xref: /linux/mm/zsmalloc.c (revision 527a0f2bdcfe77fce22f006b97e42e4da3137c86)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: PG_zsmalloc, lower 16 bit locate the first object
24  *		offset in a subpage of a zspage
25  *
26  * Usage of struct page flags:
27  *	PG_private: identifies the first component page
28  *	PG_owner_priv_1: identifies the huge component page
29  *
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 /*
35  * lock ordering:
36  *	page_lock
37  *	pool->migrate_lock
38  *	class->lock
39  *	zspage->lock
40  */
41 
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/migrate.h>
63 #include <linux/wait.h>
64 #include <linux/pagemap.h>
65 #include <linux/fs.h>
66 #include <linux/local_lock.h>
67 
68 #define ZSPAGE_MAGIC	0x58
69 
70 /*
71  * This must be power of 2 and greater than or equal to sizeof(link_free).
72  * These two conditions ensure that any 'struct link_free' itself doesn't
73  * span more than 1 page which avoids complex case of mapping 2 pages simply
74  * to restore link_free pointer values.
75  */
76 #define ZS_ALIGN		8
77 
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88 
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100 
101 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 
103 /*
104  * Head in allocated object should have OBJ_ALLOCATED_TAG
105  * to identify the object was allocated or not.
106  * It's okay to add the status bit in the least bit because
107  * header keeps handle which is 4byte-aligned address so we
108  * have room for two bit at least.
109  */
110 #define OBJ_ALLOCATED_TAG 1
111 
112 #define OBJ_TAG_BITS	1
113 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
114 
115 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
116 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117 
118 #define HUGE_BITS	1
119 #define FULLNESS_BITS	4
120 #define CLASS_BITS	8
121 #define MAGIC_VAL_BITS	8
122 
123 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
124 
125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
126 #define ZS_MIN_ALLOC_SIZE \
127 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
128 /* each chunk includes extra space to keep handle */
129 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
130 
131 /*
132  * On systems with 4K page size, this gives 255 size classes! There is a
133  * trader-off here:
134  *  - Large number of size classes is potentially wasteful as free page are
135  *    spread across these classes
136  *  - Small number of size classes causes large internal fragmentation
137  *  - Probably its better to use specific size classes (empirically
138  *    determined). NOTE: all those class sizes must be set as multiple of
139  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
140  *
141  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
142  *  (reason above)
143  */
144 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
145 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
146 				      ZS_SIZE_CLASS_DELTA) + 1)
147 
148 /*
149  * Pages are distinguished by the ratio of used memory (that is the ratio
150  * of ->inuse objects to all objects that page can store). For example,
151  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
152  *
153  * The number of fullness groups is not random. It allows us to keep
154  * difference between the least busy page in the group (minimum permitted
155  * number of ->inuse objects) and the most busy page (maximum permitted
156  * number of ->inuse objects) at a reasonable value.
157  */
158 enum fullness_group {
159 	ZS_INUSE_RATIO_0,
160 	ZS_INUSE_RATIO_10,
161 	/* NOTE: 8 more fullness groups here */
162 	ZS_INUSE_RATIO_99       = 10,
163 	ZS_INUSE_RATIO_100,
164 	NR_FULLNESS_GROUPS,
165 };
166 
167 enum class_stat_type {
168 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
169 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
170 	ZS_OBJS_INUSE,
171 	NR_CLASS_STAT_TYPES,
172 };
173 
174 struct zs_size_stat {
175 	unsigned long objs[NR_CLASS_STAT_TYPES];
176 };
177 
178 #ifdef CONFIG_ZSMALLOC_STAT
179 static struct dentry *zs_stat_root;
180 #endif
181 
182 static size_t huge_class_size;
183 
184 struct size_class {
185 	spinlock_t lock;
186 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
187 	/*
188 	 * Size of objects stored in this class. Must be multiple
189 	 * of ZS_ALIGN.
190 	 */
191 	int size;
192 	int objs_per_zspage;
193 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
194 	int pages_per_zspage;
195 
196 	unsigned int index;
197 	struct zs_size_stat stats;
198 };
199 
200 /*
201  * Placed within free objects to form a singly linked list.
202  * For every zspage, zspage->freeobj gives head of this list.
203  *
204  * This must be power of 2 and less than or equal to ZS_ALIGN
205  */
206 struct link_free {
207 	union {
208 		/*
209 		 * Free object index;
210 		 * It's valid for non-allocated object
211 		 */
212 		unsigned long next;
213 		/*
214 		 * Handle of allocated object.
215 		 */
216 		unsigned long handle;
217 	};
218 };
219 
220 struct zs_pool {
221 	const char *name;
222 
223 	struct size_class *size_class[ZS_SIZE_CLASSES];
224 	struct kmem_cache *handle_cachep;
225 	struct kmem_cache *zspage_cachep;
226 
227 	atomic_long_t pages_allocated;
228 
229 	struct zs_pool_stats stats;
230 
231 	/* Compact classes */
232 	struct shrinker *shrinker;
233 
234 #ifdef CONFIG_ZSMALLOC_STAT
235 	struct dentry *stat_dentry;
236 #endif
237 #ifdef CONFIG_COMPACTION
238 	struct work_struct free_work;
239 #endif
240 	/* protect page/zspage migration */
241 	rwlock_t migrate_lock;
242 	atomic_t compaction_in_progress;
243 };
244 
245 struct zspage {
246 	struct {
247 		unsigned int huge:HUGE_BITS;
248 		unsigned int fullness:FULLNESS_BITS;
249 		unsigned int class:CLASS_BITS + 1;
250 		unsigned int magic:MAGIC_VAL_BITS;
251 	};
252 	unsigned int inuse;
253 	unsigned int freeobj;
254 	struct page *first_page;
255 	struct list_head list; /* fullness list */
256 	struct zs_pool *pool;
257 	rwlock_t lock;
258 };
259 
260 struct mapping_area {
261 	local_lock_t lock;
262 	char *vm_buf; /* copy buffer for objects that span pages */
263 	char *vm_addr; /* address of kmap_atomic()'ed pages */
264 	enum zs_mapmode vm_mm; /* mapping mode */
265 };
266 
267 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
268 static void SetZsHugePage(struct zspage *zspage)
269 {
270 	zspage->huge = 1;
271 }
272 
273 static bool ZsHugePage(struct zspage *zspage)
274 {
275 	return zspage->huge;
276 }
277 
278 static void migrate_lock_init(struct zspage *zspage);
279 static void migrate_read_lock(struct zspage *zspage);
280 static void migrate_read_unlock(struct zspage *zspage);
281 static void migrate_write_lock(struct zspage *zspage);
282 static void migrate_write_unlock(struct zspage *zspage);
283 
284 #ifdef CONFIG_COMPACTION
285 static void kick_deferred_free(struct zs_pool *pool);
286 static void init_deferred_free(struct zs_pool *pool);
287 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
288 #else
289 static void kick_deferred_free(struct zs_pool *pool) {}
290 static void init_deferred_free(struct zs_pool *pool) {}
291 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
292 #endif
293 
294 static int create_cache(struct zs_pool *pool)
295 {
296 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
297 					0, 0, NULL);
298 	if (!pool->handle_cachep)
299 		return 1;
300 
301 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
302 					0, 0, NULL);
303 	if (!pool->zspage_cachep) {
304 		kmem_cache_destroy(pool->handle_cachep);
305 		pool->handle_cachep = NULL;
306 		return 1;
307 	}
308 
309 	return 0;
310 }
311 
312 static void destroy_cache(struct zs_pool *pool)
313 {
314 	kmem_cache_destroy(pool->handle_cachep);
315 	kmem_cache_destroy(pool->zspage_cachep);
316 }
317 
318 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
319 {
320 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
321 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
322 }
323 
324 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
325 {
326 	kmem_cache_free(pool->handle_cachep, (void *)handle);
327 }
328 
329 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
330 {
331 	return kmem_cache_zalloc(pool->zspage_cachep,
332 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
333 }
334 
335 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
336 {
337 	kmem_cache_free(pool->zspage_cachep, zspage);
338 }
339 
340 /* class->lock(which owns the handle) synchronizes races */
341 static void record_obj(unsigned long handle, unsigned long obj)
342 {
343 	*(unsigned long *)handle = obj;
344 }
345 
346 /* zpool driver */
347 
348 #ifdef CONFIG_ZPOOL
349 
350 static void *zs_zpool_create(const char *name, gfp_t gfp)
351 {
352 	/*
353 	 * Ignore global gfp flags: zs_malloc() may be invoked from
354 	 * different contexts and its caller must provide a valid
355 	 * gfp mask.
356 	 */
357 	return zs_create_pool(name);
358 }
359 
360 static void zs_zpool_destroy(void *pool)
361 {
362 	zs_destroy_pool(pool);
363 }
364 
365 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
366 			unsigned long *handle)
367 {
368 	*handle = zs_malloc(pool, size, gfp);
369 
370 	if (IS_ERR_VALUE(*handle))
371 		return PTR_ERR((void *)*handle);
372 	return 0;
373 }
374 static void zs_zpool_free(void *pool, unsigned long handle)
375 {
376 	zs_free(pool, handle);
377 }
378 
379 static void *zs_zpool_map(void *pool, unsigned long handle,
380 			enum zpool_mapmode mm)
381 {
382 	enum zs_mapmode zs_mm;
383 
384 	switch (mm) {
385 	case ZPOOL_MM_RO:
386 		zs_mm = ZS_MM_RO;
387 		break;
388 	case ZPOOL_MM_WO:
389 		zs_mm = ZS_MM_WO;
390 		break;
391 	case ZPOOL_MM_RW:
392 	default:
393 		zs_mm = ZS_MM_RW;
394 		break;
395 	}
396 
397 	return zs_map_object(pool, handle, zs_mm);
398 }
399 static void zs_zpool_unmap(void *pool, unsigned long handle)
400 {
401 	zs_unmap_object(pool, handle);
402 }
403 
404 static u64 zs_zpool_total_pages(void *pool)
405 {
406 	return zs_get_total_pages(pool);
407 }
408 
409 static struct zpool_driver zs_zpool_driver = {
410 	.type =			  "zsmalloc",
411 	.owner =		  THIS_MODULE,
412 	.create =		  zs_zpool_create,
413 	.destroy =		  zs_zpool_destroy,
414 	.malloc_support_movable = true,
415 	.malloc =		  zs_zpool_malloc,
416 	.free =			  zs_zpool_free,
417 	.map =			  zs_zpool_map,
418 	.unmap =		  zs_zpool_unmap,
419 	.total_pages =		  zs_zpool_total_pages,
420 };
421 
422 MODULE_ALIAS("zpool-zsmalloc");
423 #endif /* CONFIG_ZPOOL */
424 
425 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
426 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
427 	.lock	= INIT_LOCAL_LOCK(lock),
428 };
429 
430 static __maybe_unused int is_first_page(struct page *page)
431 {
432 	return PagePrivate(page);
433 }
434 
435 /* Protected by class->lock */
436 static inline int get_zspage_inuse(struct zspage *zspage)
437 {
438 	return zspage->inuse;
439 }
440 
441 
442 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
443 {
444 	zspage->inuse += val;
445 }
446 
447 static inline struct page *get_first_page(struct zspage *zspage)
448 {
449 	struct page *first_page = zspage->first_page;
450 
451 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
452 	return first_page;
453 }
454 
455 #define FIRST_OBJ_PAGE_TYPE_MASK	0xffff
456 
457 static inline void reset_first_obj_offset(struct page *page)
458 {
459 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
460 	page->page_type |= FIRST_OBJ_PAGE_TYPE_MASK;
461 }
462 
463 static inline unsigned int get_first_obj_offset(struct page *page)
464 {
465 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
466 	return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
467 }
468 
469 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
470 {
471 	/* With 16 bit available, we can support offsets into 64 KiB pages. */
472 	BUILD_BUG_ON(PAGE_SIZE > SZ_64K);
473 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
474 	VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
475 	page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
476 	page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
477 }
478 
479 static inline unsigned int get_freeobj(struct zspage *zspage)
480 {
481 	return zspage->freeobj;
482 }
483 
484 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
485 {
486 	zspage->freeobj = obj;
487 }
488 
489 static struct size_class *zspage_class(struct zs_pool *pool,
490 				       struct zspage *zspage)
491 {
492 	return pool->size_class[zspage->class];
493 }
494 
495 /*
496  * zsmalloc divides the pool into various size classes where each
497  * class maintains a list of zspages where each zspage is divided
498  * into equal sized chunks. Each allocation falls into one of these
499  * classes depending on its size. This function returns index of the
500  * size class which has chunk size big enough to hold the given size.
501  */
502 static int get_size_class_index(int size)
503 {
504 	int idx = 0;
505 
506 	if (likely(size > ZS_MIN_ALLOC_SIZE))
507 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
508 				ZS_SIZE_CLASS_DELTA);
509 
510 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
511 }
512 
513 static inline void class_stat_add(struct size_class *class, int type,
514 				  unsigned long cnt)
515 {
516 	class->stats.objs[type] += cnt;
517 }
518 
519 static inline void class_stat_sub(struct size_class *class, int type,
520 				  unsigned long cnt)
521 {
522 	class->stats.objs[type] -= cnt;
523 }
524 
525 static inline unsigned long class_stat_read(struct size_class *class, int type)
526 {
527 	return class->stats.objs[type];
528 }
529 
530 #ifdef CONFIG_ZSMALLOC_STAT
531 
532 static void __init zs_stat_init(void)
533 {
534 	if (!debugfs_initialized()) {
535 		pr_warn("debugfs not available, stat dir not created\n");
536 		return;
537 	}
538 
539 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
540 }
541 
542 static void __exit zs_stat_exit(void)
543 {
544 	debugfs_remove_recursive(zs_stat_root);
545 }
546 
547 static unsigned long zs_can_compact(struct size_class *class);
548 
549 static int zs_stats_size_show(struct seq_file *s, void *v)
550 {
551 	int i, fg;
552 	struct zs_pool *pool = s->private;
553 	struct size_class *class;
554 	int objs_per_zspage;
555 	unsigned long obj_allocated, obj_used, pages_used, freeable;
556 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
557 	unsigned long total_freeable = 0;
558 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
559 
560 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
561 			"class", "size", "10%", "20%", "30%", "40%",
562 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
563 			"obj_allocated", "obj_used", "pages_used",
564 			"pages_per_zspage", "freeable");
565 
566 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
567 
568 		class = pool->size_class[i];
569 
570 		if (class->index != i)
571 			continue;
572 
573 		spin_lock(&class->lock);
574 
575 		seq_printf(s, " %5u %5u ", i, class->size);
576 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
577 			inuse_totals[fg] += class_stat_read(class, fg);
578 			seq_printf(s, "%9lu ", class_stat_read(class, fg));
579 		}
580 
581 		obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
582 		obj_used = class_stat_read(class, ZS_OBJS_INUSE);
583 		freeable = zs_can_compact(class);
584 		spin_unlock(&class->lock);
585 
586 		objs_per_zspage = class->objs_per_zspage;
587 		pages_used = obj_allocated / objs_per_zspage *
588 				class->pages_per_zspage;
589 
590 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
591 			   obj_allocated, obj_used, pages_used,
592 			   class->pages_per_zspage, freeable);
593 
594 		total_objs += obj_allocated;
595 		total_used_objs += obj_used;
596 		total_pages += pages_used;
597 		total_freeable += freeable;
598 	}
599 
600 	seq_puts(s, "\n");
601 	seq_printf(s, " %5s %5s ", "Total", "");
602 
603 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
604 		seq_printf(s, "%9lu ", inuse_totals[fg]);
605 
606 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
607 		   total_objs, total_used_objs, total_pages, "",
608 		   total_freeable);
609 
610 	return 0;
611 }
612 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
613 
614 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
615 {
616 	if (!zs_stat_root) {
617 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
618 		return;
619 	}
620 
621 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
622 
623 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
624 			    &zs_stats_size_fops);
625 }
626 
627 static void zs_pool_stat_destroy(struct zs_pool *pool)
628 {
629 	debugfs_remove_recursive(pool->stat_dentry);
630 }
631 
632 #else /* CONFIG_ZSMALLOC_STAT */
633 static void __init zs_stat_init(void)
634 {
635 }
636 
637 static void __exit zs_stat_exit(void)
638 {
639 }
640 
641 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
642 {
643 }
644 
645 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
646 {
647 }
648 #endif
649 
650 
651 /*
652  * For each size class, zspages are divided into different groups
653  * depending on their usage ratio. This function returns fullness
654  * status of the given page.
655  */
656 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
657 {
658 	int inuse, objs_per_zspage, ratio;
659 
660 	inuse = get_zspage_inuse(zspage);
661 	objs_per_zspage = class->objs_per_zspage;
662 
663 	if (inuse == 0)
664 		return ZS_INUSE_RATIO_0;
665 	if (inuse == objs_per_zspage)
666 		return ZS_INUSE_RATIO_100;
667 
668 	ratio = 100 * inuse / objs_per_zspage;
669 	/*
670 	 * Take integer division into consideration: a page with one inuse
671 	 * object out of 127 possible, will end up having 0 usage ratio,
672 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
673 	 */
674 	return ratio / 10 + 1;
675 }
676 
677 /*
678  * Each size class maintains various freelists and zspages are assigned
679  * to one of these freelists based on the number of live objects they
680  * have. This functions inserts the given zspage into the freelist
681  * identified by <class, fullness_group>.
682  */
683 static void insert_zspage(struct size_class *class,
684 				struct zspage *zspage,
685 				int fullness)
686 {
687 	class_stat_add(class, fullness, 1);
688 	list_add(&zspage->list, &class->fullness_list[fullness]);
689 	zspage->fullness = fullness;
690 }
691 
692 /*
693  * This function removes the given zspage from the freelist identified
694  * by <class, fullness_group>.
695  */
696 static void remove_zspage(struct size_class *class, struct zspage *zspage)
697 {
698 	int fullness = zspage->fullness;
699 
700 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
701 
702 	list_del_init(&zspage->list);
703 	class_stat_sub(class, fullness, 1);
704 }
705 
706 /*
707  * Each size class maintains zspages in different fullness groups depending
708  * on the number of live objects they contain. When allocating or freeing
709  * objects, the fullness status of the page can change, for instance, from
710  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
711  * checks if such a status change has occurred for the given page and
712  * accordingly moves the page from the list of the old fullness group to that
713  * of the new fullness group.
714  */
715 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
716 {
717 	int newfg;
718 
719 	newfg = get_fullness_group(class, zspage);
720 	if (newfg == zspage->fullness)
721 		goto out;
722 
723 	remove_zspage(class, zspage);
724 	insert_zspage(class, zspage, newfg);
725 out:
726 	return newfg;
727 }
728 
729 static struct zspage *get_zspage(struct page *page)
730 {
731 	struct zspage *zspage = (struct zspage *)page_private(page);
732 
733 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
734 	return zspage;
735 }
736 
737 static struct page *get_next_page(struct page *page)
738 {
739 	struct zspage *zspage = get_zspage(page);
740 
741 	if (unlikely(ZsHugePage(zspage)))
742 		return NULL;
743 
744 	return (struct page *)page->index;
745 }
746 
747 /**
748  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
749  * @obj: the encoded object value
750  * @page: page object resides in zspage
751  * @obj_idx: object index
752  */
753 static void obj_to_location(unsigned long obj, struct page **page,
754 				unsigned int *obj_idx)
755 {
756 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
757 	*obj_idx = (obj & OBJ_INDEX_MASK);
758 }
759 
760 static void obj_to_page(unsigned long obj, struct page **page)
761 {
762 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
763 }
764 
765 /**
766  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
767  * @page: page object resides in zspage
768  * @obj_idx: object index
769  */
770 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
771 {
772 	unsigned long obj;
773 
774 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
775 	obj |= obj_idx & OBJ_INDEX_MASK;
776 
777 	return obj;
778 }
779 
780 static unsigned long handle_to_obj(unsigned long handle)
781 {
782 	return *(unsigned long *)handle;
783 }
784 
785 static inline bool obj_allocated(struct page *page, void *obj,
786 				 unsigned long *phandle)
787 {
788 	unsigned long handle;
789 	struct zspage *zspage = get_zspage(page);
790 
791 	if (unlikely(ZsHugePage(zspage))) {
792 		VM_BUG_ON_PAGE(!is_first_page(page), page);
793 		handle = page->index;
794 	} else
795 		handle = *(unsigned long *)obj;
796 
797 	if (!(handle & OBJ_ALLOCATED_TAG))
798 		return false;
799 
800 	/* Clear all tags before returning the handle */
801 	*phandle = handle & ~OBJ_TAG_MASK;
802 	return true;
803 }
804 
805 static void reset_page(struct page *page)
806 {
807 	__ClearPageMovable(page);
808 	ClearPagePrivate(page);
809 	set_page_private(page, 0);
810 	page->index = 0;
811 	reset_first_obj_offset(page);
812 	__ClearPageZsmalloc(page);
813 }
814 
815 static int trylock_zspage(struct zspage *zspage)
816 {
817 	struct page *cursor, *fail;
818 
819 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
820 					get_next_page(cursor)) {
821 		if (!trylock_page(cursor)) {
822 			fail = cursor;
823 			goto unlock;
824 		}
825 	}
826 
827 	return 1;
828 unlock:
829 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
830 					get_next_page(cursor))
831 		unlock_page(cursor);
832 
833 	return 0;
834 }
835 
836 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
837 				struct zspage *zspage)
838 {
839 	struct page *page, *next;
840 
841 	assert_spin_locked(&class->lock);
842 
843 	VM_BUG_ON(get_zspage_inuse(zspage));
844 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
845 
846 	next = page = get_first_page(zspage);
847 	do {
848 		VM_BUG_ON_PAGE(!PageLocked(page), page);
849 		next = get_next_page(page);
850 		reset_page(page);
851 		unlock_page(page);
852 		dec_zone_page_state(page, NR_ZSPAGES);
853 		put_page(page);
854 		page = next;
855 	} while (page != NULL);
856 
857 	cache_free_zspage(pool, zspage);
858 
859 	class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
860 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
861 }
862 
863 static void free_zspage(struct zs_pool *pool, struct size_class *class,
864 				struct zspage *zspage)
865 {
866 	VM_BUG_ON(get_zspage_inuse(zspage));
867 	VM_BUG_ON(list_empty(&zspage->list));
868 
869 	/*
870 	 * Since zs_free couldn't be sleepable, this function cannot call
871 	 * lock_page. The page locks trylock_zspage got will be released
872 	 * by __free_zspage.
873 	 */
874 	if (!trylock_zspage(zspage)) {
875 		kick_deferred_free(pool);
876 		return;
877 	}
878 
879 	remove_zspage(class, zspage);
880 	__free_zspage(pool, class, zspage);
881 }
882 
883 /* Initialize a newly allocated zspage */
884 static void init_zspage(struct size_class *class, struct zspage *zspage)
885 {
886 	unsigned int freeobj = 1;
887 	unsigned long off = 0;
888 	struct page *page = get_first_page(zspage);
889 
890 	while (page) {
891 		struct page *next_page;
892 		struct link_free *link;
893 		void *vaddr;
894 
895 		set_first_obj_offset(page, off);
896 
897 		vaddr = kmap_atomic(page);
898 		link = (struct link_free *)vaddr + off / sizeof(*link);
899 
900 		while ((off += class->size) < PAGE_SIZE) {
901 			link->next = freeobj++ << OBJ_TAG_BITS;
902 			link += class->size / sizeof(*link);
903 		}
904 
905 		/*
906 		 * We now come to the last (full or partial) object on this
907 		 * page, which must point to the first object on the next
908 		 * page (if present)
909 		 */
910 		next_page = get_next_page(page);
911 		if (next_page) {
912 			link->next = freeobj++ << OBJ_TAG_BITS;
913 		} else {
914 			/*
915 			 * Reset OBJ_TAG_BITS bit to last link to tell
916 			 * whether it's allocated object or not.
917 			 */
918 			link->next = -1UL << OBJ_TAG_BITS;
919 		}
920 		kunmap_atomic(vaddr);
921 		page = next_page;
922 		off %= PAGE_SIZE;
923 	}
924 
925 	set_freeobj(zspage, 0);
926 }
927 
928 static void create_page_chain(struct size_class *class, struct zspage *zspage,
929 				struct page *pages[])
930 {
931 	int i;
932 	struct page *page;
933 	struct page *prev_page = NULL;
934 	int nr_pages = class->pages_per_zspage;
935 
936 	/*
937 	 * Allocate individual pages and link them together as:
938 	 * 1. all pages are linked together using page->index
939 	 * 2. each sub-page point to zspage using page->private
940 	 *
941 	 * we set PG_private to identify the first page (i.e. no other sub-page
942 	 * has this flag set).
943 	 */
944 	for (i = 0; i < nr_pages; i++) {
945 		page = pages[i];
946 		set_page_private(page, (unsigned long)zspage);
947 		page->index = 0;
948 		if (i == 0) {
949 			zspage->first_page = page;
950 			SetPagePrivate(page);
951 			if (unlikely(class->objs_per_zspage == 1 &&
952 					class->pages_per_zspage == 1))
953 				SetZsHugePage(zspage);
954 		} else {
955 			prev_page->index = (unsigned long)page;
956 		}
957 		prev_page = page;
958 	}
959 }
960 
961 /*
962  * Allocate a zspage for the given size class
963  */
964 static struct zspage *alloc_zspage(struct zs_pool *pool,
965 					struct size_class *class,
966 					gfp_t gfp)
967 {
968 	int i;
969 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
970 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
971 
972 	if (!zspage)
973 		return NULL;
974 
975 	zspage->magic = ZSPAGE_MAGIC;
976 	migrate_lock_init(zspage);
977 
978 	for (i = 0; i < class->pages_per_zspage; i++) {
979 		struct page *page;
980 
981 		page = alloc_page(gfp);
982 		if (!page) {
983 			while (--i >= 0) {
984 				dec_zone_page_state(pages[i], NR_ZSPAGES);
985 				__ClearPageZsmalloc(pages[i]);
986 				__free_page(pages[i]);
987 			}
988 			cache_free_zspage(pool, zspage);
989 			return NULL;
990 		}
991 		__SetPageZsmalloc(page);
992 
993 		inc_zone_page_state(page, NR_ZSPAGES);
994 		pages[i] = page;
995 	}
996 
997 	create_page_chain(class, zspage, pages);
998 	init_zspage(class, zspage);
999 	zspage->pool = pool;
1000 	zspage->class = class->index;
1001 
1002 	return zspage;
1003 }
1004 
1005 static struct zspage *find_get_zspage(struct size_class *class)
1006 {
1007 	int i;
1008 	struct zspage *zspage;
1009 
1010 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1011 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1012 						  struct zspage, list);
1013 		if (zspage)
1014 			break;
1015 	}
1016 
1017 	return zspage;
1018 }
1019 
1020 static inline int __zs_cpu_up(struct mapping_area *area)
1021 {
1022 	/*
1023 	 * Make sure we don't leak memory if a cpu UP notification
1024 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1025 	 */
1026 	if (area->vm_buf)
1027 		return 0;
1028 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1029 	if (!area->vm_buf)
1030 		return -ENOMEM;
1031 	return 0;
1032 }
1033 
1034 static inline void __zs_cpu_down(struct mapping_area *area)
1035 {
1036 	kfree(area->vm_buf);
1037 	area->vm_buf = NULL;
1038 }
1039 
1040 static void *__zs_map_object(struct mapping_area *area,
1041 			struct page *pages[2], int off, int size)
1042 {
1043 	int sizes[2];
1044 	void *addr;
1045 	char *buf = area->vm_buf;
1046 
1047 	/* disable page faults to match kmap_atomic() return conditions */
1048 	pagefault_disable();
1049 
1050 	/* no read fastpath */
1051 	if (area->vm_mm == ZS_MM_WO)
1052 		goto out;
1053 
1054 	sizes[0] = PAGE_SIZE - off;
1055 	sizes[1] = size - sizes[0];
1056 
1057 	/* copy object to per-cpu buffer */
1058 	addr = kmap_atomic(pages[0]);
1059 	memcpy(buf, addr + off, sizes[0]);
1060 	kunmap_atomic(addr);
1061 	addr = kmap_atomic(pages[1]);
1062 	memcpy(buf + sizes[0], addr, sizes[1]);
1063 	kunmap_atomic(addr);
1064 out:
1065 	return area->vm_buf;
1066 }
1067 
1068 static void __zs_unmap_object(struct mapping_area *area,
1069 			struct page *pages[2], int off, int size)
1070 {
1071 	int sizes[2];
1072 	void *addr;
1073 	char *buf;
1074 
1075 	/* no write fastpath */
1076 	if (area->vm_mm == ZS_MM_RO)
1077 		goto out;
1078 
1079 	buf = area->vm_buf;
1080 	buf = buf + ZS_HANDLE_SIZE;
1081 	size -= ZS_HANDLE_SIZE;
1082 	off += ZS_HANDLE_SIZE;
1083 
1084 	sizes[0] = PAGE_SIZE - off;
1085 	sizes[1] = size - sizes[0];
1086 
1087 	/* copy per-cpu buffer to object */
1088 	addr = kmap_atomic(pages[0]);
1089 	memcpy(addr + off, buf, sizes[0]);
1090 	kunmap_atomic(addr);
1091 	addr = kmap_atomic(pages[1]);
1092 	memcpy(addr, buf + sizes[0], sizes[1]);
1093 	kunmap_atomic(addr);
1094 
1095 out:
1096 	/* enable page faults to match kunmap_atomic() return conditions */
1097 	pagefault_enable();
1098 }
1099 
1100 static int zs_cpu_prepare(unsigned int cpu)
1101 {
1102 	struct mapping_area *area;
1103 
1104 	area = &per_cpu(zs_map_area, cpu);
1105 	return __zs_cpu_up(area);
1106 }
1107 
1108 static int zs_cpu_dead(unsigned int cpu)
1109 {
1110 	struct mapping_area *area;
1111 
1112 	area = &per_cpu(zs_map_area, cpu);
1113 	__zs_cpu_down(area);
1114 	return 0;
1115 }
1116 
1117 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1118 					int objs_per_zspage)
1119 {
1120 	if (prev->pages_per_zspage == pages_per_zspage &&
1121 		prev->objs_per_zspage == objs_per_zspage)
1122 		return true;
1123 
1124 	return false;
1125 }
1126 
1127 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1128 {
1129 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1130 }
1131 
1132 static bool zspage_empty(struct zspage *zspage)
1133 {
1134 	return get_zspage_inuse(zspage) == 0;
1135 }
1136 
1137 /**
1138  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1139  * that hold objects of the provided size.
1140  * @pool: zsmalloc pool to use
1141  * @size: object size
1142  *
1143  * Context: Any context.
1144  *
1145  * Return: the index of the zsmalloc &size_class that hold objects of the
1146  * provided size.
1147  */
1148 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1149 {
1150 	struct size_class *class;
1151 
1152 	class = pool->size_class[get_size_class_index(size)];
1153 
1154 	return class->index;
1155 }
1156 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1157 
1158 unsigned long zs_get_total_pages(struct zs_pool *pool)
1159 {
1160 	return atomic_long_read(&pool->pages_allocated);
1161 }
1162 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1163 
1164 /**
1165  * zs_map_object - get address of allocated object from handle.
1166  * @pool: pool from which the object was allocated
1167  * @handle: handle returned from zs_malloc
1168  * @mm: mapping mode to use
1169  *
1170  * Before using an object allocated from zs_malloc, it must be mapped using
1171  * this function. When done with the object, it must be unmapped using
1172  * zs_unmap_object.
1173  *
1174  * Only one object can be mapped per cpu at a time. There is no protection
1175  * against nested mappings.
1176  *
1177  * This function returns with preemption and page faults disabled.
1178  */
1179 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1180 			enum zs_mapmode mm)
1181 {
1182 	struct zspage *zspage;
1183 	struct page *page;
1184 	unsigned long obj, off;
1185 	unsigned int obj_idx;
1186 
1187 	struct size_class *class;
1188 	struct mapping_area *area;
1189 	struct page *pages[2];
1190 	void *ret;
1191 
1192 	/*
1193 	 * Because we use per-cpu mapping areas shared among the
1194 	 * pools/users, we can't allow mapping in interrupt context
1195 	 * because it can corrupt another users mappings.
1196 	 */
1197 	BUG_ON(in_interrupt());
1198 
1199 	/* It guarantees it can get zspage from handle safely */
1200 	read_lock(&pool->migrate_lock);
1201 	obj = handle_to_obj(handle);
1202 	obj_to_location(obj, &page, &obj_idx);
1203 	zspage = get_zspage(page);
1204 
1205 	/*
1206 	 * migration cannot move any zpages in this zspage. Here, class->lock
1207 	 * is too heavy since callers would take some time until they calls
1208 	 * zs_unmap_object API so delegate the locking from class to zspage
1209 	 * which is smaller granularity.
1210 	 */
1211 	migrate_read_lock(zspage);
1212 	read_unlock(&pool->migrate_lock);
1213 
1214 	class = zspage_class(pool, zspage);
1215 	off = offset_in_page(class->size * obj_idx);
1216 
1217 	local_lock(&zs_map_area.lock);
1218 	area = this_cpu_ptr(&zs_map_area);
1219 	area->vm_mm = mm;
1220 	if (off + class->size <= PAGE_SIZE) {
1221 		/* this object is contained entirely within a page */
1222 		area->vm_addr = kmap_atomic(page);
1223 		ret = area->vm_addr + off;
1224 		goto out;
1225 	}
1226 
1227 	/* this object spans two pages */
1228 	pages[0] = page;
1229 	pages[1] = get_next_page(page);
1230 	BUG_ON(!pages[1]);
1231 
1232 	ret = __zs_map_object(area, pages, off, class->size);
1233 out:
1234 	if (likely(!ZsHugePage(zspage)))
1235 		ret += ZS_HANDLE_SIZE;
1236 
1237 	return ret;
1238 }
1239 EXPORT_SYMBOL_GPL(zs_map_object);
1240 
1241 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1242 {
1243 	struct zspage *zspage;
1244 	struct page *page;
1245 	unsigned long obj, off;
1246 	unsigned int obj_idx;
1247 
1248 	struct size_class *class;
1249 	struct mapping_area *area;
1250 
1251 	obj = handle_to_obj(handle);
1252 	obj_to_location(obj, &page, &obj_idx);
1253 	zspage = get_zspage(page);
1254 	class = zspage_class(pool, zspage);
1255 	off = offset_in_page(class->size * obj_idx);
1256 
1257 	area = this_cpu_ptr(&zs_map_area);
1258 	if (off + class->size <= PAGE_SIZE)
1259 		kunmap_atomic(area->vm_addr);
1260 	else {
1261 		struct page *pages[2];
1262 
1263 		pages[0] = page;
1264 		pages[1] = get_next_page(page);
1265 		BUG_ON(!pages[1]);
1266 
1267 		__zs_unmap_object(area, pages, off, class->size);
1268 	}
1269 	local_unlock(&zs_map_area.lock);
1270 
1271 	migrate_read_unlock(zspage);
1272 }
1273 EXPORT_SYMBOL_GPL(zs_unmap_object);
1274 
1275 /**
1276  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1277  *                        zsmalloc &size_class.
1278  * @pool: zsmalloc pool to use
1279  *
1280  * The function returns the size of the first huge class - any object of equal
1281  * or bigger size will be stored in zspage consisting of a single physical
1282  * page.
1283  *
1284  * Context: Any context.
1285  *
1286  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1287  */
1288 size_t zs_huge_class_size(struct zs_pool *pool)
1289 {
1290 	return huge_class_size;
1291 }
1292 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1293 
1294 static unsigned long obj_malloc(struct zs_pool *pool,
1295 				struct zspage *zspage, unsigned long handle)
1296 {
1297 	int i, nr_page, offset;
1298 	unsigned long obj;
1299 	struct link_free *link;
1300 	struct size_class *class;
1301 
1302 	struct page *m_page;
1303 	unsigned long m_offset;
1304 	void *vaddr;
1305 
1306 	class = pool->size_class[zspage->class];
1307 	obj = get_freeobj(zspage);
1308 
1309 	offset = obj * class->size;
1310 	nr_page = offset >> PAGE_SHIFT;
1311 	m_offset = offset_in_page(offset);
1312 	m_page = get_first_page(zspage);
1313 
1314 	for (i = 0; i < nr_page; i++)
1315 		m_page = get_next_page(m_page);
1316 
1317 	vaddr = kmap_atomic(m_page);
1318 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1319 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1320 	if (likely(!ZsHugePage(zspage)))
1321 		/* record handle in the header of allocated chunk */
1322 		link->handle = handle | OBJ_ALLOCATED_TAG;
1323 	else
1324 		/* record handle to page->index */
1325 		zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1326 
1327 	kunmap_atomic(vaddr);
1328 	mod_zspage_inuse(zspage, 1);
1329 
1330 	obj = location_to_obj(m_page, obj);
1331 	record_obj(handle, obj);
1332 
1333 	return obj;
1334 }
1335 
1336 
1337 /**
1338  * zs_malloc - Allocate block of given size from pool.
1339  * @pool: pool to allocate from
1340  * @size: size of block to allocate
1341  * @gfp: gfp flags when allocating object
1342  *
1343  * On success, handle to the allocated object is returned,
1344  * otherwise an ERR_PTR().
1345  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1346  */
1347 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1348 {
1349 	unsigned long handle;
1350 	struct size_class *class;
1351 	int newfg;
1352 	struct zspage *zspage;
1353 
1354 	if (unlikely(!size))
1355 		return (unsigned long)ERR_PTR(-EINVAL);
1356 
1357 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1358 		return (unsigned long)ERR_PTR(-ENOSPC);
1359 
1360 	handle = cache_alloc_handle(pool, gfp);
1361 	if (!handle)
1362 		return (unsigned long)ERR_PTR(-ENOMEM);
1363 
1364 	/* extra space in chunk to keep the handle */
1365 	size += ZS_HANDLE_SIZE;
1366 	class = pool->size_class[get_size_class_index(size)];
1367 
1368 	/* class->lock effectively protects the zpage migration */
1369 	spin_lock(&class->lock);
1370 	zspage = find_get_zspage(class);
1371 	if (likely(zspage)) {
1372 		obj_malloc(pool, zspage, handle);
1373 		/* Now move the zspage to another fullness group, if required */
1374 		fix_fullness_group(class, zspage);
1375 		class_stat_add(class, ZS_OBJS_INUSE, 1);
1376 
1377 		goto out;
1378 	}
1379 
1380 	spin_unlock(&class->lock);
1381 
1382 	zspage = alloc_zspage(pool, class, gfp);
1383 	if (!zspage) {
1384 		cache_free_handle(pool, handle);
1385 		return (unsigned long)ERR_PTR(-ENOMEM);
1386 	}
1387 
1388 	spin_lock(&class->lock);
1389 	obj_malloc(pool, zspage, handle);
1390 	newfg = get_fullness_group(class, zspage);
1391 	insert_zspage(class, zspage, newfg);
1392 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1393 	class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1394 	class_stat_add(class, ZS_OBJS_INUSE, 1);
1395 
1396 	/* We completely set up zspage so mark them as movable */
1397 	SetZsPageMovable(pool, zspage);
1398 out:
1399 	spin_unlock(&class->lock);
1400 
1401 	return handle;
1402 }
1403 EXPORT_SYMBOL_GPL(zs_malloc);
1404 
1405 static void obj_free(int class_size, unsigned long obj)
1406 {
1407 	struct link_free *link;
1408 	struct zspage *zspage;
1409 	struct page *f_page;
1410 	unsigned long f_offset;
1411 	unsigned int f_objidx;
1412 	void *vaddr;
1413 
1414 	obj_to_location(obj, &f_page, &f_objidx);
1415 	f_offset = offset_in_page(class_size * f_objidx);
1416 	zspage = get_zspage(f_page);
1417 
1418 	vaddr = kmap_atomic(f_page);
1419 	link = (struct link_free *)(vaddr + f_offset);
1420 
1421 	/* Insert this object in containing zspage's freelist */
1422 	if (likely(!ZsHugePage(zspage)))
1423 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1424 	else
1425 		f_page->index = 0;
1426 	set_freeobj(zspage, f_objidx);
1427 
1428 	kunmap_atomic(vaddr);
1429 	mod_zspage_inuse(zspage, -1);
1430 }
1431 
1432 void zs_free(struct zs_pool *pool, unsigned long handle)
1433 {
1434 	struct zspage *zspage;
1435 	struct page *f_page;
1436 	unsigned long obj;
1437 	struct size_class *class;
1438 	int fullness;
1439 
1440 	if (IS_ERR_OR_NULL((void *)handle))
1441 		return;
1442 
1443 	/*
1444 	 * The pool->migrate_lock protects the race with zpage's migration
1445 	 * so it's safe to get the page from handle.
1446 	 */
1447 	read_lock(&pool->migrate_lock);
1448 	obj = handle_to_obj(handle);
1449 	obj_to_page(obj, &f_page);
1450 	zspage = get_zspage(f_page);
1451 	class = zspage_class(pool, zspage);
1452 	spin_lock(&class->lock);
1453 	read_unlock(&pool->migrate_lock);
1454 
1455 	class_stat_sub(class, ZS_OBJS_INUSE, 1);
1456 	obj_free(class->size, obj);
1457 
1458 	fullness = fix_fullness_group(class, zspage);
1459 	if (fullness == ZS_INUSE_RATIO_0)
1460 		free_zspage(pool, class, zspage);
1461 
1462 	spin_unlock(&class->lock);
1463 	cache_free_handle(pool, handle);
1464 }
1465 EXPORT_SYMBOL_GPL(zs_free);
1466 
1467 static void zs_object_copy(struct size_class *class, unsigned long dst,
1468 				unsigned long src)
1469 {
1470 	struct page *s_page, *d_page;
1471 	unsigned int s_objidx, d_objidx;
1472 	unsigned long s_off, d_off;
1473 	void *s_addr, *d_addr;
1474 	int s_size, d_size, size;
1475 	int written = 0;
1476 
1477 	s_size = d_size = class->size;
1478 
1479 	obj_to_location(src, &s_page, &s_objidx);
1480 	obj_to_location(dst, &d_page, &d_objidx);
1481 
1482 	s_off = offset_in_page(class->size * s_objidx);
1483 	d_off = offset_in_page(class->size * d_objidx);
1484 
1485 	if (s_off + class->size > PAGE_SIZE)
1486 		s_size = PAGE_SIZE - s_off;
1487 
1488 	if (d_off + class->size > PAGE_SIZE)
1489 		d_size = PAGE_SIZE - d_off;
1490 
1491 	s_addr = kmap_atomic(s_page);
1492 	d_addr = kmap_atomic(d_page);
1493 
1494 	while (1) {
1495 		size = min(s_size, d_size);
1496 		memcpy(d_addr + d_off, s_addr + s_off, size);
1497 		written += size;
1498 
1499 		if (written == class->size)
1500 			break;
1501 
1502 		s_off += size;
1503 		s_size -= size;
1504 		d_off += size;
1505 		d_size -= size;
1506 
1507 		/*
1508 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1509 		 * calls must occurs in reverse order of calls to kmap_atomic().
1510 		 * So, to call kunmap_atomic(s_addr) we should first call
1511 		 * kunmap_atomic(d_addr). For more details see
1512 		 * Documentation/mm/highmem.rst.
1513 		 */
1514 		if (s_off >= PAGE_SIZE) {
1515 			kunmap_atomic(d_addr);
1516 			kunmap_atomic(s_addr);
1517 			s_page = get_next_page(s_page);
1518 			s_addr = kmap_atomic(s_page);
1519 			d_addr = kmap_atomic(d_page);
1520 			s_size = class->size - written;
1521 			s_off = 0;
1522 		}
1523 
1524 		if (d_off >= PAGE_SIZE) {
1525 			kunmap_atomic(d_addr);
1526 			d_page = get_next_page(d_page);
1527 			d_addr = kmap_atomic(d_page);
1528 			d_size = class->size - written;
1529 			d_off = 0;
1530 		}
1531 	}
1532 
1533 	kunmap_atomic(d_addr);
1534 	kunmap_atomic(s_addr);
1535 }
1536 
1537 /*
1538  * Find alloced object in zspage from index object and
1539  * return handle.
1540  */
1541 static unsigned long find_alloced_obj(struct size_class *class,
1542 				      struct page *page, int *obj_idx)
1543 {
1544 	unsigned int offset;
1545 	int index = *obj_idx;
1546 	unsigned long handle = 0;
1547 	void *addr = kmap_atomic(page);
1548 
1549 	offset = get_first_obj_offset(page);
1550 	offset += class->size * index;
1551 
1552 	while (offset < PAGE_SIZE) {
1553 		if (obj_allocated(page, addr + offset, &handle))
1554 			break;
1555 
1556 		offset += class->size;
1557 		index++;
1558 	}
1559 
1560 	kunmap_atomic(addr);
1561 
1562 	*obj_idx = index;
1563 
1564 	return handle;
1565 }
1566 
1567 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1568 			   struct zspage *dst_zspage)
1569 {
1570 	unsigned long used_obj, free_obj;
1571 	unsigned long handle;
1572 	int obj_idx = 0;
1573 	struct page *s_page = get_first_page(src_zspage);
1574 	struct size_class *class = pool->size_class[src_zspage->class];
1575 
1576 	while (1) {
1577 		handle = find_alloced_obj(class, s_page, &obj_idx);
1578 		if (!handle) {
1579 			s_page = get_next_page(s_page);
1580 			if (!s_page)
1581 				break;
1582 			obj_idx = 0;
1583 			continue;
1584 		}
1585 
1586 		used_obj = handle_to_obj(handle);
1587 		free_obj = obj_malloc(pool, dst_zspage, handle);
1588 		zs_object_copy(class, free_obj, used_obj);
1589 		obj_idx++;
1590 		obj_free(class->size, used_obj);
1591 
1592 		/* Stop if there is no more space */
1593 		if (zspage_full(class, dst_zspage))
1594 			break;
1595 
1596 		/* Stop if there are no more objects to migrate */
1597 		if (zspage_empty(src_zspage))
1598 			break;
1599 	}
1600 }
1601 
1602 static struct zspage *isolate_src_zspage(struct size_class *class)
1603 {
1604 	struct zspage *zspage;
1605 	int fg;
1606 
1607 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1608 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1609 						  struct zspage, list);
1610 		if (zspage) {
1611 			remove_zspage(class, zspage);
1612 			return zspage;
1613 		}
1614 	}
1615 
1616 	return zspage;
1617 }
1618 
1619 static struct zspage *isolate_dst_zspage(struct size_class *class)
1620 {
1621 	struct zspage *zspage;
1622 	int fg;
1623 
1624 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1625 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1626 						  struct zspage, list);
1627 		if (zspage) {
1628 			remove_zspage(class, zspage);
1629 			return zspage;
1630 		}
1631 	}
1632 
1633 	return zspage;
1634 }
1635 
1636 /*
1637  * putback_zspage - add @zspage into right class's fullness list
1638  * @class: destination class
1639  * @zspage: target page
1640  *
1641  * Return @zspage's fullness status
1642  */
1643 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1644 {
1645 	int fullness;
1646 
1647 	fullness = get_fullness_group(class, zspage);
1648 	insert_zspage(class, zspage, fullness);
1649 
1650 	return fullness;
1651 }
1652 
1653 #ifdef CONFIG_COMPACTION
1654 /*
1655  * To prevent zspage destroy during migration, zspage freeing should
1656  * hold locks of all pages in the zspage.
1657  */
1658 static void lock_zspage(struct zspage *zspage)
1659 {
1660 	struct page *curr_page, *page;
1661 
1662 	/*
1663 	 * Pages we haven't locked yet can be migrated off the list while we're
1664 	 * trying to lock them, so we need to be careful and only attempt to
1665 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1666 	 * may no longer belong to the zspage. This means that we may wait for
1667 	 * the wrong page to unlock, so we must take a reference to the page
1668 	 * prior to waiting for it to unlock outside migrate_read_lock().
1669 	 */
1670 	while (1) {
1671 		migrate_read_lock(zspage);
1672 		page = get_first_page(zspage);
1673 		if (trylock_page(page))
1674 			break;
1675 		get_page(page);
1676 		migrate_read_unlock(zspage);
1677 		wait_on_page_locked(page);
1678 		put_page(page);
1679 	}
1680 
1681 	curr_page = page;
1682 	while ((page = get_next_page(curr_page))) {
1683 		if (trylock_page(page)) {
1684 			curr_page = page;
1685 		} else {
1686 			get_page(page);
1687 			migrate_read_unlock(zspage);
1688 			wait_on_page_locked(page);
1689 			put_page(page);
1690 			migrate_read_lock(zspage);
1691 		}
1692 	}
1693 	migrate_read_unlock(zspage);
1694 }
1695 #endif /* CONFIG_COMPACTION */
1696 
1697 static void migrate_lock_init(struct zspage *zspage)
1698 {
1699 	rwlock_init(&zspage->lock);
1700 }
1701 
1702 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1703 {
1704 	read_lock(&zspage->lock);
1705 }
1706 
1707 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1708 {
1709 	read_unlock(&zspage->lock);
1710 }
1711 
1712 static void migrate_write_lock(struct zspage *zspage)
1713 {
1714 	write_lock(&zspage->lock);
1715 }
1716 
1717 static void migrate_write_unlock(struct zspage *zspage)
1718 {
1719 	write_unlock(&zspage->lock);
1720 }
1721 
1722 #ifdef CONFIG_COMPACTION
1723 
1724 static const struct movable_operations zsmalloc_mops;
1725 
1726 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1727 				struct page *newpage, struct page *oldpage)
1728 {
1729 	struct page *page;
1730 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1731 	int idx = 0;
1732 
1733 	page = get_first_page(zspage);
1734 	do {
1735 		if (page == oldpage)
1736 			pages[idx] = newpage;
1737 		else
1738 			pages[idx] = page;
1739 		idx++;
1740 	} while ((page = get_next_page(page)) != NULL);
1741 
1742 	create_page_chain(class, zspage, pages);
1743 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1744 	if (unlikely(ZsHugePage(zspage)))
1745 		newpage->index = oldpage->index;
1746 	__SetPageMovable(newpage, &zsmalloc_mops);
1747 }
1748 
1749 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1750 {
1751 	/*
1752 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1753 	 * lock_zspage in free_zspage.
1754 	 */
1755 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1756 
1757 	return true;
1758 }
1759 
1760 static int zs_page_migrate(struct page *newpage, struct page *page,
1761 		enum migrate_mode mode)
1762 {
1763 	struct zs_pool *pool;
1764 	struct size_class *class;
1765 	struct zspage *zspage;
1766 	struct page *dummy;
1767 	void *s_addr, *d_addr, *addr;
1768 	unsigned int offset;
1769 	unsigned long handle;
1770 	unsigned long old_obj, new_obj;
1771 	unsigned int obj_idx;
1772 
1773 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1774 
1775 	/* We're committed, tell the world that this is a Zsmalloc page. */
1776 	__SetPageZsmalloc(newpage);
1777 
1778 	/* The page is locked, so this pointer must remain valid */
1779 	zspage = get_zspage(page);
1780 	pool = zspage->pool;
1781 
1782 	/*
1783 	 * The pool migrate_lock protects the race between zpage migration
1784 	 * and zs_free.
1785 	 */
1786 	write_lock(&pool->migrate_lock);
1787 	class = zspage_class(pool, zspage);
1788 
1789 	/*
1790 	 * the class lock protects zpage alloc/free in the zspage.
1791 	 */
1792 	spin_lock(&class->lock);
1793 	/* the migrate_write_lock protects zpage access via zs_map_object */
1794 	migrate_write_lock(zspage);
1795 
1796 	offset = get_first_obj_offset(page);
1797 	s_addr = kmap_atomic(page);
1798 
1799 	/*
1800 	 * Here, any user cannot access all objects in the zspage so let's move.
1801 	 */
1802 	d_addr = kmap_atomic(newpage);
1803 	copy_page(d_addr, s_addr);
1804 	kunmap_atomic(d_addr);
1805 
1806 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1807 					addr += class->size) {
1808 		if (obj_allocated(page, addr, &handle)) {
1809 
1810 			old_obj = handle_to_obj(handle);
1811 			obj_to_location(old_obj, &dummy, &obj_idx);
1812 			new_obj = (unsigned long)location_to_obj(newpage,
1813 								obj_idx);
1814 			record_obj(handle, new_obj);
1815 		}
1816 	}
1817 	kunmap_atomic(s_addr);
1818 
1819 	replace_sub_page(class, zspage, newpage, page);
1820 	/*
1821 	 * Since we complete the data copy and set up new zspage structure,
1822 	 * it's okay to release migration_lock.
1823 	 */
1824 	write_unlock(&pool->migrate_lock);
1825 	spin_unlock(&class->lock);
1826 	migrate_write_unlock(zspage);
1827 
1828 	get_page(newpage);
1829 	if (page_zone(newpage) != page_zone(page)) {
1830 		dec_zone_page_state(page, NR_ZSPAGES);
1831 		inc_zone_page_state(newpage, NR_ZSPAGES);
1832 	}
1833 
1834 	reset_page(page);
1835 	put_page(page);
1836 
1837 	return MIGRATEPAGE_SUCCESS;
1838 }
1839 
1840 static void zs_page_putback(struct page *page)
1841 {
1842 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1843 }
1844 
1845 static const struct movable_operations zsmalloc_mops = {
1846 	.isolate_page = zs_page_isolate,
1847 	.migrate_page = zs_page_migrate,
1848 	.putback_page = zs_page_putback,
1849 };
1850 
1851 /*
1852  * Caller should hold page_lock of all pages in the zspage
1853  * In here, we cannot use zspage meta data.
1854  */
1855 static void async_free_zspage(struct work_struct *work)
1856 {
1857 	int i;
1858 	struct size_class *class;
1859 	struct zspage *zspage, *tmp;
1860 	LIST_HEAD(free_pages);
1861 	struct zs_pool *pool = container_of(work, struct zs_pool,
1862 					free_work);
1863 
1864 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1865 		class = pool->size_class[i];
1866 		if (class->index != i)
1867 			continue;
1868 
1869 		spin_lock(&class->lock);
1870 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1871 				 &free_pages);
1872 		spin_unlock(&class->lock);
1873 	}
1874 
1875 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1876 		list_del(&zspage->list);
1877 		lock_zspage(zspage);
1878 
1879 		class = zspage_class(pool, zspage);
1880 		spin_lock(&class->lock);
1881 		class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1882 		__free_zspage(pool, class, zspage);
1883 		spin_unlock(&class->lock);
1884 	}
1885 };
1886 
1887 static void kick_deferred_free(struct zs_pool *pool)
1888 {
1889 	schedule_work(&pool->free_work);
1890 }
1891 
1892 static void zs_flush_migration(struct zs_pool *pool)
1893 {
1894 	flush_work(&pool->free_work);
1895 }
1896 
1897 static void init_deferred_free(struct zs_pool *pool)
1898 {
1899 	INIT_WORK(&pool->free_work, async_free_zspage);
1900 }
1901 
1902 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1903 {
1904 	struct page *page = get_first_page(zspage);
1905 
1906 	do {
1907 		WARN_ON(!trylock_page(page));
1908 		__SetPageMovable(page, &zsmalloc_mops);
1909 		unlock_page(page);
1910 	} while ((page = get_next_page(page)) != NULL);
1911 }
1912 #else
1913 static inline void zs_flush_migration(struct zs_pool *pool) { }
1914 #endif
1915 
1916 /*
1917  *
1918  * Based on the number of unused allocated objects calculate
1919  * and return the number of pages that we can free.
1920  */
1921 static unsigned long zs_can_compact(struct size_class *class)
1922 {
1923 	unsigned long obj_wasted;
1924 	unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1925 	unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1926 
1927 	if (obj_allocated <= obj_used)
1928 		return 0;
1929 
1930 	obj_wasted = obj_allocated - obj_used;
1931 	obj_wasted /= class->objs_per_zspage;
1932 
1933 	return obj_wasted * class->pages_per_zspage;
1934 }
1935 
1936 static unsigned long __zs_compact(struct zs_pool *pool,
1937 				  struct size_class *class)
1938 {
1939 	struct zspage *src_zspage = NULL;
1940 	struct zspage *dst_zspage = NULL;
1941 	unsigned long pages_freed = 0;
1942 
1943 	/*
1944 	 * protect the race between zpage migration and zs_free
1945 	 * as well as zpage allocation/free
1946 	 */
1947 	write_lock(&pool->migrate_lock);
1948 	spin_lock(&class->lock);
1949 	while (zs_can_compact(class)) {
1950 		int fg;
1951 
1952 		if (!dst_zspage) {
1953 			dst_zspage = isolate_dst_zspage(class);
1954 			if (!dst_zspage)
1955 				break;
1956 		}
1957 
1958 		src_zspage = isolate_src_zspage(class);
1959 		if (!src_zspage)
1960 			break;
1961 
1962 		migrate_write_lock(src_zspage);
1963 		migrate_zspage(pool, src_zspage, dst_zspage);
1964 		migrate_write_unlock(src_zspage);
1965 
1966 		fg = putback_zspage(class, src_zspage);
1967 		if (fg == ZS_INUSE_RATIO_0) {
1968 			free_zspage(pool, class, src_zspage);
1969 			pages_freed += class->pages_per_zspage;
1970 		}
1971 		src_zspage = NULL;
1972 
1973 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1974 		    || rwlock_is_contended(&pool->migrate_lock)) {
1975 			putback_zspage(class, dst_zspage);
1976 			dst_zspage = NULL;
1977 
1978 			spin_unlock(&class->lock);
1979 			write_unlock(&pool->migrate_lock);
1980 			cond_resched();
1981 			write_lock(&pool->migrate_lock);
1982 			spin_lock(&class->lock);
1983 		}
1984 	}
1985 
1986 	if (src_zspage)
1987 		putback_zspage(class, src_zspage);
1988 
1989 	if (dst_zspage)
1990 		putback_zspage(class, dst_zspage);
1991 
1992 	spin_unlock(&class->lock);
1993 	write_unlock(&pool->migrate_lock);
1994 
1995 	return pages_freed;
1996 }
1997 
1998 unsigned long zs_compact(struct zs_pool *pool)
1999 {
2000 	int i;
2001 	struct size_class *class;
2002 	unsigned long pages_freed = 0;
2003 
2004 	/*
2005 	 * Pool compaction is performed under pool->migrate_lock so it is basically
2006 	 * single-threaded. Having more than one thread in __zs_compact()
2007 	 * will increase pool->migrate_lock contention, which will impact other
2008 	 * zsmalloc operations that need pool->migrate_lock.
2009 	 */
2010 	if (atomic_xchg(&pool->compaction_in_progress, 1))
2011 		return 0;
2012 
2013 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2014 		class = pool->size_class[i];
2015 		if (class->index != i)
2016 			continue;
2017 		pages_freed += __zs_compact(pool, class);
2018 	}
2019 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2020 	atomic_set(&pool->compaction_in_progress, 0);
2021 
2022 	return pages_freed;
2023 }
2024 EXPORT_SYMBOL_GPL(zs_compact);
2025 
2026 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2027 {
2028 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2029 }
2030 EXPORT_SYMBOL_GPL(zs_pool_stats);
2031 
2032 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2033 		struct shrink_control *sc)
2034 {
2035 	unsigned long pages_freed;
2036 	struct zs_pool *pool = shrinker->private_data;
2037 
2038 	/*
2039 	 * Compact classes and calculate compaction delta.
2040 	 * Can run concurrently with a manually triggered
2041 	 * (by user) compaction.
2042 	 */
2043 	pages_freed = zs_compact(pool);
2044 
2045 	return pages_freed ? pages_freed : SHRINK_STOP;
2046 }
2047 
2048 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2049 		struct shrink_control *sc)
2050 {
2051 	int i;
2052 	struct size_class *class;
2053 	unsigned long pages_to_free = 0;
2054 	struct zs_pool *pool = shrinker->private_data;
2055 
2056 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2057 		class = pool->size_class[i];
2058 		if (class->index != i)
2059 			continue;
2060 
2061 		pages_to_free += zs_can_compact(class);
2062 	}
2063 
2064 	return pages_to_free;
2065 }
2066 
2067 static void zs_unregister_shrinker(struct zs_pool *pool)
2068 {
2069 	shrinker_free(pool->shrinker);
2070 }
2071 
2072 static int zs_register_shrinker(struct zs_pool *pool)
2073 {
2074 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2075 	if (!pool->shrinker)
2076 		return -ENOMEM;
2077 
2078 	pool->shrinker->scan_objects = zs_shrinker_scan;
2079 	pool->shrinker->count_objects = zs_shrinker_count;
2080 	pool->shrinker->batch = 0;
2081 	pool->shrinker->private_data = pool;
2082 
2083 	shrinker_register(pool->shrinker);
2084 
2085 	return 0;
2086 }
2087 
2088 static int calculate_zspage_chain_size(int class_size)
2089 {
2090 	int i, min_waste = INT_MAX;
2091 	int chain_size = 1;
2092 
2093 	if (is_power_of_2(class_size))
2094 		return chain_size;
2095 
2096 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2097 		int waste;
2098 
2099 		waste = (i * PAGE_SIZE) % class_size;
2100 		if (waste < min_waste) {
2101 			min_waste = waste;
2102 			chain_size = i;
2103 		}
2104 	}
2105 
2106 	return chain_size;
2107 }
2108 
2109 /**
2110  * zs_create_pool - Creates an allocation pool to work from.
2111  * @name: pool name to be created
2112  *
2113  * This function must be called before anything when using
2114  * the zsmalloc allocator.
2115  *
2116  * On success, a pointer to the newly created pool is returned,
2117  * otherwise NULL.
2118  */
2119 struct zs_pool *zs_create_pool(const char *name)
2120 {
2121 	int i;
2122 	struct zs_pool *pool;
2123 	struct size_class *prev_class = NULL;
2124 
2125 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2126 	if (!pool)
2127 		return NULL;
2128 
2129 	init_deferred_free(pool);
2130 	rwlock_init(&pool->migrate_lock);
2131 	atomic_set(&pool->compaction_in_progress, 0);
2132 
2133 	pool->name = kstrdup(name, GFP_KERNEL);
2134 	if (!pool->name)
2135 		goto err;
2136 
2137 	if (create_cache(pool))
2138 		goto err;
2139 
2140 	/*
2141 	 * Iterate reversely, because, size of size_class that we want to use
2142 	 * for merging should be larger or equal to current size.
2143 	 */
2144 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2145 		int size;
2146 		int pages_per_zspage;
2147 		int objs_per_zspage;
2148 		struct size_class *class;
2149 		int fullness;
2150 
2151 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2152 		if (size > ZS_MAX_ALLOC_SIZE)
2153 			size = ZS_MAX_ALLOC_SIZE;
2154 		pages_per_zspage = calculate_zspage_chain_size(size);
2155 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2156 
2157 		/*
2158 		 * We iterate from biggest down to smallest classes,
2159 		 * so huge_class_size holds the size of the first huge
2160 		 * class. Any object bigger than or equal to that will
2161 		 * endup in the huge class.
2162 		 */
2163 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2164 				!huge_class_size) {
2165 			huge_class_size = size;
2166 			/*
2167 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2168 			 * handle. We need to subtract it, because zs_malloc()
2169 			 * unconditionally adds handle size before it performs
2170 			 * size class search - so object may be smaller than
2171 			 * huge class size, yet it still can end up in the huge
2172 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2173 			 * right before class lookup.
2174 			 */
2175 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2176 		}
2177 
2178 		/*
2179 		 * size_class is used for normal zsmalloc operation such
2180 		 * as alloc/free for that size. Although it is natural that we
2181 		 * have one size_class for each size, there is a chance that we
2182 		 * can get more memory utilization if we use one size_class for
2183 		 * many different sizes whose size_class have same
2184 		 * characteristics. So, we makes size_class point to
2185 		 * previous size_class if possible.
2186 		 */
2187 		if (prev_class) {
2188 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2189 				pool->size_class[i] = prev_class;
2190 				continue;
2191 			}
2192 		}
2193 
2194 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2195 		if (!class)
2196 			goto err;
2197 
2198 		class->size = size;
2199 		class->index = i;
2200 		class->pages_per_zspage = pages_per_zspage;
2201 		class->objs_per_zspage = objs_per_zspage;
2202 		spin_lock_init(&class->lock);
2203 		pool->size_class[i] = class;
2204 
2205 		fullness = ZS_INUSE_RATIO_0;
2206 		while (fullness < NR_FULLNESS_GROUPS) {
2207 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2208 			fullness++;
2209 		}
2210 
2211 		prev_class = class;
2212 	}
2213 
2214 	/* debug only, don't abort if it fails */
2215 	zs_pool_stat_create(pool, name);
2216 
2217 	/*
2218 	 * Not critical since shrinker is only used to trigger internal
2219 	 * defragmentation of the pool which is pretty optional thing.  If
2220 	 * registration fails we still can use the pool normally and user can
2221 	 * trigger compaction manually. Thus, ignore return code.
2222 	 */
2223 	zs_register_shrinker(pool);
2224 
2225 	return pool;
2226 
2227 err:
2228 	zs_destroy_pool(pool);
2229 	return NULL;
2230 }
2231 EXPORT_SYMBOL_GPL(zs_create_pool);
2232 
2233 void zs_destroy_pool(struct zs_pool *pool)
2234 {
2235 	int i;
2236 
2237 	zs_unregister_shrinker(pool);
2238 	zs_flush_migration(pool);
2239 	zs_pool_stat_destroy(pool);
2240 
2241 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2242 		int fg;
2243 		struct size_class *class = pool->size_class[i];
2244 
2245 		if (!class)
2246 			continue;
2247 
2248 		if (class->index != i)
2249 			continue;
2250 
2251 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2252 			if (list_empty(&class->fullness_list[fg]))
2253 				continue;
2254 
2255 			pr_err("Class-%d fullness group %d is not empty\n",
2256 			       class->size, fg);
2257 		}
2258 		kfree(class);
2259 	}
2260 
2261 	destroy_cache(pool);
2262 	kfree(pool->name);
2263 	kfree(pool);
2264 }
2265 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2266 
2267 static int __init zs_init(void)
2268 {
2269 	int ret;
2270 
2271 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2272 				zs_cpu_prepare, zs_cpu_dead);
2273 	if (ret)
2274 		goto out;
2275 
2276 #ifdef CONFIG_ZPOOL
2277 	zpool_register_driver(&zs_zpool_driver);
2278 #endif
2279 
2280 	zs_stat_init();
2281 
2282 	return 0;
2283 
2284 out:
2285 	return ret;
2286 }
2287 
2288 static void __exit zs_exit(void)
2289 {
2290 #ifdef CONFIG_ZPOOL
2291 	zpool_unregister_driver(&zs_zpool_driver);
2292 #endif
2293 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2294 
2295 	zs_stat_exit();
2296 }
2297 
2298 module_init(zs_init);
2299 module_exit(zs_exit);
2300 
2301 MODULE_LICENSE("Dual BSD/GPL");
2302 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2303 MODULE_DESCRIPTION("zsmalloc memory allocator");
2304