xref: /linux/mm/zsmalloc.c (revision 4e190a5740aedc37654335089e7923bc8109dc3a)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: PG_zsmalloc, lower 16 bit locate the first object
24  *		offset in a subpage of a zspage
25  *
26  * Usage of struct page flags:
27  *	PG_private: identifies the first component page
28  *	PG_owner_priv_1: identifies the huge component page
29  *
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 /*
35  * lock ordering:
36  *	page_lock
37  *	pool->migrate_lock
38  *	class->lock
39  *	zspage->lock
40  */
41 
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/migrate.h>
63 #include <linux/wait.h>
64 #include <linux/pagemap.h>
65 #include <linux/fs.h>
66 #include <linux/local_lock.h>
67 
68 #define ZSPAGE_MAGIC	0x58
69 
70 /*
71  * This must be power of 2 and greater than or equal to sizeof(link_free).
72  * These two conditions ensure that any 'struct link_free' itself doesn't
73  * span more than 1 page which avoids complex case of mapping 2 pages simply
74  * to restore link_free pointer values.
75  */
76 #define ZS_ALIGN		8
77 
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88 
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100 
101 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 
103 /*
104  * Head in allocated object should have OBJ_ALLOCATED_TAG
105  * to identify the object was allocated or not.
106  * It's okay to add the status bit in the least bit because
107  * header keeps handle which is 4byte-aligned address so we
108  * have room for two bit at least.
109  */
110 #define OBJ_ALLOCATED_TAG 1
111 
112 #define OBJ_TAG_BITS	1
113 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
114 
115 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
116 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117 
118 #define HUGE_BITS	1
119 #define FULLNESS_BITS	4
120 #define CLASS_BITS	8
121 #define MAGIC_VAL_BITS	8
122 
123 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
124 
125 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
126 
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
132 
133 /*
134  * On systems with 4K page size, this gives 255 size classes! There is a
135  * trader-off here:
136  *  - Large number of size classes is potentially wasteful as free page are
137  *    spread across these classes
138  *  - Small number of size classes causes large internal fragmentation
139  *  - Probably its better to use specific size classes (empirically
140  *    determined). NOTE: all those class sizes must be set as multiple of
141  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142  *
143  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144  *  (reason above)
145  */
146 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 				      ZS_SIZE_CLASS_DELTA) + 1)
149 
150 /*
151  * Pages are distinguished by the ratio of used memory (that is the ratio
152  * of ->inuse objects to all objects that page can store). For example,
153  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
154  *
155  * The number of fullness groups is not random. It allows us to keep
156  * difference between the least busy page in the group (minimum permitted
157  * number of ->inuse objects) and the most busy page (maximum permitted
158  * number of ->inuse objects) at a reasonable value.
159  */
160 enum fullness_group {
161 	ZS_INUSE_RATIO_0,
162 	ZS_INUSE_RATIO_10,
163 	/* NOTE: 8 more fullness groups here */
164 	ZS_INUSE_RATIO_99       = 10,
165 	ZS_INUSE_RATIO_100,
166 	NR_FULLNESS_GROUPS,
167 };
168 
169 enum class_stat_type {
170 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
171 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
172 	ZS_OBJS_INUSE,
173 	NR_CLASS_STAT_TYPES,
174 };
175 
176 struct zs_size_stat {
177 	unsigned long objs[NR_CLASS_STAT_TYPES];
178 };
179 
180 #ifdef CONFIG_ZSMALLOC_STAT
181 static struct dentry *zs_stat_root;
182 #endif
183 
184 static size_t huge_class_size;
185 
186 struct size_class {
187 	spinlock_t lock;
188 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
189 	/*
190 	 * Size of objects stored in this class. Must be multiple
191 	 * of ZS_ALIGN.
192 	 */
193 	int size;
194 	int objs_per_zspage;
195 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
196 	int pages_per_zspage;
197 
198 	unsigned int index;
199 	struct zs_size_stat stats;
200 };
201 
202 /*
203  * Placed within free objects to form a singly linked list.
204  * For every zspage, zspage->freeobj gives head of this list.
205  *
206  * This must be power of 2 and less than or equal to ZS_ALIGN
207  */
208 struct link_free {
209 	union {
210 		/*
211 		 * Free object index;
212 		 * It's valid for non-allocated object
213 		 */
214 		unsigned long next;
215 		/*
216 		 * Handle of allocated object.
217 		 */
218 		unsigned long handle;
219 	};
220 };
221 
222 struct zs_pool {
223 	const char *name;
224 
225 	struct size_class *size_class[ZS_SIZE_CLASSES];
226 	struct kmem_cache *handle_cachep;
227 	struct kmem_cache *zspage_cachep;
228 
229 	atomic_long_t pages_allocated;
230 
231 	struct zs_pool_stats stats;
232 
233 	/* Compact classes */
234 	struct shrinker *shrinker;
235 
236 #ifdef CONFIG_ZSMALLOC_STAT
237 	struct dentry *stat_dentry;
238 #endif
239 #ifdef CONFIG_COMPACTION
240 	struct work_struct free_work;
241 #endif
242 	/* protect page/zspage migration */
243 	rwlock_t migrate_lock;
244 	atomic_t compaction_in_progress;
245 };
246 
247 struct zspage {
248 	struct {
249 		unsigned int huge:HUGE_BITS;
250 		unsigned int fullness:FULLNESS_BITS;
251 		unsigned int class:CLASS_BITS + 1;
252 		unsigned int magic:MAGIC_VAL_BITS;
253 	};
254 	unsigned int inuse;
255 	unsigned int freeobj;
256 	struct page *first_page;
257 	struct list_head list; /* fullness list */
258 	struct zs_pool *pool;
259 	rwlock_t lock;
260 };
261 
262 struct mapping_area {
263 	local_lock_t lock;
264 	char *vm_buf; /* copy buffer for objects that span pages */
265 	char *vm_addr; /* address of kmap_atomic()'ed pages */
266 	enum zs_mapmode vm_mm; /* mapping mode */
267 };
268 
269 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
270 static void SetZsHugePage(struct zspage *zspage)
271 {
272 	zspage->huge = 1;
273 }
274 
275 static bool ZsHugePage(struct zspage *zspage)
276 {
277 	return zspage->huge;
278 }
279 
280 static void migrate_lock_init(struct zspage *zspage);
281 static void migrate_read_lock(struct zspage *zspage);
282 static void migrate_read_unlock(struct zspage *zspage);
283 static void migrate_write_lock(struct zspage *zspage);
284 static void migrate_write_unlock(struct zspage *zspage);
285 
286 #ifdef CONFIG_COMPACTION
287 static void kick_deferred_free(struct zs_pool *pool);
288 static void init_deferred_free(struct zs_pool *pool);
289 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
290 #else
291 static void kick_deferred_free(struct zs_pool *pool) {}
292 static void init_deferred_free(struct zs_pool *pool) {}
293 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
294 #endif
295 
296 static int create_cache(struct zs_pool *pool)
297 {
298 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
299 					0, 0, NULL);
300 	if (!pool->handle_cachep)
301 		return 1;
302 
303 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
304 					0, 0, NULL);
305 	if (!pool->zspage_cachep) {
306 		kmem_cache_destroy(pool->handle_cachep);
307 		pool->handle_cachep = NULL;
308 		return 1;
309 	}
310 
311 	return 0;
312 }
313 
314 static void destroy_cache(struct zs_pool *pool)
315 {
316 	kmem_cache_destroy(pool->handle_cachep);
317 	kmem_cache_destroy(pool->zspage_cachep);
318 }
319 
320 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
321 {
322 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
323 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
324 }
325 
326 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
327 {
328 	kmem_cache_free(pool->handle_cachep, (void *)handle);
329 }
330 
331 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
332 {
333 	return kmem_cache_zalloc(pool->zspage_cachep,
334 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
335 }
336 
337 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
338 {
339 	kmem_cache_free(pool->zspage_cachep, zspage);
340 }
341 
342 /* class->lock(which owns the handle) synchronizes races */
343 static void record_obj(unsigned long handle, unsigned long obj)
344 {
345 	*(unsigned long *)handle = obj;
346 }
347 
348 /* zpool driver */
349 
350 #ifdef CONFIG_ZPOOL
351 
352 static void *zs_zpool_create(const char *name, gfp_t gfp)
353 {
354 	/*
355 	 * Ignore global gfp flags: zs_malloc() may be invoked from
356 	 * different contexts and its caller must provide a valid
357 	 * gfp mask.
358 	 */
359 	return zs_create_pool(name);
360 }
361 
362 static void zs_zpool_destroy(void *pool)
363 {
364 	zs_destroy_pool(pool);
365 }
366 
367 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
368 			unsigned long *handle)
369 {
370 	*handle = zs_malloc(pool, size, gfp);
371 
372 	if (IS_ERR_VALUE(*handle))
373 		return PTR_ERR((void *)*handle);
374 	return 0;
375 }
376 static void zs_zpool_free(void *pool, unsigned long handle)
377 {
378 	zs_free(pool, handle);
379 }
380 
381 static void *zs_zpool_map(void *pool, unsigned long handle,
382 			enum zpool_mapmode mm)
383 {
384 	enum zs_mapmode zs_mm;
385 
386 	switch (mm) {
387 	case ZPOOL_MM_RO:
388 		zs_mm = ZS_MM_RO;
389 		break;
390 	case ZPOOL_MM_WO:
391 		zs_mm = ZS_MM_WO;
392 		break;
393 	case ZPOOL_MM_RW:
394 	default:
395 		zs_mm = ZS_MM_RW;
396 		break;
397 	}
398 
399 	return zs_map_object(pool, handle, zs_mm);
400 }
401 static void zs_zpool_unmap(void *pool, unsigned long handle)
402 {
403 	zs_unmap_object(pool, handle);
404 }
405 
406 static u64 zs_zpool_total_pages(void *pool)
407 {
408 	return zs_get_total_pages(pool);
409 }
410 
411 static struct zpool_driver zs_zpool_driver = {
412 	.type =			  "zsmalloc",
413 	.owner =		  THIS_MODULE,
414 	.create =		  zs_zpool_create,
415 	.destroy =		  zs_zpool_destroy,
416 	.malloc_support_movable = true,
417 	.malloc =		  zs_zpool_malloc,
418 	.free =			  zs_zpool_free,
419 	.map =			  zs_zpool_map,
420 	.unmap =		  zs_zpool_unmap,
421 	.total_pages =		  zs_zpool_total_pages,
422 };
423 
424 MODULE_ALIAS("zpool-zsmalloc");
425 #endif /* CONFIG_ZPOOL */
426 
427 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
428 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
429 	.lock	= INIT_LOCAL_LOCK(lock),
430 };
431 
432 static __maybe_unused int is_first_page(struct page *page)
433 {
434 	return PagePrivate(page);
435 }
436 
437 /* Protected by class->lock */
438 static inline int get_zspage_inuse(struct zspage *zspage)
439 {
440 	return zspage->inuse;
441 }
442 
443 
444 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
445 {
446 	zspage->inuse += val;
447 }
448 
449 static inline struct page *get_first_page(struct zspage *zspage)
450 {
451 	struct page *first_page = zspage->first_page;
452 
453 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
454 	return first_page;
455 }
456 
457 #define FIRST_OBJ_PAGE_TYPE_MASK	0xffff
458 
459 static inline void reset_first_obj_offset(struct page *page)
460 {
461 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
462 	page->page_type |= FIRST_OBJ_PAGE_TYPE_MASK;
463 }
464 
465 static inline unsigned int get_first_obj_offset(struct page *page)
466 {
467 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
468 	return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
469 }
470 
471 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
472 {
473 	/* With 16 bit available, we can support offsets into 64 KiB pages. */
474 	BUILD_BUG_ON(PAGE_SIZE > SZ_64K);
475 	VM_WARN_ON_ONCE(!PageZsmalloc(page));
476 	VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
477 	page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
478 	page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
479 }
480 
481 static inline unsigned int get_freeobj(struct zspage *zspage)
482 {
483 	return zspage->freeobj;
484 }
485 
486 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
487 {
488 	zspage->freeobj = obj;
489 }
490 
491 static struct size_class *zspage_class(struct zs_pool *pool,
492 				       struct zspage *zspage)
493 {
494 	return pool->size_class[zspage->class];
495 }
496 
497 /*
498  * zsmalloc divides the pool into various size classes where each
499  * class maintains a list of zspages where each zspage is divided
500  * into equal sized chunks. Each allocation falls into one of these
501  * classes depending on its size. This function returns index of the
502  * size class which has chunk size big enough to hold the given size.
503  */
504 static int get_size_class_index(int size)
505 {
506 	int idx = 0;
507 
508 	if (likely(size > ZS_MIN_ALLOC_SIZE))
509 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
510 				ZS_SIZE_CLASS_DELTA);
511 
512 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
513 }
514 
515 static inline void class_stat_add(struct size_class *class, int type,
516 				  unsigned long cnt)
517 {
518 	class->stats.objs[type] += cnt;
519 }
520 
521 static inline void class_stat_sub(struct size_class *class, int type,
522 				  unsigned long cnt)
523 {
524 	class->stats.objs[type] -= cnt;
525 }
526 
527 static inline unsigned long class_stat_read(struct size_class *class, int type)
528 {
529 	return class->stats.objs[type];
530 }
531 
532 #ifdef CONFIG_ZSMALLOC_STAT
533 
534 static void __init zs_stat_init(void)
535 {
536 	if (!debugfs_initialized()) {
537 		pr_warn("debugfs not available, stat dir not created\n");
538 		return;
539 	}
540 
541 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
542 }
543 
544 static void __exit zs_stat_exit(void)
545 {
546 	debugfs_remove_recursive(zs_stat_root);
547 }
548 
549 static unsigned long zs_can_compact(struct size_class *class);
550 
551 static int zs_stats_size_show(struct seq_file *s, void *v)
552 {
553 	int i, fg;
554 	struct zs_pool *pool = s->private;
555 	struct size_class *class;
556 	int objs_per_zspage;
557 	unsigned long obj_allocated, obj_used, pages_used, freeable;
558 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
559 	unsigned long total_freeable = 0;
560 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
561 
562 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
563 			"class", "size", "10%", "20%", "30%", "40%",
564 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
565 			"obj_allocated", "obj_used", "pages_used",
566 			"pages_per_zspage", "freeable");
567 
568 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
569 
570 		class = pool->size_class[i];
571 
572 		if (class->index != i)
573 			continue;
574 
575 		spin_lock(&class->lock);
576 
577 		seq_printf(s, " %5u %5u ", i, class->size);
578 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
579 			inuse_totals[fg] += class_stat_read(class, fg);
580 			seq_printf(s, "%9lu ", class_stat_read(class, fg));
581 		}
582 
583 		obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
584 		obj_used = class_stat_read(class, ZS_OBJS_INUSE);
585 		freeable = zs_can_compact(class);
586 		spin_unlock(&class->lock);
587 
588 		objs_per_zspage = class->objs_per_zspage;
589 		pages_used = obj_allocated / objs_per_zspage *
590 				class->pages_per_zspage;
591 
592 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
593 			   obj_allocated, obj_used, pages_used,
594 			   class->pages_per_zspage, freeable);
595 
596 		total_objs += obj_allocated;
597 		total_used_objs += obj_used;
598 		total_pages += pages_used;
599 		total_freeable += freeable;
600 	}
601 
602 	seq_puts(s, "\n");
603 	seq_printf(s, " %5s %5s ", "Total", "");
604 
605 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
606 		seq_printf(s, "%9lu ", inuse_totals[fg]);
607 
608 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
609 		   total_objs, total_used_objs, total_pages, "",
610 		   total_freeable);
611 
612 	return 0;
613 }
614 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
615 
616 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
617 {
618 	if (!zs_stat_root) {
619 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
620 		return;
621 	}
622 
623 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
624 
625 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
626 			    &zs_stats_size_fops);
627 }
628 
629 static void zs_pool_stat_destroy(struct zs_pool *pool)
630 {
631 	debugfs_remove_recursive(pool->stat_dentry);
632 }
633 
634 #else /* CONFIG_ZSMALLOC_STAT */
635 static void __init zs_stat_init(void)
636 {
637 }
638 
639 static void __exit zs_stat_exit(void)
640 {
641 }
642 
643 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
644 {
645 }
646 
647 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
648 {
649 }
650 #endif
651 
652 
653 /*
654  * For each size class, zspages are divided into different groups
655  * depending on their usage ratio. This function returns fullness
656  * status of the given page.
657  */
658 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
659 {
660 	int inuse, objs_per_zspage, ratio;
661 
662 	inuse = get_zspage_inuse(zspage);
663 	objs_per_zspage = class->objs_per_zspage;
664 
665 	if (inuse == 0)
666 		return ZS_INUSE_RATIO_0;
667 	if (inuse == objs_per_zspage)
668 		return ZS_INUSE_RATIO_100;
669 
670 	ratio = 100 * inuse / objs_per_zspage;
671 	/*
672 	 * Take integer division into consideration: a page with one inuse
673 	 * object out of 127 possible, will end up having 0 usage ratio,
674 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
675 	 */
676 	return ratio / 10 + 1;
677 }
678 
679 /*
680  * Each size class maintains various freelists and zspages are assigned
681  * to one of these freelists based on the number of live objects they
682  * have. This functions inserts the given zspage into the freelist
683  * identified by <class, fullness_group>.
684  */
685 static void insert_zspage(struct size_class *class,
686 				struct zspage *zspage,
687 				int fullness)
688 {
689 	class_stat_add(class, fullness, 1);
690 	list_add(&zspage->list, &class->fullness_list[fullness]);
691 	zspage->fullness = fullness;
692 }
693 
694 /*
695  * This function removes the given zspage from the freelist identified
696  * by <class, fullness_group>.
697  */
698 static void remove_zspage(struct size_class *class, struct zspage *zspage)
699 {
700 	int fullness = zspage->fullness;
701 
702 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
703 
704 	list_del_init(&zspage->list);
705 	class_stat_sub(class, fullness, 1);
706 }
707 
708 /*
709  * Each size class maintains zspages in different fullness groups depending
710  * on the number of live objects they contain. When allocating or freeing
711  * objects, the fullness status of the page can change, for instance, from
712  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
713  * checks if such a status change has occurred for the given page and
714  * accordingly moves the page from the list of the old fullness group to that
715  * of the new fullness group.
716  */
717 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
718 {
719 	int newfg;
720 
721 	newfg = get_fullness_group(class, zspage);
722 	if (newfg == zspage->fullness)
723 		goto out;
724 
725 	remove_zspage(class, zspage);
726 	insert_zspage(class, zspage, newfg);
727 out:
728 	return newfg;
729 }
730 
731 static struct zspage *get_zspage(struct page *page)
732 {
733 	struct zspage *zspage = (struct zspage *)page_private(page);
734 
735 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
736 	return zspage;
737 }
738 
739 static struct page *get_next_page(struct page *page)
740 {
741 	struct zspage *zspage = get_zspage(page);
742 
743 	if (unlikely(ZsHugePage(zspage)))
744 		return NULL;
745 
746 	return (struct page *)page->index;
747 }
748 
749 /**
750  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
751  * @obj: the encoded object value
752  * @page: page object resides in zspage
753  * @obj_idx: object index
754  */
755 static void obj_to_location(unsigned long obj, struct page **page,
756 				unsigned int *obj_idx)
757 {
758 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
759 	*obj_idx = (obj & OBJ_INDEX_MASK);
760 }
761 
762 static void obj_to_page(unsigned long obj, struct page **page)
763 {
764 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
765 }
766 
767 /**
768  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
769  * @page: page object resides in zspage
770  * @obj_idx: object index
771  */
772 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
773 {
774 	unsigned long obj;
775 
776 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
777 	obj |= obj_idx & OBJ_INDEX_MASK;
778 
779 	return obj;
780 }
781 
782 static unsigned long handle_to_obj(unsigned long handle)
783 {
784 	return *(unsigned long *)handle;
785 }
786 
787 static inline bool obj_allocated(struct page *page, void *obj,
788 				 unsigned long *phandle)
789 {
790 	unsigned long handle;
791 	struct zspage *zspage = get_zspage(page);
792 
793 	if (unlikely(ZsHugePage(zspage))) {
794 		VM_BUG_ON_PAGE(!is_first_page(page), page);
795 		handle = page->index;
796 	} else
797 		handle = *(unsigned long *)obj;
798 
799 	if (!(handle & OBJ_ALLOCATED_TAG))
800 		return false;
801 
802 	/* Clear all tags before returning the handle */
803 	*phandle = handle & ~OBJ_TAG_MASK;
804 	return true;
805 }
806 
807 static void reset_page(struct page *page)
808 {
809 	__ClearPageMovable(page);
810 	ClearPagePrivate(page);
811 	set_page_private(page, 0);
812 	page->index = 0;
813 	reset_first_obj_offset(page);
814 	__ClearPageZsmalloc(page);
815 }
816 
817 static int trylock_zspage(struct zspage *zspage)
818 {
819 	struct page *cursor, *fail;
820 
821 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
822 					get_next_page(cursor)) {
823 		if (!trylock_page(cursor)) {
824 			fail = cursor;
825 			goto unlock;
826 		}
827 	}
828 
829 	return 1;
830 unlock:
831 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
832 					get_next_page(cursor))
833 		unlock_page(cursor);
834 
835 	return 0;
836 }
837 
838 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
839 				struct zspage *zspage)
840 {
841 	struct page *page, *next;
842 
843 	assert_spin_locked(&class->lock);
844 
845 	VM_BUG_ON(get_zspage_inuse(zspage));
846 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
847 
848 	next = page = get_first_page(zspage);
849 	do {
850 		VM_BUG_ON_PAGE(!PageLocked(page), page);
851 		next = get_next_page(page);
852 		reset_page(page);
853 		unlock_page(page);
854 		dec_zone_page_state(page, NR_ZSPAGES);
855 		put_page(page);
856 		page = next;
857 	} while (page != NULL);
858 
859 	cache_free_zspage(pool, zspage);
860 
861 	class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
862 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
863 }
864 
865 static void free_zspage(struct zs_pool *pool, struct size_class *class,
866 				struct zspage *zspage)
867 {
868 	VM_BUG_ON(get_zspage_inuse(zspage));
869 	VM_BUG_ON(list_empty(&zspage->list));
870 
871 	/*
872 	 * Since zs_free couldn't be sleepable, this function cannot call
873 	 * lock_page. The page locks trylock_zspage got will be released
874 	 * by __free_zspage.
875 	 */
876 	if (!trylock_zspage(zspage)) {
877 		kick_deferred_free(pool);
878 		return;
879 	}
880 
881 	remove_zspage(class, zspage);
882 	__free_zspage(pool, class, zspage);
883 }
884 
885 /* Initialize a newly allocated zspage */
886 static void init_zspage(struct size_class *class, struct zspage *zspage)
887 {
888 	unsigned int freeobj = 1;
889 	unsigned long off = 0;
890 	struct page *page = get_first_page(zspage);
891 
892 	while (page) {
893 		struct page *next_page;
894 		struct link_free *link;
895 		void *vaddr;
896 
897 		set_first_obj_offset(page, off);
898 
899 		vaddr = kmap_atomic(page);
900 		link = (struct link_free *)vaddr + off / sizeof(*link);
901 
902 		while ((off += class->size) < PAGE_SIZE) {
903 			link->next = freeobj++ << OBJ_TAG_BITS;
904 			link += class->size / sizeof(*link);
905 		}
906 
907 		/*
908 		 * We now come to the last (full or partial) object on this
909 		 * page, which must point to the first object on the next
910 		 * page (if present)
911 		 */
912 		next_page = get_next_page(page);
913 		if (next_page) {
914 			link->next = freeobj++ << OBJ_TAG_BITS;
915 		} else {
916 			/*
917 			 * Reset OBJ_TAG_BITS bit to last link to tell
918 			 * whether it's allocated object or not.
919 			 */
920 			link->next = -1UL << OBJ_TAG_BITS;
921 		}
922 		kunmap_atomic(vaddr);
923 		page = next_page;
924 		off %= PAGE_SIZE;
925 	}
926 
927 	set_freeobj(zspage, 0);
928 }
929 
930 static void create_page_chain(struct size_class *class, struct zspage *zspage,
931 				struct page *pages[])
932 {
933 	int i;
934 	struct page *page;
935 	struct page *prev_page = NULL;
936 	int nr_pages = class->pages_per_zspage;
937 
938 	/*
939 	 * Allocate individual pages and link them together as:
940 	 * 1. all pages are linked together using page->index
941 	 * 2. each sub-page point to zspage using page->private
942 	 *
943 	 * we set PG_private to identify the first page (i.e. no other sub-page
944 	 * has this flag set).
945 	 */
946 	for (i = 0; i < nr_pages; i++) {
947 		page = pages[i];
948 		set_page_private(page, (unsigned long)zspage);
949 		page->index = 0;
950 		if (i == 0) {
951 			zspage->first_page = page;
952 			SetPagePrivate(page);
953 			if (unlikely(class->objs_per_zspage == 1 &&
954 					class->pages_per_zspage == 1))
955 				SetZsHugePage(zspage);
956 		} else {
957 			prev_page->index = (unsigned long)page;
958 		}
959 		prev_page = page;
960 	}
961 }
962 
963 /*
964  * Allocate a zspage for the given size class
965  */
966 static struct zspage *alloc_zspage(struct zs_pool *pool,
967 					struct size_class *class,
968 					gfp_t gfp)
969 {
970 	int i;
971 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
972 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
973 
974 	if (!zspage)
975 		return NULL;
976 
977 	zspage->magic = ZSPAGE_MAGIC;
978 	migrate_lock_init(zspage);
979 
980 	for (i = 0; i < class->pages_per_zspage; i++) {
981 		struct page *page;
982 
983 		page = alloc_page(gfp);
984 		if (!page) {
985 			while (--i >= 0) {
986 				dec_zone_page_state(pages[i], NR_ZSPAGES);
987 				__ClearPageZsmalloc(pages[i]);
988 				__free_page(pages[i]);
989 			}
990 			cache_free_zspage(pool, zspage);
991 			return NULL;
992 		}
993 		__SetPageZsmalloc(page);
994 
995 		inc_zone_page_state(page, NR_ZSPAGES);
996 		pages[i] = page;
997 	}
998 
999 	create_page_chain(class, zspage, pages);
1000 	init_zspage(class, zspage);
1001 	zspage->pool = pool;
1002 	zspage->class = class->index;
1003 
1004 	return zspage;
1005 }
1006 
1007 static struct zspage *find_get_zspage(struct size_class *class)
1008 {
1009 	int i;
1010 	struct zspage *zspage;
1011 
1012 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1013 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1014 						  struct zspage, list);
1015 		if (zspage)
1016 			break;
1017 	}
1018 
1019 	return zspage;
1020 }
1021 
1022 static inline int __zs_cpu_up(struct mapping_area *area)
1023 {
1024 	/*
1025 	 * Make sure we don't leak memory if a cpu UP notification
1026 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1027 	 */
1028 	if (area->vm_buf)
1029 		return 0;
1030 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1031 	if (!area->vm_buf)
1032 		return -ENOMEM;
1033 	return 0;
1034 }
1035 
1036 static inline void __zs_cpu_down(struct mapping_area *area)
1037 {
1038 	kfree(area->vm_buf);
1039 	area->vm_buf = NULL;
1040 }
1041 
1042 static void *__zs_map_object(struct mapping_area *area,
1043 			struct page *pages[2], int off, int size)
1044 {
1045 	int sizes[2];
1046 	void *addr;
1047 	char *buf = area->vm_buf;
1048 
1049 	/* disable page faults to match kmap_atomic() return conditions */
1050 	pagefault_disable();
1051 
1052 	/* no read fastpath */
1053 	if (area->vm_mm == ZS_MM_WO)
1054 		goto out;
1055 
1056 	sizes[0] = PAGE_SIZE - off;
1057 	sizes[1] = size - sizes[0];
1058 
1059 	/* copy object to per-cpu buffer */
1060 	addr = kmap_atomic(pages[0]);
1061 	memcpy(buf, addr + off, sizes[0]);
1062 	kunmap_atomic(addr);
1063 	addr = kmap_atomic(pages[1]);
1064 	memcpy(buf + sizes[0], addr, sizes[1]);
1065 	kunmap_atomic(addr);
1066 out:
1067 	return area->vm_buf;
1068 }
1069 
1070 static void __zs_unmap_object(struct mapping_area *area,
1071 			struct page *pages[2], int off, int size)
1072 {
1073 	int sizes[2];
1074 	void *addr;
1075 	char *buf;
1076 
1077 	/* no write fastpath */
1078 	if (area->vm_mm == ZS_MM_RO)
1079 		goto out;
1080 
1081 	buf = area->vm_buf;
1082 	buf = buf + ZS_HANDLE_SIZE;
1083 	size -= ZS_HANDLE_SIZE;
1084 	off += ZS_HANDLE_SIZE;
1085 
1086 	sizes[0] = PAGE_SIZE - off;
1087 	sizes[1] = size - sizes[0];
1088 
1089 	/* copy per-cpu buffer to object */
1090 	addr = kmap_atomic(pages[0]);
1091 	memcpy(addr + off, buf, sizes[0]);
1092 	kunmap_atomic(addr);
1093 	addr = kmap_atomic(pages[1]);
1094 	memcpy(addr, buf + sizes[0], sizes[1]);
1095 	kunmap_atomic(addr);
1096 
1097 out:
1098 	/* enable page faults to match kunmap_atomic() return conditions */
1099 	pagefault_enable();
1100 }
1101 
1102 static int zs_cpu_prepare(unsigned int cpu)
1103 {
1104 	struct mapping_area *area;
1105 
1106 	area = &per_cpu(zs_map_area, cpu);
1107 	return __zs_cpu_up(area);
1108 }
1109 
1110 static int zs_cpu_dead(unsigned int cpu)
1111 {
1112 	struct mapping_area *area;
1113 
1114 	area = &per_cpu(zs_map_area, cpu);
1115 	__zs_cpu_down(area);
1116 	return 0;
1117 }
1118 
1119 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1120 					int objs_per_zspage)
1121 {
1122 	if (prev->pages_per_zspage == pages_per_zspage &&
1123 		prev->objs_per_zspage == objs_per_zspage)
1124 		return true;
1125 
1126 	return false;
1127 }
1128 
1129 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1130 {
1131 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1132 }
1133 
1134 static bool zspage_empty(struct zspage *zspage)
1135 {
1136 	return get_zspage_inuse(zspage) == 0;
1137 }
1138 
1139 /**
1140  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1141  * that hold objects of the provided size.
1142  * @pool: zsmalloc pool to use
1143  * @size: object size
1144  *
1145  * Context: Any context.
1146  *
1147  * Return: the index of the zsmalloc &size_class that hold objects of the
1148  * provided size.
1149  */
1150 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1151 {
1152 	struct size_class *class;
1153 
1154 	class = pool->size_class[get_size_class_index(size)];
1155 
1156 	return class->index;
1157 }
1158 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1159 
1160 unsigned long zs_get_total_pages(struct zs_pool *pool)
1161 {
1162 	return atomic_long_read(&pool->pages_allocated);
1163 }
1164 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1165 
1166 /**
1167  * zs_map_object - get address of allocated object from handle.
1168  * @pool: pool from which the object was allocated
1169  * @handle: handle returned from zs_malloc
1170  * @mm: mapping mode to use
1171  *
1172  * Before using an object allocated from zs_malloc, it must be mapped using
1173  * this function. When done with the object, it must be unmapped using
1174  * zs_unmap_object.
1175  *
1176  * Only one object can be mapped per cpu at a time. There is no protection
1177  * against nested mappings.
1178  *
1179  * This function returns with preemption and page faults disabled.
1180  */
1181 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1182 			enum zs_mapmode mm)
1183 {
1184 	struct zspage *zspage;
1185 	struct page *page;
1186 	unsigned long obj, off;
1187 	unsigned int obj_idx;
1188 
1189 	struct size_class *class;
1190 	struct mapping_area *area;
1191 	struct page *pages[2];
1192 	void *ret;
1193 
1194 	/*
1195 	 * Because we use per-cpu mapping areas shared among the
1196 	 * pools/users, we can't allow mapping in interrupt context
1197 	 * because it can corrupt another users mappings.
1198 	 */
1199 	BUG_ON(in_interrupt());
1200 
1201 	/* It guarantees it can get zspage from handle safely */
1202 	read_lock(&pool->migrate_lock);
1203 	obj = handle_to_obj(handle);
1204 	obj_to_location(obj, &page, &obj_idx);
1205 	zspage = get_zspage(page);
1206 
1207 	/*
1208 	 * migration cannot move any zpages in this zspage. Here, class->lock
1209 	 * is too heavy since callers would take some time until they calls
1210 	 * zs_unmap_object API so delegate the locking from class to zspage
1211 	 * which is smaller granularity.
1212 	 */
1213 	migrate_read_lock(zspage);
1214 	read_unlock(&pool->migrate_lock);
1215 
1216 	class = zspage_class(pool, zspage);
1217 	off = offset_in_page(class->size * obj_idx);
1218 
1219 	local_lock(&zs_map_area.lock);
1220 	area = this_cpu_ptr(&zs_map_area);
1221 	area->vm_mm = mm;
1222 	if (off + class->size <= PAGE_SIZE) {
1223 		/* this object is contained entirely within a page */
1224 		area->vm_addr = kmap_atomic(page);
1225 		ret = area->vm_addr + off;
1226 		goto out;
1227 	}
1228 
1229 	/* this object spans two pages */
1230 	pages[0] = page;
1231 	pages[1] = get_next_page(page);
1232 	BUG_ON(!pages[1]);
1233 
1234 	ret = __zs_map_object(area, pages, off, class->size);
1235 out:
1236 	if (likely(!ZsHugePage(zspage)))
1237 		ret += ZS_HANDLE_SIZE;
1238 
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(zs_map_object);
1242 
1243 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1244 {
1245 	struct zspage *zspage;
1246 	struct page *page;
1247 	unsigned long obj, off;
1248 	unsigned int obj_idx;
1249 
1250 	struct size_class *class;
1251 	struct mapping_area *area;
1252 
1253 	obj = handle_to_obj(handle);
1254 	obj_to_location(obj, &page, &obj_idx);
1255 	zspage = get_zspage(page);
1256 	class = zspage_class(pool, zspage);
1257 	off = offset_in_page(class->size * obj_idx);
1258 
1259 	area = this_cpu_ptr(&zs_map_area);
1260 	if (off + class->size <= PAGE_SIZE)
1261 		kunmap_atomic(area->vm_addr);
1262 	else {
1263 		struct page *pages[2];
1264 
1265 		pages[0] = page;
1266 		pages[1] = get_next_page(page);
1267 		BUG_ON(!pages[1]);
1268 
1269 		__zs_unmap_object(area, pages, off, class->size);
1270 	}
1271 	local_unlock(&zs_map_area.lock);
1272 
1273 	migrate_read_unlock(zspage);
1274 }
1275 EXPORT_SYMBOL_GPL(zs_unmap_object);
1276 
1277 /**
1278  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1279  *                        zsmalloc &size_class.
1280  * @pool: zsmalloc pool to use
1281  *
1282  * The function returns the size of the first huge class - any object of equal
1283  * or bigger size will be stored in zspage consisting of a single physical
1284  * page.
1285  *
1286  * Context: Any context.
1287  *
1288  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1289  */
1290 size_t zs_huge_class_size(struct zs_pool *pool)
1291 {
1292 	return huge_class_size;
1293 }
1294 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1295 
1296 static unsigned long obj_malloc(struct zs_pool *pool,
1297 				struct zspage *zspage, unsigned long handle)
1298 {
1299 	int i, nr_page, offset;
1300 	unsigned long obj;
1301 	struct link_free *link;
1302 	struct size_class *class;
1303 
1304 	struct page *m_page;
1305 	unsigned long m_offset;
1306 	void *vaddr;
1307 
1308 	class = pool->size_class[zspage->class];
1309 	obj = get_freeobj(zspage);
1310 
1311 	offset = obj * class->size;
1312 	nr_page = offset >> PAGE_SHIFT;
1313 	m_offset = offset_in_page(offset);
1314 	m_page = get_first_page(zspage);
1315 
1316 	for (i = 0; i < nr_page; i++)
1317 		m_page = get_next_page(m_page);
1318 
1319 	vaddr = kmap_atomic(m_page);
1320 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1321 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1322 	if (likely(!ZsHugePage(zspage)))
1323 		/* record handle in the header of allocated chunk */
1324 		link->handle = handle | OBJ_ALLOCATED_TAG;
1325 	else
1326 		/* record handle to page->index */
1327 		zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1328 
1329 	kunmap_atomic(vaddr);
1330 	mod_zspage_inuse(zspage, 1);
1331 
1332 	obj = location_to_obj(m_page, obj);
1333 	record_obj(handle, obj);
1334 
1335 	return obj;
1336 }
1337 
1338 
1339 /**
1340  * zs_malloc - Allocate block of given size from pool.
1341  * @pool: pool to allocate from
1342  * @size: size of block to allocate
1343  * @gfp: gfp flags when allocating object
1344  *
1345  * On success, handle to the allocated object is returned,
1346  * otherwise an ERR_PTR().
1347  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1348  */
1349 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1350 {
1351 	unsigned long handle;
1352 	struct size_class *class;
1353 	int newfg;
1354 	struct zspage *zspage;
1355 
1356 	if (unlikely(!size))
1357 		return (unsigned long)ERR_PTR(-EINVAL);
1358 
1359 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1360 		return (unsigned long)ERR_PTR(-ENOSPC);
1361 
1362 	handle = cache_alloc_handle(pool, gfp);
1363 	if (!handle)
1364 		return (unsigned long)ERR_PTR(-ENOMEM);
1365 
1366 	/* extra space in chunk to keep the handle */
1367 	size += ZS_HANDLE_SIZE;
1368 	class = pool->size_class[get_size_class_index(size)];
1369 
1370 	/* class->lock effectively protects the zpage migration */
1371 	spin_lock(&class->lock);
1372 	zspage = find_get_zspage(class);
1373 	if (likely(zspage)) {
1374 		obj_malloc(pool, zspage, handle);
1375 		/* Now move the zspage to another fullness group, if required */
1376 		fix_fullness_group(class, zspage);
1377 		class_stat_add(class, ZS_OBJS_INUSE, 1);
1378 
1379 		goto out;
1380 	}
1381 
1382 	spin_unlock(&class->lock);
1383 
1384 	zspage = alloc_zspage(pool, class, gfp);
1385 	if (!zspage) {
1386 		cache_free_handle(pool, handle);
1387 		return (unsigned long)ERR_PTR(-ENOMEM);
1388 	}
1389 
1390 	spin_lock(&class->lock);
1391 	obj_malloc(pool, zspage, handle);
1392 	newfg = get_fullness_group(class, zspage);
1393 	insert_zspage(class, zspage, newfg);
1394 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1395 	class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1396 	class_stat_add(class, ZS_OBJS_INUSE, 1);
1397 
1398 	/* We completely set up zspage so mark them as movable */
1399 	SetZsPageMovable(pool, zspage);
1400 out:
1401 	spin_unlock(&class->lock);
1402 
1403 	return handle;
1404 }
1405 EXPORT_SYMBOL_GPL(zs_malloc);
1406 
1407 static void obj_free(int class_size, unsigned long obj)
1408 {
1409 	struct link_free *link;
1410 	struct zspage *zspage;
1411 	struct page *f_page;
1412 	unsigned long f_offset;
1413 	unsigned int f_objidx;
1414 	void *vaddr;
1415 
1416 	obj_to_location(obj, &f_page, &f_objidx);
1417 	f_offset = offset_in_page(class_size * f_objidx);
1418 	zspage = get_zspage(f_page);
1419 
1420 	vaddr = kmap_atomic(f_page);
1421 	link = (struct link_free *)(vaddr + f_offset);
1422 
1423 	/* Insert this object in containing zspage's freelist */
1424 	if (likely(!ZsHugePage(zspage)))
1425 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1426 	else
1427 		f_page->index = 0;
1428 	set_freeobj(zspage, f_objidx);
1429 
1430 	kunmap_atomic(vaddr);
1431 	mod_zspage_inuse(zspage, -1);
1432 }
1433 
1434 void zs_free(struct zs_pool *pool, unsigned long handle)
1435 {
1436 	struct zspage *zspage;
1437 	struct page *f_page;
1438 	unsigned long obj;
1439 	struct size_class *class;
1440 	int fullness;
1441 
1442 	if (IS_ERR_OR_NULL((void *)handle))
1443 		return;
1444 
1445 	/*
1446 	 * The pool->migrate_lock protects the race with zpage's migration
1447 	 * so it's safe to get the page from handle.
1448 	 */
1449 	read_lock(&pool->migrate_lock);
1450 	obj = handle_to_obj(handle);
1451 	obj_to_page(obj, &f_page);
1452 	zspage = get_zspage(f_page);
1453 	class = zspage_class(pool, zspage);
1454 	spin_lock(&class->lock);
1455 	read_unlock(&pool->migrate_lock);
1456 
1457 	class_stat_sub(class, ZS_OBJS_INUSE, 1);
1458 	obj_free(class->size, obj);
1459 
1460 	fullness = fix_fullness_group(class, zspage);
1461 	if (fullness == ZS_INUSE_RATIO_0)
1462 		free_zspage(pool, class, zspage);
1463 
1464 	spin_unlock(&class->lock);
1465 	cache_free_handle(pool, handle);
1466 }
1467 EXPORT_SYMBOL_GPL(zs_free);
1468 
1469 static void zs_object_copy(struct size_class *class, unsigned long dst,
1470 				unsigned long src)
1471 {
1472 	struct page *s_page, *d_page;
1473 	unsigned int s_objidx, d_objidx;
1474 	unsigned long s_off, d_off;
1475 	void *s_addr, *d_addr;
1476 	int s_size, d_size, size;
1477 	int written = 0;
1478 
1479 	s_size = d_size = class->size;
1480 
1481 	obj_to_location(src, &s_page, &s_objidx);
1482 	obj_to_location(dst, &d_page, &d_objidx);
1483 
1484 	s_off = offset_in_page(class->size * s_objidx);
1485 	d_off = offset_in_page(class->size * d_objidx);
1486 
1487 	if (s_off + class->size > PAGE_SIZE)
1488 		s_size = PAGE_SIZE - s_off;
1489 
1490 	if (d_off + class->size > PAGE_SIZE)
1491 		d_size = PAGE_SIZE - d_off;
1492 
1493 	s_addr = kmap_atomic(s_page);
1494 	d_addr = kmap_atomic(d_page);
1495 
1496 	while (1) {
1497 		size = min(s_size, d_size);
1498 		memcpy(d_addr + d_off, s_addr + s_off, size);
1499 		written += size;
1500 
1501 		if (written == class->size)
1502 			break;
1503 
1504 		s_off += size;
1505 		s_size -= size;
1506 		d_off += size;
1507 		d_size -= size;
1508 
1509 		/*
1510 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1511 		 * calls must occurs in reverse order of calls to kmap_atomic().
1512 		 * So, to call kunmap_atomic(s_addr) we should first call
1513 		 * kunmap_atomic(d_addr). For more details see
1514 		 * Documentation/mm/highmem.rst.
1515 		 */
1516 		if (s_off >= PAGE_SIZE) {
1517 			kunmap_atomic(d_addr);
1518 			kunmap_atomic(s_addr);
1519 			s_page = get_next_page(s_page);
1520 			s_addr = kmap_atomic(s_page);
1521 			d_addr = kmap_atomic(d_page);
1522 			s_size = class->size - written;
1523 			s_off = 0;
1524 		}
1525 
1526 		if (d_off >= PAGE_SIZE) {
1527 			kunmap_atomic(d_addr);
1528 			d_page = get_next_page(d_page);
1529 			d_addr = kmap_atomic(d_page);
1530 			d_size = class->size - written;
1531 			d_off = 0;
1532 		}
1533 	}
1534 
1535 	kunmap_atomic(d_addr);
1536 	kunmap_atomic(s_addr);
1537 }
1538 
1539 /*
1540  * Find alloced object in zspage from index object and
1541  * return handle.
1542  */
1543 static unsigned long find_alloced_obj(struct size_class *class,
1544 				      struct page *page, int *obj_idx)
1545 {
1546 	unsigned int offset;
1547 	int index = *obj_idx;
1548 	unsigned long handle = 0;
1549 	void *addr = kmap_atomic(page);
1550 
1551 	offset = get_first_obj_offset(page);
1552 	offset += class->size * index;
1553 
1554 	while (offset < PAGE_SIZE) {
1555 		if (obj_allocated(page, addr + offset, &handle))
1556 			break;
1557 
1558 		offset += class->size;
1559 		index++;
1560 	}
1561 
1562 	kunmap_atomic(addr);
1563 
1564 	*obj_idx = index;
1565 
1566 	return handle;
1567 }
1568 
1569 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1570 			   struct zspage *dst_zspage)
1571 {
1572 	unsigned long used_obj, free_obj;
1573 	unsigned long handle;
1574 	int obj_idx = 0;
1575 	struct page *s_page = get_first_page(src_zspage);
1576 	struct size_class *class = pool->size_class[src_zspage->class];
1577 
1578 	while (1) {
1579 		handle = find_alloced_obj(class, s_page, &obj_idx);
1580 		if (!handle) {
1581 			s_page = get_next_page(s_page);
1582 			if (!s_page)
1583 				break;
1584 			obj_idx = 0;
1585 			continue;
1586 		}
1587 
1588 		used_obj = handle_to_obj(handle);
1589 		free_obj = obj_malloc(pool, dst_zspage, handle);
1590 		zs_object_copy(class, free_obj, used_obj);
1591 		obj_idx++;
1592 		obj_free(class->size, used_obj);
1593 
1594 		/* Stop if there is no more space */
1595 		if (zspage_full(class, dst_zspage))
1596 			break;
1597 
1598 		/* Stop if there are no more objects to migrate */
1599 		if (zspage_empty(src_zspage))
1600 			break;
1601 	}
1602 }
1603 
1604 static struct zspage *isolate_src_zspage(struct size_class *class)
1605 {
1606 	struct zspage *zspage;
1607 	int fg;
1608 
1609 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1610 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1611 						  struct zspage, list);
1612 		if (zspage) {
1613 			remove_zspage(class, zspage);
1614 			return zspage;
1615 		}
1616 	}
1617 
1618 	return zspage;
1619 }
1620 
1621 static struct zspage *isolate_dst_zspage(struct size_class *class)
1622 {
1623 	struct zspage *zspage;
1624 	int fg;
1625 
1626 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1627 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1628 						  struct zspage, list);
1629 		if (zspage) {
1630 			remove_zspage(class, zspage);
1631 			return zspage;
1632 		}
1633 	}
1634 
1635 	return zspage;
1636 }
1637 
1638 /*
1639  * putback_zspage - add @zspage into right class's fullness list
1640  * @class: destination class
1641  * @zspage: target page
1642  *
1643  * Return @zspage's fullness status
1644  */
1645 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1646 {
1647 	int fullness;
1648 
1649 	fullness = get_fullness_group(class, zspage);
1650 	insert_zspage(class, zspage, fullness);
1651 
1652 	return fullness;
1653 }
1654 
1655 #ifdef CONFIG_COMPACTION
1656 /*
1657  * To prevent zspage destroy during migration, zspage freeing should
1658  * hold locks of all pages in the zspage.
1659  */
1660 static void lock_zspage(struct zspage *zspage)
1661 {
1662 	struct page *curr_page, *page;
1663 
1664 	/*
1665 	 * Pages we haven't locked yet can be migrated off the list while we're
1666 	 * trying to lock them, so we need to be careful and only attempt to
1667 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1668 	 * may no longer belong to the zspage. This means that we may wait for
1669 	 * the wrong page to unlock, so we must take a reference to the page
1670 	 * prior to waiting for it to unlock outside migrate_read_lock().
1671 	 */
1672 	while (1) {
1673 		migrate_read_lock(zspage);
1674 		page = get_first_page(zspage);
1675 		if (trylock_page(page))
1676 			break;
1677 		get_page(page);
1678 		migrate_read_unlock(zspage);
1679 		wait_on_page_locked(page);
1680 		put_page(page);
1681 	}
1682 
1683 	curr_page = page;
1684 	while ((page = get_next_page(curr_page))) {
1685 		if (trylock_page(page)) {
1686 			curr_page = page;
1687 		} else {
1688 			get_page(page);
1689 			migrate_read_unlock(zspage);
1690 			wait_on_page_locked(page);
1691 			put_page(page);
1692 			migrate_read_lock(zspage);
1693 		}
1694 	}
1695 	migrate_read_unlock(zspage);
1696 }
1697 #endif /* CONFIG_COMPACTION */
1698 
1699 static void migrate_lock_init(struct zspage *zspage)
1700 {
1701 	rwlock_init(&zspage->lock);
1702 }
1703 
1704 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1705 {
1706 	read_lock(&zspage->lock);
1707 }
1708 
1709 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1710 {
1711 	read_unlock(&zspage->lock);
1712 }
1713 
1714 static void migrate_write_lock(struct zspage *zspage)
1715 {
1716 	write_lock(&zspage->lock);
1717 }
1718 
1719 static void migrate_write_unlock(struct zspage *zspage)
1720 {
1721 	write_unlock(&zspage->lock);
1722 }
1723 
1724 #ifdef CONFIG_COMPACTION
1725 
1726 static const struct movable_operations zsmalloc_mops;
1727 
1728 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1729 				struct page *newpage, struct page *oldpage)
1730 {
1731 	struct page *page;
1732 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1733 	int idx = 0;
1734 
1735 	page = get_first_page(zspage);
1736 	do {
1737 		if (page == oldpage)
1738 			pages[idx] = newpage;
1739 		else
1740 			pages[idx] = page;
1741 		idx++;
1742 	} while ((page = get_next_page(page)) != NULL);
1743 
1744 	create_page_chain(class, zspage, pages);
1745 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1746 	if (unlikely(ZsHugePage(zspage)))
1747 		newpage->index = oldpage->index;
1748 	__SetPageMovable(newpage, &zsmalloc_mops);
1749 }
1750 
1751 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1752 {
1753 	/*
1754 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1755 	 * lock_zspage in free_zspage.
1756 	 */
1757 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1758 
1759 	return true;
1760 }
1761 
1762 static int zs_page_migrate(struct page *newpage, struct page *page,
1763 		enum migrate_mode mode)
1764 {
1765 	struct zs_pool *pool;
1766 	struct size_class *class;
1767 	struct zspage *zspage;
1768 	struct page *dummy;
1769 	void *s_addr, *d_addr, *addr;
1770 	unsigned int offset;
1771 	unsigned long handle;
1772 	unsigned long old_obj, new_obj;
1773 	unsigned int obj_idx;
1774 
1775 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1776 
1777 	/* We're committed, tell the world that this is a Zsmalloc page. */
1778 	__SetPageZsmalloc(newpage);
1779 
1780 	/* The page is locked, so this pointer must remain valid */
1781 	zspage = get_zspage(page);
1782 	pool = zspage->pool;
1783 
1784 	/*
1785 	 * The pool migrate_lock protects the race between zpage migration
1786 	 * and zs_free.
1787 	 */
1788 	write_lock(&pool->migrate_lock);
1789 	class = zspage_class(pool, zspage);
1790 
1791 	/*
1792 	 * the class lock protects zpage alloc/free in the zspage.
1793 	 */
1794 	spin_lock(&class->lock);
1795 	/* the migrate_write_lock protects zpage access via zs_map_object */
1796 	migrate_write_lock(zspage);
1797 
1798 	offset = get_first_obj_offset(page);
1799 	s_addr = kmap_atomic(page);
1800 
1801 	/*
1802 	 * Here, any user cannot access all objects in the zspage so let's move.
1803 	 */
1804 	d_addr = kmap_atomic(newpage);
1805 	copy_page(d_addr, s_addr);
1806 	kunmap_atomic(d_addr);
1807 
1808 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1809 					addr += class->size) {
1810 		if (obj_allocated(page, addr, &handle)) {
1811 
1812 			old_obj = handle_to_obj(handle);
1813 			obj_to_location(old_obj, &dummy, &obj_idx);
1814 			new_obj = (unsigned long)location_to_obj(newpage,
1815 								obj_idx);
1816 			record_obj(handle, new_obj);
1817 		}
1818 	}
1819 	kunmap_atomic(s_addr);
1820 
1821 	replace_sub_page(class, zspage, newpage, page);
1822 	/*
1823 	 * Since we complete the data copy and set up new zspage structure,
1824 	 * it's okay to release migration_lock.
1825 	 */
1826 	write_unlock(&pool->migrate_lock);
1827 	spin_unlock(&class->lock);
1828 	migrate_write_unlock(zspage);
1829 
1830 	get_page(newpage);
1831 	if (page_zone(newpage) != page_zone(page)) {
1832 		dec_zone_page_state(page, NR_ZSPAGES);
1833 		inc_zone_page_state(newpage, NR_ZSPAGES);
1834 	}
1835 
1836 	reset_page(page);
1837 	put_page(page);
1838 
1839 	return MIGRATEPAGE_SUCCESS;
1840 }
1841 
1842 static void zs_page_putback(struct page *page)
1843 {
1844 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1845 }
1846 
1847 static const struct movable_operations zsmalloc_mops = {
1848 	.isolate_page = zs_page_isolate,
1849 	.migrate_page = zs_page_migrate,
1850 	.putback_page = zs_page_putback,
1851 };
1852 
1853 /*
1854  * Caller should hold page_lock of all pages in the zspage
1855  * In here, we cannot use zspage meta data.
1856  */
1857 static void async_free_zspage(struct work_struct *work)
1858 {
1859 	int i;
1860 	struct size_class *class;
1861 	struct zspage *zspage, *tmp;
1862 	LIST_HEAD(free_pages);
1863 	struct zs_pool *pool = container_of(work, struct zs_pool,
1864 					free_work);
1865 
1866 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1867 		class = pool->size_class[i];
1868 		if (class->index != i)
1869 			continue;
1870 
1871 		spin_lock(&class->lock);
1872 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1873 				 &free_pages);
1874 		spin_unlock(&class->lock);
1875 	}
1876 
1877 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1878 		list_del(&zspage->list);
1879 		lock_zspage(zspage);
1880 
1881 		class = zspage_class(pool, zspage);
1882 		spin_lock(&class->lock);
1883 		class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1884 		__free_zspage(pool, class, zspage);
1885 		spin_unlock(&class->lock);
1886 	}
1887 };
1888 
1889 static void kick_deferred_free(struct zs_pool *pool)
1890 {
1891 	schedule_work(&pool->free_work);
1892 }
1893 
1894 static void zs_flush_migration(struct zs_pool *pool)
1895 {
1896 	flush_work(&pool->free_work);
1897 }
1898 
1899 static void init_deferred_free(struct zs_pool *pool)
1900 {
1901 	INIT_WORK(&pool->free_work, async_free_zspage);
1902 }
1903 
1904 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1905 {
1906 	struct page *page = get_first_page(zspage);
1907 
1908 	do {
1909 		WARN_ON(!trylock_page(page));
1910 		__SetPageMovable(page, &zsmalloc_mops);
1911 		unlock_page(page);
1912 	} while ((page = get_next_page(page)) != NULL);
1913 }
1914 #else
1915 static inline void zs_flush_migration(struct zs_pool *pool) { }
1916 #endif
1917 
1918 /*
1919  *
1920  * Based on the number of unused allocated objects calculate
1921  * and return the number of pages that we can free.
1922  */
1923 static unsigned long zs_can_compact(struct size_class *class)
1924 {
1925 	unsigned long obj_wasted;
1926 	unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1927 	unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1928 
1929 	if (obj_allocated <= obj_used)
1930 		return 0;
1931 
1932 	obj_wasted = obj_allocated - obj_used;
1933 	obj_wasted /= class->objs_per_zspage;
1934 
1935 	return obj_wasted * class->pages_per_zspage;
1936 }
1937 
1938 static unsigned long __zs_compact(struct zs_pool *pool,
1939 				  struct size_class *class)
1940 {
1941 	struct zspage *src_zspage = NULL;
1942 	struct zspage *dst_zspage = NULL;
1943 	unsigned long pages_freed = 0;
1944 
1945 	/*
1946 	 * protect the race between zpage migration and zs_free
1947 	 * as well as zpage allocation/free
1948 	 */
1949 	write_lock(&pool->migrate_lock);
1950 	spin_lock(&class->lock);
1951 	while (zs_can_compact(class)) {
1952 		int fg;
1953 
1954 		if (!dst_zspage) {
1955 			dst_zspage = isolate_dst_zspage(class);
1956 			if (!dst_zspage)
1957 				break;
1958 		}
1959 
1960 		src_zspage = isolate_src_zspage(class);
1961 		if (!src_zspage)
1962 			break;
1963 
1964 		migrate_write_lock(src_zspage);
1965 		migrate_zspage(pool, src_zspage, dst_zspage);
1966 		migrate_write_unlock(src_zspage);
1967 
1968 		fg = putback_zspage(class, src_zspage);
1969 		if (fg == ZS_INUSE_RATIO_0) {
1970 			free_zspage(pool, class, src_zspage);
1971 			pages_freed += class->pages_per_zspage;
1972 		}
1973 		src_zspage = NULL;
1974 
1975 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1976 		    || rwlock_is_contended(&pool->migrate_lock)) {
1977 			putback_zspage(class, dst_zspage);
1978 			dst_zspage = NULL;
1979 
1980 			spin_unlock(&class->lock);
1981 			write_unlock(&pool->migrate_lock);
1982 			cond_resched();
1983 			write_lock(&pool->migrate_lock);
1984 			spin_lock(&class->lock);
1985 		}
1986 	}
1987 
1988 	if (src_zspage)
1989 		putback_zspage(class, src_zspage);
1990 
1991 	if (dst_zspage)
1992 		putback_zspage(class, dst_zspage);
1993 
1994 	spin_unlock(&class->lock);
1995 	write_unlock(&pool->migrate_lock);
1996 
1997 	return pages_freed;
1998 }
1999 
2000 unsigned long zs_compact(struct zs_pool *pool)
2001 {
2002 	int i;
2003 	struct size_class *class;
2004 	unsigned long pages_freed = 0;
2005 
2006 	/*
2007 	 * Pool compaction is performed under pool->migrate_lock so it is basically
2008 	 * single-threaded. Having more than one thread in __zs_compact()
2009 	 * will increase pool->migrate_lock contention, which will impact other
2010 	 * zsmalloc operations that need pool->migrate_lock.
2011 	 */
2012 	if (atomic_xchg(&pool->compaction_in_progress, 1))
2013 		return 0;
2014 
2015 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2016 		class = pool->size_class[i];
2017 		if (class->index != i)
2018 			continue;
2019 		pages_freed += __zs_compact(pool, class);
2020 	}
2021 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2022 	atomic_set(&pool->compaction_in_progress, 0);
2023 
2024 	return pages_freed;
2025 }
2026 EXPORT_SYMBOL_GPL(zs_compact);
2027 
2028 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2029 {
2030 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2031 }
2032 EXPORT_SYMBOL_GPL(zs_pool_stats);
2033 
2034 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2035 		struct shrink_control *sc)
2036 {
2037 	unsigned long pages_freed;
2038 	struct zs_pool *pool = shrinker->private_data;
2039 
2040 	/*
2041 	 * Compact classes and calculate compaction delta.
2042 	 * Can run concurrently with a manually triggered
2043 	 * (by user) compaction.
2044 	 */
2045 	pages_freed = zs_compact(pool);
2046 
2047 	return pages_freed ? pages_freed : SHRINK_STOP;
2048 }
2049 
2050 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2051 		struct shrink_control *sc)
2052 {
2053 	int i;
2054 	struct size_class *class;
2055 	unsigned long pages_to_free = 0;
2056 	struct zs_pool *pool = shrinker->private_data;
2057 
2058 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2059 		class = pool->size_class[i];
2060 		if (class->index != i)
2061 			continue;
2062 
2063 		pages_to_free += zs_can_compact(class);
2064 	}
2065 
2066 	return pages_to_free;
2067 }
2068 
2069 static void zs_unregister_shrinker(struct zs_pool *pool)
2070 {
2071 	shrinker_free(pool->shrinker);
2072 }
2073 
2074 static int zs_register_shrinker(struct zs_pool *pool)
2075 {
2076 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2077 	if (!pool->shrinker)
2078 		return -ENOMEM;
2079 
2080 	pool->shrinker->scan_objects = zs_shrinker_scan;
2081 	pool->shrinker->count_objects = zs_shrinker_count;
2082 	pool->shrinker->batch = 0;
2083 	pool->shrinker->private_data = pool;
2084 
2085 	shrinker_register(pool->shrinker);
2086 
2087 	return 0;
2088 }
2089 
2090 static int calculate_zspage_chain_size(int class_size)
2091 {
2092 	int i, min_waste = INT_MAX;
2093 	int chain_size = 1;
2094 
2095 	if (is_power_of_2(class_size))
2096 		return chain_size;
2097 
2098 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2099 		int waste;
2100 
2101 		waste = (i * PAGE_SIZE) % class_size;
2102 		if (waste < min_waste) {
2103 			min_waste = waste;
2104 			chain_size = i;
2105 		}
2106 	}
2107 
2108 	return chain_size;
2109 }
2110 
2111 /**
2112  * zs_create_pool - Creates an allocation pool to work from.
2113  * @name: pool name to be created
2114  *
2115  * This function must be called before anything when using
2116  * the zsmalloc allocator.
2117  *
2118  * On success, a pointer to the newly created pool is returned,
2119  * otherwise NULL.
2120  */
2121 struct zs_pool *zs_create_pool(const char *name)
2122 {
2123 	int i;
2124 	struct zs_pool *pool;
2125 	struct size_class *prev_class = NULL;
2126 
2127 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2128 	if (!pool)
2129 		return NULL;
2130 
2131 	init_deferred_free(pool);
2132 	rwlock_init(&pool->migrate_lock);
2133 	atomic_set(&pool->compaction_in_progress, 0);
2134 
2135 	pool->name = kstrdup(name, GFP_KERNEL);
2136 	if (!pool->name)
2137 		goto err;
2138 
2139 	if (create_cache(pool))
2140 		goto err;
2141 
2142 	/*
2143 	 * Iterate reversely, because, size of size_class that we want to use
2144 	 * for merging should be larger or equal to current size.
2145 	 */
2146 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2147 		int size;
2148 		int pages_per_zspage;
2149 		int objs_per_zspage;
2150 		struct size_class *class;
2151 		int fullness;
2152 
2153 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2154 		if (size > ZS_MAX_ALLOC_SIZE)
2155 			size = ZS_MAX_ALLOC_SIZE;
2156 		pages_per_zspage = calculate_zspage_chain_size(size);
2157 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2158 
2159 		/*
2160 		 * We iterate from biggest down to smallest classes,
2161 		 * so huge_class_size holds the size of the first huge
2162 		 * class. Any object bigger than or equal to that will
2163 		 * endup in the huge class.
2164 		 */
2165 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2166 				!huge_class_size) {
2167 			huge_class_size = size;
2168 			/*
2169 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2170 			 * handle. We need to subtract it, because zs_malloc()
2171 			 * unconditionally adds handle size before it performs
2172 			 * size class search - so object may be smaller than
2173 			 * huge class size, yet it still can end up in the huge
2174 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2175 			 * right before class lookup.
2176 			 */
2177 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2178 		}
2179 
2180 		/*
2181 		 * size_class is used for normal zsmalloc operation such
2182 		 * as alloc/free for that size. Although it is natural that we
2183 		 * have one size_class for each size, there is a chance that we
2184 		 * can get more memory utilization if we use one size_class for
2185 		 * many different sizes whose size_class have same
2186 		 * characteristics. So, we makes size_class point to
2187 		 * previous size_class if possible.
2188 		 */
2189 		if (prev_class) {
2190 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2191 				pool->size_class[i] = prev_class;
2192 				continue;
2193 			}
2194 		}
2195 
2196 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2197 		if (!class)
2198 			goto err;
2199 
2200 		class->size = size;
2201 		class->index = i;
2202 		class->pages_per_zspage = pages_per_zspage;
2203 		class->objs_per_zspage = objs_per_zspage;
2204 		spin_lock_init(&class->lock);
2205 		pool->size_class[i] = class;
2206 
2207 		fullness = ZS_INUSE_RATIO_0;
2208 		while (fullness < NR_FULLNESS_GROUPS) {
2209 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2210 			fullness++;
2211 		}
2212 
2213 		prev_class = class;
2214 	}
2215 
2216 	/* debug only, don't abort if it fails */
2217 	zs_pool_stat_create(pool, name);
2218 
2219 	/*
2220 	 * Not critical since shrinker is only used to trigger internal
2221 	 * defragmentation of the pool which is pretty optional thing.  If
2222 	 * registration fails we still can use the pool normally and user can
2223 	 * trigger compaction manually. Thus, ignore return code.
2224 	 */
2225 	zs_register_shrinker(pool);
2226 
2227 	return pool;
2228 
2229 err:
2230 	zs_destroy_pool(pool);
2231 	return NULL;
2232 }
2233 EXPORT_SYMBOL_GPL(zs_create_pool);
2234 
2235 void zs_destroy_pool(struct zs_pool *pool)
2236 {
2237 	int i;
2238 
2239 	zs_unregister_shrinker(pool);
2240 	zs_flush_migration(pool);
2241 	zs_pool_stat_destroy(pool);
2242 
2243 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2244 		int fg;
2245 		struct size_class *class = pool->size_class[i];
2246 
2247 		if (!class)
2248 			continue;
2249 
2250 		if (class->index != i)
2251 			continue;
2252 
2253 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2254 			if (list_empty(&class->fullness_list[fg]))
2255 				continue;
2256 
2257 			pr_err("Class-%d fullness group %d is not empty\n",
2258 			       class->size, fg);
2259 		}
2260 		kfree(class);
2261 	}
2262 
2263 	destroy_cache(pool);
2264 	kfree(pool->name);
2265 	kfree(pool);
2266 }
2267 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2268 
2269 static int __init zs_init(void)
2270 {
2271 	int ret;
2272 
2273 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2274 				zs_cpu_prepare, zs_cpu_dead);
2275 	if (ret)
2276 		goto out;
2277 
2278 #ifdef CONFIG_ZPOOL
2279 	zpool_register_driver(&zs_zpool_driver);
2280 #endif
2281 
2282 	zs_stat_init();
2283 
2284 	return 0;
2285 
2286 out:
2287 	return ret;
2288 }
2289 
2290 static void __exit zs_exit(void)
2291 {
2292 #ifdef CONFIG_ZPOOL
2293 	zpool_unregister_driver(&zs_zpool_driver);
2294 #endif
2295 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2296 
2297 	zs_stat_exit();
2298 }
2299 
2300 module_init(zs_init);
2301 module_exit(zs_exit);
2302 
2303 MODULE_LICENSE("Dual BSD/GPL");
2304 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2305 MODULE_DESCRIPTION("zsmalloc memory allocator");
2306