if such a status change has occurred for the given page and 730 * accordingly moves the page from the list of the old fullness group to that 731 * of the new fullness group. 732 */ 733 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 734 { 735 int newfg; 736 737 newfg = get_fullness_group(class, zspage); 738 if (newfg == zspage->fullness) 739 goto out; 740 741 remove_zspage(class, zspage); 742 insert_zspage(class, zspage, newfg); 743 out: 744 return newfg; 745 } 746 747 static struct zspage *get_zspage(struct zpdesc *zpdesc) 748 { 749 struct zspage *zspage = zpdesc->zspage; 750 751 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 752 return zspage; 753 } 754 755 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc) 756 { 757 struct zspage *zspage = get_zspage(zpdesc); 758 759 if (unlikely(ZsHugePage(zspage))) 760 return NULL; 761 762 return zpdesc->next; 763 } 764 765 /** 766 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value 767 * @obj: the encoded object value 768 * @zpdesc: zpdesc object resides in zspage 769 * @obj_idx: object index 770 */ 771 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc, 772 unsigned int *obj_idx) 773 { 774 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS); 775 *obj_idx = (obj & OBJ_INDEX_MASK); 776 } 777 778 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc) 779 { 780 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS); 781 } 782 783 /** 784 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>) 785 * @zpdesc: zpdesc object resides in zspage 786 * @obj_idx: object index 787 */ 788 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx) 789 { 790 unsigned long obj; 791 792 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS; 793 obj |= obj_idx & OBJ_INDEX_MASK; 794 795 return obj; 796 } 797 798 static unsigned long handle_to_obj(unsigned long handle) 799 { 800 return *(unsigned long *)handle; 801 } 802 803 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj, 804 unsigned long *phandle) 805 { 806 unsigned long handle; 807 struct zspage *zspage = get_zspage(zpdesc); 808 809 if (unlikely(ZsHugePage(zspage))) { 810 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc)); 811 handle = zpdesc->handle; 812 } else 813 handle = *(unsigned long *)obj; 814 815 if (!(handle & OBJ_ALLOCATED_TAG)) 816 return false; 817 818 /* Clear all tags before returning the handle */ 819 *phandle = handle & ~OBJ_TAG_MASK; 820 return true; 821 } 822 823 static void reset_zpdesc(struct zpdesc *zpdesc) 824 { 825 struct page *page = zpdesc_page(zpdesc); 826 827 __ClearPageMovable(page); 828 ClearPagePrivate(page); 829 zpdesc->zspage = NULL; 830 zpdesc->next = NULL; 831 __ClearPageZsmalloc(page); 832 } 833 834 static int trylock_zspage(struct zspage *zspage) 835 { 836 struct zpdesc *cursor, *fail; 837 838 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor = 839 get_next_zpdesc(cursor)) { 840 if (!zpdesc_trylock(cursor)) { 841 fail = cursor; 842 goto unlock; 843 } 844 } 845 846 return 1; 847 unlock: 848 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor = 849 get_next_zpdesc(cursor)) 850 zpdesc_unlock(cursor); 851 852 return 0; 853 } 854 855 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 856 struct zspage *zspage) 857 { 858 struct zpdesc *zpdesc, *next; 859 860 assert_spin_locked(&class->lock); 861 862 VM_BUG_ON(get_zspage_inuse(zspage)); 863 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0); 864 865 next = zpdesc = get_first_zpdesc(zspage); 866 do { 867 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc)); 868 next = get_next_zpdesc(zpdesc); 869 reset_zpdesc(zpdesc); 870 zpdesc_unlock(zpdesc); 871 zpdesc_dec_zone_page_state(zpdesc); 872 zpdesc_put(zpdesc); 873 zpdesc = next; 874 } while (zpdesc != NULL); 875 876 cache_free_zspage(pool, zspage); 877 878 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 879 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 880 } 881 882 static void free_zspage(struct zs_pool *pool, struct size_class *class, 883 struct zspage *zspage) 884 { 885 VM_BUG_ON(get_zspage_inuse(zspage)); 886 VM_BUG_ON(list_empty(&zspage->list)); 887 888 /* 889 * Since zs_free couldn't be sleepable, this function cannot call 890 * lock_page. The page locks trylock_zspage got will be released 891 * by __free_zspage. 892 */ 893 if (!trylock_zspage(zspage)) { 894 kick_deferred_free(pool); 895 return; 896 } 897 898 remove_zspage(class, zspage); 899 __free_zspage(pool, class, zspage); 900 } 901 902 /* Initialize a newly allocated zspage */ 903 static void init_zspage(struct size_class *class, struct zspage *zspage) 904 { 905 unsigned int freeobj = 1; 906 unsigned long off = 0; 907 struct zpdesc *zpdesc = get_first_zpdesc(zspage); 908 909 while (zpdesc) { 910 struct zpdesc *next_zpdesc; 911 struct link_free *link; 912 void *vaddr; 913 914 set_first_obj_offset(zpdesc, off); 915 916 vaddr = kmap_local_zpdesc(zpdesc); 917 link = (struct link_free *)vaddr + off / sizeof(*link); 918 919 while ((off += class->size) < PAGE_SIZE) { 920 link->next = freeobj++ << OBJ_TAG_BITS; 921 link += class->size / sizeof(*link); 922 } 923 924 /* 925 * We now come to the last (full or partial) object on this 926 * page, which must point to the first object on the next 927 * page (if present) 928 */ 929 next_zpdesc = get_next_zpdesc(zpdesc); 930 if (next_zpdesc) { 931 link->next = freeobj++ << OBJ_TAG_BITS; 932 } else { 933 /* 934 * Reset OBJ_TAG_BITS bit to last link to tell 935 * whether it's allocated object or not. 936 */ 937 link->next = -1UL << OBJ_TAG_BITS; 938 } 939 kunmap_local(vaddr); 940 zpdesc = next_zpdesc; 941 off %= PAGE_SIZE; 942 } 943 944 set_freeobj(zspage, 0); 945 } 946 947 static void create_page_chain(struct size_class *class, struct zspage *zspage, 948 struct zpdesc *zpdescs[]) 949 { 950 int i; 951 struct zpdesc *zpdesc; 952 struct zpdesc *prev_zpdesc = NULL; 953 int nr_zpdescs = class->pages_per_zspage; 954 955 /* 956 * Allocate individual pages and link them together as: 957 * 1. all pages are linked together using zpdesc->next 958 * 2. each sub-page point to zspage using zpdesc->zspage 959 * 960 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc 961 * has this flag set). 962 */ 963 for (i = 0; i < nr_zpdescs; i++) { 964 zpdesc = zpdescs[i]; 965 zpdesc->zspage = zspage; 966 zpdesc->next = NULL; 967 if (i == 0) { 968 zspage->first_zpdesc = zpdesc; 969 zpdesc_set_first(zpdesc); 970 if (unlikely(class->objs_per_zspage == 1 && 971 class->pages_per_zspage == 1)) 972 SetZsHugePage(zspage); 973 } else { 974 prev_zpdesc->next = zpdesc; 975 } 976 prev_zpdesc = zpdesc; 977 } 978 } 979 980 /* 981 * Allocate a zspage for the given size class 982 */ 983 static struct zspage *alloc_zspage(struct zs_pool *pool, 984 struct size_class *class, 985 gfp_t gfp) 986 { 987 int i; 988 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE]; 989 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 990 991 if (!zspage) 992 return NULL; 993 994 zspage->magic = ZSPAGE_MAGIC; 995 migrate_lock_init(zspage); 996 997 for (i = 0; i < class->pages_per_zspage; i++) { 998 struct zpdesc *zpdesc; 999 1000 zpdesc = alloc_zpdesc(gfp); 1001 if (!zpdesc) { 1002 while (--i >= 0) { 1003 zpdesc_dec_zone_page_state(zpdescs[i]); 1004 __zpdesc_clear_zsmalloc(zpdescs[i]); 1005 free_zpdesc(zpdescs[i]); 1006 } 1007 cache_free_zspage(pool, zspage); 1008 return NULL; 1009 } 1010 __zpdesc_set_zsmalloc(zpdesc); 1011 1012 zpdesc_inc_zone_page_state(zpdesc); 1013 zpdescs[i] = zpdesc; 1014 } 1015 1016 create_page_chain(class, zspage, zpdescs); 1017 init_zspage(class, zspage); 1018 zspage->pool = pool; 1019 zspage->class = class->index; 1020 1021 return zspage; 1022 } 1023 1024 static struct zspage *find_get_zspage(struct size_class *class) 1025 { 1026 int i; 1027 struct zspage *zspage; 1028 1029 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1030 zspage = list_first_entry_or_null(&class->fullness_list[i], 1031 struct zspage, list); 1032 if (zspage) 1033 break; 1034 } 1035 1036 return zspage; 1037 } 1038 1039 static inline int __zs_cpu_up(struct mapping_area *area) 1040 { 1041 /* 1042 * Make sure we don't leak memory if a cpu UP notification 1043 * and zs_init() race and both call zs_cpu_up() on the same cpu 1044 */ 1045 if (area->vm_buf) 1046 return 0; 1047 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1048 if (!area->vm_buf) 1049 return -ENOMEM; 1050 return 0; 1051 } 1052 1053 static inline void __zs_cpu_down(struct mapping_area *area) 1054 { 1055 kfree(area->vm_buf); 1056 area->vm_buf = NULL; 1057 } 1058 1059 static void *__zs_map_object(struct mapping_area *area, 1060 struct zpdesc *zpdescs[2], int off, int size) 1061 { 1062 size_t sizes[2]; 1063 char *buf = area->vm_buf; 1064 1065 /* disable page faults to match kmap_local_page() return conditions */ 1066 pagefault_disable(); 1067 1068 /* no read fastpath */ 1069 if (area->vm_mm == ZS_MM_WO) 1070 goto out; 1071 1072 sizes[0] = PAGE_SIZE - off; 1073 sizes[1] = size - sizes[0]; 1074 1075 /* copy object to per-cpu buffer */ 1076 memcpy_from_page(buf, zpdesc_page(zpdescs[0]), off, sizes[0]); 1077 memcpy_from_page(buf + sizes[0], zpdesc_page(zpdescs[1]), 0, sizes[1]); 1078 out: 1079 return area->vm_buf; 1080 } 1081 1082 static void __zs_unmap_object(struct mapping_area *area, 1083 struct zpdesc *zpdescs[2], int off, int size) 1084 { 1085 size_t sizes[2]; 1086 char *buf; 1087 1088 /* no write fastpath */ 1089 if (area->vm_mm == ZS_MM_RO) 1090 goto out; 1091 1092 buf = area->vm_buf; 1093 buf = buf + ZS_HANDLE_SIZE; 1094 size -= ZS_HANDLE_SIZE; 1095 off += ZS_HANDLE_SIZE; 1096 1097 sizes[0] = PAGE_SIZE - off; 1098 sizes[1] = size - sizes[0]; 1099 1100 /* copy per-cpu buffer to object */ 1101 memcpy_to_page(zpdesc_page(zpdescs[0]), off, buf, sizes[0]); 1102 memcpy_to_page(zpdesc_page(zpdescs[1]), 0, buf + sizes[0], sizes[1]); 1103 1104 out: 1105 /* enable page faults to match kunmap_local() return conditions */ 1106 pagefault_enable(); 1107 } 1108 1109 static int zs_cpu_prepare(unsigned int cpu) 1110 { 1111 struct mapping_area *area; 1112 1113 area = &per_cpu(zs_map_area, cpu); 1114 return __zs_cpu_up(area); 1115 } 1116 1117 static int zs_cpu_dead(unsigned int cpu) 1118 { 1119 struct mapping_area *area; 1120 1121 area = &per_cpu(zs_map_area, cpu); 1122 __zs_cpu_down(area); 1123 return 0; 1124 } 1125 1126 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1127 int objs_per_zspage) 1128 { 1129 if (prev->pages_per_zspage == pages_per_zspage && 1130 prev->objs_per_zspage == objs_per_zspage) 1131 return true; 1132 1133 return false; 1134 } 1135 1136 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1137 { 1138 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1139 } 1140 1141 static bool zspage_empty(struct zspage *zspage) 1142 { 1143 return get_zspage_inuse(zspage) == 0; 1144 } 1145 1146 /** 1147 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1148 * that hold objects of the provided size. 1149 * @pool: zsmalloc pool to use 1150 * @size: object size 1151 * 1152 * Context: Any context. 1153 * 1154 * Return: the index of the zsmalloc &size_class that hold objects of the 1155 * provided size. 1156 */ 1157 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1158 { 1159 struct size_class *class; 1160 1161 class = pool->size_class[get_size_class_index(size)]; 1162 1163 return class->index; 1164 } 1165 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1166 1167 unsigned long zs_get_total_pages(struct zs_pool *pool) 1168 { 1169 return atomic_long_read(&pool->pages_allocated); 1170 } 1171 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1172 1173 /** 1174 * zs_map_object - get address of allocated object from handle. 1175 * @pool: pool from which the object was allocated 1176 * @handle: handle returned from zs_malloc 1177 * @mm: mapping mode to use 1178 * 1179 * Before using an object allocated from zs_malloc, it must be mapped using 1180 * this function. When done with the object, it must be unmapped using 1181 * zs_unmap_object. 1182 * 1183 * Only one object can be mapped per cpu at a time. There is no protection 1184 * against nested mappings. 1185 * 1186 * This function returns with preemption and page faults disabled. 1187 */ 1188 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1189 enum zs_mapmode mm) 1190 { 1191 struct zspage *zspage; 1192 struct zpdesc *zpdesc; 1193 unsigned long obj, off; 1194 unsigned int obj_idx; 1195 1196 struct size_class *class; 1197 struct mapping_area *area; 1198 struct zpdesc *zpdescs[2]; 1199 void *ret; 1200 1201 /* 1202 * Because we use per-cpu mapping areas shared among the 1203 * pools/users, we can't allow mapping in interrupt context 1204 * because it can corrupt another users mappings. 1205 */ 1206 BUG_ON(in_interrupt()); 1207 1208 /* It guarantees it can get zspage from handle safely */ 1209 read_lock(&pool->migrate_lock); 1210 obj = handle_to_obj(handle); 1211 obj_to_location(obj, &zpdesc, &obj_idx); 1212 zspage = get_zspage(zpdesc); 1213 1214 /* 1215 * migration cannot move any zpages in this zspage. Here, class->lock 1216 * is too heavy since callers would take some time until they calls 1217 * zs_unmap_object API so delegate the locking from class to zspage 1218 * which is smaller granularity. 1219 */ 1220 migrate_read_lock(zspage); 1221 read_unlock(&pool->migrate_lock); 1222 1223 class = zspage_class(pool, zspage); 1224 off = offset_in_page(class->size * obj_idx); 1225 1226 local_lock(&zs_map_area.lock); 1227 area = this_cpu_ptr(&zs_map_area); 1228 area->vm_mm = mm; 1229 if (off + class->size <= PAGE_SIZE) { 1230 /* this object is contained entirely within a page */ 1231 area->vm_addr = kmap_local_zpdesc(zpdesc); 1232 ret = area->vm_addr + off; 1233 goto out; 1234 } 1235 1236 /* this object spans two pages */ 1237 zpdescs[0] = zpdesc; 1238 zpdescs[1] = get_next_zpdesc(zpdesc); 1239 BUG_ON(!zpdescs[1]); 1240 1241 ret = __zs_map_object(area, zpdescs, off, class->size); 1242 out: 1243 if (likely(!ZsHugePage(zspage))) 1244 ret += ZS_HANDLE_SIZE; 1245 1246 return ret; 1247 } 1248 EXPORT_SYMBOL_GPL(zs_map_object); 1249 1250 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1251 { 1252 struct zspage *zspage; 1253 struct zpdesc *zpdesc; 1254 unsigned long obj, off; 1255 unsigned int obj_idx; 1256 1257 struct size_class *class; 1258 struct mapping_area *area; 1259 1260 obj = handle_to_obj(handle); 1261 obj_to_location(obj, &zpdesc, &obj_idx); 1262 zspage = get_zspage(zpdesc); 1263 class = zspage_class(pool, zspage); 1264 off = offset_in_page(class->size * obj_idx); 1265 1266 area = this_cpu_ptr(&zs_map_area); 1267 if (off + class->size <= PAGE_SIZE) 1268 kunmap_local(area->vm_addr); 1269 else { 1270 struct zpdesc *zpdescs[2]; 1271 1272 zpdescs[0] = zpdesc; 1273 zpdescs[1] = get_next_zpdesc(zpdesc); 1274 BUG_ON(!zpdescs[1]); 1275 1276 __zs_unmap_object(area, zpdescs, off, class->size); 1277 } 1278 local_unlock(&zs_map_area.lock); 1279 1280 migrate_read_unlock(zspage); 1281 } 1282 EXPORT_SYMBOL_GPL(zs_unmap_object); 1283 1284 /** 1285 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1286 * zsmalloc &size_class. 1287 * @pool: zsmalloc pool to use 1288 * 1289 * The function returns the size of the first huge class - any object of equal 1290 * or bigger size will be stored in zspage consisting of a single physical 1291 * page. 1292 * 1293 * Context: Any context. 1294 * 1295 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1296 */ 1297 size_t zs_huge_class_size(struct zs_pool *pool) 1298 { 1299 return huge_class_size; 1300 } 1301 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1302 1303 static unsigned long obj_malloc(struct zs_pool *pool, 1304 struct zspage *zspage, unsigned long handle) 1305 { 1306 int i, nr_zpdesc, offset; 1307 unsigned long obj; 1308 struct link_free *link; 1309 struct size_class *class; 1310 1311 struct zpdesc *m_zpdesc; 1312 unsigned long m_offset; 1313 void *vaddr; 1314 1315 class = pool->size_class[zspage->class]; 1316 obj = get_freeobj(zspage); 1317 1318 offset = obj * class->size; 1319 nr_zpdesc = offset >> PAGE_SHIFT; 1320 m_offset = offset_in_page(offset); 1321 m_zpdesc = get_first_zpdesc(zspage); 1322 1323 for (i = 0; i < nr_zpdesc; i++) 1324 m_zpdesc = get_next_zpdesc(m_zpdesc); 1325 1326 vaddr = kmap_local_zpdesc(m_zpdesc); 1327 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1328 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1329 if (likely(!ZsHugePage(zspage))) 1330 /* record handle in the header of allocated chunk */ 1331 link->handle = handle | OBJ_ALLOCATED_TAG; 1332 else 1333 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG; 1334 1335 kunmap_local(vaddr); 1336 mod_zspage_inuse(zspage, 1); 1337 1338 obj = location_to_obj(m_zpdesc, obj); 1339 record_obj(handle, obj); 1340 1341 return obj; 1342 } 1343 1344 1345 /** 1346 * zs_malloc - Allocate block of given size from pool. 1347 * @pool: pool to allocate from 1348 * @size: size of block to allocate 1349 * @gfp: gfp flags when allocating object 1350 * 1351 * On success, handle to the allocated object is returned, 1352 * otherwise an ERR_PTR(). 1353 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1354 */ 1355 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1356 { 1357 unsigned long handle; 1358 struct size_class *class; 1359 int newfg; 1360 struct zspage *zspage; 1361 1362 if (unlikely(!size)) 1363 return (unsigned long)ERR_PTR(-EINVAL); 1364 1365 if (unlikely(size > ZS_MAX_ALLOC_SIZE)) 1366 return (unsigned long)ERR_PTR(-ENOSPC); 1367 1368 handle = cache_alloc_handle(pool, gfp); 1369 if (!handle) 1370 return (unsigned long)ERR_PTR(-ENOMEM); 1371 1372 /* extra space in chunk to keep the handle */ 1373 size += ZS_HANDLE_SIZE; 1374 class = pool->size_class[get_size_class_index(size)]; 1375 1376 /* class->lock effectively protects the zpage migration */ 1377 spin_lock(&class->lock); 1378 zspage = find_get_zspage(class); 1379 if (likely(zspage)) { 1380 obj_malloc(pool, zspage, handle); 1381 /* Now move the zspage to another fullness group, if required */ 1382 fix_fullness_group(class, zspage); 1383 class_stat_add(class, ZS_OBJS_INUSE, 1); 1384 1385 goto out; 1386 } 1387 1388 spin_unlock(&class->lock); 1389 1390 zspage = alloc_zspage(pool, class, gfp); 1391 if (!zspage) { 1392 cache_free_handle(pool, handle); 1393 return (unsigned long)ERR_PTR(-ENOMEM); 1394 } 1395 1396 spin_lock(&class->lock); 1397 obj_malloc(pool, zspage, handle); 1398 newfg = get_fullness_group(class, zspage); 1399 insert_zspage(class, zspage, newfg); 1400 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1401 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1402 class_stat_add(class, ZS_OBJS_INUSE, 1); 1403 1404 /* We completely set up zspage so mark them as movable */ 1405 SetZsPageMovable(pool, zspage); 1406 out: 1407 spin_unlock(&class->lock); 1408 1409 return handle; 1410 } 1411 EXPORT_SYMBOL_GPL(zs_malloc); 1412 1413 static void obj_free(int class_size, unsigned long obj) 1414 { 1415 struct link_free *link; 1416 struct zspage *zspage; 1417 struct zpdesc *f_zpdesc; 1418 unsigned long f_offset; 1419 unsigned int f_objidx; 1420 void *vaddr; 1421 1422 1423 obj_to_location(obj, &f_zpdesc, &f_objidx); 1424 f_offset = offset_in_page(class_size * f_objidx); 1425 zspage = get_zspage(f_zpdesc); 1426 1427 vaddr = kmap_local_zpdesc(f_zpdesc); 1428 link = (struct link_free *)(vaddr + f_offset); 1429 1430 /* Insert this object in containing zspage's freelist */ 1431 if (likely(!ZsHugePage(zspage))) 1432 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1433 else 1434 f_zpdesc->handle = 0; 1435 set_freeobj(zspage, f_objidx); 1436 1437 kunmap_local(vaddr); 1438 mod_zspage_inuse(zspage, -1); 1439 } 1440 1441 void zs_free(struct zs_pool *pool, unsigned long handle) 1442 { 1443 struct zspage *zspage; 1444 struct zpdesc *f_zpdesc; 1445 unsigned long obj; 1446 struct size_class *class; 1447 int fullness; 1448 1449 if (IS_ERR_OR_NULL((void *)handle)) 1450 return; 1451 1452 /* 1453 * The pool->migrate_lock protects the race with zpage's migration 1454 * so it's safe to get the page from handle. 1455 */ 1456 read_lock(&pool->migrate_lock); 1457 obj = handle_to_obj(handle); 1458 obj_to_zpdesc(obj, &f_zpdesc); 1459 zspage = get_zspage(f_zpdesc); 1460 class = zspage_class(pool, zspage); 1461 spin_lock(&class->lock); 1462 read_unlock(&pool->migrate_lock); 1463 1464 class_stat_sub(class, ZS_OBJS_INUSE, 1); 1465 obj_free(class->size, obj); 1466 1467 fullness = fix_fullness_group(class, zspage); 1468 if (fullness == ZS_INUSE_RATIO_0) 1469 free_zspage(pool, class, zspage); 1470 1471 spin_unlock(&class->lock); 1472 cache_free_handle(pool, handle); 1473 } 1474 EXPORT_SYMBOL_GPL(zs_free); 1475 1476 static void zs_object_copy(struct size_class *class, unsigned long dst, 1477 unsigned long src) 1478 { 1479 struct zpdesc *s_zpdesc, *d_zpdesc; 1480 unsigned int s_objidx, d_objidx; 1481 unsigned long s_off, d_off; 1482 void *s_addr, *d_addr; 1483 int s_size, d_size, size; 1484 int written = 0; 1485 1486 s_size = d_size = class->size; 1487 1488 obj_to_location(src, &s_zpdesc, &s_objidx); 1489 obj_to_location(dst, &d_zpdesc, &d_objidx); 1490 1491 s_off = offset_in_page(class->size * s_objidx); 1492 d_off = offset_in_page(class->size * d_objidx); 1493 1494 if (s_off + class->size > PAGE_SIZE) 1495 s_size = PAGE_SIZE - s_off; 1496 1497 if (d_off + class->size > PAGE_SIZE) 1498 d_size = PAGE_SIZE - d_off; 1499 1500 s_addr = kmap_local_zpdesc(s_zpdesc); 1501 d_addr = kmap_local_zpdesc(d_zpdesc); 1502 1503 while (1) { 1504 size = min(s_size, d_size); 1505 memcpy(d_addr + d_off, s_addr + s_off, size); 1506 written += size; 1507 1508 if (written == class->size) 1509 break; 1510 1511 s_off += size; 1512 s_size -= size; 1513 d_off += size; 1514 d_size -= size; 1515 1516 /* 1517 * Calling kunmap_local(d_addr) is necessary. kunmap_local() 1518 * calls must occurs in reverse order of calls to kmap_local_page(). 1519 * So, to call kunmap_local(s_addr) we should first call 1520 * kunmap_local(d_addr). For more details see 1521 * Documentation/mm/highmem.rst. 1522 */ 1523 if (s_off >= PAGE_SIZE) { 1524 kunmap_local(d_addr); 1525 kunmap_local(s_addr); 1526 s_zpdesc = get_next_zpdesc(s_zpdesc); 1527 s_addr = kmap_local_zpdesc(s_zpdesc); 1528 d_addr = kmap_local_zpdesc(d_zpdesc); 1529 s_size = class->size - written; 1530 s_off = 0; 1531 } 1532 1533 if (d_off >= PAGE_SIZE) { 1534 kunmap_local(d_addr); 1535 d_zpdesc = get_next_zpdesc(d_zpdesc); 1536 d_addr = kmap_local_zpdesc(d_zpdesc); 1537 d_size = class->size - written; 1538 d_off = 0; 1539 } 1540 } 1541 1542 kunmap_local(d_addr); 1543 kunmap_local(s_addr); 1544 } 1545 1546 /* 1547 * Find alloced object in zspage from index object and 1548 * return handle. 1549 */ 1550 static unsigned long find_alloced_obj(struct size_class *class, 1551 struct zpdesc *zpdesc, int *obj_idx) 1552 { 1553 unsigned int offset; 1554 int index = *obj_idx; 1555 unsigned long handle = 0; 1556 void *addr = kmap_local_zpdesc(zpdesc); 1557 1558 offset = get_first_obj_offset(zpdesc); 1559 offset += class->size * index; 1560 1561 while (offset < PAGE_SIZE) { 1562 if (obj_allocated(zpdesc, addr + offset, &handle)) 1563 break; 1564 1565 offset += class->size; 1566 index++; 1567 } 1568 1569 kunmap_local(addr); 1570 1571 *obj_idx = index; 1572 1573 return handle; 1574 } 1575 1576 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, 1577 struct zspage *dst_zspage) 1578 { 1579 unsigned long used_obj, free_obj; 1580 unsigned long handle; 1581 int obj_idx = 0; 1582 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage); 1583 struct size_class *class = pool->size_class[src_zspage->class]; 1584 1585 while (1) { 1586 handle = find_alloced_obj(class, s_zpdesc, &obj_idx); 1587 if (!handle) { 1588 s_zpdesc = get_next_zpdesc(s_zpdesc); 1589 if (!s_zpdesc) 1590 break; 1591 obj_idx = 0; 1592 continue; 1593 } 1594 1595 used_obj = handle_to_obj(handle); 1596 free_obj = obj_malloc(pool, dst_zspage, handle); 1597 zs_object_copy(class, free_obj, used_obj); 1598 obj_idx++; 1599 obj_free(class->size, used_obj); 1600 1601 /* Stop if there is no more space */ 1602 if (zspage_full(class, dst_zspage)) 1603 break; 1604 1605 /* Stop if there are no more objects to migrate */ 1606 if (zspage_empty(src_zspage)) 1607 break; 1608 } 1609 } 1610 1611 static struct zspage *isolate_src_zspage(struct size_class *class) 1612 { 1613 struct zspage *zspage; 1614 int fg; 1615 1616 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1617 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1618 struct zspage, list); 1619 if (zspage) { 1620 remove_zspage(class, zspage); 1621 return zspage; 1622 } 1623 } 1624 1625 return zspage; 1626 } 1627 1628 static struct zspage *isolate_dst_zspage(struct size_class *class) 1629 { 1630 struct zspage *zspage; 1631 int fg; 1632 1633 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1634 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1635 struct zspage, list); 1636 if (zspage) { 1637 remove_zspage(class, zspage); 1638 return zspage; 1639 } 1640 } 1641 1642 return zspage; 1643 } 1644 1645 /* 1646 * putback_zspage - add @zspage into right class's fullness list 1647 * @class: destination class 1648 * @zspage: target page 1649 * 1650 * Return @zspage's fullness status 1651 */ 1652 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1653 { 1654 int fullness; 1655 1656 fullness = get_fullness_group(class, zspage); 1657 insert_zspage(class, zspage, fullness); 1658 1659 return fullness; 1660 } 1661 1662 #ifdef CONFIG_COMPACTION 1663 /* 1664 * To prevent zspage destroy during migration, zspage freeing should 1665 * hold locks of all pages in the zspage. 1666 */ 1667 static void lock_zspage(struct zspage *zspage) 1668 { 1669 struct zpdesc *curr_zpdesc, *zpdesc; 1670 1671 /* 1672 * Pages we haven't locked yet can be migrated off the list while we're 1673 * trying to lock them, so we need to be careful and only attempt to 1674 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1675 * may no longer belong to the zspage. This means that we may wait for 1676 * the wrong page to unlock, so we must take a reference to the page 1677 * prior to waiting for it to unlock outside migrate_read_lock(). 1678 */ 1679 while (1) { 1680 migrate_read_lock(zspage); 1681 zpdesc = get_first_zpdesc(zspage); 1682 if (zpdesc_trylock(zpdesc)) 1683 break; 1684 zpdesc_get(zpdesc); 1685 migrate_read_unlock(zspage); 1686 zpdesc_wait_locked(zpdesc); 1687 zpdesc_put(zpdesc); 1688 } 1689 1690 curr_zpdesc = zpdesc; 1691 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) { 1692 if (zpdesc_trylock(zpdesc)) { 1693 curr_zpdesc = zpdesc; 1694 } else { 1695 zpdesc_get(zpdesc); 1696 migrate_read_unlock(zspage); 1697 zpdesc_wait_locked(zpdesc); 1698 zpdesc_put(zpdesc); 1699 migrate_read_lock(zspage); 1700 } 1701 } 1702 migrate_read_unlock(zspage); 1703 } 1704 #endif /* CONFIG_COMPACTION */ 1705 1706 static void migrate_lock_init(struct zspage *zspage) 1707 { 1708 rwlock_init(&zspage->lock); 1709 } 1710 1711 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1712 { 1713 read_lock(&zspage->lock); 1714 } 1715 1716 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1717 { 1718 read_unlock(&zspage->lock); 1719 } 1720 1721 static void migrate_write_lock(struct zspage *zspage) 1722 { 1723 write_lock(&zspage->lock); 1724 } 1725 1726 static void migrate_write_unlock(struct zspage *zspage) 1727 { 1728 write_unlock(&zspage->lock); 1729 } 1730 1731 #ifdef CONFIG_COMPACTION 1732 1733 static const struct movable_operations zsmalloc_mops; 1734 1735 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1736 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc) 1737 { 1738 struct zpdesc *zpdesc; 1739 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1740 unsigned int first_obj_offset; 1741 int idx = 0; 1742 1743 zpdesc = get_first_zpdesc(zspage); 1744 do { 1745 if (zpdesc == oldzpdesc) 1746 zpdescs[idx] = newzpdesc; 1747 else 1748 zpdescs[idx] = zpdesc; 1749 idx++; 1750 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL); 1751 1752 create_page_chain(class, zspage, zpdescs); 1753 first_obj_offset = get_first_obj_offset(oldzpdesc); 1754 set_first_obj_offset(newzpdesc, first_obj_offset); 1755 if (unlikely(ZsHugePage(zspage))) 1756 newzpdesc->handle = oldzpdesc->handle; 1757 __zpdesc_set_movable(newzpdesc, &zsmalloc_mops); 1758 } 1759 1760 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1761 { 1762 /* 1763 * Page is locked so zspage couldn't be destroyed. For detail, look at 1764 * lock_zspage in free_zspage. 1765 */ 1766 VM_BUG_ON_PAGE(PageIsolated(page), page); 1767 1768 return true; 1769 } 1770 1771 static int zs_page_migrate(struct page *newpage, struct page *page, 1772 enum migrate_mode mode) 1773 { 1774 struct zs_pool *pool; 1775 struct size_class *class; 1776 struct zspage *zspage; 1777 struct zpdesc *dummy; 1778 struct zpdesc *newzpdesc = page_zpdesc(newpage); 1779 struct zpdesc *zpdesc = page_zpdesc(page); 1780 void *s_addr, *d_addr, *addr; 1781 unsigned int offset; 1782 unsigned long handle; 1783 unsigned long old_obj, new_obj; 1784 unsigned int obj_idx; 1785 1786 VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc)); 1787 1788 /* We're committed, tell the world that this is a Zsmalloc page. */ 1789 __zpdesc_set_zsmalloc(newzpdesc); 1790 1791 /* The page is locked, so this pointer must remain valid */ 1792 zspage = get_zspage(zpdesc); 1793 pool = zspage->pool; 1794 1795 /* 1796 * The pool migrate_lock protects the race between zpage migration 1797 * and zs_free. 1798 */ 1799 write_lock(&pool->migrate_lock); 1800 class = zspage_class(pool, zspage); 1801 1802 /* 1803 * the class lock protects zpage alloc/free in the zspage. 1804 */ 1805 spin_lock(&class->lock); 1806 /* the migrate_write_lock protects zpage access via zs_map_object */ 1807 migrate_write_lock(zspage); 1808 1809 offset = get_first_obj_offset(zpdesc); 1810 s_addr = kmap_local_zpdesc(zpdesc); 1811 1812 /* 1813 * Here, any user cannot access all objects in the zspage so let's move. 1814 */ 1815 d_addr = kmap_local_zpdesc(newzpdesc); 1816 copy_page(d_addr, s_addr); 1817 kunmap_local(d_addr); 1818 1819 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1820 addr += class->size) { 1821 if (obj_allocated(zpdesc, addr, &handle)) { 1822 1823 old_obj = handle_to_obj(handle); 1824 obj_to_location(old_obj, &dummy, &obj_idx); 1825 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx); 1826 record_obj(handle, new_obj); 1827 } 1828 } 1829 kunmap_local(s_addr); 1830 1831 replace_sub_page(class, zspage, newzpdesc, zpdesc); 1832 /* 1833 * Since we complete the data copy and set up new zspage structure, 1834 * it's okay to release migration_lock. 1835 */ 1836 write_unlock(&pool->migrate_lock); 1837 spin_unlock(&class->lock); 1838 migrate_write_unlock(zspage); 1839 1840 zpdesc_get(newzpdesc); 1841 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) { 1842 zpdesc_dec_zone_page_state(zpdesc); 1843 zpdesc_inc_zone_page_state(newzpdesc); 1844 } 1845 1846 reset_zpdesc(zpdesc); 1847 zpdesc_put(zpdesc); 1848 1849 return MIGRATEPAGE_SUCCESS; 1850 } 1851 1852 static void zs_page_putback(struct page *page) 1853 { 1854 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1855 } 1856 1857 static const struct movable_operations zsmalloc_mops = { 1858 .isolate_page = zs_page_isolate, 1859 .migrate_page = zs_page_migrate, 1860 .putback_page = zs_page_putback, 1861 }; 1862 1863 /* 1864 * Caller should hold page_lock of all pages in the zspage 1865 * In here, we cannot use zspage meta data. 1866 */ 1867 static void async_free_zspage(struct work_struct *work) 1868 { 1869 int i; 1870 struct size_class *class; 1871 struct zspage *zspage, *tmp; 1872 LIST_HEAD(free_pages); 1873 struct zs_pool *pool = container_of(work, struct zs_pool, 1874 free_work); 1875 1876 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1877 class = pool->size_class[i]; 1878 if (class->index != i) 1879 continue; 1880 1881 spin_lock(&class->lock); 1882 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 1883 &free_pages); 1884 spin_unlock(&class->lock); 1885 } 1886 1887 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1888 list_del(&zspage->list); 1889 lock_zspage(zspage); 1890 1891 class = zspage_class(pool, zspage); 1892 spin_lock(&class->lock); 1893 class_stat_sub(class, ZS_INUSE_RATIO_0, 1); 1894 __free_zspage(pool, class, zspage); 1895 spin_unlock(&class->lock); 1896 } 1897 }; 1898 1899 static void kick_deferred_free(struct zs_pool *pool) 1900 { 1901 schedule_work(&pool->free_work); 1902 } 1903 1904 static void zs_flush_migration(struct zs_pool *pool) 1905 { 1906 flush_work(&pool->free_work); 1907 } 1908 1909 static void init_deferred_free(struct zs_pool *pool) 1910 { 1911 INIT_WORK(&pool->free_work, async_free_zspage); 1912 } 1913 1914 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1915 { 1916 struct zpdesc *zpdesc = get_first_zpdesc(zspage); 1917 1918 do { 1919 WARN_ON(!zpdesc_trylock(zpdesc)); 1920 __zpdesc_set_movable(zpdesc, &zsmalloc_mops); 1921 zpdesc_unlock(zpdesc); 1922 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL); 1923 } 1924 #else 1925 static inline void zs_flush_migration(struct zs_pool *pool) { } 1926 #endif 1927 1928 /* 1929 * 1930 * Based on the number of unused allocated objects calculate 1931 * and return the number of pages that we can free. 1932 */ 1933 static unsigned long zs_can_compact(struct size_class *class) 1934 { 1935 unsigned long obj_wasted; 1936 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 1937 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE); 1938 1939 if (obj_allocated <= obj_used) 1940 return 0; 1941 1942 obj_wasted = obj_allocated - obj_used; 1943 obj_wasted /= class->objs_per_zspage; 1944 1945 return obj_wasted * class->pages_per_zspage; 1946 } 1947 1948 static unsigned long __zs_compact(struct zs_pool *pool, 1949 struct size_class *class) 1950 { 1951 struct zspage *src_zspage = NULL; 1952 struct zspage *dst_zspage = NULL; 1953 unsigned long pages_freed = 0; 1954 1955 /* 1956 * protect the race between zpage migration and zs_free 1957 * as well as zpage allocation/free 1958 */ 1959 write_lock(&pool->migrate_lock); 1960 spin_lock(&class->lock); 1961 while (zs_can_compact(class)) { 1962 int fg; 1963 1964 if (!dst_zspage) { 1965 dst_zspage = isolate_dst_zspage(class); 1966 if (!dst_zspage) 1967 break; 1968 } 1969 1970 src_zspage = isolate_src_zspage(class); 1971 if (!src_zspage) 1972 break; 1973 1974 migrate_write_lock(src_zspage); 1975 migrate_zspage(pool, src_zspage, dst_zspage); 1976 migrate_write_unlock(src_zspage); 1977 1978 fg = putback_zspage(class, src_zspage); 1979 if (fg == ZS_INUSE_RATIO_0) { 1980 free_zspage(pool, class, src_zspage); 1981 pages_freed += class->pages_per_zspage; 1982 } 1983 src_zspage = NULL; 1984 1985 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 1986 || rwlock_is_contended(&pool->migrate_lock)) { 1987 putback_zspage(class, dst_zspage); 1988 dst_zspage = NULL; 1989 1990 spin_unlock(&class->lock); 1991 write_unlock(&pool->migrate_lock); 1992 cond_resched(); 1993 write_lock(&pool->migrate_lock); 1994 spin_lock(&class->lock); 1995 } 1996 } 1997 1998 if (src_zspage) 1999 putback_zspage(class, src_zspage); 2000 2001 if (dst_zspage) 2002 putback_zspage(class, dst_zspage); 2003 2004 spin_unlock(&class->lock); 2005 write_unlock(&pool->migrate_lock); 2006 2007 return pages_freed; 2008 } 2009 2010 unsigned long zs_compact(struct zs_pool *pool) 2011 { 2012 int i; 2013 struct size_class *class; 2014 unsigned long pages_freed = 0; 2015 2016 /* 2017 * Pool compaction is performed under pool->migrate_lock so it is basically 2018 * single-threaded. Having more than one thread in __zs_compact() 2019 * will increase pool->migrate_lock contention, which will impact other 2020 * zsmalloc operations that need pool->migrate_lock. 2021 */ 2022 if (atomic_xchg(&pool->compaction_in_progress, 1)) 2023 return 0; 2024 2025 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2026 class = pool->size_class[i]; 2027 if (class->index != i) 2028 continue; 2029 pages_freed += __zs_compact(pool, class); 2030 } 2031 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2032 atomic_set(&pool->compaction_in_progress, 0); 2033 2034 return pages_freed; 2035 } 2036 EXPORT_SYMBOL_GPL(zs_compact); 2037 2038 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2039 { 2040 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2041 } 2042 EXPORT_SYMBOL_GPL(zs_pool_stats); 2043 2044 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2045 struct shrink_control *sc) 2046 { 2047 unsigned long pages_freed; 2048 struct zs_pool *pool = shrinker->private_data; 2049 2050 /* 2051 * Compact classes and calculate compaction delta. 2052 * Can run concurrently with a manually triggered 2053 * (by user) compaction. 2054 */ 2055 pages_freed = zs_compact(pool); 2056 2057 return pages_freed ? pages_freed : SHRINK_STOP; 2058 } 2059 2060 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2061 struct shrink_control *sc) 2062 { 2063 int i; 2064 struct size_class *class; 2065 unsigned long pages_to_free = 0; 2066 struct zs_pool *pool = shrinker->private_data; 2067 2068 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2069 class = pool->size_class[i]; 2070 if (class->index != i) 2071 continue; 2072 2073 pages_to_free += zs_can_compact(class); 2074 } 2075 2076 return pages_to_free; 2077 } 2078 2079 static void zs_unregister_shrinker(struct zs_pool *pool) 2080 { 2081 shrinker_free(pool->shrinker); 2082 } 2083 2084 static int zs_register_shrinker(struct zs_pool *pool) 2085 { 2086 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); 2087 if (!pool->shrinker) 2088 return -ENOMEM; 2089 2090 pool->shrinker->scan_objects = zs_shrinker_scan; 2091 pool->shrinker->count_objects = zs_shrinker_count; 2092 pool->shrinker->batch = 0; 2093 pool->shrinker->private_data = pool; 2094 2095 shrinker_register(pool->shrinker); 2096 2097 return 0; 2098 } 2099 2100 static int calculate_zspage_chain_size(int class_size) 2101 { 2102 int i, min_waste = INT_MAX; 2103 int chain_size = 1; 2104 2105 if (is_power_of_2(class_size)) 2106 return chain_size; 2107 2108 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2109 int waste; 2110 2111 waste = (i * PAGE_SIZE) % class_size; 2112 if (waste < min_waste) { 2113 min_waste = waste; 2114 chain_size = i; 2115 } 2116 } 2117 2118 return chain_size; 2119 } 2120 2121 /** 2122 * zs_create_pool - Creates an allocation pool to work from. 2123 * @name: pool name to be created 2124 * 2125 * This function must be called before anything when using 2126 * the zsmalloc allocator. 2127 * 2128 * On success, a pointer to the newly created pool is returned, 2129 * otherwise NULL. 2130 */ 2131 struct zs_pool *zs_create_pool(const char *name) 2132 { 2133 int i; 2134 struct zs_pool *pool; 2135 struct size_class *prev_class = NULL; 2136 2137 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2138 if (!pool) 2139 return NULL; 2140 2141 init_deferred_free(pool); 2142 rwlock_init(&pool->migrate_lock); 2143 atomic_set(&pool->compaction_in_progress, 0); 2144 2145 pool->name = kstrdup(name, GFP_KERNEL); 2146 if (!pool->name) 2147 goto err; 2148 2149 if (create_cache(pool)) 2150 goto err; 2151 2152 /* 2153 * Iterate reversely, because, size of size_class that we want to use 2154 * for merging should be larger or equal to current size. 2155 */ 2156 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2157 int size; 2158 int pages_per_zspage; 2159 int objs_per_zspage; 2160 struct size_class *class; 2161 int fullness; 2162 2163 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2164 if (size > ZS_MAX_ALLOC_SIZE) 2165 size = ZS_MAX_ALLOC_SIZE; 2166 pages_per_zspage = calculate_zspage_chain_size(size); 2167 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2168 2169 /* 2170 * We iterate from biggest down to smallest classes, 2171 * so huge_class_size holds the size of the first huge 2172 * class. Any object bigger than or equal to that will 2173 * endup in the huge class. 2174 */ 2175 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2176 !huge_class_size) { 2177 huge_class_size = size; 2178 /* 2179 * The object uses ZS_HANDLE_SIZE bytes to store the 2180 * handle. We need to subtract it, because zs_malloc() 2181 * unconditionally adds handle size before it performs 2182 * size class search - so object may be smaller than 2183 * huge class size, yet it still can end up in the huge 2184 * class because it grows by ZS_HANDLE_SIZE extra bytes 2185 * right before class lookup. 2186 */ 2187 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2188 } 2189 2190 /* 2191 * size_class is used for normal zsmalloc operation such 2192 * as alloc/free for that size. Although it is natural that we 2193 * have one size_class for each size, there is a chance that we 2194 * can get more memory utilization if we use one size_class for 2195 * many different sizes whose size_class have same 2196 * characteristics. So, we makes size_class point to 2197 * previous size_class if possible. 2198 */ 2199 if (prev_class) { 2200 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2201 pool->size_class[i] = prev_class; 2202 continue; 2203 } 2204 } 2205 2206 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2207 if (!class) 2208 goto err; 2209 2210 class->size = size; 2211 class->index = i; 2212 class->pages_per_zspage = pages_per_zspage; 2213 class->objs_per_zspage = objs_per_zspage; 2214 spin_lock_init(&class->lock); 2215 pool->size_class[i] = class; 2216 2217 fullness = ZS_INUSE_RATIO_0; 2218 while (fullness < NR_FULLNESS_GROUPS) { 2219 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2220 fullness++; 2221 } 2222 2223 prev_class = class; 2224 } 2225 2226 /* debug only, don't abort if it fails */ 2227 zs_pool_stat_create(pool, name); 2228 2229 /* 2230 * Not critical since shrinker is only used to trigger internal 2231 * defragmentation of the pool which is pretty optional thing. If 2232 * registration fails we still can use the pool normally and user can 2233 * trigger compaction manually. Thus, ignore return code. 2234 */ 2235 zs_register_shrinker(pool); 2236 2237 return pool; 2238 2239 err: 2240 zs_destroy_pool(pool); 2241 return NULL; 2242 } 2243 EXPORT_SYMBOL_GPL(zs_create_pool); 2244 2245 void zs_destroy_pool(struct zs_pool *pool) 2246 { 2247 int i; 2248 2249 zs_unregister_shrinker(pool); 2250 zs_flush_migration(pool); 2251 zs_pool_stat_destroy(pool); 2252 2253 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2254 int fg; 2255 struct size_class *class = pool->size_class[i]; 2256 2257 if (!class) 2258 continue; 2259 2260 if (class->index != i) 2261 continue; 2262 2263 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2264 if (list_empty(&class->fullness_list[fg])) 2265 continue; 2266 2267 pr_err("Class-%d fullness group %d is not empty\n", 2268 class->size, fg); 2269 } 2270 kfree(class); 2271 } 2272 2273 destroy_cache(pool); 2274 kfree(pool->name); 2275 kfree(pool); 2276 } 2277 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2278 2279 static int __init zs_init(void) 2280 { 2281 int ret; 2282 2283 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2284 zs_cpu_prepare, zs_cpu_dead); 2285 if (ret) 2286 goto out; 2287 2288 #ifdef CONFIG_ZPOOL 2289 zpool_register_driver(&zs_zpool_driver); 2290 #endif 2291 2292 zs_stat_init(); 2293 2294 return 0; 2295 2296 out: 2297 return ret; 2298 } 2299 2300 static void __exit zs_exit(void) 2301 { 2302 #ifdef CONFIG_ZPOOL 2303 zpool_unregister_driver(&zs_zpool_driver); 2304 #endif 2305 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2306 2307 zs_stat_exit(); 2308 } 2309 2310 module_init(zs_init); 2311 module_exit(zs_exit); 2312 2313 MODULE_LICENSE("Dual BSD/GPL"); 2314 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2315 MODULE_DESCRIPTION("zsmalloc memory allocator"); 2316