xref: /linux/mm/zsmalloc.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * zsmalloc memory allocator
5  *
6  * Copyright (C) 2011  Nitin Gupta
7  * Copyright (C) 2012, 2013 Minchan Kim
8  *
9  * This code is released using a dual license strategy: BSD/GPL
10  * You can choose the license that better fits your requirements.
11  *
12  * Released under the terms of 3-clause BSD License
13  * Released under the terms of GNU General Public License Version 2.0
14  */
15 
16 /*
17  * Following is how we use various fields and flags of underlying
18  * struct page(s) to form a zspage.
19  *
20  * Usage of struct page fields:
21  *	page->private: points to zspage
22  *	page->index: links together all component pages of a zspage
23  *		For the huge page, this is always 0, so we use this field
24  *		to store handle.
25  *	page->page_type: PGTY_zsmalloc, lower 24 bits locate the first object
26  *		offset in a subpage of a zspage
27  *
28  * Usage of struct page flags:
29  *	PG_private: identifies the first component page
30  *	PG_owner_priv_1: identifies the huge component page
31  *
32  */
33 
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 
36 /*
37  * lock ordering:
38  *	page_lock
39  *	pool->migrate_lock
40  *	class->lock
41  *	zspage->lock
42  */
43 
44 #include <linux/module.h>
45 #include <linux/kernel.h>
46 #include <linux/sched.h>
47 #include <linux/bitops.h>
48 #include <linux/errno.h>
49 #include <linux/highmem.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/pgtable.h>
53 #include <asm/tlbflush.h>
54 #include <linux/cpumask.h>
55 #include <linux/cpu.h>
56 #include <linux/vmalloc.h>
57 #include <linux/preempt.h>
58 #include <linux/spinlock.h>
59 #include <linux/sprintf.h>
60 #include <linux/shrinker.h>
61 #include <linux/types.h>
62 #include <linux/debugfs.h>
63 #include <linux/zsmalloc.h>
64 #include <linux/zpool.h>
65 #include <linux/migrate.h>
66 #include <linux/wait.h>
67 #include <linux/pagemap.h>
68 #include <linux/fs.h>
69 #include <linux/local_lock.h>
70 
71 #define ZSPAGE_MAGIC	0x58
72 
73 /*
74  * This must be power of 2 and greater than or equal to sizeof(link_free).
75  * These two conditions ensure that any 'struct link_free' itself doesn't
76  * span more than 1 page which avoids complex case of mapping 2 pages simply
77  * to restore link_free pointer values.
78  */
79 #define ZS_ALIGN		8
80 
81 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
82 
83 /*
84  * Object location (<PFN>, <obj_idx>) is encoded as
85  * a single (unsigned long) handle value.
86  *
87  * Note that object index <obj_idx> starts from 0.
88  *
89  * This is made more complicated by various memory models and PAE.
90  */
91 
92 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
93 #ifdef MAX_PHYSMEM_BITS
94 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
95 #else
96 /*
97  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
98  * be PAGE_SHIFT
99  */
100 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
101 #endif
102 #endif
103 
104 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
105 
106 /*
107  * Head in allocated object should have OBJ_ALLOCATED_TAG
108  * to identify the object was allocated or not.
109  * It's okay to add the status bit in the least bit because
110  * header keeps handle which is 4byte-aligned address so we
111  * have room for two bit at least.
112  */
113 #define OBJ_ALLOCATED_TAG 1
114 
115 #define OBJ_TAG_BITS	1
116 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
117 
118 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
119 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 
121 #define HUGE_BITS	1
122 #define FULLNESS_BITS	4
123 #define CLASS_BITS	8
124 #define MAGIC_VAL_BITS	8
125 
126 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
127 
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
133 
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 				      ZS_SIZE_CLASS_DELTA) + 1)
150 
151 /*
152  * Pages are distinguished by the ratio of used memory (that is the ratio
153  * of ->inuse objects to all objects that page can store). For example,
154  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
155  *
156  * The number of fullness groups is not random. It allows us to keep
157  * difference between the least busy page in the group (minimum permitted
158  * number of ->inuse objects) and the most busy page (maximum permitted
159  * number of ->inuse objects) at a reasonable value.
160  */
161 enum fullness_group {
162 	ZS_INUSE_RATIO_0,
163 	ZS_INUSE_RATIO_10,
164 	/* NOTE: 8 more fullness groups here */
165 	ZS_INUSE_RATIO_99       = 10,
166 	ZS_INUSE_RATIO_100,
167 	NR_FULLNESS_GROUPS,
168 };
169 
170 enum class_stat_type {
171 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
172 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
173 	ZS_OBJS_INUSE,
174 	NR_CLASS_STAT_TYPES,
175 };
176 
177 struct zs_size_stat {
178 	unsigned long objs[NR_CLASS_STAT_TYPES];
179 };
180 
181 #ifdef CONFIG_ZSMALLOC_STAT
182 static struct dentry *zs_stat_root;
183 #endif
184 
185 static size_t huge_class_size;
186 
187 struct size_class {
188 	spinlock_t lock;
189 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
190 	/*
191 	 * Size of objects stored in this class. Must be multiple
192 	 * of ZS_ALIGN.
193 	 */
194 	int size;
195 	int objs_per_zspage;
196 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
197 	int pages_per_zspage;
198 
199 	unsigned int index;
200 	struct zs_size_stat stats;
201 };
202 
203 /*
204  * Placed within free objects to form a singly linked list.
205  * For every zspage, zspage->freeobj gives head of this list.
206  *
207  * This must be power of 2 and less than or equal to ZS_ALIGN
208  */
209 struct link_free {
210 	union {
211 		/*
212 		 * Free object index;
213 		 * It's valid for non-allocated object
214 		 */
215 		unsigned long next;
216 		/*
217 		 * Handle of allocated object.
218 		 */
219 		unsigned long handle;
220 	};
221 };
222 
223 struct zs_pool {
224 	const char *name;
225 
226 	struct size_class *size_class[ZS_SIZE_CLASSES];
227 	struct kmem_cache *handle_cachep;
228 	struct kmem_cache *zspage_cachep;
229 
230 	atomic_long_t pages_allocated;
231 
232 	struct zs_pool_stats stats;
233 
234 	/* Compact classes */
235 	struct shrinker *shrinker;
236 
237 #ifdef CONFIG_ZSMALLOC_STAT
238 	struct dentry *stat_dentry;
239 #endif
240 #ifdef CONFIG_COMPACTION
241 	struct work_struct free_work;
242 #endif
243 	/* protect page/zspage migration */
244 	rwlock_t migrate_lock;
245 	atomic_t compaction_in_progress;
246 };
247 
248 struct zspage {
249 	struct {
250 		unsigned int huge:HUGE_BITS;
251 		unsigned int fullness:FULLNESS_BITS;
252 		unsigned int class:CLASS_BITS + 1;
253 		unsigned int magic:MAGIC_VAL_BITS;
254 	};
255 	unsigned int inuse;
256 	unsigned int freeobj;
257 	struct page *first_page;
258 	struct list_head list; /* fullness list */
259 	struct zs_pool *pool;
260 	rwlock_t lock;
261 };
262 
263 struct mapping_area {
264 	local_lock_t lock;
265 	char *vm_buf; /* copy buffer for objects that span pages */
266 	char *vm_addr; /* address of kmap_local_page()'ed pages */
267 	enum zs_mapmode vm_mm; /* mapping mode */
268 };
269 
270 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
271 static void SetZsHugePage(struct zspage *zspage)
272 {
273 	zspage->huge = 1;
274 }
275 
276 static bool ZsHugePage(struct zspage *zspage)
277 {
278 	return zspage->huge;
279 }
280 
281 static void migrate_lock_init(struct zspage *zspage);
282 static void migrate_read_lock(struct zspage *zspage);
283 static void migrate_read_unlock(struct zspage *zspage);
284 static void migrate_write_lock(struct zspage *zspage);
285 static void migrate_write_unlock(struct zspage *zspage);
286 
287 #ifdef CONFIG_COMPACTION
288 static void kick_deferred_free(struct zs_pool *pool);
289 static void init_deferred_free(struct zs_pool *pool);
290 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
291 #else
292 static void kick_deferred_free(struct zs_pool *pool) {}
293 static void init_deferred_free(struct zs_pool *pool) {}
294 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
295 #endif
296 
297 static int create_cache(struct zs_pool *pool)
298 {
299 	char *name;
300 
301 	name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
302 	if (!name)
303 		return -ENOMEM;
304 	pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
305 						0, 0, NULL);
306 	kfree(name);
307 	if (!pool->handle_cachep)
308 		return -EINVAL;
309 
310 	name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
311 	if (!name)
312 		return -ENOMEM;
313 	pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
314 						0, 0, NULL);
315 	kfree(name);
316 	if (!pool->zspage_cachep) {
317 		kmem_cache_destroy(pool->handle_cachep);
318 		pool->handle_cachep = NULL;
319 		return -EINVAL;
320 	}
321 
322 	return 0;
323 }
324 
325 static void destroy_cache(struct zs_pool *pool)
326 {
327 	kmem_cache_destroy(pool->handle_cachep);
328 	kmem_cache_destroy(pool->zspage_cachep);
329 }
330 
331 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
332 {
333 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
334 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
335 }
336 
337 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
338 {
339 	kmem_cache_free(pool->handle_cachep, (void *)handle);
340 }
341 
342 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
343 {
344 	return kmem_cache_zalloc(pool->zspage_cachep,
345 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
346 }
347 
348 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
349 {
350 	kmem_cache_free(pool->zspage_cachep, zspage);
351 }
352 
353 /* class->lock(which owns the handle) synchronizes races */
354 static void record_obj(unsigned long handle, unsigned long obj)
355 {
356 	*(unsigned long *)handle = obj;
357 }
358 
359 /* zpool driver */
360 
361 #ifdef CONFIG_ZPOOL
362 
363 static void *zs_zpool_create(const char *name, gfp_t gfp)
364 {
365 	/*
366 	 * Ignore global gfp flags: zs_malloc() may be invoked from
367 	 * different contexts and its caller must provide a valid
368 	 * gfp mask.
369 	 */
370 	return zs_create_pool(name);
371 }
372 
373 static void zs_zpool_destroy(void *pool)
374 {
375 	zs_destroy_pool(pool);
376 }
377 
378 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
379 			unsigned long *handle)
380 {
381 	*handle = zs_malloc(pool, size, gfp);
382 
383 	if (IS_ERR_VALUE(*handle))
384 		return PTR_ERR((void *)*handle);
385 	return 0;
386 }
387 static void zs_zpool_free(void *pool, unsigned long handle)
388 {
389 	zs_free(pool, handle);
390 }
391 
392 static void *zs_zpool_map(void *pool, unsigned long handle,
393 			enum zpool_mapmode mm)
394 {
395 	enum zs_mapmode zs_mm;
396 
397 	switch (mm) {
398 	case ZPOOL_MM_RO:
399 		zs_mm = ZS_MM_RO;
400 		break;
401 	case ZPOOL_MM_WO:
402 		zs_mm = ZS_MM_WO;
403 		break;
404 	case ZPOOL_MM_RW:
405 	default:
406 		zs_mm = ZS_MM_RW;
407 		break;
408 	}
409 
410 	return zs_map_object(pool, handle, zs_mm);
411 }
412 static void zs_zpool_unmap(void *pool, unsigned long handle)
413 {
414 	zs_unmap_object(pool, handle);
415 }
416 
417 static u64 zs_zpool_total_pages(void *pool)
418 {
419 	return zs_get_total_pages(pool);
420 }
421 
422 static struct zpool_driver zs_zpool_driver = {
423 	.type =			  "zsmalloc",
424 	.owner =		  THIS_MODULE,
425 	.create =		  zs_zpool_create,
426 	.destroy =		  zs_zpool_destroy,
427 	.malloc_support_movable = true,
428 	.malloc =		  zs_zpool_malloc,
429 	.free =			  zs_zpool_free,
430 	.map =			  zs_zpool_map,
431 	.unmap =		  zs_zpool_unmap,
432 	.total_pages =		  zs_zpool_total_pages,
433 };
434 
435 MODULE_ALIAS("zpool-zsmalloc");
436 #endif /* CONFIG_ZPOOL */
437 
438 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
439 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
440 	.lock	= INIT_LOCAL_LOCK(lock),
441 };
442 
443 static __maybe_unused int is_first_page(struct page *page)
444 {
445 	return PagePrivate(page);
446 }
447 
448 /* Protected by class->lock */
449 static inline int get_zspage_inuse(struct zspage *zspage)
450 {
451 	return zspage->inuse;
452 }
453 
454 
455 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
456 {
457 	zspage->inuse += val;
458 }
459 
460 static inline struct page *get_first_page(struct zspage *zspage)
461 {
462 	struct page *first_page = zspage->first_page;
463 
464 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
465 	return first_page;
466 }
467 
468 #define FIRST_OBJ_PAGE_TYPE_MASK	0xffffff
469 
470 static inline unsigned int get_first_obj_offset(struct page *page)
471 {
472 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
473 	return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
474 }
475 
476 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
477 {
478 	/* With 24 bits available, we can support offsets into 16 MiB pages. */
479 	BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
480 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
481 	VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
482 	page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
483 	page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
484 }
485 
486 static inline unsigned int get_freeobj(struct zspage *zspage)
487 {
488 	return zspage->freeobj;
489 }
490 
491 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
492 {
493 	zspage->freeobj = obj;
494 }
495 
496 static struct size_class *zspage_class(struct zs_pool *pool,
497 				       struct zspage *zspage)
498 {
499 	return pool->size_class[zspage->class];
500 }
501 
502 /*
503  * zsmalloc divides the pool into various size classes where each
504  * class maintains a list of zspages where each zspage is divided
505  * into equal sized chunks. Each allocation falls into one of these
506  * classes depending on its size. This function returns index of the
507  * size class which has chunk size big enough to hold the given size.
508  */
509 static int get_size_class_index(int size)
510 {
511 	int idx = 0;
512 
513 	if (likely(size > ZS_MIN_ALLOC_SIZE))
514 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
515 				ZS_SIZE_CLASS_DELTA);
516 
517 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
518 }
519 
520 static inline void class_stat_add(struct size_class *class, int type,
521 				  unsigned long cnt)
522 {
523 	class->stats.objs[type] += cnt;
524 }
525 
526 static inline void class_stat_sub(struct size_class *class, int type,
527 				  unsigned long cnt)
528 {
529 	class->stats.objs[type] -= cnt;
530 }
531 
532 static inline unsigned long class_stat_read(struct size_class *class, int type)
533 {
534 	return class->stats.objs[type];
535 }
536 
537 #ifdef CONFIG_ZSMALLOC_STAT
538 
539 static void __init zs_stat_init(void)
540 {
541 	if (!debugfs_initialized()) {
542 		pr_warn("debugfs not available, stat dir not created\n");
543 		return;
544 	}
545 
546 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
547 }
548 
549 static void __exit zs_stat_exit(void)
550 {
551 	debugfs_remove_recursive(zs_stat_root);
552 }
553 
554 static unsigned long zs_can_compact(struct size_class *class);
555 
556 static int zs_stats_size_show(struct seq_file *s, void *v)
557 {
558 	int i, fg;
559 	struct zs_pool *pool = s->private;
560 	struct size_class *class;
561 	int objs_per_zspage;
562 	unsigned long obj_allocated, obj_used, pages_used, freeable;
563 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
564 	unsigned long total_freeable = 0;
565 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
566 
567 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
568 			"class", "size", "10%", "20%", "30%", "40%",
569 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
570 			"obj_allocated", "obj_used", "pages_used",
571 			"pages_per_zspage", "freeable");
572 
573 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
574 
575 		class = pool->size_class[i];
576 
577 		if (class->index != i)
578 			continue;
579 
580 		spin_lock(&class->lock);
581 
582 		seq_printf(s, " %5u %5u ", i, class->size);
583 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
584 			inuse_totals[fg] += class_stat_read(class, fg);
585 			seq_printf(s, "%9lu ", class_stat_read(class, fg));
586 		}
587 
588 		obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
589 		obj_used = class_stat_read(class, ZS_OBJS_INUSE);
590 		freeable = zs_can_compact(class);
591 		spin_unlock(&class->lock);
592 
593 		objs_per_zspage = class->objs_per_zspage;
594 		pages_used = obj_allocated / objs_per_zspage *
595 				class->pages_per_zspage;
596 
597 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
598 			   obj_allocated, obj_used, pages_used,
599 			   class->pages_per_zspage, freeable);
600 
601 		total_objs += obj_allocated;
602 		total_used_objs += obj_used;
603 		total_pages += pages_used;
604 		total_freeable += freeable;
605 	}
606 
607 	seq_puts(s, "\n");
608 	seq_printf(s, " %5s %5s ", "Total", "");
609 
610 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
611 		seq_printf(s, "%9lu ", inuse_totals[fg]);
612 
613 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
614 		   total_objs, total_used_objs, total_pages, "",
615 		   total_freeable);
616 
617 	return 0;
618 }
619 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
620 
621 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
622 {
623 	if (!zs_stat_root) {
624 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
625 		return;
626 	}
627 
628 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
629 
630 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
631 			    &zs_stats_size_fops);
632 }
633 
634 static void zs_pool_stat_destroy(struct zs_pool *pool)
635 {
636 	debugfs_remove_recursive(pool->stat_dentry);
637 }
638 
639 #else /* CONFIG_ZSMALLOC_STAT */
640 static void __init zs_stat_init(void)
641 {
642 }
643 
644 static void __exit zs_stat_exit(void)
645 {
646 }
647 
648 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
649 {
650 }
651 
652 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
653 {
654 }
655 #endif
656 
657 
658 /*
659  * For each size class, zspages are divided into different groups
660  * depending on their usage ratio. This function returns fullness
661  * status of the given page.
662  */
663 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
664 {
665 	int inuse, objs_per_zspage, ratio;
666 
667 	inuse = get_zspage_inuse(zspage);
668 	objs_per_zspage = class->objs_per_zspage;
669 
670 	if (inuse == 0)
671 		return ZS_INUSE_RATIO_0;
672 	if (inuse == objs_per_zspage)
673 		return ZS_INUSE_RATIO_100;
674 
675 	ratio = 100 * inuse / objs_per_zspage;
676 	/*
677 	 * Take integer division into consideration: a page with one inuse
678 	 * object out of 127 possible, will end up having 0 usage ratio,
679 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
680 	 */
681 	return ratio / 10 + 1;
682 }
683 
684 /*
685  * Each size class maintains various freelists and zspages are assigned
686  * to one of these freelists based on the number of live objects they
687  * have. This functions inserts the given zspage into the freelist
688  * identified by <class, fullness_group>.
689  */
690 static void insert_zspage(struct size_class *class,
691 				struct zspage *zspage,
692 				int fullness)
693 {
694 	class_stat_add(class, fullness, 1);
695 	list_add(&zspage->list, &class->fullness_list[fullness]);
696 	zspage->fullness = fullness;
697 }
698 
699 /*
700  * This function removes the given zspage from the freelist identified
701  * by <class, fullness_group>.
702  */
703 static void remove_zspage(struct size_class *class, struct zspage *zspage)
704 {
705 	int fullness = zspage->fullness;
706 
707 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
708 
709 	list_del_init(&zspage->list);
710 	class_stat_sub(class, fullness, 1);
711 }
712 
713 /*
714  * Each size class maintains zspages in different fullness groups depending
715  * on the number of live objects they contain. When allocating or freeing
716  * objects, the fullness status of the page can change, for instance, from
717  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
718  * checks if such a status change has occurred for the given page and
719  * accordingly moves the page from the list of the old fullness group to that
720  * of the new fullness group.
721  */
722 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
723 {
724 	int newfg;
725 
726 	newfg = get_fullness_group(class, zspage);
727 	if (newfg == zspage->fullness)
728 		goto out;
729 
730 	remove_zspage(class, zspage);
731 	insert_zspage(class, zspage, newfg);
732 out:
733 	return newfg;
734 }
735 
736 static struct zspage *get_zspage(struct page *page)
737 {
738 	struct zspage *zspage = (struct zspage *)page_private(page);
739 
740 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
741 	return zspage;
742 }
743 
744 static struct page *get_next_page(struct page *page)
745 {
746 	struct zspage *zspage = get_zspage(page);
747 
748 	if (unlikely(ZsHugePage(zspage)))
749 		return NULL;
750 
751 	return (struct page *)page->index;
752 }
753 
754 /**
755  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
756  * @obj: the encoded object value
757  * @page: page object resides in zspage
758  * @obj_idx: object index
759  */
760 static void obj_to_location(unsigned long obj, struct page **page,
761 				unsigned int *obj_idx)
762 {
763 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
764 	*obj_idx = (obj & OBJ_INDEX_MASK);
765 }
766 
767 static void obj_to_page(unsigned long obj, struct page **page)
768 {
769 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
770 }
771 
772 /**
773  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
774  * @page: page object resides in zspage
775  * @obj_idx: object index
776  */
777 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
778 {
779 	unsigned long obj;
780 
781 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
782 	obj |= obj_idx & OBJ_INDEX_MASK;
783 
784 	return obj;
785 }
786 
787 static unsigned long handle_to_obj(unsigned long handle)
788 {
789 	return *(unsigned long *)handle;
790 }
791 
792 static inline bool obj_allocated(struct page *page, void *obj,
793 				 unsigned long *phandle)
794 {
795 	unsigned long handle;
796 	struct zspage *zspage = get_zspage(page);
797 
798 	if (unlikely(ZsHugePage(zspage))) {
799 		VM_BUG_ON_PAGE(!is_first_page(page), page);
800 		handle = page->index;
801 	} else
802 		handle = *(unsigned long *)obj;
803 
804 	if (!(handle & OBJ_ALLOCATED_TAG))
805 		return false;
806 
807 	/* Clear all tags before returning the handle */
808 	*phandle = handle & ~OBJ_TAG_MASK;
809 	return true;
810 }
811 
812 static void reset_page(struct page *page)
813 {
814 	__ClearPageMovable(page);
815 	ClearPagePrivate(page);
816 	set_page_private(page, 0);
817 	page->index = 0;
818 	__ClearPageZsmalloc(page);
819 }
820 
821 static int trylock_zspage(struct zspage *zspage)
822 {
823 	struct page *cursor, *fail;
824 
825 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
826 					get_next_page(cursor)) {
827 		if (!trylock_page(cursor)) {
828 			fail = cursor;
829 			goto unlock;
830 		}
831 	}
832 
833 	return 1;
834 unlock:
835 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
836 					get_next_page(cursor))
837 		unlock_page(cursor);
838 
839 	return 0;
840 }
841 
842 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
843 				struct zspage *zspage)
844 {
845 	struct page *page, *next;
846 
847 	assert_spin_locked(&class->lock);
848 
849 	VM_BUG_ON(get_zspage_inuse(zspage));
850 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
851 
852 	next = page = get_first_page(zspage);
853 	do {
854 		VM_BUG_ON_PAGE(!PageLocked(page), page);
855 		next = get_next_page(page);
856 		reset_page(page);
857 		unlock_page(page);
858 		dec_zone_page_state(page, NR_ZSPAGES);
859 		put_page(page);
860 		page = next;
861 	} while (page != NULL);
862 
863 	cache_free_zspage(pool, zspage);
864 
865 	class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
866 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
867 }
868 
869 static void free_zspage(struct zs_pool *pool, struct size_class *class,
870 				struct zspage *zspage)
871 {
872 	VM_BUG_ON(get_zspage_inuse(zspage));
873 	VM_BUG_ON(list_empty(&zspage->list));
874 
875 	/*
876 	 * Since zs_free couldn't be sleepable, this function cannot call
877 	 * lock_page. The page locks trylock_zspage got will be released
878 	 * by __free_zspage.
879 	 */
880 	if (!trylock_zspage(zspage)) {
881 		kick_deferred_free(pool);
882 		return;
883 	}
884 
885 	remove_zspage(class, zspage);
886 	__free_zspage(pool, class, zspage);
887 }
888 
889 /* Initialize a newly allocated zspage */
890 static void init_zspage(struct size_class *class, struct zspage *zspage)
891 {
892 	unsigned int freeobj = 1;
893 	unsigned long off = 0;
894 	struct page *page = get_first_page(zspage);
895 
896 	while (page) {
897 		struct page *next_page;
898 		struct link_free *link;
899 		void *vaddr;
900 
901 		set_first_obj_offset(page, off);
902 
903 		vaddr = kmap_local_page(page);
904 		link = (struct link_free *)vaddr + off / sizeof(*link);
905 
906 		while ((off += class->size) < PAGE_SIZE) {
907 			link->next = freeobj++ << OBJ_TAG_BITS;
908 			link += class->size / sizeof(*link);
909 		}
910 
911 		/*
912 		 * We now come to the last (full or partial) object on this
913 		 * page, which must point to the first object on the next
914 		 * page (if present)
915 		 */
916 		next_page = get_next_page(page);
917 		if (next_page) {
918 			link->next = freeobj++ << OBJ_TAG_BITS;
919 		} else {
920 			/*
921 			 * Reset OBJ_TAG_BITS bit to last link to tell
922 			 * whether it's allocated object or not.
923 			 */
924 			link->next = -1UL << OBJ_TAG_BITS;
925 		}
926 		kunmap_local(vaddr);
927 		page = next_page;
928 		off %= PAGE_SIZE;
929 	}
930 
931 	set_freeobj(zspage, 0);
932 }
933 
934 static void create_page_chain(struct size_class *class, struct zspage *zspage,
935 				struct page *pages[])
936 {
937 	int i;
938 	struct page *page;
939 	struct page *prev_page = NULL;
940 	int nr_pages = class->pages_per_zspage;
941 
942 	/*
943 	 * Allocate individual pages and link them together as:
944 	 * 1. all pages are linked together using page->index
945 	 * 2. each sub-page point to zspage using page->private
946 	 *
947 	 * we set PG_private to identify the first page (i.e. no other sub-page
948 	 * has this flag set).
949 	 */
950 	for (i = 0; i < nr_pages; i++) {
951 		page = pages[i];
952 		set_page_private(page, (unsigned long)zspage);
953 		page->index = 0;
954 		if (i == 0) {
955 			zspage->first_page = page;
956 			SetPagePrivate(page);
957 			if (unlikely(class->objs_per_zspage == 1 &&
958 					class->pages_per_zspage == 1))
959 				SetZsHugePage(zspage);
960 		} else {
961 			prev_page->index = (unsigned long)page;
962 		}
963 		prev_page = page;
964 	}
965 }
966 
967 /*
968  * Allocate a zspage for the given size class
969  */
970 static struct zspage *alloc_zspage(struct zs_pool *pool,
971 					struct size_class *class,
972 					gfp_t gfp)
973 {
974 	int i;
975 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
976 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
977 
978 	if (!zspage)
979 		return NULL;
980 
981 	zspage->magic = ZSPAGE_MAGIC;
982 	migrate_lock_init(zspage);
983 
984 	for (i = 0; i < class->pages_per_zspage; i++) {
985 		struct page *page;
986 
987 		page = alloc_page(gfp);
988 		if (!page) {
989 			while (--i >= 0) {
990 				dec_zone_page_state(pages[i], NR_ZSPAGES);
991 				__ClearPageZsmalloc(pages[i]);
992 				__free_page(pages[i]);
993 			}
994 			cache_free_zspage(pool, zspage);
995 			return NULL;
996 		}
997 		__SetPageZsmalloc(page);
998 
999 		inc_zone_page_state(page, NR_ZSPAGES);
1000 		pages[i] = page;
1001 	}
1002 
1003 	create_page_chain(class, zspage, pages);
1004 	init_zspage(class, zspage);
1005 	zspage->pool = pool;
1006 	zspage->class = class->index;
1007 
1008 	return zspage;
1009 }
1010 
1011 static struct zspage *find_get_zspage(struct size_class *class)
1012 {
1013 	int i;
1014 	struct zspage *zspage;
1015 
1016 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1017 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1018 						  struct zspage, list);
1019 		if (zspage)
1020 			break;
1021 	}
1022 
1023 	return zspage;
1024 }
1025 
1026 static inline int __zs_cpu_up(struct mapping_area *area)
1027 {
1028 	/*
1029 	 * Make sure we don't leak memory if a cpu UP notification
1030 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1031 	 */
1032 	if (area->vm_buf)
1033 		return 0;
1034 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1035 	if (!area->vm_buf)
1036 		return -ENOMEM;
1037 	return 0;
1038 }
1039 
1040 static inline void __zs_cpu_down(struct mapping_area *area)
1041 {
1042 	kfree(area->vm_buf);
1043 	area->vm_buf = NULL;
1044 }
1045 
1046 static void *__zs_map_object(struct mapping_area *area,
1047 			struct page *pages[2], int off, int size)
1048 {
1049 	size_t sizes[2];
1050 	char *buf = area->vm_buf;
1051 
1052 	/* disable page faults to match kmap_local_page() return conditions */
1053 	pagefault_disable();
1054 
1055 	/* no read fastpath */
1056 	if (area->vm_mm == ZS_MM_WO)
1057 		goto out;
1058 
1059 	sizes[0] = PAGE_SIZE - off;
1060 	sizes[1] = size - sizes[0];
1061 
1062 	/* copy object to per-cpu buffer */
1063 	memcpy_from_page(buf, pages[0], off, sizes[0]);
1064 	memcpy_from_page(buf + sizes[0], pages[1], 0, sizes[1]);
1065 out:
1066 	return area->vm_buf;
1067 }
1068 
1069 static void __zs_unmap_object(struct mapping_area *area,
1070 			struct page *pages[2], int off, int size)
1071 {
1072 	size_t sizes[2];
1073 	char *buf;
1074 
1075 	/* no write fastpath */
1076 	if (area->vm_mm == ZS_MM_RO)
1077 		goto out;
1078 
1079 	buf = area->vm_buf;
1080 	buf = buf + ZS_HANDLE_SIZE;
1081 	size -= ZS_HANDLE_SIZE;
1082 	off += ZS_HANDLE_SIZE;
1083 
1084 	sizes[0] = PAGE_SIZE - off;
1085 	sizes[1] = size - sizes[0];
1086 
1087 	/* copy per-cpu buffer to object */
1088 	memcpy_to_page(pages[0], off, buf, sizes[0]);
1089 	memcpy_to_page(pages[1], 0, buf + sizes[0], sizes[1]);
1090 
1091 out:
1092 	/* enable page faults to match kunmap_local() return conditions */
1093 	pagefault_enable();
1094 }
1095 
1096 static int zs_cpu_prepare(unsigned int cpu)
1097 {
1098 	struct mapping_area *area;
1099 
1100 	area = &per_cpu(zs_map_area, cpu);
1101 	return __zs_cpu_up(area);
1102 }
1103 
1104 static int zs_cpu_dead(unsigned int cpu)
1105 {
1106 	struct mapping_area *area;
1107 
1108 	area = &per_cpu(zs_map_area, cpu);
1109 	__zs_cpu_down(area);
1110 	return 0;
1111 }
1112 
1113 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1114 					int objs_per_zspage)
1115 {
1116 	if (prev->pages_per_zspage == pages_per_zspage &&
1117 		prev->objs_per_zspage == objs_per_zspage)
1118 		return true;
1119 
1120 	return false;
1121 }
1122 
1123 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1124 {
1125 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1126 }
1127 
1128 static bool zspage_empty(struct zspage *zspage)
1129 {
1130 	return get_zspage_inuse(zspage) == 0;
1131 }
1132 
1133 /**
1134  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1135  * that hold objects of the provided size.
1136  * @pool: zsmalloc pool to use
1137  * @size: object size
1138  *
1139  * Context: Any context.
1140  *
1141  * Return: the index of the zsmalloc &size_class that hold objects of the
1142  * provided size.
1143  */
1144 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1145 {
1146 	struct size_class *class;
1147 
1148 	class = pool->size_class[get_size_class_index(size)];
1149 
1150 	return class->index;
1151 }
1152 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1153 
1154 unsigned long zs_get_total_pages(struct zs_pool *pool)
1155 {
1156 	return atomic_long_read(&pool->pages_allocated);
1157 }
1158 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1159 
1160 /**
1161  * zs_map_object - get address of allocated object from handle.
1162  * @pool: pool from which the object was allocated
1163  * @handle: handle returned from zs_malloc
1164  * @mm: mapping mode to use
1165  *
1166  * Before using an object allocated from zs_malloc, it must be mapped using
1167  * this function. When done with the object, it must be unmapped using
1168  * zs_unmap_object.
1169  *
1170  * Only one object can be mapped per cpu at a time. There is no protection
1171  * against nested mappings.
1172  *
1173  * This function returns with preemption and page faults disabled.
1174  */
1175 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1176 			enum zs_mapmode mm)
1177 {
1178 	struct zspage *zspage;
1179 	struct page *page;
1180 	unsigned long obj, off;
1181 	unsigned int obj_idx;
1182 
1183 	struct size_class *class;
1184 	struct mapping_area *area;
1185 	struct page *pages[2];
1186 	void *ret;
1187 
1188 	/*
1189 	 * Because we use per-cpu mapping areas shared among the
1190 	 * pools/users, we can't allow mapping in interrupt context
1191 	 * because it can corrupt another users mappings.
1192 	 */
1193 	BUG_ON(in_interrupt());
1194 
1195 	/* It guarantees it can get zspage from handle safely */
1196 	read_lock(&pool->migrate_lock);
1197 	obj = handle_to_obj(handle);
1198 	obj_to_location(obj, &page, &obj_idx);
1199 	zspage = get_zspage(page);
1200 
1201 	/*
1202 	 * migration cannot move any zpages in this zspage. Here, class->lock
1203 	 * is too heavy since callers would take some time until they calls
1204 	 * zs_unmap_object API so delegate the locking from class to zspage
1205 	 * which is smaller granularity.
1206 	 */
1207 	migrate_read_lock(zspage);
1208 	read_unlock(&pool->migrate_lock);
1209 
1210 	class = zspage_class(pool, zspage);
1211 	off = offset_in_page(class->size * obj_idx);
1212 
1213 	local_lock(&zs_map_area.lock);
1214 	area = this_cpu_ptr(&zs_map_area);
1215 	area->vm_mm = mm;
1216 	if (off + class->size <= PAGE_SIZE) {
1217 		/* this object is contained entirely within a page */
1218 		area->vm_addr = kmap_local_page(page);
1219 		ret = area->vm_addr + off;
1220 		goto out;
1221 	}
1222 
1223 	/* this object spans two pages */
1224 	pages[0] = page;
1225 	pages[1] = get_next_page(page);
1226 	BUG_ON(!pages[1]);
1227 
1228 	ret = __zs_map_object(area, pages, off, class->size);
1229 out:
1230 	if (likely(!ZsHugePage(zspage)))
1231 		ret += ZS_HANDLE_SIZE;
1232 
1233 	return ret;
1234 }
1235 EXPORT_SYMBOL_GPL(zs_map_object);
1236 
1237 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1238 {
1239 	struct zspage *zspage;
1240 	struct page *page;
1241 	unsigned long obj, off;
1242 	unsigned int obj_idx;
1243 
1244 	struct size_class *class;
1245 	struct mapping_area *area;
1246 
1247 	obj = handle_to_obj(handle);
1248 	obj_to_location(obj, &page, &obj_idx);
1249 	zspage = get_zspage(page);
1250 	class = zspage_class(pool, zspage);
1251 	off = offset_in_page(class->size * obj_idx);
1252 
1253 	area = this_cpu_ptr(&zs_map_area);
1254 	if (off + class->size <= PAGE_SIZE)
1255 		kunmap_local(area->vm_addr);
1256 	else {
1257 		struct page *pages[2];
1258 
1259 		pages[0] = page;
1260 		pages[1] = get_next_page(page);
1261 		BUG_ON(!pages[1]);
1262 
1263 		__zs_unmap_object(area, pages, off, class->size);
1264 	}
1265 	local_unlock(&zs_map_area.lock);
1266 
1267 	migrate_read_unlock(zspage);
1268 }
1269 EXPORT_SYMBOL_GPL(zs_unmap_object);
1270 
1271 /**
1272  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1273  *                        zsmalloc &size_class.
1274  * @pool: zsmalloc pool to use
1275  *
1276  * The function returns the size of the first huge class - any object of equal
1277  * or bigger size will be stored in zspage consisting of a single physical
1278  * page.
1279  *
1280  * Context: Any context.
1281  *
1282  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1283  */
1284 size_t zs_huge_class_size(struct zs_pool *pool)
1285 {
1286 	return huge_class_size;
1287 }
1288 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1289 
1290 static unsigned long obj_malloc(struct zs_pool *pool,
1291 				struct zspage *zspage, unsigned long handle)
1292 {
1293 	int i, nr_page, offset;
1294 	unsigned long obj;
1295 	struct link_free *link;
1296 	struct size_class *class;
1297 
1298 	struct page *m_page;
1299 	unsigned long m_offset;
1300 	void *vaddr;
1301 
1302 	class = pool->size_class[zspage->class];
1303 	obj = get_freeobj(zspage);
1304 
1305 	offset = obj * class->size;
1306 	nr_page = offset >> PAGE_SHIFT;
1307 	m_offset = offset_in_page(offset);
1308 	m_page = get_first_page(zspage);
1309 
1310 	for (i = 0; i < nr_page; i++)
1311 		m_page = get_next_page(m_page);
1312 
1313 	vaddr = kmap_local_page(m_page);
1314 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1315 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1316 	if (likely(!ZsHugePage(zspage)))
1317 		/* record handle in the header of allocated chunk */
1318 		link->handle = handle | OBJ_ALLOCATED_TAG;
1319 	else
1320 		/* record handle to page->index */
1321 		zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1322 
1323 	kunmap_local(vaddr);
1324 	mod_zspage_inuse(zspage, 1);
1325 
1326 	obj = location_to_obj(m_page, obj);
1327 	record_obj(handle, obj);
1328 
1329 	return obj;
1330 }
1331 
1332 
1333 /**
1334  * zs_malloc - Allocate block of given size from pool.
1335  * @pool: pool to allocate from
1336  * @size: size of block to allocate
1337  * @gfp: gfp flags when allocating object
1338  *
1339  * On success, handle to the allocated object is returned,
1340  * otherwise an ERR_PTR().
1341  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1342  */
1343 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1344 {
1345 	unsigned long handle;
1346 	struct size_class *class;
1347 	int newfg;
1348 	struct zspage *zspage;
1349 
1350 	if (unlikely(!size))
1351 		return (unsigned long)ERR_PTR(-EINVAL);
1352 
1353 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1354 		return (unsigned long)ERR_PTR(-ENOSPC);
1355 
1356 	handle = cache_alloc_handle(pool, gfp);
1357 	if (!handle)
1358 		return (unsigned long)ERR_PTR(-ENOMEM);
1359 
1360 	/* extra space in chunk to keep the handle */
1361 	size += ZS_HANDLE_SIZE;
1362 	class = pool->size_class[get_size_class_index(size)];
1363 
1364 	/* class->lock effectively protects the zpage migration */
1365 	spin_lock(&class->lock);
1366 	zspage = find_get_zspage(class);
1367 	if (likely(zspage)) {
1368 		obj_malloc(pool, zspage, handle);
1369 		/* Now move the zspage to another fullness group, if required */
1370 		fix_fullness_group(class, zspage);
1371 		class_stat_add(class, ZS_OBJS_INUSE, 1);
1372 
1373 		goto out;
1374 	}
1375 
1376 	spin_unlock(&class->lock);
1377 
1378 	zspage = alloc_zspage(pool, class, gfp);
1379 	if (!zspage) {
1380 		cache_free_handle(pool, handle);
1381 		return (unsigned long)ERR_PTR(-ENOMEM);
1382 	}
1383 
1384 	spin_lock(&class->lock);
1385 	obj_malloc(pool, zspage, handle);
1386 	newfg = get_fullness_group(class, zspage);
1387 	insert_zspage(class, zspage, newfg);
1388 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1389 	class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1390 	class_stat_add(class, ZS_OBJS_INUSE, 1);
1391 
1392 	/* We completely set up zspage so mark them as movable */
1393 	SetZsPageMovable(pool, zspage);
1394 out:
1395 	spin_unlock(&class->lock);
1396 
1397 	return handle;
1398 }
1399 EXPORT_SYMBOL_GPL(zs_malloc);
1400 
1401 static void obj_free(int class_size, unsigned long obj)
1402 {
1403 	struct link_free *link;
1404 	struct zspage *zspage;
1405 	struct page *f_page;
1406 	unsigned long f_offset;
1407 	unsigned int f_objidx;
1408 	void *vaddr;
1409 
1410 	obj_to_location(obj, &f_page, &f_objidx);
1411 	f_offset = offset_in_page(class_size * f_objidx);
1412 	zspage = get_zspage(f_page);
1413 
1414 	vaddr = kmap_local_page(f_page);
1415 	link = (struct link_free *)(vaddr + f_offset);
1416 
1417 	/* Insert this object in containing zspage's freelist */
1418 	if (likely(!ZsHugePage(zspage)))
1419 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1420 	else
1421 		f_page->index = 0;
1422 	set_freeobj(zspage, f_objidx);
1423 
1424 	kunmap_local(vaddr);
1425 	mod_zspage_inuse(zspage, -1);
1426 }
1427 
1428 void zs_free(struct zs_pool *pool, unsigned long handle)
1429 {
1430 	struct zspage *zspage;
1431 	struct page *f_page;
1432 	unsigned long obj;
1433 	struct size_class *class;
1434 	int fullness;
1435 
1436 	if (IS_ERR_OR_NULL((void *)handle))
1437 		return;
1438 
1439 	/*
1440 	 * The pool->migrate_lock protects the race with zpage's migration
1441 	 * so it's safe to get the page from handle.
1442 	 */
1443 	read_lock(&pool->migrate_lock);
1444 	obj = handle_to_obj(handle);
1445 	obj_to_page(obj, &f_page);
1446 	zspage = get_zspage(f_page);
1447 	class = zspage_class(pool, zspage);
1448 	spin_lock(&class->lock);
1449 	read_unlock(&pool->migrate_lock);
1450 
1451 	class_stat_sub(class, ZS_OBJS_INUSE, 1);
1452 	obj_free(class->size, obj);
1453 
1454 	fullness = fix_fullness_group(class, zspage);
1455 	if (fullness == ZS_INUSE_RATIO_0)
1456 		free_zspage(pool, class, zspage);
1457 
1458 	spin_unlock(&class->lock);
1459 	cache_free_handle(pool, handle);
1460 }
1461 EXPORT_SYMBOL_GPL(zs_free);
1462 
1463 static void zs_object_copy(struct size_class *class, unsigned long dst,
1464 				unsigned long src)
1465 {
1466 	struct page *s_page, *d_page;
1467 	unsigned int s_objidx, d_objidx;
1468 	unsigned long s_off, d_off;
1469 	void *s_addr, *d_addr;
1470 	int s_size, d_size, size;
1471 	int written = 0;
1472 
1473 	s_size = d_size = class->size;
1474 
1475 	obj_to_location(src, &s_page, &s_objidx);
1476 	obj_to_location(dst, &d_page, &d_objidx);
1477 
1478 	s_off = offset_in_page(class->size * s_objidx);
1479 	d_off = offset_in_page(class->size * d_objidx);
1480 
1481 	if (s_off + class->size > PAGE_SIZE)
1482 		s_size = PAGE_SIZE - s_off;
1483 
1484 	if (d_off + class->size > PAGE_SIZE)
1485 		d_size = PAGE_SIZE - d_off;
1486 
1487 	s_addr = kmap_local_page(s_page);
1488 	d_addr = kmap_local_page(d_page);
1489 
1490 	while (1) {
1491 		size = min(s_size, d_size);
1492 		memcpy(d_addr + d_off, s_addr + s_off, size);
1493 		written += size;
1494 
1495 		if (written == class->size)
1496 			break;
1497 
1498 		s_off += size;
1499 		s_size -= size;
1500 		d_off += size;
1501 		d_size -= size;
1502 
1503 		/*
1504 		 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1505 		 * calls must occurs in reverse order of calls to kmap_local_page().
1506 		 * So, to call kunmap_local(s_addr) we should first call
1507 		 * kunmap_local(d_addr). For more details see
1508 		 * Documentation/mm/highmem.rst.
1509 		 */
1510 		if (s_off >= PAGE_SIZE) {
1511 			kunmap_local(d_addr);
1512 			kunmap_local(s_addr);
1513 			s_page = get_next_page(s_page);
1514 			s_addr = kmap_local_page(s_page);
1515 			d_addr = kmap_local_page(d_page);
1516 			s_size = class->size - written;
1517 			s_off = 0;
1518 		}
1519 
1520 		if (d_off >= PAGE_SIZE) {
1521 			kunmap_local(d_addr);
1522 			d_page = get_next_page(d_page);
1523 			d_addr = kmap_local_page(d_page);
1524 			d_size = class->size - written;
1525 			d_off = 0;
1526 		}
1527 	}
1528 
1529 	kunmap_local(d_addr);
1530 	kunmap_local(s_addr);
1531 }
1532 
1533 /*
1534  * Find alloced object in zspage from index object and
1535  * return handle.
1536  */
1537 static unsigned long find_alloced_obj(struct size_class *class,
1538 				      struct page *page, int *obj_idx)
1539 {
1540 	unsigned int offset;
1541 	int index = *obj_idx;
1542 	unsigned long handle = 0;
1543 	void *addr = kmap_local_page(page);
1544 
1545 	offset = get_first_obj_offset(page);
1546 	offset += class->size * index;
1547 
1548 	while (offset < PAGE_SIZE) {
1549 		if (obj_allocated(page, addr + offset, &handle))
1550 			break;
1551 
1552 		offset += class->size;
1553 		index++;
1554 	}
1555 
1556 	kunmap_local(addr);
1557 
1558 	*obj_idx = index;
1559 
1560 	return handle;
1561 }
1562 
1563 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1564 			   struct zspage *dst_zspage)
1565 {
1566 	unsigned long used_obj, free_obj;
1567 	unsigned long handle;
1568 	int obj_idx = 0;
1569 	struct page *s_page = get_first_page(src_zspage);
1570 	struct size_class *class = pool->size_class[src_zspage->class];
1571 
1572 	while (1) {
1573 		handle = find_alloced_obj(class, s_page, &obj_idx);
1574 		if (!handle) {
1575 			s_page = get_next_page(s_page);
1576 			if (!s_page)
1577 				break;
1578 			obj_idx = 0;
1579 			continue;
1580 		}
1581 
1582 		used_obj = handle_to_obj(handle);
1583 		free_obj = obj_malloc(pool, dst_zspage, handle);
1584 		zs_object_copy(class, free_obj, used_obj);
1585 		obj_idx++;
1586 		obj_free(class->size, used_obj);
1587 
1588 		/* Stop if there is no more space */
1589 		if (zspage_full(class, dst_zspage))
1590 			break;
1591 
1592 		/* Stop if there are no more objects to migrate */
1593 		if (zspage_empty(src_zspage))
1594 			break;
1595 	}
1596 }
1597 
1598 static struct zspage *isolate_src_zspage(struct size_class *class)
1599 {
1600 	struct zspage *zspage;
1601 	int fg;
1602 
1603 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1604 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1605 						  struct zspage, list);
1606 		if (zspage) {
1607 			remove_zspage(class, zspage);
1608 			return zspage;
1609 		}
1610 	}
1611 
1612 	return zspage;
1613 }
1614 
1615 static struct zspage *isolate_dst_zspage(struct size_class *class)
1616 {
1617 	struct zspage *zspage;
1618 	int fg;
1619 
1620 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1621 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1622 						  struct zspage, list);
1623 		if (zspage) {
1624 			remove_zspage(class, zspage);
1625 			return zspage;
1626 		}
1627 	}
1628 
1629 	return zspage;
1630 }
1631 
1632 /*
1633  * putback_zspage - add @zspage into right class's fullness list
1634  * @class: destination class
1635  * @zspage: target page
1636  *
1637  * Return @zspage's fullness status
1638  */
1639 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1640 {
1641 	int fullness;
1642 
1643 	fullness = get_fullness_group(class, zspage);
1644 	insert_zspage(class, zspage, fullness);
1645 
1646 	return fullness;
1647 }
1648 
1649 #ifdef CONFIG_COMPACTION
1650 /*
1651  * To prevent zspage destroy during migration, zspage freeing should
1652  * hold locks of all pages in the zspage.
1653  */
1654 static void lock_zspage(struct zspage *zspage)
1655 {
1656 	struct page *curr_page, *page;
1657 
1658 	/*
1659 	 * Pages we haven't locked yet can be migrated off the list while we're
1660 	 * trying to lock them, so we need to be careful and only attempt to
1661 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1662 	 * may no longer belong to the zspage. This means that we may wait for
1663 	 * the wrong page to unlock, so we must take a reference to the page
1664 	 * prior to waiting for it to unlock outside migrate_read_lock().
1665 	 */
1666 	while (1) {
1667 		migrate_read_lock(zspage);
1668 		page = get_first_page(zspage);
1669 		if (trylock_page(page))
1670 			break;
1671 		get_page(page);
1672 		migrate_read_unlock(zspage);
1673 		wait_on_page_locked(page);
1674 		put_page(page);
1675 	}
1676 
1677 	curr_page = page;
1678 	while ((page = get_next_page(curr_page))) {
1679 		if (trylock_page(page)) {
1680 			curr_page = page;
1681 		} else {
1682 			get_page(page);
1683 			migrate_read_unlock(zspage);
1684 			wait_on_page_locked(page);
1685 			put_page(page);
1686 			migrate_read_lock(zspage);
1687 		}
1688 	}
1689 	migrate_read_unlock(zspage);
1690 }
1691 #endif /* CONFIG_COMPACTION */
1692 
1693 static void migrate_lock_init(struct zspage *zspage)
1694 {
1695 	rwlock_init(&zspage->lock);
1696 }
1697 
1698 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1699 {
1700 	read_lock(&zspage->lock);
1701 }
1702 
1703 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1704 {
1705 	read_unlock(&zspage->lock);
1706 }
1707 
1708 static void migrate_write_lock(struct zspage *zspage)
1709 {
1710 	write_lock(&zspage->lock);
1711 }
1712 
1713 static void migrate_write_unlock(struct zspage *zspage)
1714 {
1715 	write_unlock(&zspage->lock);
1716 }
1717 
1718 #ifdef CONFIG_COMPACTION
1719 
1720 static const struct movable_operations zsmalloc_mops;
1721 
1722 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1723 				struct page *newpage, struct page *oldpage)
1724 {
1725 	struct page *page;
1726 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1727 	int idx = 0;
1728 
1729 	page = get_first_page(zspage);
1730 	do {
1731 		if (page == oldpage)
1732 			pages[idx] = newpage;
1733 		else
1734 			pages[idx] = page;
1735 		idx++;
1736 	} while ((page = get_next_page(page)) != NULL);
1737 
1738 	create_page_chain(class, zspage, pages);
1739 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1740 	if (unlikely(ZsHugePage(zspage)))
1741 		newpage->index = oldpage->index;
1742 	__SetPageMovable(newpage, &zsmalloc_mops);
1743 }
1744 
1745 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1746 {
1747 	/*
1748 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1749 	 * lock_zspage in free_zspage.
1750 	 */
1751 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1752 
1753 	return true;
1754 }
1755 
1756 static int zs_page_migrate(struct page *newpage, struct page *page,
1757 		enum migrate_mode mode)
1758 {
1759 	struct zs_pool *pool;
1760 	struct size_class *class;
1761 	struct zspage *zspage;
1762 	struct page *dummy;
1763 	void *s_addr, *d_addr, *addr;
1764 	unsigned int offset;
1765 	unsigned long handle;
1766 	unsigned long old_obj, new_obj;
1767 	unsigned int obj_idx;
1768 
1769 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1770 
1771 	/* We're committed, tell the world that this is a Zsmalloc page. */
1772 	__SetPageZsmalloc(newpage);
1773 
1774 	/* The page is locked, so this pointer must remain valid */
1775 	zspage = get_zspage(page);
1776 	pool = zspage->pool;
1777 
1778 	/*
1779 	 * The pool migrate_lock protects the race between zpage migration
1780 	 * and zs_free.
1781 	 */
1782 	write_lock(&pool->migrate_lock);
1783 	class = zspage_class(pool, zspage);
1784 
1785 	/*
1786 	 * the class lock protects zpage alloc/free in the zspage.
1787 	 */
1788 	spin_lock(&class->lock);
1789 	/* the migrate_write_lock protects zpage access via zs_map_object */
1790 	migrate_write_lock(zspage);
1791 
1792 	offset = get_first_obj_offset(page);
1793 	s_addr = kmap_local_page(page);
1794 
1795 	/*
1796 	 * Here, any user cannot access all objects in the zspage so let's move.
1797 	 */
1798 	d_addr = kmap_local_page(newpage);
1799 	copy_page(d_addr, s_addr);
1800 	kunmap_local(d_addr);
1801 
1802 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1803 					addr += class->size) {
1804 		if (obj_allocated(page, addr, &handle)) {
1805 
1806 			old_obj = handle_to_obj(handle);
1807 			obj_to_location(old_obj, &dummy, &obj_idx);
1808 			new_obj = (unsigned long)location_to_obj(newpage,
1809 								obj_idx);
1810 			record_obj(handle, new_obj);
1811 		}
1812 	}
1813 	kunmap_local(s_addr);
1814 
1815 	replace_sub_page(class, zspage, newpage, page);
1816 	/*
1817 	 * Since we complete the data copy and set up new zspage structure,
1818 	 * it's okay to release migration_lock.
1819 	 */
1820 	write_unlock(&pool->migrate_lock);
1821 	spin_unlock(&class->lock);
1822 	migrate_write_unlock(zspage);
1823 
1824 	get_page(newpage);
1825 	if (page_zone(newpage) != page_zone(page)) {
1826 		dec_zone_page_state(page, NR_ZSPAGES);
1827 		inc_zone_page_state(newpage, NR_ZSPAGES);
1828 	}
1829 
1830 	reset_page(page);
1831 	put_page(page);
1832 
1833 	return MIGRATEPAGE_SUCCESS;
1834 }
1835 
1836 static void zs_page_putback(struct page *page)
1837 {
1838 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1839 }
1840 
1841 static const struct movable_operations zsmalloc_mops = {
1842 	.isolate_page = zs_page_isolate,
1843 	.migrate_page = zs_page_migrate,
1844 	.putback_page = zs_page_putback,
1845 };
1846 
1847 /*
1848  * Caller should hold page_lock of all pages in the zspage
1849  * In here, we cannot use zspage meta data.
1850  */
1851 static void async_free_zspage(struct work_struct *work)
1852 {
1853 	int i;
1854 	struct size_class *class;
1855 	struct zspage *zspage, *tmp;
1856 	LIST_HEAD(free_pages);
1857 	struct zs_pool *pool = container_of(work, struct zs_pool,
1858 					free_work);
1859 
1860 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1861 		class = pool->size_class[i];
1862 		if (class->index != i)
1863 			continue;
1864 
1865 		spin_lock(&class->lock);
1866 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1867 				 &free_pages);
1868 		spin_unlock(&class->lock);
1869 	}
1870 
1871 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1872 		list_del(&zspage->list);
1873 		lock_zspage(zspage);
1874 
1875 		class = zspage_class(pool, zspage);
1876 		spin_lock(&class->lock);
1877 		class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1878 		__free_zspage(pool, class, zspage);
1879 		spin_unlock(&class->lock);
1880 	}
1881 };
1882 
1883 static void kick_deferred_free(struct zs_pool *pool)
1884 {
1885 	schedule_work(&pool->free_work);
1886 }
1887 
1888 static void zs_flush_migration(struct zs_pool *pool)
1889 {
1890 	flush_work(&pool->free_work);
1891 }
1892 
1893 static void init_deferred_free(struct zs_pool *pool)
1894 {
1895 	INIT_WORK(&pool->free_work, async_free_zspage);
1896 }
1897 
1898 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1899 {
1900 	struct page *page = get_first_page(zspage);
1901 
1902 	do {
1903 		WARN_ON(!trylock_page(page));
1904 		__SetPageMovable(page, &zsmalloc_mops);
1905 		unlock_page(page);
1906 	} while ((page = get_next_page(page)) != NULL);
1907 }
1908 #else
1909 static inline void zs_flush_migration(struct zs_pool *pool) { }
1910 #endif
1911 
1912 /*
1913  *
1914  * Based on the number of unused allocated objects calculate
1915  * and return the number of pages that we can free.
1916  */
1917 static unsigned long zs_can_compact(struct size_class *class)
1918 {
1919 	unsigned long obj_wasted;
1920 	unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1921 	unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1922 
1923 	if (obj_allocated <= obj_used)
1924 		return 0;
1925 
1926 	obj_wasted = obj_allocated - obj_used;
1927 	obj_wasted /= class->objs_per_zspage;
1928 
1929 	return obj_wasted * class->pages_per_zspage;
1930 }
1931 
1932 static unsigned long __zs_compact(struct zs_pool *pool,
1933 				  struct size_class *class)
1934 {
1935 	struct zspage *src_zspage = NULL;
1936 	struct zspage *dst_zspage = NULL;
1937 	unsigned long pages_freed = 0;
1938 
1939 	/*
1940 	 * protect the race between zpage migration and zs_free
1941 	 * as well as zpage allocation/free
1942 	 */
1943 	write_lock(&pool->migrate_lock);
1944 	spin_lock(&class->lock);
1945 	while (zs_can_compact(class)) {
1946 		int fg;
1947 
1948 		if (!dst_zspage) {
1949 			dst_zspage = isolate_dst_zspage(class);
1950 			if (!dst_zspage)
1951 				break;
1952 		}
1953 
1954 		src_zspage = isolate_src_zspage(class);
1955 		if (!src_zspage)
1956 			break;
1957 
1958 		migrate_write_lock(src_zspage);
1959 		migrate_zspage(pool, src_zspage, dst_zspage);
1960 		migrate_write_unlock(src_zspage);
1961 
1962 		fg = putback_zspage(class, src_zspage);
1963 		if (fg == ZS_INUSE_RATIO_0) {
1964 			free_zspage(pool, class, src_zspage);
1965 			pages_freed += class->pages_per_zspage;
1966 		}
1967 		src_zspage = NULL;
1968 
1969 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1970 		    || rwlock_is_contended(&pool->migrate_lock)) {
1971 			putback_zspage(class, dst_zspage);
1972 			dst_zspage = NULL;
1973 
1974 			spin_unlock(&class->lock);
1975 			write_unlock(&pool->migrate_lock);
1976 			cond_resched();
1977 			write_lock(&pool->migrate_lock);
1978 			spin_lock(&class->lock);
1979 		}
1980 	}
1981 
1982 	if (src_zspage)
1983 		putback_zspage(class, src_zspage);
1984 
1985 	if (dst_zspage)
1986 		putback_zspage(class, dst_zspage);
1987 
1988 	spin_unlock(&class->lock);
1989 	write_unlock(&pool->migrate_lock);
1990 
1991 	return pages_freed;
1992 }
1993 
1994 unsigned long zs_compact(struct zs_pool *pool)
1995 {
1996 	int i;
1997 	struct size_class *class;
1998 	unsigned long pages_freed = 0;
1999 
2000 	/*
2001 	 * Pool compaction is performed under pool->migrate_lock so it is basically
2002 	 * single-threaded. Having more than one thread in __zs_compact()
2003 	 * will increase pool->migrate_lock contention, which will impact other
2004 	 * zsmalloc operations that need pool->migrate_lock.
2005 	 */
2006 	if (atomic_xchg(&pool->compaction_in_progress, 1))
2007 		return 0;
2008 
2009 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2010 		class = pool->size_class[i];
2011 		if (class->index != i)
2012 			continue;
2013 		pages_freed += __zs_compact(pool, class);
2014 	}
2015 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2016 	atomic_set(&pool->compaction_in_progress, 0);
2017 
2018 	return pages_freed;
2019 }
2020 EXPORT_SYMBOL_GPL(zs_compact);
2021 
2022 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2023 {
2024 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2025 }
2026 EXPORT_SYMBOL_GPL(zs_pool_stats);
2027 
2028 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2029 		struct shrink_control *sc)
2030 {
2031 	unsigned long pages_freed;
2032 	struct zs_pool *pool = shrinker->private_data;
2033 
2034 	/*
2035 	 * Compact classes and calculate compaction delta.
2036 	 * Can run concurrently with a manually triggered
2037 	 * (by user) compaction.
2038 	 */
2039 	pages_freed = zs_compact(pool);
2040 
2041 	return pages_freed ? pages_freed : SHRINK_STOP;
2042 }
2043 
2044 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2045 		struct shrink_control *sc)
2046 {
2047 	int i;
2048 	struct size_class *class;
2049 	unsigned long pages_to_free = 0;
2050 	struct zs_pool *pool = shrinker->private_data;
2051 
2052 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2053 		class = pool->size_class[i];
2054 		if (class->index != i)
2055 			continue;
2056 
2057 		pages_to_free += zs_can_compact(class);
2058 	}
2059 
2060 	return pages_to_free;
2061 }
2062 
2063 static void zs_unregister_shrinker(struct zs_pool *pool)
2064 {
2065 	shrinker_free(pool->shrinker);
2066 }
2067 
2068 static int zs_register_shrinker(struct zs_pool *pool)
2069 {
2070 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2071 	if (!pool->shrinker)
2072 		return -ENOMEM;
2073 
2074 	pool->shrinker->scan_objects = zs_shrinker_scan;
2075 	pool->shrinker->count_objects = zs_shrinker_count;
2076 	pool->shrinker->batch = 0;
2077 	pool->shrinker->private_data = pool;
2078 
2079 	shrinker_register(pool->shrinker);
2080 
2081 	return 0;
2082 }
2083 
2084 static int calculate_zspage_chain_size(int class_size)
2085 {
2086 	int i, min_waste = INT_MAX;
2087 	int chain_size = 1;
2088 
2089 	if (is_power_of_2(class_size))
2090 		return chain_size;
2091 
2092 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2093 		int waste;
2094 
2095 		waste = (i * PAGE_SIZE) % class_size;
2096 		if (waste < min_waste) {
2097 			min_waste = waste;
2098 			chain_size = i;
2099 		}
2100 	}
2101 
2102 	return chain_size;
2103 }
2104 
2105 /**
2106  * zs_create_pool - Creates an allocation pool to work from.
2107  * @name: pool name to be created
2108  *
2109  * This function must be called before anything when using
2110  * the zsmalloc allocator.
2111  *
2112  * On success, a pointer to the newly created pool is returned,
2113  * otherwise NULL.
2114  */
2115 struct zs_pool *zs_create_pool(const char *name)
2116 {
2117 	int i;
2118 	struct zs_pool *pool;
2119 	struct size_class *prev_class = NULL;
2120 
2121 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2122 	if (!pool)
2123 		return NULL;
2124 
2125 	init_deferred_free(pool);
2126 	rwlock_init(&pool->migrate_lock);
2127 	atomic_set(&pool->compaction_in_progress, 0);
2128 
2129 	pool->name = kstrdup(name, GFP_KERNEL);
2130 	if (!pool->name)
2131 		goto err;
2132 
2133 	if (create_cache(pool))
2134 		goto err;
2135 
2136 	/*
2137 	 * Iterate reversely, because, size of size_class that we want to use
2138 	 * for merging should be larger or equal to current size.
2139 	 */
2140 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2141 		int size;
2142 		int pages_per_zspage;
2143 		int objs_per_zspage;
2144 		struct size_class *class;
2145 		int fullness;
2146 
2147 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2148 		if (size > ZS_MAX_ALLOC_SIZE)
2149 			size = ZS_MAX_ALLOC_SIZE;
2150 		pages_per_zspage = calculate_zspage_chain_size(size);
2151 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2152 
2153 		/*
2154 		 * We iterate from biggest down to smallest classes,
2155 		 * so huge_class_size holds the size of the first huge
2156 		 * class. Any object bigger than or equal to that will
2157 		 * endup in the huge class.
2158 		 */
2159 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2160 				!huge_class_size) {
2161 			huge_class_size = size;
2162 			/*
2163 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2164 			 * handle. We need to subtract it, because zs_malloc()
2165 			 * unconditionally adds handle size before it performs
2166 			 * size class search - so object may be smaller than
2167 			 * huge class size, yet it still can end up in the huge
2168 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2169 			 * right before class lookup.
2170 			 */
2171 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2172 		}
2173 
2174 		/*
2175 		 * size_class is used for normal zsmalloc operation such
2176 		 * as alloc/free for that size. Although it is natural that we
2177 		 * have one size_class for each size, there is a chance that we
2178 		 * can get more memory utilization if we use one size_class for
2179 		 * many different sizes whose size_class have same
2180 		 * characteristics. So, we makes size_class point to
2181 		 * previous size_class if possible.
2182 		 */
2183 		if (prev_class) {
2184 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2185 				pool->size_class[i] = prev_class;
2186 				continue;
2187 			}
2188 		}
2189 
2190 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2191 		if (!class)
2192 			goto err;
2193 
2194 		class->size = size;
2195 		class->index = i;
2196 		class->pages_per_zspage = pages_per_zspage;
2197 		class->objs_per_zspage = objs_per_zspage;
2198 		spin_lock_init(&class->lock);
2199 		pool->size_class[i] = class;
2200 
2201 		fullness = ZS_INUSE_RATIO_0;
2202 		while (fullness < NR_FULLNESS_GROUPS) {
2203 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2204 			fullness++;
2205 		}
2206 
2207 		prev_class = class;
2208 	}
2209 
2210 	/* debug only, don't abort if it fails */
2211 	zs_pool_stat_create(pool, name);
2212 
2213 	/*
2214 	 * Not critical since shrinker is only used to trigger internal
2215 	 * defragmentation of the pool which is pretty optional thing.  If
2216 	 * registration fails we still can use the pool normally and user can
2217 	 * trigger compaction manually. Thus, ignore return code.
2218 	 */
2219 	zs_register_shrinker(pool);
2220 
2221 	return pool;
2222 
2223 err:
2224 	zs_destroy_pool(pool);
2225 	return NULL;
2226 }
2227 EXPORT_SYMBOL_GPL(zs_create_pool);
2228 
2229 void zs_destroy_pool(struct zs_pool *pool)
2230 {
2231 	int i;
2232 
2233 	zs_unregister_shrinker(pool);
2234 	zs_flush_migration(pool);
2235 	zs_pool_stat_destroy(pool);
2236 
2237 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2238 		int fg;
2239 		struct size_class *class = pool->size_class[i];
2240 
2241 		if (!class)
2242 			continue;
2243 
2244 		if (class->index != i)
2245 			continue;
2246 
2247 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2248 			if (list_empty(&class->fullness_list[fg]))
2249 				continue;
2250 
2251 			pr_err("Class-%d fullness group %d is not empty\n",
2252 			       class->size, fg);
2253 		}
2254 		kfree(class);
2255 	}
2256 
2257 	destroy_cache(pool);
2258 	kfree(pool->name);
2259 	kfree(pool);
2260 }
2261 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2262 
2263 static int __init zs_init(void)
2264 {
2265 	int ret;
2266 
2267 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2268 				zs_cpu_prepare, zs_cpu_dead);
2269 	if (ret)
2270 		goto out;
2271 
2272 #ifdef CONFIG_ZPOOL
2273 	zpool_register_driver(&zs_zpool_driver);
2274 #endif
2275 
2276 	zs_stat_init();
2277 
2278 	return 0;
2279 
2280 out:
2281 	return ret;
2282 }
2283 
2284 static void __exit zs_exit(void)
2285 {
2286 #ifdef CONFIG_ZPOOL
2287 	zpool_unregister_driver(&zs_zpool_driver);
2288 #endif
2289 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2290 
2291 	zs_stat_exit();
2292 }
2293 
2294 module_init(zs_init);
2295 module_exit(zs_exit);
2296 
2297 MODULE_LICENSE("Dual BSD/GPL");
2298 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2299 MODULE_DESCRIPTION("zsmalloc memory allocator");
2300