1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->lock 37 * zspage->lock 38 */ 39 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/sched.h> 43 #include <linux/bitops.h> 44 #include <linux/errno.h> 45 #include <linux/highmem.h> 46 #include <linux/string.h> 47 #include <linux/slab.h> 48 #include <linux/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <linux/cpumask.h> 51 #include <linux/cpu.h> 52 #include <linux/vmalloc.h> 53 #include <linux/preempt.h> 54 #include <linux/spinlock.h> 55 #include <linux/shrinker.h> 56 #include <linux/types.h> 57 #include <linux/debugfs.h> 58 #include <linux/zsmalloc.h> 59 #include <linux/zpool.h> 60 #include <linux/migrate.h> 61 #include <linux/wait.h> 62 #include <linux/pagemap.h> 63 #include <linux/fs.h> 64 #include <linux/local_lock.h> 65 66 #define ZSPAGE_MAGIC 0x58 67 68 /* 69 * This must be power of 2 and greater than or equal to sizeof(link_free). 70 * These two conditions ensure that any 'struct link_free' itself doesn't 71 * span more than 1 page which avoids complex case of mapping 2 pages simply 72 * to restore link_free pointer values. 73 */ 74 #define ZS_ALIGN 8 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * a single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Head in allocated object should have OBJ_ALLOCATED_TAG 103 * to identify the object was allocated or not. 104 * It's okay to add the status bit in the least bit because 105 * header keeps handle which is 4byte-aligned address so we 106 * have room for two bit at least. 107 */ 108 #define OBJ_ALLOCATED_TAG 1 109 110 #ifdef CONFIG_ZPOOL 111 /* 112 * The second least-significant bit in the object's header identifies if the 113 * value stored at the header is a deferred handle from the last reclaim 114 * attempt. 115 * 116 * As noted above, this is valid because we have room for two bits. 117 */ 118 #define OBJ_DEFERRED_HANDLE_TAG 2 119 #define OBJ_TAG_BITS 2 120 #define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG) 121 #else 122 #define OBJ_TAG_BITS 1 123 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 124 #endif /* CONFIG_ZPOOL */ 125 126 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 127 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 128 129 #define HUGE_BITS 1 130 #define FULLNESS_BITS 4 131 #define CLASS_BITS 8 132 #define ISOLATED_BITS 5 133 #define MAGIC_VAL_BITS 8 134 135 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 136 137 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 138 139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 140 #define ZS_MIN_ALLOC_SIZE \ 141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 142 /* each chunk includes extra space to keep handle */ 143 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 144 145 /* 146 * On systems with 4K page size, this gives 255 size classes! There is a 147 * trader-off here: 148 * - Large number of size classes is potentially wasteful as free page are 149 * spread across these classes 150 * - Small number of size classes causes large internal fragmentation 151 * - Probably its better to use specific size classes (empirically 152 * determined). NOTE: all those class sizes must be set as multiple of 153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 154 * 155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 156 * (reason above) 157 */ 158 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 159 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 160 ZS_SIZE_CLASS_DELTA) + 1) 161 162 /* 163 * Pages are distinguished by the ratio of used memory (that is the ratio 164 * of ->inuse objects to all objects that page can store). For example, 165 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 166 * 167 * The number of fullness groups is not random. It allows us to keep 168 * difference between the least busy page in the group (minimum permitted 169 * number of ->inuse objects) and the most busy page (maximum permitted 170 * number of ->inuse objects) at a reasonable value. 171 */ 172 enum fullness_group { 173 ZS_INUSE_RATIO_0, 174 ZS_INUSE_RATIO_10, 175 /* NOTE: 8 more fullness groups here */ 176 ZS_INUSE_RATIO_99 = 10, 177 ZS_INUSE_RATIO_100, 178 NR_FULLNESS_GROUPS, 179 }; 180 181 enum class_stat_type { 182 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 183 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 184 ZS_OBJS_INUSE, 185 NR_CLASS_STAT_TYPES, 186 }; 187 188 struct zs_size_stat { 189 unsigned long objs[NR_CLASS_STAT_TYPES]; 190 }; 191 192 #ifdef CONFIG_ZSMALLOC_STAT 193 static struct dentry *zs_stat_root; 194 #endif 195 196 static size_t huge_class_size; 197 198 struct size_class { 199 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 200 /* 201 * Size of objects stored in this class. Must be multiple 202 * of ZS_ALIGN. 203 */ 204 int size; 205 int objs_per_zspage; 206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 207 int pages_per_zspage; 208 209 unsigned int index; 210 struct zs_size_stat stats; 211 }; 212 213 /* 214 * Placed within free objects to form a singly linked list. 215 * For every zspage, zspage->freeobj gives head of this list. 216 * 217 * This must be power of 2 and less than or equal to ZS_ALIGN 218 */ 219 struct link_free { 220 union { 221 /* 222 * Free object index; 223 * It's valid for non-allocated object 224 */ 225 unsigned long next; 226 /* 227 * Handle of allocated object. 228 */ 229 unsigned long handle; 230 #ifdef CONFIG_ZPOOL 231 /* 232 * Deferred handle of a reclaimed object. 233 */ 234 unsigned long deferred_handle; 235 #endif 236 }; 237 }; 238 239 struct zs_pool { 240 const char *name; 241 242 struct size_class *size_class[ZS_SIZE_CLASSES]; 243 struct kmem_cache *handle_cachep; 244 struct kmem_cache *zspage_cachep; 245 246 atomic_long_t pages_allocated; 247 248 struct zs_pool_stats stats; 249 250 /* Compact classes */ 251 struct shrinker shrinker; 252 253 #ifdef CONFIG_ZPOOL 254 /* List tracking the zspages in LRU order by most recently added object */ 255 struct list_head lru; 256 struct zpool *zpool; 257 const struct zpool_ops *zpool_ops; 258 #endif 259 260 #ifdef CONFIG_ZSMALLOC_STAT 261 struct dentry *stat_dentry; 262 #endif 263 #ifdef CONFIG_COMPACTION 264 struct work_struct free_work; 265 #endif 266 spinlock_t lock; 267 atomic_t compaction_in_progress; 268 }; 269 270 struct zspage { 271 struct { 272 unsigned int huge:HUGE_BITS; 273 unsigned int fullness:FULLNESS_BITS; 274 unsigned int class:CLASS_BITS + 1; 275 unsigned int isolated:ISOLATED_BITS; 276 unsigned int magic:MAGIC_VAL_BITS; 277 }; 278 unsigned int inuse; 279 unsigned int freeobj; 280 struct page *first_page; 281 struct list_head list; /* fullness list */ 282 283 #ifdef CONFIG_ZPOOL 284 /* links the zspage to the lru list in the pool */ 285 struct list_head lru; 286 bool under_reclaim; 287 #endif 288 289 struct zs_pool *pool; 290 rwlock_t lock; 291 }; 292 293 struct mapping_area { 294 local_lock_t lock; 295 char *vm_buf; /* copy buffer for objects that span pages */ 296 char *vm_addr; /* address of kmap_atomic()'ed pages */ 297 enum zs_mapmode vm_mm; /* mapping mode */ 298 }; 299 300 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 301 static void SetZsHugePage(struct zspage *zspage) 302 { 303 zspage->huge = 1; 304 } 305 306 static bool ZsHugePage(struct zspage *zspage) 307 { 308 return zspage->huge; 309 } 310 311 static void migrate_lock_init(struct zspage *zspage); 312 static void migrate_read_lock(struct zspage *zspage); 313 static void migrate_read_unlock(struct zspage *zspage); 314 315 #ifdef CONFIG_COMPACTION 316 static void migrate_write_lock(struct zspage *zspage); 317 static void migrate_write_lock_nested(struct zspage *zspage); 318 static void migrate_write_unlock(struct zspage *zspage); 319 static void kick_deferred_free(struct zs_pool *pool); 320 static void init_deferred_free(struct zs_pool *pool); 321 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 322 #else 323 static void migrate_write_lock(struct zspage *zspage) {} 324 static void migrate_write_lock_nested(struct zspage *zspage) {} 325 static void migrate_write_unlock(struct zspage *zspage) {} 326 static void kick_deferred_free(struct zs_pool *pool) {} 327 static void init_deferred_free(struct zs_pool *pool) {} 328 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 329 #endif 330 331 static int create_cache(struct zs_pool *pool) 332 { 333 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 334 0, 0, NULL); 335 if (!pool->handle_cachep) 336 return 1; 337 338 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 339 0, 0, NULL); 340 if (!pool->zspage_cachep) { 341 kmem_cache_destroy(pool->handle_cachep); 342 pool->handle_cachep = NULL; 343 return 1; 344 } 345 346 return 0; 347 } 348 349 static void destroy_cache(struct zs_pool *pool) 350 { 351 kmem_cache_destroy(pool->handle_cachep); 352 kmem_cache_destroy(pool->zspage_cachep); 353 } 354 355 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 356 { 357 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 358 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 359 } 360 361 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 362 { 363 kmem_cache_free(pool->handle_cachep, (void *)handle); 364 } 365 366 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 367 { 368 return kmem_cache_zalloc(pool->zspage_cachep, 369 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 370 } 371 372 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 373 { 374 kmem_cache_free(pool->zspage_cachep, zspage); 375 } 376 377 /* pool->lock(which owns the handle) synchronizes races */ 378 static void record_obj(unsigned long handle, unsigned long obj) 379 { 380 *(unsigned long *)handle = obj; 381 } 382 383 /* zpool driver */ 384 385 #ifdef CONFIG_ZPOOL 386 387 static void *zs_zpool_create(const char *name, gfp_t gfp, 388 const struct zpool_ops *zpool_ops, 389 struct zpool *zpool) 390 { 391 /* 392 * Ignore global gfp flags: zs_malloc() may be invoked from 393 * different contexts and its caller must provide a valid 394 * gfp mask. 395 */ 396 struct zs_pool *pool = zs_create_pool(name); 397 398 if (pool) { 399 pool->zpool = zpool; 400 pool->zpool_ops = zpool_ops; 401 } 402 403 return pool; 404 } 405 406 static void zs_zpool_destroy(void *pool) 407 { 408 zs_destroy_pool(pool); 409 } 410 411 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 412 unsigned long *handle) 413 { 414 *handle = zs_malloc(pool, size, gfp); 415 416 if (IS_ERR_VALUE(*handle)) 417 return PTR_ERR((void *)*handle); 418 return 0; 419 } 420 static void zs_zpool_free(void *pool, unsigned long handle) 421 { 422 zs_free(pool, handle); 423 } 424 425 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries); 426 427 static int zs_zpool_shrink(void *pool, unsigned int pages, 428 unsigned int *reclaimed) 429 { 430 unsigned int total = 0; 431 int ret = -EINVAL; 432 433 while (total < pages) { 434 ret = zs_reclaim_page(pool, 8); 435 if (ret < 0) 436 break; 437 total++; 438 } 439 440 if (reclaimed) 441 *reclaimed = total; 442 443 return ret; 444 } 445 446 static void *zs_zpool_map(void *pool, unsigned long handle, 447 enum zpool_mapmode mm) 448 { 449 enum zs_mapmode zs_mm; 450 451 switch (mm) { 452 case ZPOOL_MM_RO: 453 zs_mm = ZS_MM_RO; 454 break; 455 case ZPOOL_MM_WO: 456 zs_mm = ZS_MM_WO; 457 break; 458 case ZPOOL_MM_RW: 459 default: 460 zs_mm = ZS_MM_RW; 461 break; 462 } 463 464 return zs_map_object(pool, handle, zs_mm); 465 } 466 static void zs_zpool_unmap(void *pool, unsigned long handle) 467 { 468 zs_unmap_object(pool, handle); 469 } 470 471 static u64 zs_zpool_total_size(void *pool) 472 { 473 return zs_get_total_pages(pool) << PAGE_SHIFT; 474 } 475 476 static struct zpool_driver zs_zpool_driver = { 477 .type = "zsmalloc", 478 .owner = THIS_MODULE, 479 .create = zs_zpool_create, 480 .destroy = zs_zpool_destroy, 481 .malloc_support_movable = true, 482 .malloc = zs_zpool_malloc, 483 .free = zs_zpool_free, 484 .shrink = zs_zpool_shrink, 485 .map = zs_zpool_map, 486 .unmap = zs_zpool_unmap, 487 .total_size = zs_zpool_total_size, 488 }; 489 490 MODULE_ALIAS("zpool-zsmalloc"); 491 #endif /* CONFIG_ZPOOL */ 492 493 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 494 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 495 .lock = INIT_LOCAL_LOCK(lock), 496 }; 497 498 static __maybe_unused int is_first_page(struct page *page) 499 { 500 return PagePrivate(page); 501 } 502 503 /* Protected by pool->lock */ 504 static inline int get_zspage_inuse(struct zspage *zspage) 505 { 506 return zspage->inuse; 507 } 508 509 510 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 511 { 512 zspage->inuse += val; 513 } 514 515 static inline struct page *get_first_page(struct zspage *zspage) 516 { 517 struct page *first_page = zspage->first_page; 518 519 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 520 return first_page; 521 } 522 523 static inline unsigned int get_first_obj_offset(struct page *page) 524 { 525 return page->page_type; 526 } 527 528 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 529 { 530 page->page_type = offset; 531 } 532 533 static inline unsigned int get_freeobj(struct zspage *zspage) 534 { 535 return zspage->freeobj; 536 } 537 538 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 539 { 540 zspage->freeobj = obj; 541 } 542 543 static void get_zspage_mapping(struct zspage *zspage, 544 unsigned int *class_idx, 545 int *fullness) 546 { 547 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 548 549 *fullness = zspage->fullness; 550 *class_idx = zspage->class; 551 } 552 553 static struct size_class *zspage_class(struct zs_pool *pool, 554 struct zspage *zspage) 555 { 556 return pool->size_class[zspage->class]; 557 } 558 559 static void set_zspage_mapping(struct zspage *zspage, 560 unsigned int class_idx, 561 int fullness) 562 { 563 zspage->class = class_idx; 564 zspage->fullness = fullness; 565 } 566 567 /* 568 * zsmalloc divides the pool into various size classes where each 569 * class maintains a list of zspages where each zspage is divided 570 * into equal sized chunks. Each allocation falls into one of these 571 * classes depending on its size. This function returns index of the 572 * size class which has chunk size big enough to hold the given size. 573 */ 574 static int get_size_class_index(int size) 575 { 576 int idx = 0; 577 578 if (likely(size > ZS_MIN_ALLOC_SIZE)) 579 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 580 ZS_SIZE_CLASS_DELTA); 581 582 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 583 } 584 585 static inline void class_stat_inc(struct size_class *class, 586 int type, unsigned long cnt) 587 { 588 class->stats.objs[type] += cnt; 589 } 590 591 static inline void class_stat_dec(struct size_class *class, 592 int type, unsigned long cnt) 593 { 594 class->stats.objs[type] -= cnt; 595 } 596 597 static inline unsigned long zs_stat_get(struct size_class *class, int type) 598 { 599 return class->stats.objs[type]; 600 } 601 602 #ifdef CONFIG_ZSMALLOC_STAT 603 604 static void __init zs_stat_init(void) 605 { 606 if (!debugfs_initialized()) { 607 pr_warn("debugfs not available, stat dir not created\n"); 608 return; 609 } 610 611 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 612 } 613 614 static void __exit zs_stat_exit(void) 615 { 616 debugfs_remove_recursive(zs_stat_root); 617 } 618 619 static unsigned long zs_can_compact(struct size_class *class); 620 621 static int zs_stats_size_show(struct seq_file *s, void *v) 622 { 623 int i, fg; 624 struct zs_pool *pool = s->private; 625 struct size_class *class; 626 int objs_per_zspage; 627 unsigned long obj_allocated, obj_used, pages_used, freeable; 628 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 629 unsigned long total_freeable = 0; 630 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 631 632 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 633 "class", "size", "10%", "20%", "30%", "40%", 634 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 635 "obj_allocated", "obj_used", "pages_used", 636 "pages_per_zspage", "freeable"); 637 638 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 639 640 class = pool->size_class[i]; 641 642 if (class->index != i) 643 continue; 644 645 spin_lock(&pool->lock); 646 647 seq_printf(s, " %5u %5u ", i, class->size); 648 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 649 inuse_totals[fg] += zs_stat_get(class, fg); 650 seq_printf(s, "%9lu ", zs_stat_get(class, fg)); 651 } 652 653 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 654 obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 655 freeable = zs_can_compact(class); 656 spin_unlock(&pool->lock); 657 658 objs_per_zspage = class->objs_per_zspage; 659 pages_used = obj_allocated / objs_per_zspage * 660 class->pages_per_zspage; 661 662 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 663 obj_allocated, obj_used, pages_used, 664 class->pages_per_zspage, freeable); 665 666 total_objs += obj_allocated; 667 total_used_objs += obj_used; 668 total_pages += pages_used; 669 total_freeable += freeable; 670 } 671 672 seq_puts(s, "\n"); 673 seq_printf(s, " %5s %5s ", "Total", ""); 674 675 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 676 seq_printf(s, "%9lu ", inuse_totals[fg]); 677 678 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 679 total_objs, total_used_objs, total_pages, "", 680 total_freeable); 681 682 return 0; 683 } 684 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 685 686 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 687 { 688 if (!zs_stat_root) { 689 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 690 return; 691 } 692 693 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 694 695 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 696 &zs_stats_size_fops); 697 } 698 699 static void zs_pool_stat_destroy(struct zs_pool *pool) 700 { 701 debugfs_remove_recursive(pool->stat_dentry); 702 } 703 704 #else /* CONFIG_ZSMALLOC_STAT */ 705 static void __init zs_stat_init(void) 706 { 707 } 708 709 static void __exit zs_stat_exit(void) 710 { 711 } 712 713 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 714 { 715 } 716 717 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 718 { 719 } 720 #endif 721 722 723 /* 724 * For each size class, zspages are divided into different groups 725 * depending on their usage ratio. This function returns fullness 726 * status of the given page. 727 */ 728 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 729 { 730 int inuse, objs_per_zspage, ratio; 731 732 inuse = get_zspage_inuse(zspage); 733 objs_per_zspage = class->objs_per_zspage; 734 735 if (inuse == 0) 736 return ZS_INUSE_RATIO_0; 737 if (inuse == objs_per_zspage) 738 return ZS_INUSE_RATIO_100; 739 740 ratio = 100 * inuse / objs_per_zspage; 741 /* 742 * Take integer division into consideration: a page with one inuse 743 * object out of 127 possible, will end up having 0 usage ratio, 744 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 745 */ 746 return ratio / 10 + 1; 747 } 748 749 /* 750 * Each size class maintains various freelists and zspages are assigned 751 * to one of these freelists based on the number of live objects they 752 * have. This functions inserts the given zspage into the freelist 753 * identified by <class, fullness_group>. 754 */ 755 static void insert_zspage(struct size_class *class, 756 struct zspage *zspage, 757 int fullness) 758 { 759 class_stat_inc(class, fullness, 1); 760 list_add(&zspage->list, &class->fullness_list[fullness]); 761 } 762 763 /* 764 * This function removes the given zspage from the freelist identified 765 * by <class, fullness_group>. 766 */ 767 static void remove_zspage(struct size_class *class, 768 struct zspage *zspage, 769 int fullness) 770 { 771 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 772 773 list_del_init(&zspage->list); 774 class_stat_dec(class, fullness, 1); 775 } 776 777 /* 778 * Each size class maintains zspages in different fullness groups depending 779 * on the number of live objects they contain. When allocating or freeing 780 * objects, the fullness status of the page can change, for instance, from 781 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 782 * checks if such a status change has occurred for the given page and 783 * accordingly moves the page from the list of the old fullness group to that 784 * of the new fullness group. 785 */ 786 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 787 { 788 int class_idx; 789 int currfg, newfg; 790 791 get_zspage_mapping(zspage, &class_idx, &currfg); 792 newfg = get_fullness_group(class, zspage); 793 if (newfg == currfg) 794 goto out; 795 796 remove_zspage(class, zspage, currfg); 797 insert_zspage(class, zspage, newfg); 798 set_zspage_mapping(zspage, class_idx, newfg); 799 out: 800 return newfg; 801 } 802 803 static struct zspage *get_zspage(struct page *page) 804 { 805 struct zspage *zspage = (struct zspage *)page_private(page); 806 807 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 808 return zspage; 809 } 810 811 static struct page *get_next_page(struct page *page) 812 { 813 struct zspage *zspage = get_zspage(page); 814 815 if (unlikely(ZsHugePage(zspage))) 816 return NULL; 817 818 return (struct page *)page->index; 819 } 820 821 /** 822 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 823 * @obj: the encoded object value 824 * @page: page object resides in zspage 825 * @obj_idx: object index 826 */ 827 static void obj_to_location(unsigned long obj, struct page **page, 828 unsigned int *obj_idx) 829 { 830 obj >>= OBJ_TAG_BITS; 831 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 832 *obj_idx = (obj & OBJ_INDEX_MASK); 833 } 834 835 static void obj_to_page(unsigned long obj, struct page **page) 836 { 837 obj >>= OBJ_TAG_BITS; 838 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 839 } 840 841 /** 842 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 843 * @page: page object resides in zspage 844 * @obj_idx: object index 845 */ 846 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 847 { 848 unsigned long obj; 849 850 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 851 obj |= obj_idx & OBJ_INDEX_MASK; 852 obj <<= OBJ_TAG_BITS; 853 854 return obj; 855 } 856 857 static unsigned long handle_to_obj(unsigned long handle) 858 { 859 return *(unsigned long *)handle; 860 } 861 862 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle, 863 int tag) 864 { 865 unsigned long handle; 866 struct zspage *zspage = get_zspage(page); 867 868 if (unlikely(ZsHugePage(zspage))) { 869 VM_BUG_ON_PAGE(!is_first_page(page), page); 870 handle = page->index; 871 } else 872 handle = *(unsigned long *)obj; 873 874 if (!(handle & tag)) 875 return false; 876 877 /* Clear all tags before returning the handle */ 878 *phandle = handle & ~OBJ_TAG_MASK; 879 return true; 880 } 881 882 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) 883 { 884 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG); 885 } 886 887 #ifdef CONFIG_ZPOOL 888 static bool obj_stores_deferred_handle(struct page *page, void *obj, 889 unsigned long *phandle) 890 { 891 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG); 892 } 893 #endif 894 895 static void reset_page(struct page *page) 896 { 897 __ClearPageMovable(page); 898 ClearPagePrivate(page); 899 set_page_private(page, 0); 900 page_mapcount_reset(page); 901 page->index = 0; 902 } 903 904 static int trylock_zspage(struct zspage *zspage) 905 { 906 struct page *cursor, *fail; 907 908 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 909 get_next_page(cursor)) { 910 if (!trylock_page(cursor)) { 911 fail = cursor; 912 goto unlock; 913 } 914 } 915 916 return 1; 917 unlock: 918 for (cursor = get_first_page(zspage); cursor != fail; cursor = 919 get_next_page(cursor)) 920 unlock_page(cursor); 921 922 return 0; 923 } 924 925 #ifdef CONFIG_ZPOOL 926 static unsigned long find_deferred_handle_obj(struct size_class *class, 927 struct page *page, int *obj_idx); 928 929 /* 930 * Free all the deferred handles whose objects are freed in zs_free. 931 */ 932 static void free_handles(struct zs_pool *pool, struct size_class *class, 933 struct zspage *zspage) 934 { 935 int obj_idx = 0; 936 struct page *page = get_first_page(zspage); 937 unsigned long handle; 938 939 while (1) { 940 handle = find_deferred_handle_obj(class, page, &obj_idx); 941 if (!handle) { 942 page = get_next_page(page); 943 if (!page) 944 break; 945 obj_idx = 0; 946 continue; 947 } 948 949 cache_free_handle(pool, handle); 950 obj_idx++; 951 } 952 } 953 #else 954 static inline void free_handles(struct zs_pool *pool, struct size_class *class, 955 struct zspage *zspage) {} 956 #endif 957 958 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 959 struct zspage *zspage) 960 { 961 struct page *page, *next; 962 int fg; 963 unsigned int class_idx; 964 965 get_zspage_mapping(zspage, &class_idx, &fg); 966 967 assert_spin_locked(&pool->lock); 968 969 VM_BUG_ON(get_zspage_inuse(zspage)); 970 VM_BUG_ON(fg != ZS_INUSE_RATIO_0); 971 972 /* Free all deferred handles from zs_free */ 973 free_handles(pool, class, zspage); 974 975 next = page = get_first_page(zspage); 976 do { 977 VM_BUG_ON_PAGE(!PageLocked(page), page); 978 next = get_next_page(page); 979 reset_page(page); 980 unlock_page(page); 981 dec_zone_page_state(page, NR_ZSPAGES); 982 put_page(page); 983 page = next; 984 } while (page != NULL); 985 986 cache_free_zspage(pool, zspage); 987 988 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 989 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 990 } 991 992 static void free_zspage(struct zs_pool *pool, struct size_class *class, 993 struct zspage *zspage) 994 { 995 VM_BUG_ON(get_zspage_inuse(zspage)); 996 VM_BUG_ON(list_empty(&zspage->list)); 997 998 /* 999 * Since zs_free couldn't be sleepable, this function cannot call 1000 * lock_page. The page locks trylock_zspage got will be released 1001 * by __free_zspage. 1002 */ 1003 if (!trylock_zspage(zspage)) { 1004 kick_deferred_free(pool); 1005 return; 1006 } 1007 1008 remove_zspage(class, zspage, ZS_INUSE_RATIO_0); 1009 #ifdef CONFIG_ZPOOL 1010 list_del(&zspage->lru); 1011 #endif 1012 __free_zspage(pool, class, zspage); 1013 } 1014 1015 /* Initialize a newly allocated zspage */ 1016 static void init_zspage(struct size_class *class, struct zspage *zspage) 1017 { 1018 unsigned int freeobj = 1; 1019 unsigned long off = 0; 1020 struct page *page = get_first_page(zspage); 1021 1022 while (page) { 1023 struct page *next_page; 1024 struct link_free *link; 1025 void *vaddr; 1026 1027 set_first_obj_offset(page, off); 1028 1029 vaddr = kmap_atomic(page); 1030 link = (struct link_free *)vaddr + off / sizeof(*link); 1031 1032 while ((off += class->size) < PAGE_SIZE) { 1033 link->next = freeobj++ << OBJ_TAG_BITS; 1034 link += class->size / sizeof(*link); 1035 } 1036 1037 /* 1038 * We now come to the last (full or partial) object on this 1039 * page, which must point to the first object on the next 1040 * page (if present) 1041 */ 1042 next_page = get_next_page(page); 1043 if (next_page) { 1044 link->next = freeobj++ << OBJ_TAG_BITS; 1045 } else { 1046 /* 1047 * Reset OBJ_TAG_BITS bit to last link to tell 1048 * whether it's allocated object or not. 1049 */ 1050 link->next = -1UL << OBJ_TAG_BITS; 1051 } 1052 kunmap_atomic(vaddr); 1053 page = next_page; 1054 off %= PAGE_SIZE; 1055 } 1056 1057 #ifdef CONFIG_ZPOOL 1058 INIT_LIST_HEAD(&zspage->lru); 1059 zspage->under_reclaim = false; 1060 #endif 1061 1062 set_freeobj(zspage, 0); 1063 } 1064 1065 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1066 struct page *pages[]) 1067 { 1068 int i; 1069 struct page *page; 1070 struct page *prev_page = NULL; 1071 int nr_pages = class->pages_per_zspage; 1072 1073 /* 1074 * Allocate individual pages and link them together as: 1075 * 1. all pages are linked together using page->index 1076 * 2. each sub-page point to zspage using page->private 1077 * 1078 * we set PG_private to identify the first page (i.e. no other sub-page 1079 * has this flag set). 1080 */ 1081 for (i = 0; i < nr_pages; i++) { 1082 page = pages[i]; 1083 set_page_private(page, (unsigned long)zspage); 1084 page->index = 0; 1085 if (i == 0) { 1086 zspage->first_page = page; 1087 SetPagePrivate(page); 1088 if (unlikely(class->objs_per_zspage == 1 && 1089 class->pages_per_zspage == 1)) 1090 SetZsHugePage(zspage); 1091 } else { 1092 prev_page->index = (unsigned long)page; 1093 } 1094 prev_page = page; 1095 } 1096 } 1097 1098 /* 1099 * Allocate a zspage for the given size class 1100 */ 1101 static struct zspage *alloc_zspage(struct zs_pool *pool, 1102 struct size_class *class, 1103 gfp_t gfp) 1104 { 1105 int i; 1106 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1107 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1108 1109 if (!zspage) 1110 return NULL; 1111 1112 zspage->magic = ZSPAGE_MAGIC; 1113 migrate_lock_init(zspage); 1114 1115 for (i = 0; i < class->pages_per_zspage; i++) { 1116 struct page *page; 1117 1118 page = alloc_page(gfp); 1119 if (!page) { 1120 while (--i >= 0) { 1121 dec_zone_page_state(pages[i], NR_ZSPAGES); 1122 __free_page(pages[i]); 1123 } 1124 cache_free_zspage(pool, zspage); 1125 return NULL; 1126 } 1127 1128 inc_zone_page_state(page, NR_ZSPAGES); 1129 pages[i] = page; 1130 } 1131 1132 create_page_chain(class, zspage, pages); 1133 init_zspage(class, zspage); 1134 zspage->pool = pool; 1135 1136 return zspage; 1137 } 1138 1139 static struct zspage *find_get_zspage(struct size_class *class) 1140 { 1141 int i; 1142 struct zspage *zspage; 1143 1144 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1145 zspage = list_first_entry_or_null(&class->fullness_list[i], 1146 struct zspage, list); 1147 if (zspage) 1148 break; 1149 } 1150 1151 return zspage; 1152 } 1153 1154 static inline int __zs_cpu_up(struct mapping_area *area) 1155 { 1156 /* 1157 * Make sure we don't leak memory if a cpu UP notification 1158 * and zs_init() race and both call zs_cpu_up() on the same cpu 1159 */ 1160 if (area->vm_buf) 1161 return 0; 1162 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1163 if (!area->vm_buf) 1164 return -ENOMEM; 1165 return 0; 1166 } 1167 1168 static inline void __zs_cpu_down(struct mapping_area *area) 1169 { 1170 kfree(area->vm_buf); 1171 area->vm_buf = NULL; 1172 } 1173 1174 static void *__zs_map_object(struct mapping_area *area, 1175 struct page *pages[2], int off, int size) 1176 { 1177 int sizes[2]; 1178 void *addr; 1179 char *buf = area->vm_buf; 1180 1181 /* disable page faults to match kmap_atomic() return conditions */ 1182 pagefault_disable(); 1183 1184 /* no read fastpath */ 1185 if (area->vm_mm == ZS_MM_WO) 1186 goto out; 1187 1188 sizes[0] = PAGE_SIZE - off; 1189 sizes[1] = size - sizes[0]; 1190 1191 /* copy object to per-cpu buffer */ 1192 addr = kmap_atomic(pages[0]); 1193 memcpy(buf, addr + off, sizes[0]); 1194 kunmap_atomic(addr); 1195 addr = kmap_atomic(pages[1]); 1196 memcpy(buf + sizes[0], addr, sizes[1]); 1197 kunmap_atomic(addr); 1198 out: 1199 return area->vm_buf; 1200 } 1201 1202 static void __zs_unmap_object(struct mapping_area *area, 1203 struct page *pages[2], int off, int size) 1204 { 1205 int sizes[2]; 1206 void *addr; 1207 char *buf; 1208 1209 /* no write fastpath */ 1210 if (area->vm_mm == ZS_MM_RO) 1211 goto out; 1212 1213 buf = area->vm_buf; 1214 buf = buf + ZS_HANDLE_SIZE; 1215 size -= ZS_HANDLE_SIZE; 1216 off += ZS_HANDLE_SIZE; 1217 1218 sizes[0] = PAGE_SIZE - off; 1219 sizes[1] = size - sizes[0]; 1220 1221 /* copy per-cpu buffer to object */ 1222 addr = kmap_atomic(pages[0]); 1223 memcpy(addr + off, buf, sizes[0]); 1224 kunmap_atomic(addr); 1225 addr = kmap_atomic(pages[1]); 1226 memcpy(addr, buf + sizes[0], sizes[1]); 1227 kunmap_atomic(addr); 1228 1229 out: 1230 /* enable page faults to match kunmap_atomic() return conditions */ 1231 pagefault_enable(); 1232 } 1233 1234 static int zs_cpu_prepare(unsigned int cpu) 1235 { 1236 struct mapping_area *area; 1237 1238 area = &per_cpu(zs_map_area, cpu); 1239 return __zs_cpu_up(area); 1240 } 1241 1242 static int zs_cpu_dead(unsigned int cpu) 1243 { 1244 struct mapping_area *area; 1245 1246 area = &per_cpu(zs_map_area, cpu); 1247 __zs_cpu_down(area); 1248 return 0; 1249 } 1250 1251 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1252 int objs_per_zspage) 1253 { 1254 if (prev->pages_per_zspage == pages_per_zspage && 1255 prev->objs_per_zspage == objs_per_zspage) 1256 return true; 1257 1258 return false; 1259 } 1260 1261 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1262 { 1263 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1264 } 1265 1266 /** 1267 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1268 * that hold objects of the provided size. 1269 * @pool: zsmalloc pool to use 1270 * @size: object size 1271 * 1272 * Context: Any context. 1273 * 1274 * Return: the index of the zsmalloc &size_class that hold objects of the 1275 * provided size. 1276 */ 1277 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1278 { 1279 struct size_class *class; 1280 1281 class = pool->size_class[get_size_class_index(size)]; 1282 1283 return class->index; 1284 } 1285 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1286 1287 unsigned long zs_get_total_pages(struct zs_pool *pool) 1288 { 1289 return atomic_long_read(&pool->pages_allocated); 1290 } 1291 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1292 1293 /** 1294 * zs_map_object - get address of allocated object from handle. 1295 * @pool: pool from which the object was allocated 1296 * @handle: handle returned from zs_malloc 1297 * @mm: mapping mode to use 1298 * 1299 * Before using an object allocated from zs_malloc, it must be mapped using 1300 * this function. When done with the object, it must be unmapped using 1301 * zs_unmap_object. 1302 * 1303 * Only one object can be mapped per cpu at a time. There is no protection 1304 * against nested mappings. 1305 * 1306 * This function returns with preemption and page faults disabled. 1307 */ 1308 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1309 enum zs_mapmode mm) 1310 { 1311 struct zspage *zspage; 1312 struct page *page; 1313 unsigned long obj, off; 1314 unsigned int obj_idx; 1315 1316 struct size_class *class; 1317 struct mapping_area *area; 1318 struct page *pages[2]; 1319 void *ret; 1320 1321 /* 1322 * Because we use per-cpu mapping areas shared among the 1323 * pools/users, we can't allow mapping in interrupt context 1324 * because it can corrupt another users mappings. 1325 */ 1326 BUG_ON(in_interrupt()); 1327 1328 /* It guarantees it can get zspage from handle safely */ 1329 spin_lock(&pool->lock); 1330 obj = handle_to_obj(handle); 1331 obj_to_location(obj, &page, &obj_idx); 1332 zspage = get_zspage(page); 1333 1334 #ifdef CONFIG_ZPOOL 1335 /* 1336 * Move the zspage to front of pool's LRU. 1337 * 1338 * Note that this is swap-specific, so by definition there are no ongoing 1339 * accesses to the memory while the page is swapped out that would make 1340 * it "hot". A new entry is hot, then ages to the tail until it gets either 1341 * written back or swaps back in. 1342 * 1343 * Furthermore, map is also called during writeback. We must not put an 1344 * isolated page on the LRU mid-reclaim. 1345 * 1346 * As a result, only update the LRU when the page is mapped for write 1347 * when it's first instantiated. 1348 * 1349 * This is a deviation from the other backends, which perform this update 1350 * in the allocation function (zbud_alloc, z3fold_alloc). 1351 */ 1352 if (mm == ZS_MM_WO) { 1353 if (!list_empty(&zspage->lru)) 1354 list_del(&zspage->lru); 1355 list_add(&zspage->lru, &pool->lru); 1356 } 1357 #endif 1358 1359 /* 1360 * migration cannot move any zpages in this zspage. Here, pool->lock 1361 * is too heavy since callers would take some time until they calls 1362 * zs_unmap_object API so delegate the locking from class to zspage 1363 * which is smaller granularity. 1364 */ 1365 migrate_read_lock(zspage); 1366 spin_unlock(&pool->lock); 1367 1368 class = zspage_class(pool, zspage); 1369 off = (class->size * obj_idx) & ~PAGE_MASK; 1370 1371 local_lock(&zs_map_area.lock); 1372 area = this_cpu_ptr(&zs_map_area); 1373 area->vm_mm = mm; 1374 if (off + class->size <= PAGE_SIZE) { 1375 /* this object is contained entirely within a page */ 1376 area->vm_addr = kmap_atomic(page); 1377 ret = area->vm_addr + off; 1378 goto out; 1379 } 1380 1381 /* this object spans two pages */ 1382 pages[0] = page; 1383 pages[1] = get_next_page(page); 1384 BUG_ON(!pages[1]); 1385 1386 ret = __zs_map_object(area, pages, off, class->size); 1387 out: 1388 if (likely(!ZsHugePage(zspage))) 1389 ret += ZS_HANDLE_SIZE; 1390 1391 return ret; 1392 } 1393 EXPORT_SYMBOL_GPL(zs_map_object); 1394 1395 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1396 { 1397 struct zspage *zspage; 1398 struct page *page; 1399 unsigned long obj, off; 1400 unsigned int obj_idx; 1401 1402 struct size_class *class; 1403 struct mapping_area *area; 1404 1405 obj = handle_to_obj(handle); 1406 obj_to_location(obj, &page, &obj_idx); 1407 zspage = get_zspage(page); 1408 class = zspage_class(pool, zspage); 1409 off = (class->size * obj_idx) & ~PAGE_MASK; 1410 1411 area = this_cpu_ptr(&zs_map_area); 1412 if (off + class->size <= PAGE_SIZE) 1413 kunmap_atomic(area->vm_addr); 1414 else { 1415 struct page *pages[2]; 1416 1417 pages[0] = page; 1418 pages[1] = get_next_page(page); 1419 BUG_ON(!pages[1]); 1420 1421 __zs_unmap_object(area, pages, off, class->size); 1422 } 1423 local_unlock(&zs_map_area.lock); 1424 1425 migrate_read_unlock(zspage); 1426 } 1427 EXPORT_SYMBOL_GPL(zs_unmap_object); 1428 1429 /** 1430 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1431 * zsmalloc &size_class. 1432 * @pool: zsmalloc pool to use 1433 * 1434 * The function returns the size of the first huge class - any object of equal 1435 * or bigger size will be stored in zspage consisting of a single physical 1436 * page. 1437 * 1438 * Context: Any context. 1439 * 1440 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1441 */ 1442 size_t zs_huge_class_size(struct zs_pool *pool) 1443 { 1444 return huge_class_size; 1445 } 1446 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1447 1448 static unsigned long obj_malloc(struct zs_pool *pool, 1449 struct zspage *zspage, unsigned long handle) 1450 { 1451 int i, nr_page, offset; 1452 unsigned long obj; 1453 struct link_free *link; 1454 struct size_class *class; 1455 1456 struct page *m_page; 1457 unsigned long m_offset; 1458 void *vaddr; 1459 1460 class = pool->size_class[zspage->class]; 1461 handle |= OBJ_ALLOCATED_TAG; 1462 obj = get_freeobj(zspage); 1463 1464 offset = obj * class->size; 1465 nr_page = offset >> PAGE_SHIFT; 1466 m_offset = offset & ~PAGE_MASK; 1467 m_page = get_first_page(zspage); 1468 1469 for (i = 0; i < nr_page; i++) 1470 m_page = get_next_page(m_page); 1471 1472 vaddr = kmap_atomic(m_page); 1473 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1474 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1475 if (likely(!ZsHugePage(zspage))) 1476 /* record handle in the header of allocated chunk */ 1477 link->handle = handle; 1478 else 1479 /* record handle to page->index */ 1480 zspage->first_page->index = handle; 1481 1482 kunmap_atomic(vaddr); 1483 mod_zspage_inuse(zspage, 1); 1484 1485 obj = location_to_obj(m_page, obj); 1486 1487 return obj; 1488 } 1489 1490 1491 /** 1492 * zs_malloc - Allocate block of given size from pool. 1493 * @pool: pool to allocate from 1494 * @size: size of block to allocate 1495 * @gfp: gfp flags when allocating object 1496 * 1497 * On success, handle to the allocated object is returned, 1498 * otherwise an ERR_PTR(). 1499 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1500 */ 1501 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1502 { 1503 unsigned long handle, obj; 1504 struct size_class *class; 1505 int newfg; 1506 struct zspage *zspage; 1507 1508 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1509 return (unsigned long)ERR_PTR(-EINVAL); 1510 1511 handle = cache_alloc_handle(pool, gfp); 1512 if (!handle) 1513 return (unsigned long)ERR_PTR(-ENOMEM); 1514 1515 /* extra space in chunk to keep the handle */ 1516 size += ZS_HANDLE_SIZE; 1517 class = pool->size_class[get_size_class_index(size)]; 1518 1519 /* pool->lock effectively protects the zpage migration */ 1520 spin_lock(&pool->lock); 1521 zspage = find_get_zspage(class); 1522 if (likely(zspage)) { 1523 obj = obj_malloc(pool, zspage, handle); 1524 /* Now move the zspage to another fullness group, if required */ 1525 fix_fullness_group(class, zspage); 1526 record_obj(handle, obj); 1527 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1528 spin_unlock(&pool->lock); 1529 1530 return handle; 1531 } 1532 1533 spin_unlock(&pool->lock); 1534 1535 zspage = alloc_zspage(pool, class, gfp); 1536 if (!zspage) { 1537 cache_free_handle(pool, handle); 1538 return (unsigned long)ERR_PTR(-ENOMEM); 1539 } 1540 1541 spin_lock(&pool->lock); 1542 obj = obj_malloc(pool, zspage, handle); 1543 newfg = get_fullness_group(class, zspage); 1544 insert_zspage(class, zspage, newfg); 1545 set_zspage_mapping(zspage, class->index, newfg); 1546 record_obj(handle, obj); 1547 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1548 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1549 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1550 1551 /* We completely set up zspage so mark them as movable */ 1552 SetZsPageMovable(pool, zspage); 1553 spin_unlock(&pool->lock); 1554 1555 return handle; 1556 } 1557 EXPORT_SYMBOL_GPL(zs_malloc); 1558 1559 static void obj_free(int class_size, unsigned long obj, unsigned long *handle) 1560 { 1561 struct link_free *link; 1562 struct zspage *zspage; 1563 struct page *f_page; 1564 unsigned long f_offset; 1565 unsigned int f_objidx; 1566 void *vaddr; 1567 1568 obj_to_location(obj, &f_page, &f_objidx); 1569 f_offset = (class_size * f_objidx) & ~PAGE_MASK; 1570 zspage = get_zspage(f_page); 1571 1572 vaddr = kmap_atomic(f_page); 1573 link = (struct link_free *)(vaddr + f_offset); 1574 1575 if (handle) { 1576 #ifdef CONFIG_ZPOOL 1577 /* Stores the (deferred) handle in the object's header */ 1578 *handle |= OBJ_DEFERRED_HANDLE_TAG; 1579 *handle &= ~OBJ_ALLOCATED_TAG; 1580 1581 if (likely(!ZsHugePage(zspage))) 1582 link->deferred_handle = *handle; 1583 else 1584 f_page->index = *handle; 1585 #endif 1586 } else { 1587 /* Insert this object in containing zspage's freelist */ 1588 if (likely(!ZsHugePage(zspage))) 1589 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1590 else 1591 f_page->index = 0; 1592 set_freeobj(zspage, f_objidx); 1593 } 1594 1595 kunmap_atomic(vaddr); 1596 mod_zspage_inuse(zspage, -1); 1597 } 1598 1599 void zs_free(struct zs_pool *pool, unsigned long handle) 1600 { 1601 struct zspage *zspage; 1602 struct page *f_page; 1603 unsigned long obj; 1604 struct size_class *class; 1605 int fullness; 1606 1607 if (IS_ERR_OR_NULL((void *)handle)) 1608 return; 1609 1610 /* 1611 * The pool->lock protects the race with zpage's migration 1612 * so it's safe to get the page from handle. 1613 */ 1614 spin_lock(&pool->lock); 1615 obj = handle_to_obj(handle); 1616 obj_to_page(obj, &f_page); 1617 zspage = get_zspage(f_page); 1618 class = zspage_class(pool, zspage); 1619 1620 class_stat_dec(class, ZS_OBJS_INUSE, 1); 1621 1622 #ifdef CONFIG_ZPOOL 1623 if (zspage->under_reclaim) { 1624 /* 1625 * Reclaim needs the handles during writeback. It'll free 1626 * them along with the zspage when it's done with them. 1627 * 1628 * Record current deferred handle in the object's header. 1629 */ 1630 obj_free(class->size, obj, &handle); 1631 spin_unlock(&pool->lock); 1632 return; 1633 } 1634 #endif 1635 obj_free(class->size, obj, NULL); 1636 1637 fullness = fix_fullness_group(class, zspage); 1638 if (fullness == ZS_INUSE_RATIO_0) 1639 free_zspage(pool, class, zspage); 1640 1641 spin_unlock(&pool->lock); 1642 cache_free_handle(pool, handle); 1643 } 1644 EXPORT_SYMBOL_GPL(zs_free); 1645 1646 static void zs_object_copy(struct size_class *class, unsigned long dst, 1647 unsigned long src) 1648 { 1649 struct page *s_page, *d_page; 1650 unsigned int s_objidx, d_objidx; 1651 unsigned long s_off, d_off; 1652 void *s_addr, *d_addr; 1653 int s_size, d_size, size; 1654 int written = 0; 1655 1656 s_size = d_size = class->size; 1657 1658 obj_to_location(src, &s_page, &s_objidx); 1659 obj_to_location(dst, &d_page, &d_objidx); 1660 1661 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1662 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1663 1664 if (s_off + class->size > PAGE_SIZE) 1665 s_size = PAGE_SIZE - s_off; 1666 1667 if (d_off + class->size > PAGE_SIZE) 1668 d_size = PAGE_SIZE - d_off; 1669 1670 s_addr = kmap_atomic(s_page); 1671 d_addr = kmap_atomic(d_page); 1672 1673 while (1) { 1674 size = min(s_size, d_size); 1675 memcpy(d_addr + d_off, s_addr + s_off, size); 1676 written += size; 1677 1678 if (written == class->size) 1679 break; 1680 1681 s_off += size; 1682 s_size -= size; 1683 d_off += size; 1684 d_size -= size; 1685 1686 /* 1687 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1688 * calls must occurs in reverse order of calls to kmap_atomic(). 1689 * So, to call kunmap_atomic(s_addr) we should first call 1690 * kunmap_atomic(d_addr). For more details see 1691 * Documentation/mm/highmem.rst. 1692 */ 1693 if (s_off >= PAGE_SIZE) { 1694 kunmap_atomic(d_addr); 1695 kunmap_atomic(s_addr); 1696 s_page = get_next_page(s_page); 1697 s_addr = kmap_atomic(s_page); 1698 d_addr = kmap_atomic(d_page); 1699 s_size = class->size - written; 1700 s_off = 0; 1701 } 1702 1703 if (d_off >= PAGE_SIZE) { 1704 kunmap_atomic(d_addr); 1705 d_page = get_next_page(d_page); 1706 d_addr = kmap_atomic(d_page); 1707 d_size = class->size - written; 1708 d_off = 0; 1709 } 1710 } 1711 1712 kunmap_atomic(d_addr); 1713 kunmap_atomic(s_addr); 1714 } 1715 1716 /* 1717 * Find object with a certain tag in zspage from index object and 1718 * return handle. 1719 */ 1720 static unsigned long find_tagged_obj(struct size_class *class, 1721 struct page *page, int *obj_idx, int tag) 1722 { 1723 unsigned int offset; 1724 int index = *obj_idx; 1725 unsigned long handle = 0; 1726 void *addr = kmap_atomic(page); 1727 1728 offset = get_first_obj_offset(page); 1729 offset += class->size * index; 1730 1731 while (offset < PAGE_SIZE) { 1732 if (obj_tagged(page, addr + offset, &handle, tag)) 1733 break; 1734 1735 offset += class->size; 1736 index++; 1737 } 1738 1739 kunmap_atomic(addr); 1740 1741 *obj_idx = index; 1742 1743 return handle; 1744 } 1745 1746 /* 1747 * Find alloced object in zspage from index object and 1748 * return handle. 1749 */ 1750 static unsigned long find_alloced_obj(struct size_class *class, 1751 struct page *page, int *obj_idx) 1752 { 1753 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG); 1754 } 1755 1756 #ifdef CONFIG_ZPOOL 1757 /* 1758 * Find object storing a deferred handle in header in zspage from index object 1759 * and return handle. 1760 */ 1761 static unsigned long find_deferred_handle_obj(struct size_class *class, 1762 struct page *page, int *obj_idx) 1763 { 1764 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG); 1765 } 1766 #endif 1767 1768 struct zs_compact_control { 1769 /* Source spage for migration which could be a subpage of zspage */ 1770 struct page *s_page; 1771 /* Destination page for migration which should be a first page 1772 * of zspage. */ 1773 struct page *d_page; 1774 /* Starting object index within @s_page which used for live object 1775 * in the subpage. */ 1776 int obj_idx; 1777 }; 1778 1779 static void migrate_zspage(struct zs_pool *pool, struct size_class *class, 1780 struct zs_compact_control *cc) 1781 { 1782 unsigned long used_obj, free_obj; 1783 unsigned long handle; 1784 struct page *s_page = cc->s_page; 1785 struct page *d_page = cc->d_page; 1786 int obj_idx = cc->obj_idx; 1787 1788 while (1) { 1789 handle = find_alloced_obj(class, s_page, &obj_idx); 1790 if (!handle) { 1791 s_page = get_next_page(s_page); 1792 if (!s_page) 1793 break; 1794 obj_idx = 0; 1795 continue; 1796 } 1797 1798 /* Stop if there is no more space */ 1799 if (zspage_full(class, get_zspage(d_page))) 1800 break; 1801 1802 used_obj = handle_to_obj(handle); 1803 free_obj = obj_malloc(pool, get_zspage(d_page), handle); 1804 zs_object_copy(class, free_obj, used_obj); 1805 obj_idx++; 1806 record_obj(handle, free_obj); 1807 obj_free(class->size, used_obj, NULL); 1808 } 1809 1810 /* Remember last position in this iteration */ 1811 cc->s_page = s_page; 1812 cc->obj_idx = obj_idx; 1813 } 1814 1815 static struct zspage *isolate_src_zspage(struct size_class *class) 1816 { 1817 struct zspage *zspage; 1818 int fg; 1819 1820 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1821 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1822 struct zspage, list); 1823 if (zspage) { 1824 remove_zspage(class, zspage, fg); 1825 return zspage; 1826 } 1827 } 1828 1829 return zspage; 1830 } 1831 1832 static struct zspage *isolate_dst_zspage(struct size_class *class) 1833 { 1834 struct zspage *zspage; 1835 int fg; 1836 1837 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1838 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1839 struct zspage, list); 1840 if (zspage) { 1841 remove_zspage(class, zspage, fg); 1842 return zspage; 1843 } 1844 } 1845 1846 return zspage; 1847 } 1848 1849 /* 1850 * putback_zspage - add @zspage into right class's fullness list 1851 * @class: destination class 1852 * @zspage: target page 1853 * 1854 * Return @zspage's fullness status 1855 */ 1856 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1857 { 1858 int fullness; 1859 1860 fullness = get_fullness_group(class, zspage); 1861 insert_zspage(class, zspage, fullness); 1862 set_zspage_mapping(zspage, class->index, fullness); 1863 1864 return fullness; 1865 } 1866 1867 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) 1868 /* 1869 * To prevent zspage destroy during migration, zspage freeing should 1870 * hold locks of all pages in the zspage. 1871 */ 1872 static void lock_zspage(struct zspage *zspage) 1873 { 1874 struct page *curr_page, *page; 1875 1876 /* 1877 * Pages we haven't locked yet can be migrated off the list while we're 1878 * trying to lock them, so we need to be careful and only attempt to 1879 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1880 * may no longer belong to the zspage. This means that we may wait for 1881 * the wrong page to unlock, so we must take a reference to the page 1882 * prior to waiting for it to unlock outside migrate_read_lock(). 1883 */ 1884 while (1) { 1885 migrate_read_lock(zspage); 1886 page = get_first_page(zspage); 1887 if (trylock_page(page)) 1888 break; 1889 get_page(page); 1890 migrate_read_unlock(zspage); 1891 wait_on_page_locked(page); 1892 put_page(page); 1893 } 1894 1895 curr_page = page; 1896 while ((page = get_next_page(curr_page))) { 1897 if (trylock_page(page)) { 1898 curr_page = page; 1899 } else { 1900 get_page(page); 1901 migrate_read_unlock(zspage); 1902 wait_on_page_locked(page); 1903 put_page(page); 1904 migrate_read_lock(zspage); 1905 } 1906 } 1907 migrate_read_unlock(zspage); 1908 } 1909 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */ 1910 1911 #ifdef CONFIG_ZPOOL 1912 /* 1913 * Unlocks all the pages of the zspage. 1914 * 1915 * pool->lock must be held before this function is called 1916 * to prevent the underlying pages from migrating. 1917 */ 1918 static void unlock_zspage(struct zspage *zspage) 1919 { 1920 struct page *page = get_first_page(zspage); 1921 1922 do { 1923 unlock_page(page); 1924 } while ((page = get_next_page(page)) != NULL); 1925 } 1926 #endif /* CONFIG_ZPOOL */ 1927 1928 static void migrate_lock_init(struct zspage *zspage) 1929 { 1930 rwlock_init(&zspage->lock); 1931 } 1932 1933 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1934 { 1935 read_lock(&zspage->lock); 1936 } 1937 1938 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1939 { 1940 read_unlock(&zspage->lock); 1941 } 1942 1943 #ifdef CONFIG_COMPACTION 1944 static void migrate_write_lock(struct zspage *zspage) 1945 { 1946 write_lock(&zspage->lock); 1947 } 1948 1949 static void migrate_write_lock_nested(struct zspage *zspage) 1950 { 1951 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 1952 } 1953 1954 static void migrate_write_unlock(struct zspage *zspage) 1955 { 1956 write_unlock(&zspage->lock); 1957 } 1958 1959 /* Number of isolated subpage for *page migration* in this zspage */ 1960 static void inc_zspage_isolation(struct zspage *zspage) 1961 { 1962 zspage->isolated++; 1963 } 1964 1965 static void dec_zspage_isolation(struct zspage *zspage) 1966 { 1967 VM_BUG_ON(zspage->isolated == 0); 1968 zspage->isolated--; 1969 } 1970 1971 static const struct movable_operations zsmalloc_mops; 1972 1973 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1974 struct page *newpage, struct page *oldpage) 1975 { 1976 struct page *page; 1977 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1978 int idx = 0; 1979 1980 page = get_first_page(zspage); 1981 do { 1982 if (page == oldpage) 1983 pages[idx] = newpage; 1984 else 1985 pages[idx] = page; 1986 idx++; 1987 } while ((page = get_next_page(page)) != NULL); 1988 1989 create_page_chain(class, zspage, pages); 1990 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1991 if (unlikely(ZsHugePage(zspage))) 1992 newpage->index = oldpage->index; 1993 __SetPageMovable(newpage, &zsmalloc_mops); 1994 } 1995 1996 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1997 { 1998 struct zspage *zspage; 1999 2000 /* 2001 * Page is locked so zspage couldn't be destroyed. For detail, look at 2002 * lock_zspage in free_zspage. 2003 */ 2004 VM_BUG_ON_PAGE(PageIsolated(page), page); 2005 2006 zspage = get_zspage(page); 2007 migrate_write_lock(zspage); 2008 inc_zspage_isolation(zspage); 2009 migrate_write_unlock(zspage); 2010 2011 return true; 2012 } 2013 2014 static int zs_page_migrate(struct page *newpage, struct page *page, 2015 enum migrate_mode mode) 2016 { 2017 struct zs_pool *pool; 2018 struct size_class *class; 2019 struct zspage *zspage; 2020 struct page *dummy; 2021 void *s_addr, *d_addr, *addr; 2022 unsigned int offset; 2023 unsigned long handle; 2024 unsigned long old_obj, new_obj; 2025 unsigned int obj_idx; 2026 2027 /* 2028 * We cannot support the _NO_COPY case here, because copy needs to 2029 * happen under the zs lock, which does not work with 2030 * MIGRATE_SYNC_NO_COPY workflow. 2031 */ 2032 if (mode == MIGRATE_SYNC_NO_COPY) 2033 return -EINVAL; 2034 2035 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2036 2037 /* The page is locked, so this pointer must remain valid */ 2038 zspage = get_zspage(page); 2039 pool = zspage->pool; 2040 2041 /* 2042 * The pool's lock protects the race between zpage migration 2043 * and zs_free. 2044 */ 2045 spin_lock(&pool->lock); 2046 class = zspage_class(pool, zspage); 2047 2048 /* the migrate_write_lock protects zpage access via zs_map_object */ 2049 migrate_write_lock(zspage); 2050 2051 offset = get_first_obj_offset(page); 2052 s_addr = kmap_atomic(page); 2053 2054 /* 2055 * Here, any user cannot access all objects in the zspage so let's move. 2056 */ 2057 d_addr = kmap_atomic(newpage); 2058 memcpy(d_addr, s_addr, PAGE_SIZE); 2059 kunmap_atomic(d_addr); 2060 2061 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 2062 addr += class->size) { 2063 if (obj_allocated(page, addr, &handle)) { 2064 2065 old_obj = handle_to_obj(handle); 2066 obj_to_location(old_obj, &dummy, &obj_idx); 2067 new_obj = (unsigned long)location_to_obj(newpage, 2068 obj_idx); 2069 record_obj(handle, new_obj); 2070 } 2071 } 2072 kunmap_atomic(s_addr); 2073 2074 replace_sub_page(class, zspage, newpage, page); 2075 /* 2076 * Since we complete the data copy and set up new zspage structure, 2077 * it's okay to release the pool's lock. 2078 */ 2079 spin_unlock(&pool->lock); 2080 dec_zspage_isolation(zspage); 2081 migrate_write_unlock(zspage); 2082 2083 get_page(newpage); 2084 if (page_zone(newpage) != page_zone(page)) { 2085 dec_zone_page_state(page, NR_ZSPAGES); 2086 inc_zone_page_state(newpage, NR_ZSPAGES); 2087 } 2088 2089 reset_page(page); 2090 put_page(page); 2091 2092 return MIGRATEPAGE_SUCCESS; 2093 } 2094 2095 static void zs_page_putback(struct page *page) 2096 { 2097 struct zspage *zspage; 2098 2099 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2100 2101 zspage = get_zspage(page); 2102 migrate_write_lock(zspage); 2103 dec_zspage_isolation(zspage); 2104 migrate_write_unlock(zspage); 2105 } 2106 2107 static const struct movable_operations zsmalloc_mops = { 2108 .isolate_page = zs_page_isolate, 2109 .migrate_page = zs_page_migrate, 2110 .putback_page = zs_page_putback, 2111 }; 2112 2113 /* 2114 * Caller should hold page_lock of all pages in the zspage 2115 * In here, we cannot use zspage meta data. 2116 */ 2117 static void async_free_zspage(struct work_struct *work) 2118 { 2119 int i; 2120 struct size_class *class; 2121 unsigned int class_idx; 2122 int fullness; 2123 struct zspage *zspage, *tmp; 2124 LIST_HEAD(free_pages); 2125 struct zs_pool *pool = container_of(work, struct zs_pool, 2126 free_work); 2127 2128 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2129 class = pool->size_class[i]; 2130 if (class->index != i) 2131 continue; 2132 2133 spin_lock(&pool->lock); 2134 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 2135 &free_pages); 2136 spin_unlock(&pool->lock); 2137 } 2138 2139 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2140 list_del(&zspage->list); 2141 lock_zspage(zspage); 2142 2143 get_zspage_mapping(zspage, &class_idx, &fullness); 2144 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0); 2145 class = pool->size_class[class_idx]; 2146 spin_lock(&pool->lock); 2147 #ifdef CONFIG_ZPOOL 2148 list_del(&zspage->lru); 2149 #endif 2150 __free_zspage(pool, class, zspage); 2151 spin_unlock(&pool->lock); 2152 } 2153 }; 2154 2155 static void kick_deferred_free(struct zs_pool *pool) 2156 { 2157 schedule_work(&pool->free_work); 2158 } 2159 2160 static void zs_flush_migration(struct zs_pool *pool) 2161 { 2162 flush_work(&pool->free_work); 2163 } 2164 2165 static void init_deferred_free(struct zs_pool *pool) 2166 { 2167 INIT_WORK(&pool->free_work, async_free_zspage); 2168 } 2169 2170 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2171 { 2172 struct page *page = get_first_page(zspage); 2173 2174 do { 2175 WARN_ON(!trylock_page(page)); 2176 __SetPageMovable(page, &zsmalloc_mops); 2177 unlock_page(page); 2178 } while ((page = get_next_page(page)) != NULL); 2179 } 2180 #else 2181 static inline void zs_flush_migration(struct zs_pool *pool) { } 2182 #endif 2183 2184 /* 2185 * 2186 * Based on the number of unused allocated objects calculate 2187 * and return the number of pages that we can free. 2188 */ 2189 static unsigned long zs_can_compact(struct size_class *class) 2190 { 2191 unsigned long obj_wasted; 2192 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 2193 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 2194 2195 if (obj_allocated <= obj_used) 2196 return 0; 2197 2198 obj_wasted = obj_allocated - obj_used; 2199 obj_wasted /= class->objs_per_zspage; 2200 2201 return obj_wasted * class->pages_per_zspage; 2202 } 2203 2204 static unsigned long __zs_compact(struct zs_pool *pool, 2205 struct size_class *class) 2206 { 2207 struct zs_compact_control cc; 2208 struct zspage *src_zspage = NULL; 2209 struct zspage *dst_zspage = NULL; 2210 unsigned long pages_freed = 0; 2211 2212 /* 2213 * protect the race between zpage migration and zs_free 2214 * as well as zpage allocation/free 2215 */ 2216 spin_lock(&pool->lock); 2217 while (zs_can_compact(class)) { 2218 int fg; 2219 2220 if (!dst_zspage) { 2221 dst_zspage = isolate_dst_zspage(class); 2222 if (!dst_zspage) 2223 break; 2224 migrate_write_lock(dst_zspage); 2225 cc.d_page = get_first_page(dst_zspage); 2226 } 2227 2228 src_zspage = isolate_src_zspage(class); 2229 if (!src_zspage) 2230 break; 2231 2232 migrate_write_lock_nested(src_zspage); 2233 2234 cc.obj_idx = 0; 2235 cc.s_page = get_first_page(src_zspage); 2236 migrate_zspage(pool, class, &cc); 2237 fg = putback_zspage(class, src_zspage); 2238 migrate_write_unlock(src_zspage); 2239 2240 if (fg == ZS_INUSE_RATIO_0) { 2241 free_zspage(pool, class, src_zspage); 2242 pages_freed += class->pages_per_zspage; 2243 } 2244 src_zspage = NULL; 2245 2246 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 2247 || spin_is_contended(&pool->lock)) { 2248 putback_zspage(class, dst_zspage); 2249 migrate_write_unlock(dst_zspage); 2250 dst_zspage = NULL; 2251 2252 spin_unlock(&pool->lock); 2253 cond_resched(); 2254 spin_lock(&pool->lock); 2255 } 2256 } 2257 2258 if (src_zspage) { 2259 putback_zspage(class, src_zspage); 2260 migrate_write_unlock(src_zspage); 2261 } 2262 2263 if (dst_zspage) { 2264 putback_zspage(class, dst_zspage); 2265 migrate_write_unlock(dst_zspage); 2266 } 2267 spin_unlock(&pool->lock); 2268 2269 return pages_freed; 2270 } 2271 2272 unsigned long zs_compact(struct zs_pool *pool) 2273 { 2274 int i; 2275 struct size_class *class; 2276 unsigned long pages_freed = 0; 2277 2278 /* 2279 * Pool compaction is performed under pool->lock so it is basically 2280 * single-threaded. Having more than one thread in __zs_compact() 2281 * will increase pool->lock contention, which will impact other 2282 * zsmalloc operations that need pool->lock. 2283 */ 2284 if (atomic_xchg(&pool->compaction_in_progress, 1)) 2285 return 0; 2286 2287 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2288 class = pool->size_class[i]; 2289 if (class->index != i) 2290 continue; 2291 pages_freed += __zs_compact(pool, class); 2292 } 2293 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2294 atomic_set(&pool->compaction_in_progress, 0); 2295 2296 return pages_freed; 2297 } 2298 EXPORT_SYMBOL_GPL(zs_compact); 2299 2300 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2301 { 2302 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2303 } 2304 EXPORT_SYMBOL_GPL(zs_pool_stats); 2305 2306 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2307 struct shrink_control *sc) 2308 { 2309 unsigned long pages_freed; 2310 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2311 shrinker); 2312 2313 /* 2314 * Compact classes and calculate compaction delta. 2315 * Can run concurrently with a manually triggered 2316 * (by user) compaction. 2317 */ 2318 pages_freed = zs_compact(pool); 2319 2320 return pages_freed ? pages_freed : SHRINK_STOP; 2321 } 2322 2323 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2324 struct shrink_control *sc) 2325 { 2326 int i; 2327 struct size_class *class; 2328 unsigned long pages_to_free = 0; 2329 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2330 shrinker); 2331 2332 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2333 class = pool->size_class[i]; 2334 if (class->index != i) 2335 continue; 2336 2337 pages_to_free += zs_can_compact(class); 2338 } 2339 2340 return pages_to_free; 2341 } 2342 2343 static void zs_unregister_shrinker(struct zs_pool *pool) 2344 { 2345 unregister_shrinker(&pool->shrinker); 2346 } 2347 2348 static int zs_register_shrinker(struct zs_pool *pool) 2349 { 2350 pool->shrinker.scan_objects = zs_shrinker_scan; 2351 pool->shrinker.count_objects = zs_shrinker_count; 2352 pool->shrinker.batch = 0; 2353 pool->shrinker.seeks = DEFAULT_SEEKS; 2354 2355 return register_shrinker(&pool->shrinker, "mm-zspool:%s", 2356 pool->name); 2357 } 2358 2359 static int calculate_zspage_chain_size(int class_size) 2360 { 2361 int i, min_waste = INT_MAX; 2362 int chain_size = 1; 2363 2364 if (is_power_of_2(class_size)) 2365 return chain_size; 2366 2367 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2368 int waste; 2369 2370 waste = (i * PAGE_SIZE) % class_size; 2371 if (waste < min_waste) { 2372 min_waste = waste; 2373 chain_size = i; 2374 } 2375 } 2376 2377 return chain_size; 2378 } 2379 2380 /** 2381 * zs_create_pool - Creates an allocation pool to work from. 2382 * @name: pool name to be created 2383 * 2384 * This function must be called before anything when using 2385 * the zsmalloc allocator. 2386 * 2387 * On success, a pointer to the newly created pool is returned, 2388 * otherwise NULL. 2389 */ 2390 struct zs_pool *zs_create_pool(const char *name) 2391 { 2392 int i; 2393 struct zs_pool *pool; 2394 struct size_class *prev_class = NULL; 2395 2396 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2397 if (!pool) 2398 return NULL; 2399 2400 init_deferred_free(pool); 2401 spin_lock_init(&pool->lock); 2402 atomic_set(&pool->compaction_in_progress, 0); 2403 2404 pool->name = kstrdup(name, GFP_KERNEL); 2405 if (!pool->name) 2406 goto err; 2407 2408 if (create_cache(pool)) 2409 goto err; 2410 2411 /* 2412 * Iterate reversely, because, size of size_class that we want to use 2413 * for merging should be larger or equal to current size. 2414 */ 2415 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2416 int size; 2417 int pages_per_zspage; 2418 int objs_per_zspage; 2419 struct size_class *class; 2420 int fullness; 2421 2422 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2423 if (size > ZS_MAX_ALLOC_SIZE) 2424 size = ZS_MAX_ALLOC_SIZE; 2425 pages_per_zspage = calculate_zspage_chain_size(size); 2426 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2427 2428 /* 2429 * We iterate from biggest down to smallest classes, 2430 * so huge_class_size holds the size of the first huge 2431 * class. Any object bigger than or equal to that will 2432 * endup in the huge class. 2433 */ 2434 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2435 !huge_class_size) { 2436 huge_class_size = size; 2437 /* 2438 * The object uses ZS_HANDLE_SIZE bytes to store the 2439 * handle. We need to subtract it, because zs_malloc() 2440 * unconditionally adds handle size before it performs 2441 * size class search - so object may be smaller than 2442 * huge class size, yet it still can end up in the huge 2443 * class because it grows by ZS_HANDLE_SIZE extra bytes 2444 * right before class lookup. 2445 */ 2446 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2447 } 2448 2449 /* 2450 * size_class is used for normal zsmalloc operation such 2451 * as alloc/free for that size. Although it is natural that we 2452 * have one size_class for each size, there is a chance that we 2453 * can get more memory utilization if we use one size_class for 2454 * many different sizes whose size_class have same 2455 * characteristics. So, we makes size_class point to 2456 * previous size_class if possible. 2457 */ 2458 if (prev_class) { 2459 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2460 pool->size_class[i] = prev_class; 2461 continue; 2462 } 2463 } 2464 2465 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2466 if (!class) 2467 goto err; 2468 2469 class->size = size; 2470 class->index = i; 2471 class->pages_per_zspage = pages_per_zspage; 2472 class->objs_per_zspage = objs_per_zspage; 2473 pool->size_class[i] = class; 2474 2475 fullness = ZS_INUSE_RATIO_0; 2476 while (fullness < NR_FULLNESS_GROUPS) { 2477 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2478 fullness++; 2479 } 2480 2481 prev_class = class; 2482 } 2483 2484 /* debug only, don't abort if it fails */ 2485 zs_pool_stat_create(pool, name); 2486 2487 /* 2488 * Not critical since shrinker is only used to trigger internal 2489 * defragmentation of the pool which is pretty optional thing. If 2490 * registration fails we still can use the pool normally and user can 2491 * trigger compaction manually. Thus, ignore return code. 2492 */ 2493 zs_register_shrinker(pool); 2494 2495 #ifdef CONFIG_ZPOOL 2496 INIT_LIST_HEAD(&pool->lru); 2497 #endif 2498 2499 return pool; 2500 2501 err: 2502 zs_destroy_pool(pool); 2503 return NULL; 2504 } 2505 EXPORT_SYMBOL_GPL(zs_create_pool); 2506 2507 void zs_destroy_pool(struct zs_pool *pool) 2508 { 2509 int i; 2510 2511 zs_unregister_shrinker(pool); 2512 zs_flush_migration(pool); 2513 zs_pool_stat_destroy(pool); 2514 2515 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2516 int fg; 2517 struct size_class *class = pool->size_class[i]; 2518 2519 if (!class) 2520 continue; 2521 2522 if (class->index != i) 2523 continue; 2524 2525 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2526 if (list_empty(&class->fullness_list[fg])) 2527 continue; 2528 2529 pr_err("Class-%d fullness group %d is not empty\n", 2530 class->size, fg); 2531 } 2532 kfree(class); 2533 } 2534 2535 destroy_cache(pool); 2536 kfree(pool->name); 2537 kfree(pool); 2538 } 2539 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2540 2541 #ifdef CONFIG_ZPOOL 2542 static void restore_freelist(struct zs_pool *pool, struct size_class *class, 2543 struct zspage *zspage) 2544 { 2545 unsigned int obj_idx = 0; 2546 unsigned long handle, off = 0; /* off is within-page offset */ 2547 struct page *page = get_first_page(zspage); 2548 struct link_free *prev_free = NULL; 2549 void *prev_page_vaddr = NULL; 2550 2551 /* in case no free object found */ 2552 set_freeobj(zspage, (unsigned int)(-1UL)); 2553 2554 while (page) { 2555 void *vaddr = kmap_atomic(page); 2556 struct page *next_page; 2557 2558 while (off < PAGE_SIZE) { 2559 void *obj_addr = vaddr + off; 2560 2561 /* skip allocated object */ 2562 if (obj_allocated(page, obj_addr, &handle)) { 2563 obj_idx++; 2564 off += class->size; 2565 continue; 2566 } 2567 2568 /* free deferred handle from reclaim attempt */ 2569 if (obj_stores_deferred_handle(page, obj_addr, &handle)) 2570 cache_free_handle(pool, handle); 2571 2572 if (prev_free) 2573 prev_free->next = obj_idx << OBJ_TAG_BITS; 2574 else /* first free object found */ 2575 set_freeobj(zspage, obj_idx); 2576 2577 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free); 2578 /* if last free object in a previous page, need to unmap */ 2579 if (prev_page_vaddr) { 2580 kunmap_atomic(prev_page_vaddr); 2581 prev_page_vaddr = NULL; 2582 } 2583 2584 obj_idx++; 2585 off += class->size; 2586 } 2587 2588 /* 2589 * Handle the last (full or partial) object on this page. 2590 */ 2591 next_page = get_next_page(page); 2592 if (next_page) { 2593 if (!prev_free || prev_page_vaddr) { 2594 /* 2595 * There is no free object in this page, so we can safely 2596 * unmap it. 2597 */ 2598 kunmap_atomic(vaddr); 2599 } else { 2600 /* update prev_page_vaddr since prev_free is on this page */ 2601 prev_page_vaddr = vaddr; 2602 } 2603 } else { /* this is the last page */ 2604 if (prev_free) { 2605 /* 2606 * Reset OBJ_TAG_BITS bit to last link to tell 2607 * whether it's allocated object or not. 2608 */ 2609 prev_free->next = -1UL << OBJ_TAG_BITS; 2610 } 2611 2612 /* unmap previous page (if not done yet) */ 2613 if (prev_page_vaddr) { 2614 kunmap_atomic(prev_page_vaddr); 2615 prev_page_vaddr = NULL; 2616 } 2617 2618 kunmap_atomic(vaddr); 2619 } 2620 2621 page = next_page; 2622 off %= PAGE_SIZE; 2623 } 2624 } 2625 2626 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries) 2627 { 2628 int i, obj_idx, ret = 0; 2629 unsigned long handle; 2630 struct zspage *zspage; 2631 struct page *page; 2632 int fullness; 2633 2634 /* Lock LRU and fullness list */ 2635 spin_lock(&pool->lock); 2636 if (list_empty(&pool->lru)) { 2637 spin_unlock(&pool->lock); 2638 return -EINVAL; 2639 } 2640 2641 for (i = 0; i < retries; i++) { 2642 struct size_class *class; 2643 2644 zspage = list_last_entry(&pool->lru, struct zspage, lru); 2645 list_del(&zspage->lru); 2646 2647 /* zs_free may free objects, but not the zspage and handles */ 2648 zspage->under_reclaim = true; 2649 2650 class = zspage_class(pool, zspage); 2651 fullness = get_fullness_group(class, zspage); 2652 2653 /* Lock out object allocations and object compaction */ 2654 remove_zspage(class, zspage, fullness); 2655 2656 spin_unlock(&pool->lock); 2657 cond_resched(); 2658 2659 /* Lock backing pages into place */ 2660 lock_zspage(zspage); 2661 2662 obj_idx = 0; 2663 page = get_first_page(zspage); 2664 while (1) { 2665 handle = find_alloced_obj(class, page, &obj_idx); 2666 if (!handle) { 2667 page = get_next_page(page); 2668 if (!page) 2669 break; 2670 obj_idx = 0; 2671 continue; 2672 } 2673 2674 /* 2675 * This will write the object and call zs_free. 2676 * 2677 * zs_free will free the object, but the 2678 * under_reclaim flag prevents it from freeing 2679 * the zspage altogether. This is necessary so 2680 * that we can continue working with the 2681 * zspage potentially after the last object 2682 * has been freed. 2683 */ 2684 ret = pool->zpool_ops->evict(pool->zpool, handle); 2685 if (ret) 2686 goto next; 2687 2688 obj_idx++; 2689 } 2690 2691 next: 2692 /* For freeing the zspage, or putting it back in the pool and LRU list. */ 2693 spin_lock(&pool->lock); 2694 zspage->under_reclaim = false; 2695 2696 if (!get_zspage_inuse(zspage)) { 2697 /* 2698 * Fullness went stale as zs_free() won't touch it 2699 * while the page is removed from the pool. Fix it 2700 * up for the check in __free_zspage(). 2701 */ 2702 zspage->fullness = ZS_INUSE_RATIO_0; 2703 2704 __free_zspage(pool, class, zspage); 2705 spin_unlock(&pool->lock); 2706 return 0; 2707 } 2708 2709 /* 2710 * Eviction fails on one of the handles, so we need to restore zspage. 2711 * We need to rebuild its freelist (and free stored deferred handles), 2712 * put it back to the correct size class, and add it to the LRU list. 2713 */ 2714 restore_freelist(pool, class, zspage); 2715 putback_zspage(class, zspage); 2716 list_add(&zspage->lru, &pool->lru); 2717 unlock_zspage(zspage); 2718 } 2719 2720 spin_unlock(&pool->lock); 2721 return -EAGAIN; 2722 } 2723 #endif /* CONFIG_ZPOOL */ 2724 2725 static int __init zs_init(void) 2726 { 2727 int ret; 2728 2729 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2730 zs_cpu_prepare, zs_cpu_dead); 2731 if (ret) 2732 goto out; 2733 2734 #ifdef CONFIG_ZPOOL 2735 zpool_register_driver(&zs_zpool_driver); 2736 #endif 2737 2738 zs_stat_init(); 2739 2740 return 0; 2741 2742 out: 2743 return ret; 2744 } 2745 2746 static void __exit zs_exit(void) 2747 { 2748 #ifdef CONFIG_ZPOOL 2749 zpool_unregister_driver(&zs_zpool_driver); 2750 #endif 2751 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2752 2753 zs_stat_exit(); 2754 } 2755 2756 module_init(zs_init); 2757 module_exit(zs_exit); 2758 2759 MODULE_LICENSE("Dual BSD/GPL"); 2760 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2761