xref: /linux/mm/zsmalloc.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->first_page: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private (union with page->first_page): refers to the
30  *		component page after the first page
31  *		If the page is first_page for huge object, it stores handle.
32  *		Look at size_class->huge.
33  *	page->freelist: points to the first free object in zspage.
34  *		Free objects are linked together using in-place
35  *		metadata.
36  *	page->objects: maximum number of objects we can store in this
37  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
38  *	page->lru: links together first pages of various zspages.
39  *		Basically forming list of zspages in a fullness group.
40  *	page->mapping: class index and fullness group of the zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #ifdef CONFIG_ZSMALLOC_DEBUG
49 #define DEBUG
50 #endif
51 
52 #include <linux/module.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
55 #include <linux/bitops.h>
56 #include <linux/errno.h>
57 #include <linux/highmem.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <asm/tlbflush.h>
61 #include <asm/pgtable.h>
62 #include <linux/cpumask.h>
63 #include <linux/cpu.h>
64 #include <linux/vmalloc.h>
65 #include <linux/hardirq.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/debugfs.h>
69 #include <linux/zsmalloc.h>
70 #include <linux/zpool.h>
71 
72 /*
73  * This must be power of 2 and greater than of equal to sizeof(link_free).
74  * These two conditions ensure that any 'struct link_free' itself doesn't
75  * span more than 1 page which avoids complex case of mapping 2 pages simply
76  * to restore link_free pointer values.
77  */
78 #define ZS_ALIGN		8
79 
80 /*
81  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
83  */
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86 
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
88 
89 /*
90  * Object location (<PFN>, <obj_idx>) is encoded as
91  * as single (unsigned long) handle value.
92  *
93  * Note that object index <obj_idx> is relative to system
94  * page <PFN> it is stored in, so for each sub-page belonging
95  * to a zspage, obj_idx starts with 0.
96  *
97  * This is made more complicated by various memory models and PAE.
98  */
99 
100 #ifndef MAX_PHYSMEM_BITS
101 #ifdef CONFIG_HIGHMEM64G
102 #define MAX_PHYSMEM_BITS 36
103 #else /* !CONFIG_HIGHMEM64G */
104 /*
105  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
106  * be PAGE_SHIFT
107  */
108 #define MAX_PHYSMEM_BITS BITS_PER_LONG
109 #endif
110 #endif
111 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
112 
113 /*
114  * Memory for allocating for handle keeps object position by
115  * encoding <page, obj_idx> and the encoded value has a room
116  * in least bit(ie, look at obj_to_location).
117  * We use the bit to synchronize between object access by
118  * user and migration.
119  */
120 #define HANDLE_PIN_BIT	0
121 
122 /*
123  * Head in allocated object should have OBJ_ALLOCATED_TAG
124  * to identify the object was allocated or not.
125  * It's okay to add the status bit in the least bit because
126  * header keeps handle which is 4byte-aligned address so we
127  * have room for two bit at least.
128  */
129 #define OBJ_ALLOCATED_TAG 1
130 #define OBJ_TAG_BITS 1
131 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
132 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
133 
134 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
135 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
136 #define ZS_MIN_ALLOC_SIZE \
137 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
138 /* each chunk includes extra space to keep handle */
139 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
140 
141 /*
142  * On systems with 4K page size, this gives 255 size classes! There is a
143  * trader-off here:
144  *  - Large number of size classes is potentially wasteful as free page are
145  *    spread across these classes
146  *  - Small number of size classes causes large internal fragmentation
147  *  - Probably its better to use specific size classes (empirically
148  *    determined). NOTE: all those class sizes must be set as multiple of
149  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
150  *
151  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
152  *  (reason above)
153  */
154 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
155 
156 /*
157  * We do not maintain any list for completely empty or full pages
158  */
159 enum fullness_group {
160 	ZS_ALMOST_FULL,
161 	ZS_ALMOST_EMPTY,
162 	_ZS_NR_FULLNESS_GROUPS,
163 
164 	ZS_EMPTY,
165 	ZS_FULL
166 };
167 
168 enum zs_stat_type {
169 	OBJ_ALLOCATED,
170 	OBJ_USED,
171 	CLASS_ALMOST_FULL,
172 	CLASS_ALMOST_EMPTY,
173 	NR_ZS_STAT_TYPE,
174 };
175 
176 #ifdef CONFIG_ZSMALLOC_STAT
177 
178 static struct dentry *zs_stat_root;
179 
180 struct zs_size_stat {
181 	unsigned long objs[NR_ZS_STAT_TYPE];
182 };
183 
184 #endif
185 
186 /*
187  * number of size_classes
188  */
189 static int zs_size_classes;
190 
191 /*
192  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
193  *	n <= N / f, where
194  * n = number of allocated objects
195  * N = total number of objects zspage can store
196  * f = fullness_threshold_frac
197  *
198  * Similarly, we assign zspage to:
199  *	ZS_ALMOST_FULL	when n > N / f
200  *	ZS_EMPTY	when n == 0
201  *	ZS_FULL		when n == N
202  *
203  * (see: fix_fullness_group())
204  */
205 static const int fullness_threshold_frac = 4;
206 
207 struct size_class {
208 	/*
209 	 * Size of objects stored in this class. Must be multiple
210 	 * of ZS_ALIGN.
211 	 */
212 	int size;
213 	unsigned int index;
214 
215 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
216 	int pages_per_zspage;
217 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
218 	bool huge;
219 
220 #ifdef CONFIG_ZSMALLOC_STAT
221 	struct zs_size_stat stats;
222 #endif
223 
224 	spinlock_t lock;
225 
226 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
227 };
228 
229 /*
230  * Placed within free objects to form a singly linked list.
231  * For every zspage, first_page->freelist gives head of this list.
232  *
233  * This must be power of 2 and less than or equal to ZS_ALIGN
234  */
235 struct link_free {
236 	union {
237 		/*
238 		 * Position of next free chunk (encodes <PFN, obj_idx>)
239 		 * It's valid for non-allocated object
240 		 */
241 		void *next;
242 		/*
243 		 * Handle of allocated object.
244 		 */
245 		unsigned long handle;
246 	};
247 };
248 
249 struct zs_pool {
250 	char *name;
251 
252 	struct size_class **size_class;
253 	struct kmem_cache *handle_cachep;
254 
255 	gfp_t flags;	/* allocation flags used when growing pool */
256 	atomic_long_t pages_allocated;
257 
258 #ifdef CONFIG_ZSMALLOC_STAT
259 	struct dentry *stat_dentry;
260 #endif
261 };
262 
263 /*
264  * A zspage's class index and fullness group
265  * are encoded in its (first)page->mapping
266  */
267 #define CLASS_IDX_BITS	28
268 #define FULLNESS_BITS	4
269 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
270 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
271 
272 struct mapping_area {
273 #ifdef CONFIG_PGTABLE_MAPPING
274 	struct vm_struct *vm; /* vm area for mapping object that span pages */
275 #else
276 	char *vm_buf; /* copy buffer for objects that span pages */
277 #endif
278 	char *vm_addr; /* address of kmap_atomic()'ed pages */
279 	enum zs_mapmode vm_mm; /* mapping mode */
280 	bool huge;
281 };
282 
283 static int create_handle_cache(struct zs_pool *pool)
284 {
285 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
286 					0, 0, NULL);
287 	return pool->handle_cachep ? 0 : 1;
288 }
289 
290 static void destroy_handle_cache(struct zs_pool *pool)
291 {
292 	if (pool->handle_cachep)
293 		kmem_cache_destroy(pool->handle_cachep);
294 }
295 
296 static unsigned long alloc_handle(struct zs_pool *pool)
297 {
298 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
299 		pool->flags & ~__GFP_HIGHMEM);
300 }
301 
302 static void free_handle(struct zs_pool *pool, unsigned long handle)
303 {
304 	kmem_cache_free(pool->handle_cachep, (void *)handle);
305 }
306 
307 static void record_obj(unsigned long handle, unsigned long obj)
308 {
309 	*(unsigned long *)handle = obj;
310 }
311 
312 /* zpool driver */
313 
314 #ifdef CONFIG_ZPOOL
315 
316 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
317 {
318 	return zs_create_pool(name, gfp);
319 }
320 
321 static void zs_zpool_destroy(void *pool)
322 {
323 	zs_destroy_pool(pool);
324 }
325 
326 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
327 			unsigned long *handle)
328 {
329 	*handle = zs_malloc(pool, size);
330 	return *handle ? 0 : -1;
331 }
332 static void zs_zpool_free(void *pool, unsigned long handle)
333 {
334 	zs_free(pool, handle);
335 }
336 
337 static int zs_zpool_shrink(void *pool, unsigned int pages,
338 			unsigned int *reclaimed)
339 {
340 	return -EINVAL;
341 }
342 
343 static void *zs_zpool_map(void *pool, unsigned long handle,
344 			enum zpool_mapmode mm)
345 {
346 	enum zs_mapmode zs_mm;
347 
348 	switch (mm) {
349 	case ZPOOL_MM_RO:
350 		zs_mm = ZS_MM_RO;
351 		break;
352 	case ZPOOL_MM_WO:
353 		zs_mm = ZS_MM_WO;
354 		break;
355 	case ZPOOL_MM_RW: /* fallthru */
356 	default:
357 		zs_mm = ZS_MM_RW;
358 		break;
359 	}
360 
361 	return zs_map_object(pool, handle, zs_mm);
362 }
363 static void zs_zpool_unmap(void *pool, unsigned long handle)
364 {
365 	zs_unmap_object(pool, handle);
366 }
367 
368 static u64 zs_zpool_total_size(void *pool)
369 {
370 	return zs_get_total_pages(pool) << PAGE_SHIFT;
371 }
372 
373 static struct zpool_driver zs_zpool_driver = {
374 	.type =		"zsmalloc",
375 	.owner =	THIS_MODULE,
376 	.create =	zs_zpool_create,
377 	.destroy =	zs_zpool_destroy,
378 	.malloc =	zs_zpool_malloc,
379 	.free =		zs_zpool_free,
380 	.shrink =	zs_zpool_shrink,
381 	.map =		zs_zpool_map,
382 	.unmap =	zs_zpool_unmap,
383 	.total_size =	zs_zpool_total_size,
384 };
385 
386 MODULE_ALIAS("zpool-zsmalloc");
387 #endif /* CONFIG_ZPOOL */
388 
389 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
390 {
391 	return pages_per_zspage * PAGE_SIZE / size;
392 }
393 
394 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
395 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
396 
397 static int is_first_page(struct page *page)
398 {
399 	return PagePrivate(page);
400 }
401 
402 static int is_last_page(struct page *page)
403 {
404 	return PagePrivate2(page);
405 }
406 
407 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
408 				enum fullness_group *fullness)
409 {
410 	unsigned long m;
411 	BUG_ON(!is_first_page(page));
412 
413 	m = (unsigned long)page->mapping;
414 	*fullness = m & FULLNESS_MASK;
415 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
416 }
417 
418 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
419 				enum fullness_group fullness)
420 {
421 	unsigned long m;
422 	BUG_ON(!is_first_page(page));
423 
424 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
425 			(fullness & FULLNESS_MASK);
426 	page->mapping = (struct address_space *)m;
427 }
428 
429 /*
430  * zsmalloc divides the pool into various size classes where each
431  * class maintains a list of zspages where each zspage is divided
432  * into equal sized chunks. Each allocation falls into one of these
433  * classes depending on its size. This function returns index of the
434  * size class which has chunk size big enough to hold the give size.
435  */
436 static int get_size_class_index(int size)
437 {
438 	int idx = 0;
439 
440 	if (likely(size > ZS_MIN_ALLOC_SIZE))
441 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
442 				ZS_SIZE_CLASS_DELTA);
443 
444 	return min(zs_size_classes - 1, idx);
445 }
446 
447 #ifdef CONFIG_ZSMALLOC_STAT
448 
449 static inline void zs_stat_inc(struct size_class *class,
450 				enum zs_stat_type type, unsigned long cnt)
451 {
452 	class->stats.objs[type] += cnt;
453 }
454 
455 static inline void zs_stat_dec(struct size_class *class,
456 				enum zs_stat_type type, unsigned long cnt)
457 {
458 	class->stats.objs[type] -= cnt;
459 }
460 
461 static inline unsigned long zs_stat_get(struct size_class *class,
462 				enum zs_stat_type type)
463 {
464 	return class->stats.objs[type];
465 }
466 
467 static int __init zs_stat_init(void)
468 {
469 	if (!debugfs_initialized())
470 		return -ENODEV;
471 
472 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
473 	if (!zs_stat_root)
474 		return -ENOMEM;
475 
476 	return 0;
477 }
478 
479 static void __exit zs_stat_exit(void)
480 {
481 	debugfs_remove_recursive(zs_stat_root);
482 }
483 
484 static int zs_stats_size_show(struct seq_file *s, void *v)
485 {
486 	int i;
487 	struct zs_pool *pool = s->private;
488 	struct size_class *class;
489 	int objs_per_zspage;
490 	unsigned long class_almost_full, class_almost_empty;
491 	unsigned long obj_allocated, obj_used, pages_used;
492 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
493 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
494 
495 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
496 			"class", "size", "almost_full", "almost_empty",
497 			"obj_allocated", "obj_used", "pages_used",
498 			"pages_per_zspage");
499 
500 	for (i = 0; i < zs_size_classes; i++) {
501 		class = pool->size_class[i];
502 
503 		if (class->index != i)
504 			continue;
505 
506 		spin_lock(&class->lock);
507 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
508 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
509 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
510 		obj_used = zs_stat_get(class, OBJ_USED);
511 		spin_unlock(&class->lock);
512 
513 		objs_per_zspage = get_maxobj_per_zspage(class->size,
514 				class->pages_per_zspage);
515 		pages_used = obj_allocated / objs_per_zspage *
516 				class->pages_per_zspage;
517 
518 		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
519 			i, class->size, class_almost_full, class_almost_empty,
520 			obj_allocated, obj_used, pages_used,
521 			class->pages_per_zspage);
522 
523 		total_class_almost_full += class_almost_full;
524 		total_class_almost_empty += class_almost_empty;
525 		total_objs += obj_allocated;
526 		total_used_objs += obj_used;
527 		total_pages += pages_used;
528 	}
529 
530 	seq_puts(s, "\n");
531 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
532 			"Total", "", total_class_almost_full,
533 			total_class_almost_empty, total_objs,
534 			total_used_objs, total_pages);
535 
536 	return 0;
537 }
538 
539 static int zs_stats_size_open(struct inode *inode, struct file *file)
540 {
541 	return single_open(file, zs_stats_size_show, inode->i_private);
542 }
543 
544 static const struct file_operations zs_stat_size_ops = {
545 	.open           = zs_stats_size_open,
546 	.read           = seq_read,
547 	.llseek         = seq_lseek,
548 	.release        = single_release,
549 };
550 
551 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
552 {
553 	struct dentry *entry;
554 
555 	if (!zs_stat_root)
556 		return -ENODEV;
557 
558 	entry = debugfs_create_dir(name, zs_stat_root);
559 	if (!entry) {
560 		pr_warn("debugfs dir <%s> creation failed\n", name);
561 		return -ENOMEM;
562 	}
563 	pool->stat_dentry = entry;
564 
565 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
566 			pool->stat_dentry, pool, &zs_stat_size_ops);
567 	if (!entry) {
568 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
569 				name, "classes");
570 		return -ENOMEM;
571 	}
572 
573 	return 0;
574 }
575 
576 static void zs_pool_stat_destroy(struct zs_pool *pool)
577 {
578 	debugfs_remove_recursive(pool->stat_dentry);
579 }
580 
581 #else /* CONFIG_ZSMALLOC_STAT */
582 
583 static inline void zs_stat_inc(struct size_class *class,
584 				enum zs_stat_type type, unsigned long cnt)
585 {
586 }
587 
588 static inline void zs_stat_dec(struct size_class *class,
589 				enum zs_stat_type type, unsigned long cnt)
590 {
591 }
592 
593 static inline unsigned long zs_stat_get(struct size_class *class,
594 				enum zs_stat_type type)
595 {
596 	return 0;
597 }
598 
599 static int __init zs_stat_init(void)
600 {
601 	return 0;
602 }
603 
604 static void __exit zs_stat_exit(void)
605 {
606 }
607 
608 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
609 {
610 	return 0;
611 }
612 
613 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
614 {
615 }
616 
617 #endif
618 
619 
620 /*
621  * For each size class, zspages are divided into different groups
622  * depending on how "full" they are. This was done so that we could
623  * easily find empty or nearly empty zspages when we try to shrink
624  * the pool (not yet implemented). This function returns fullness
625  * status of the given page.
626  */
627 static enum fullness_group get_fullness_group(struct page *page)
628 {
629 	int inuse, max_objects;
630 	enum fullness_group fg;
631 	BUG_ON(!is_first_page(page));
632 
633 	inuse = page->inuse;
634 	max_objects = page->objects;
635 
636 	if (inuse == 0)
637 		fg = ZS_EMPTY;
638 	else if (inuse == max_objects)
639 		fg = ZS_FULL;
640 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
641 		fg = ZS_ALMOST_EMPTY;
642 	else
643 		fg = ZS_ALMOST_FULL;
644 
645 	return fg;
646 }
647 
648 /*
649  * Each size class maintains various freelists and zspages are assigned
650  * to one of these freelists based on the number of live objects they
651  * have. This functions inserts the given zspage into the freelist
652  * identified by <class, fullness_group>.
653  */
654 static void insert_zspage(struct page *page, struct size_class *class,
655 				enum fullness_group fullness)
656 {
657 	struct page **head;
658 
659 	BUG_ON(!is_first_page(page));
660 
661 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
662 		return;
663 
664 	head = &class->fullness_list[fullness];
665 	if (*head)
666 		list_add_tail(&page->lru, &(*head)->lru);
667 
668 	*head = page;
669 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
670 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
671 }
672 
673 /*
674  * This function removes the given zspage from the freelist identified
675  * by <class, fullness_group>.
676  */
677 static void remove_zspage(struct page *page, struct size_class *class,
678 				enum fullness_group fullness)
679 {
680 	struct page **head;
681 
682 	BUG_ON(!is_first_page(page));
683 
684 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
685 		return;
686 
687 	head = &class->fullness_list[fullness];
688 	BUG_ON(!*head);
689 	if (list_empty(&(*head)->lru))
690 		*head = NULL;
691 	else if (*head == page)
692 		*head = (struct page *)list_entry((*head)->lru.next,
693 					struct page, lru);
694 
695 	list_del_init(&page->lru);
696 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
697 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
698 }
699 
700 /*
701  * Each size class maintains zspages in different fullness groups depending
702  * on the number of live objects they contain. When allocating or freeing
703  * objects, the fullness status of the page can change, say, from ALMOST_FULL
704  * to ALMOST_EMPTY when freeing an object. This function checks if such
705  * a status change has occurred for the given page and accordingly moves the
706  * page from the freelist of the old fullness group to that of the new
707  * fullness group.
708  */
709 static enum fullness_group fix_fullness_group(struct size_class *class,
710 						struct page *page)
711 {
712 	int class_idx;
713 	enum fullness_group currfg, newfg;
714 
715 	BUG_ON(!is_first_page(page));
716 
717 	get_zspage_mapping(page, &class_idx, &currfg);
718 	newfg = get_fullness_group(page);
719 	if (newfg == currfg)
720 		goto out;
721 
722 	remove_zspage(page, class, currfg);
723 	insert_zspage(page, class, newfg);
724 	set_zspage_mapping(page, class_idx, newfg);
725 
726 out:
727 	return newfg;
728 }
729 
730 /*
731  * We have to decide on how many pages to link together
732  * to form a zspage for each size class. This is important
733  * to reduce wastage due to unusable space left at end of
734  * each zspage which is given as:
735  *     wastage = Zp % class_size
736  *     usage = Zp - wastage
737  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
738  *
739  * For example, for size class of 3/8 * PAGE_SIZE, we should
740  * link together 3 PAGE_SIZE sized pages to form a zspage
741  * since then we can perfectly fit in 8 such objects.
742  */
743 static int get_pages_per_zspage(int class_size)
744 {
745 	int i, max_usedpc = 0;
746 	/* zspage order which gives maximum used size per KB */
747 	int max_usedpc_order = 1;
748 
749 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
750 		int zspage_size;
751 		int waste, usedpc;
752 
753 		zspage_size = i * PAGE_SIZE;
754 		waste = zspage_size % class_size;
755 		usedpc = (zspage_size - waste) * 100 / zspage_size;
756 
757 		if (usedpc > max_usedpc) {
758 			max_usedpc = usedpc;
759 			max_usedpc_order = i;
760 		}
761 	}
762 
763 	return max_usedpc_order;
764 }
765 
766 /*
767  * A single 'zspage' is composed of many system pages which are
768  * linked together using fields in struct page. This function finds
769  * the first/head page, given any component page of a zspage.
770  */
771 static struct page *get_first_page(struct page *page)
772 {
773 	if (is_first_page(page))
774 		return page;
775 	else
776 		return page->first_page;
777 }
778 
779 static struct page *get_next_page(struct page *page)
780 {
781 	struct page *next;
782 
783 	if (is_last_page(page))
784 		next = NULL;
785 	else if (is_first_page(page))
786 		next = (struct page *)page_private(page);
787 	else
788 		next = list_entry(page->lru.next, struct page, lru);
789 
790 	return next;
791 }
792 
793 /*
794  * Encode <page, obj_idx> as a single handle value.
795  * We use the least bit of handle for tagging.
796  */
797 static void *location_to_obj(struct page *page, unsigned long obj_idx)
798 {
799 	unsigned long obj;
800 
801 	if (!page) {
802 		BUG_ON(obj_idx);
803 		return NULL;
804 	}
805 
806 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
807 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
808 	obj <<= OBJ_TAG_BITS;
809 
810 	return (void *)obj;
811 }
812 
813 /*
814  * Decode <page, obj_idx> pair from the given object handle. We adjust the
815  * decoded obj_idx back to its original value since it was adjusted in
816  * location_to_obj().
817  */
818 static void obj_to_location(unsigned long obj, struct page **page,
819 				unsigned long *obj_idx)
820 {
821 	obj >>= OBJ_TAG_BITS;
822 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
823 	*obj_idx = (obj & OBJ_INDEX_MASK);
824 }
825 
826 static unsigned long handle_to_obj(unsigned long handle)
827 {
828 	return *(unsigned long *)handle;
829 }
830 
831 static unsigned long obj_to_head(struct size_class *class, struct page *page,
832 			void *obj)
833 {
834 	if (class->huge) {
835 		VM_BUG_ON(!is_first_page(page));
836 		return *(unsigned long *)page_private(page);
837 	} else
838 		return *(unsigned long *)obj;
839 }
840 
841 static unsigned long obj_idx_to_offset(struct page *page,
842 				unsigned long obj_idx, int class_size)
843 {
844 	unsigned long off = 0;
845 
846 	if (!is_first_page(page))
847 		off = page->index;
848 
849 	return off + obj_idx * class_size;
850 }
851 
852 static inline int trypin_tag(unsigned long handle)
853 {
854 	unsigned long *ptr = (unsigned long *)handle;
855 
856 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
857 }
858 
859 static void pin_tag(unsigned long handle)
860 {
861 	while (!trypin_tag(handle));
862 }
863 
864 static void unpin_tag(unsigned long handle)
865 {
866 	unsigned long *ptr = (unsigned long *)handle;
867 
868 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
869 }
870 
871 static void reset_page(struct page *page)
872 {
873 	clear_bit(PG_private, &page->flags);
874 	clear_bit(PG_private_2, &page->flags);
875 	set_page_private(page, 0);
876 	page->mapping = NULL;
877 	page->freelist = NULL;
878 	page_mapcount_reset(page);
879 }
880 
881 static void free_zspage(struct page *first_page)
882 {
883 	struct page *nextp, *tmp, *head_extra;
884 
885 	BUG_ON(!is_first_page(first_page));
886 	BUG_ON(first_page->inuse);
887 
888 	head_extra = (struct page *)page_private(first_page);
889 
890 	reset_page(first_page);
891 	__free_page(first_page);
892 
893 	/* zspage with only 1 system page */
894 	if (!head_extra)
895 		return;
896 
897 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
898 		list_del(&nextp->lru);
899 		reset_page(nextp);
900 		__free_page(nextp);
901 	}
902 	reset_page(head_extra);
903 	__free_page(head_extra);
904 }
905 
906 /* Initialize a newly allocated zspage */
907 static void init_zspage(struct page *first_page, struct size_class *class)
908 {
909 	unsigned long off = 0;
910 	struct page *page = first_page;
911 
912 	BUG_ON(!is_first_page(first_page));
913 	while (page) {
914 		struct page *next_page;
915 		struct link_free *link;
916 		unsigned int i = 1;
917 		void *vaddr;
918 
919 		/*
920 		 * page->index stores offset of first object starting
921 		 * in the page. For the first page, this is always 0,
922 		 * so we use first_page->index (aka ->freelist) to store
923 		 * head of corresponding zspage's freelist.
924 		 */
925 		if (page != first_page)
926 			page->index = off;
927 
928 		vaddr = kmap_atomic(page);
929 		link = (struct link_free *)vaddr + off / sizeof(*link);
930 
931 		while ((off += class->size) < PAGE_SIZE) {
932 			link->next = location_to_obj(page, i++);
933 			link += class->size / sizeof(*link);
934 		}
935 
936 		/*
937 		 * We now come to the last (full or partial) object on this
938 		 * page, which must point to the first object on the next
939 		 * page (if present)
940 		 */
941 		next_page = get_next_page(page);
942 		link->next = location_to_obj(next_page, 0);
943 		kunmap_atomic(vaddr);
944 		page = next_page;
945 		off %= PAGE_SIZE;
946 	}
947 }
948 
949 /*
950  * Allocate a zspage for the given size class
951  */
952 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
953 {
954 	int i, error;
955 	struct page *first_page = NULL, *uninitialized_var(prev_page);
956 
957 	/*
958 	 * Allocate individual pages and link them together as:
959 	 * 1. first page->private = first sub-page
960 	 * 2. all sub-pages are linked together using page->lru
961 	 * 3. each sub-page is linked to the first page using page->first_page
962 	 *
963 	 * For each size class, First/Head pages are linked together using
964 	 * page->lru. Also, we set PG_private to identify the first page
965 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
966 	 * identify the last page.
967 	 */
968 	error = -ENOMEM;
969 	for (i = 0; i < class->pages_per_zspage; i++) {
970 		struct page *page;
971 
972 		page = alloc_page(flags);
973 		if (!page)
974 			goto cleanup;
975 
976 		INIT_LIST_HEAD(&page->lru);
977 		if (i == 0) {	/* first page */
978 			SetPagePrivate(page);
979 			set_page_private(page, 0);
980 			first_page = page;
981 			first_page->inuse = 0;
982 		}
983 		if (i == 1)
984 			set_page_private(first_page, (unsigned long)page);
985 		if (i >= 1)
986 			page->first_page = first_page;
987 		if (i >= 2)
988 			list_add(&page->lru, &prev_page->lru);
989 		if (i == class->pages_per_zspage - 1)	/* last page */
990 			SetPagePrivate2(page);
991 		prev_page = page;
992 	}
993 
994 	init_zspage(first_page, class);
995 
996 	first_page->freelist = location_to_obj(first_page, 0);
997 	/* Maximum number of objects we can store in this zspage */
998 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
999 
1000 	error = 0; /* Success */
1001 
1002 cleanup:
1003 	if (unlikely(error) && first_page) {
1004 		free_zspage(first_page);
1005 		first_page = NULL;
1006 	}
1007 
1008 	return first_page;
1009 }
1010 
1011 static struct page *find_get_zspage(struct size_class *class)
1012 {
1013 	int i;
1014 	struct page *page;
1015 
1016 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1017 		page = class->fullness_list[i];
1018 		if (page)
1019 			break;
1020 	}
1021 
1022 	return page;
1023 }
1024 
1025 #ifdef CONFIG_PGTABLE_MAPPING
1026 static inline int __zs_cpu_up(struct mapping_area *area)
1027 {
1028 	/*
1029 	 * Make sure we don't leak memory if a cpu UP notification
1030 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1031 	 */
1032 	if (area->vm)
1033 		return 0;
1034 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1035 	if (!area->vm)
1036 		return -ENOMEM;
1037 	return 0;
1038 }
1039 
1040 static inline void __zs_cpu_down(struct mapping_area *area)
1041 {
1042 	if (area->vm)
1043 		free_vm_area(area->vm);
1044 	area->vm = NULL;
1045 }
1046 
1047 static inline void *__zs_map_object(struct mapping_area *area,
1048 				struct page *pages[2], int off, int size)
1049 {
1050 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1051 	area->vm_addr = area->vm->addr;
1052 	return area->vm_addr + off;
1053 }
1054 
1055 static inline void __zs_unmap_object(struct mapping_area *area,
1056 				struct page *pages[2], int off, int size)
1057 {
1058 	unsigned long addr = (unsigned long)area->vm_addr;
1059 
1060 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1061 }
1062 
1063 #else /* CONFIG_PGTABLE_MAPPING */
1064 
1065 static inline int __zs_cpu_up(struct mapping_area *area)
1066 {
1067 	/*
1068 	 * Make sure we don't leak memory if a cpu UP notification
1069 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1070 	 */
1071 	if (area->vm_buf)
1072 		return 0;
1073 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1074 	if (!area->vm_buf)
1075 		return -ENOMEM;
1076 	return 0;
1077 }
1078 
1079 static inline void __zs_cpu_down(struct mapping_area *area)
1080 {
1081 	kfree(area->vm_buf);
1082 	area->vm_buf = NULL;
1083 }
1084 
1085 static void *__zs_map_object(struct mapping_area *area,
1086 			struct page *pages[2], int off, int size)
1087 {
1088 	int sizes[2];
1089 	void *addr;
1090 	char *buf = area->vm_buf;
1091 
1092 	/* disable page faults to match kmap_atomic() return conditions */
1093 	pagefault_disable();
1094 
1095 	/* no read fastpath */
1096 	if (area->vm_mm == ZS_MM_WO)
1097 		goto out;
1098 
1099 	sizes[0] = PAGE_SIZE - off;
1100 	sizes[1] = size - sizes[0];
1101 
1102 	/* copy object to per-cpu buffer */
1103 	addr = kmap_atomic(pages[0]);
1104 	memcpy(buf, addr + off, sizes[0]);
1105 	kunmap_atomic(addr);
1106 	addr = kmap_atomic(pages[1]);
1107 	memcpy(buf + sizes[0], addr, sizes[1]);
1108 	kunmap_atomic(addr);
1109 out:
1110 	return area->vm_buf;
1111 }
1112 
1113 static void __zs_unmap_object(struct mapping_area *area,
1114 			struct page *pages[2], int off, int size)
1115 {
1116 	int sizes[2];
1117 	void *addr;
1118 	char *buf;
1119 
1120 	/* no write fastpath */
1121 	if (area->vm_mm == ZS_MM_RO)
1122 		goto out;
1123 
1124 	buf = area->vm_buf;
1125 	if (!area->huge) {
1126 		buf = buf + ZS_HANDLE_SIZE;
1127 		size -= ZS_HANDLE_SIZE;
1128 		off += ZS_HANDLE_SIZE;
1129 	}
1130 
1131 	sizes[0] = PAGE_SIZE - off;
1132 	sizes[1] = size - sizes[0];
1133 
1134 	/* copy per-cpu buffer to object */
1135 	addr = kmap_atomic(pages[0]);
1136 	memcpy(addr + off, buf, sizes[0]);
1137 	kunmap_atomic(addr);
1138 	addr = kmap_atomic(pages[1]);
1139 	memcpy(addr, buf + sizes[0], sizes[1]);
1140 	kunmap_atomic(addr);
1141 
1142 out:
1143 	/* enable page faults to match kunmap_atomic() return conditions */
1144 	pagefault_enable();
1145 }
1146 
1147 #endif /* CONFIG_PGTABLE_MAPPING */
1148 
1149 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1150 				void *pcpu)
1151 {
1152 	int ret, cpu = (long)pcpu;
1153 	struct mapping_area *area;
1154 
1155 	switch (action) {
1156 	case CPU_UP_PREPARE:
1157 		area = &per_cpu(zs_map_area, cpu);
1158 		ret = __zs_cpu_up(area);
1159 		if (ret)
1160 			return notifier_from_errno(ret);
1161 		break;
1162 	case CPU_DEAD:
1163 	case CPU_UP_CANCELED:
1164 		area = &per_cpu(zs_map_area, cpu);
1165 		__zs_cpu_down(area);
1166 		break;
1167 	}
1168 
1169 	return NOTIFY_OK;
1170 }
1171 
1172 static struct notifier_block zs_cpu_nb = {
1173 	.notifier_call = zs_cpu_notifier
1174 };
1175 
1176 static int zs_register_cpu_notifier(void)
1177 {
1178 	int cpu, uninitialized_var(ret);
1179 
1180 	cpu_notifier_register_begin();
1181 
1182 	__register_cpu_notifier(&zs_cpu_nb);
1183 	for_each_online_cpu(cpu) {
1184 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1185 		if (notifier_to_errno(ret))
1186 			break;
1187 	}
1188 
1189 	cpu_notifier_register_done();
1190 	return notifier_to_errno(ret);
1191 }
1192 
1193 static void zs_unregister_cpu_notifier(void)
1194 {
1195 	int cpu;
1196 
1197 	cpu_notifier_register_begin();
1198 
1199 	for_each_online_cpu(cpu)
1200 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1201 	__unregister_cpu_notifier(&zs_cpu_nb);
1202 
1203 	cpu_notifier_register_done();
1204 }
1205 
1206 static void init_zs_size_classes(void)
1207 {
1208 	int nr;
1209 
1210 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1211 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1212 		nr += 1;
1213 
1214 	zs_size_classes = nr;
1215 }
1216 
1217 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1218 {
1219 	if (prev->pages_per_zspage != pages_per_zspage)
1220 		return false;
1221 
1222 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1223 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1224 		return false;
1225 
1226 	return true;
1227 }
1228 
1229 static bool zspage_full(struct page *page)
1230 {
1231 	BUG_ON(!is_first_page(page));
1232 
1233 	return page->inuse == page->objects;
1234 }
1235 
1236 unsigned long zs_get_total_pages(struct zs_pool *pool)
1237 {
1238 	return atomic_long_read(&pool->pages_allocated);
1239 }
1240 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1241 
1242 /**
1243  * zs_map_object - get address of allocated object from handle.
1244  * @pool: pool from which the object was allocated
1245  * @handle: handle returned from zs_malloc
1246  *
1247  * Before using an object allocated from zs_malloc, it must be mapped using
1248  * this function. When done with the object, it must be unmapped using
1249  * zs_unmap_object.
1250  *
1251  * Only one object can be mapped per cpu at a time. There is no protection
1252  * against nested mappings.
1253  *
1254  * This function returns with preemption and page faults disabled.
1255  */
1256 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1257 			enum zs_mapmode mm)
1258 {
1259 	struct page *page;
1260 	unsigned long obj, obj_idx, off;
1261 
1262 	unsigned int class_idx;
1263 	enum fullness_group fg;
1264 	struct size_class *class;
1265 	struct mapping_area *area;
1266 	struct page *pages[2];
1267 	void *ret;
1268 
1269 	BUG_ON(!handle);
1270 
1271 	/*
1272 	 * Because we use per-cpu mapping areas shared among the
1273 	 * pools/users, we can't allow mapping in interrupt context
1274 	 * because it can corrupt another users mappings.
1275 	 */
1276 	BUG_ON(in_interrupt());
1277 
1278 	/* From now on, migration cannot move the object */
1279 	pin_tag(handle);
1280 
1281 	obj = handle_to_obj(handle);
1282 	obj_to_location(obj, &page, &obj_idx);
1283 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1284 	class = pool->size_class[class_idx];
1285 	off = obj_idx_to_offset(page, obj_idx, class->size);
1286 
1287 	area = &get_cpu_var(zs_map_area);
1288 	area->vm_mm = mm;
1289 	if (off + class->size <= PAGE_SIZE) {
1290 		/* this object is contained entirely within a page */
1291 		area->vm_addr = kmap_atomic(page);
1292 		ret = area->vm_addr + off;
1293 		goto out;
1294 	}
1295 
1296 	/* this object spans two pages */
1297 	pages[0] = page;
1298 	pages[1] = get_next_page(page);
1299 	BUG_ON(!pages[1]);
1300 
1301 	ret = __zs_map_object(area, pages, off, class->size);
1302 out:
1303 	if (!class->huge)
1304 		ret += ZS_HANDLE_SIZE;
1305 
1306 	return ret;
1307 }
1308 EXPORT_SYMBOL_GPL(zs_map_object);
1309 
1310 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1311 {
1312 	struct page *page;
1313 	unsigned long obj, obj_idx, off;
1314 
1315 	unsigned int class_idx;
1316 	enum fullness_group fg;
1317 	struct size_class *class;
1318 	struct mapping_area *area;
1319 
1320 	BUG_ON(!handle);
1321 
1322 	obj = handle_to_obj(handle);
1323 	obj_to_location(obj, &page, &obj_idx);
1324 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1325 	class = pool->size_class[class_idx];
1326 	off = obj_idx_to_offset(page, obj_idx, class->size);
1327 
1328 	area = this_cpu_ptr(&zs_map_area);
1329 	if (off + class->size <= PAGE_SIZE)
1330 		kunmap_atomic(area->vm_addr);
1331 	else {
1332 		struct page *pages[2];
1333 
1334 		pages[0] = page;
1335 		pages[1] = get_next_page(page);
1336 		BUG_ON(!pages[1]);
1337 
1338 		__zs_unmap_object(area, pages, off, class->size);
1339 	}
1340 	put_cpu_var(zs_map_area);
1341 	unpin_tag(handle);
1342 }
1343 EXPORT_SYMBOL_GPL(zs_unmap_object);
1344 
1345 static unsigned long obj_malloc(struct page *first_page,
1346 		struct size_class *class, unsigned long handle)
1347 {
1348 	unsigned long obj;
1349 	struct link_free *link;
1350 
1351 	struct page *m_page;
1352 	unsigned long m_objidx, m_offset;
1353 	void *vaddr;
1354 
1355 	handle |= OBJ_ALLOCATED_TAG;
1356 	obj = (unsigned long)first_page->freelist;
1357 	obj_to_location(obj, &m_page, &m_objidx);
1358 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1359 
1360 	vaddr = kmap_atomic(m_page);
1361 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1362 	first_page->freelist = link->next;
1363 	if (!class->huge)
1364 		/* record handle in the header of allocated chunk */
1365 		link->handle = handle;
1366 	else
1367 		/* record handle in first_page->private */
1368 		set_page_private(first_page, handle);
1369 	kunmap_atomic(vaddr);
1370 	first_page->inuse++;
1371 	zs_stat_inc(class, OBJ_USED, 1);
1372 
1373 	return obj;
1374 }
1375 
1376 
1377 /**
1378  * zs_malloc - Allocate block of given size from pool.
1379  * @pool: pool to allocate from
1380  * @size: size of block to allocate
1381  *
1382  * On success, handle to the allocated object is returned,
1383  * otherwise 0.
1384  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1385  */
1386 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1387 {
1388 	unsigned long handle, obj;
1389 	struct size_class *class;
1390 	struct page *first_page;
1391 
1392 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1393 		return 0;
1394 
1395 	handle = alloc_handle(pool);
1396 	if (!handle)
1397 		return 0;
1398 
1399 	/* extra space in chunk to keep the handle */
1400 	size += ZS_HANDLE_SIZE;
1401 	class = pool->size_class[get_size_class_index(size)];
1402 
1403 	spin_lock(&class->lock);
1404 	first_page = find_get_zspage(class);
1405 
1406 	if (!first_page) {
1407 		spin_unlock(&class->lock);
1408 		first_page = alloc_zspage(class, pool->flags);
1409 		if (unlikely(!first_page)) {
1410 			free_handle(pool, handle);
1411 			return 0;
1412 		}
1413 
1414 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1415 		atomic_long_add(class->pages_per_zspage,
1416 					&pool->pages_allocated);
1417 
1418 		spin_lock(&class->lock);
1419 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1420 				class->size, class->pages_per_zspage));
1421 	}
1422 
1423 	obj = obj_malloc(first_page, class, handle);
1424 	/* Now move the zspage to another fullness group, if required */
1425 	fix_fullness_group(class, first_page);
1426 	record_obj(handle, obj);
1427 	spin_unlock(&class->lock);
1428 
1429 	return handle;
1430 }
1431 EXPORT_SYMBOL_GPL(zs_malloc);
1432 
1433 static void obj_free(struct zs_pool *pool, struct size_class *class,
1434 			unsigned long obj)
1435 {
1436 	struct link_free *link;
1437 	struct page *first_page, *f_page;
1438 	unsigned long f_objidx, f_offset;
1439 	void *vaddr;
1440 	int class_idx;
1441 	enum fullness_group fullness;
1442 
1443 	BUG_ON(!obj);
1444 
1445 	obj &= ~OBJ_ALLOCATED_TAG;
1446 	obj_to_location(obj, &f_page, &f_objidx);
1447 	first_page = get_first_page(f_page);
1448 
1449 	get_zspage_mapping(first_page, &class_idx, &fullness);
1450 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1451 
1452 	vaddr = kmap_atomic(f_page);
1453 
1454 	/* Insert this object in containing zspage's freelist */
1455 	link = (struct link_free *)(vaddr + f_offset);
1456 	link->next = first_page->freelist;
1457 	if (class->huge)
1458 		set_page_private(first_page, 0);
1459 	kunmap_atomic(vaddr);
1460 	first_page->freelist = (void *)obj;
1461 	first_page->inuse--;
1462 	zs_stat_dec(class, OBJ_USED, 1);
1463 }
1464 
1465 void zs_free(struct zs_pool *pool, unsigned long handle)
1466 {
1467 	struct page *first_page, *f_page;
1468 	unsigned long obj, f_objidx;
1469 	int class_idx;
1470 	struct size_class *class;
1471 	enum fullness_group fullness;
1472 
1473 	if (unlikely(!handle))
1474 		return;
1475 
1476 	pin_tag(handle);
1477 	obj = handle_to_obj(handle);
1478 	obj_to_location(obj, &f_page, &f_objidx);
1479 	first_page = get_first_page(f_page);
1480 
1481 	get_zspage_mapping(first_page, &class_idx, &fullness);
1482 	class = pool->size_class[class_idx];
1483 
1484 	spin_lock(&class->lock);
1485 	obj_free(pool, class, obj);
1486 	fullness = fix_fullness_group(class, first_page);
1487 	if (fullness == ZS_EMPTY) {
1488 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1489 				class->size, class->pages_per_zspage));
1490 		atomic_long_sub(class->pages_per_zspage,
1491 				&pool->pages_allocated);
1492 		free_zspage(first_page);
1493 	}
1494 	spin_unlock(&class->lock);
1495 	unpin_tag(handle);
1496 
1497 	free_handle(pool, handle);
1498 }
1499 EXPORT_SYMBOL_GPL(zs_free);
1500 
1501 static void zs_object_copy(unsigned long src, unsigned long dst,
1502 				struct size_class *class)
1503 {
1504 	struct page *s_page, *d_page;
1505 	unsigned long s_objidx, d_objidx;
1506 	unsigned long s_off, d_off;
1507 	void *s_addr, *d_addr;
1508 	int s_size, d_size, size;
1509 	int written = 0;
1510 
1511 	s_size = d_size = class->size;
1512 
1513 	obj_to_location(src, &s_page, &s_objidx);
1514 	obj_to_location(dst, &d_page, &d_objidx);
1515 
1516 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1517 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1518 
1519 	if (s_off + class->size > PAGE_SIZE)
1520 		s_size = PAGE_SIZE - s_off;
1521 
1522 	if (d_off + class->size > PAGE_SIZE)
1523 		d_size = PAGE_SIZE - d_off;
1524 
1525 	s_addr = kmap_atomic(s_page);
1526 	d_addr = kmap_atomic(d_page);
1527 
1528 	while (1) {
1529 		size = min(s_size, d_size);
1530 		memcpy(d_addr + d_off, s_addr + s_off, size);
1531 		written += size;
1532 
1533 		if (written == class->size)
1534 			break;
1535 
1536 		s_off += size;
1537 		s_size -= size;
1538 		d_off += size;
1539 		d_size -= size;
1540 
1541 		if (s_off >= PAGE_SIZE) {
1542 			kunmap_atomic(d_addr);
1543 			kunmap_atomic(s_addr);
1544 			s_page = get_next_page(s_page);
1545 			BUG_ON(!s_page);
1546 			s_addr = kmap_atomic(s_page);
1547 			d_addr = kmap_atomic(d_page);
1548 			s_size = class->size - written;
1549 			s_off = 0;
1550 		}
1551 
1552 		if (d_off >= PAGE_SIZE) {
1553 			kunmap_atomic(d_addr);
1554 			d_page = get_next_page(d_page);
1555 			BUG_ON(!d_page);
1556 			d_addr = kmap_atomic(d_page);
1557 			d_size = class->size - written;
1558 			d_off = 0;
1559 		}
1560 	}
1561 
1562 	kunmap_atomic(d_addr);
1563 	kunmap_atomic(s_addr);
1564 }
1565 
1566 /*
1567  * Find alloced object in zspage from index object and
1568  * return handle.
1569  */
1570 static unsigned long find_alloced_obj(struct page *page, int index,
1571 					struct size_class *class)
1572 {
1573 	unsigned long head;
1574 	int offset = 0;
1575 	unsigned long handle = 0;
1576 	void *addr = kmap_atomic(page);
1577 
1578 	if (!is_first_page(page))
1579 		offset = page->index;
1580 	offset += class->size * index;
1581 
1582 	while (offset < PAGE_SIZE) {
1583 		head = obj_to_head(class, page, addr + offset);
1584 		if (head & OBJ_ALLOCATED_TAG) {
1585 			handle = head & ~OBJ_ALLOCATED_TAG;
1586 			if (trypin_tag(handle))
1587 				break;
1588 			handle = 0;
1589 		}
1590 
1591 		offset += class->size;
1592 		index++;
1593 	}
1594 
1595 	kunmap_atomic(addr);
1596 	return handle;
1597 }
1598 
1599 struct zs_compact_control {
1600 	/* Source page for migration which could be a subpage of zspage. */
1601 	struct page *s_page;
1602 	/* Destination page for migration which should be a first page
1603 	 * of zspage. */
1604 	struct page *d_page;
1605 	 /* Starting object index within @s_page which used for live object
1606 	  * in the subpage. */
1607 	int index;
1608 	/* how many of objects are migrated */
1609 	int nr_migrated;
1610 };
1611 
1612 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1613 				struct zs_compact_control *cc)
1614 {
1615 	unsigned long used_obj, free_obj;
1616 	unsigned long handle;
1617 	struct page *s_page = cc->s_page;
1618 	struct page *d_page = cc->d_page;
1619 	unsigned long index = cc->index;
1620 	int nr_migrated = 0;
1621 	int ret = 0;
1622 
1623 	while (1) {
1624 		handle = find_alloced_obj(s_page, index, class);
1625 		if (!handle) {
1626 			s_page = get_next_page(s_page);
1627 			if (!s_page)
1628 				break;
1629 			index = 0;
1630 			continue;
1631 		}
1632 
1633 		/* Stop if there is no more space */
1634 		if (zspage_full(d_page)) {
1635 			unpin_tag(handle);
1636 			ret = -ENOMEM;
1637 			break;
1638 		}
1639 
1640 		used_obj = handle_to_obj(handle);
1641 		free_obj = obj_malloc(d_page, class, handle);
1642 		zs_object_copy(used_obj, free_obj, class);
1643 		index++;
1644 		record_obj(handle, free_obj);
1645 		unpin_tag(handle);
1646 		obj_free(pool, class, used_obj);
1647 		nr_migrated++;
1648 	}
1649 
1650 	/* Remember last position in this iteration */
1651 	cc->s_page = s_page;
1652 	cc->index = index;
1653 	cc->nr_migrated = nr_migrated;
1654 
1655 	return ret;
1656 }
1657 
1658 static struct page *alloc_target_page(struct size_class *class)
1659 {
1660 	int i;
1661 	struct page *page;
1662 
1663 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1664 		page = class->fullness_list[i];
1665 		if (page) {
1666 			remove_zspage(page, class, i);
1667 			break;
1668 		}
1669 	}
1670 
1671 	return page;
1672 }
1673 
1674 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1675 				struct page *first_page)
1676 {
1677 	enum fullness_group fullness;
1678 
1679 	BUG_ON(!is_first_page(first_page));
1680 
1681 	fullness = get_fullness_group(first_page);
1682 	insert_zspage(first_page, class, fullness);
1683 	set_zspage_mapping(first_page, class->index, fullness);
1684 
1685 	if (fullness == ZS_EMPTY) {
1686 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1687 			class->size, class->pages_per_zspage));
1688 		atomic_long_sub(class->pages_per_zspage,
1689 				&pool->pages_allocated);
1690 
1691 		free_zspage(first_page);
1692 	}
1693 }
1694 
1695 static struct page *isolate_source_page(struct size_class *class)
1696 {
1697 	struct page *page;
1698 
1699 	page = class->fullness_list[ZS_ALMOST_EMPTY];
1700 	if (page)
1701 		remove_zspage(page, class, ZS_ALMOST_EMPTY);
1702 
1703 	return page;
1704 }
1705 
1706 static unsigned long __zs_compact(struct zs_pool *pool,
1707 				struct size_class *class)
1708 {
1709 	int nr_to_migrate;
1710 	struct zs_compact_control cc;
1711 	struct page *src_page;
1712 	struct page *dst_page = NULL;
1713 	unsigned long nr_total_migrated = 0;
1714 
1715 	spin_lock(&class->lock);
1716 	while ((src_page = isolate_source_page(class))) {
1717 
1718 		BUG_ON(!is_first_page(src_page));
1719 
1720 		/* The goal is to migrate all live objects in source page */
1721 		nr_to_migrate = src_page->inuse;
1722 		cc.index = 0;
1723 		cc.s_page = src_page;
1724 
1725 		while ((dst_page = alloc_target_page(class))) {
1726 			cc.d_page = dst_page;
1727 			/*
1728 			 * If there is no more space in dst_page, try to
1729 			 * allocate another zspage.
1730 			 */
1731 			if (!migrate_zspage(pool, class, &cc))
1732 				break;
1733 
1734 			putback_zspage(pool, class, dst_page);
1735 			nr_total_migrated += cc.nr_migrated;
1736 			nr_to_migrate -= cc.nr_migrated;
1737 		}
1738 
1739 		/* Stop if we couldn't find slot */
1740 		if (dst_page == NULL)
1741 			break;
1742 
1743 		putback_zspage(pool, class, dst_page);
1744 		putback_zspage(pool, class, src_page);
1745 		spin_unlock(&class->lock);
1746 		nr_total_migrated += cc.nr_migrated;
1747 		cond_resched();
1748 		spin_lock(&class->lock);
1749 	}
1750 
1751 	if (src_page)
1752 		putback_zspage(pool, class, src_page);
1753 
1754 	spin_unlock(&class->lock);
1755 
1756 	return nr_total_migrated;
1757 }
1758 
1759 unsigned long zs_compact(struct zs_pool *pool)
1760 {
1761 	int i;
1762 	unsigned long nr_migrated = 0;
1763 	struct size_class *class;
1764 
1765 	for (i = zs_size_classes - 1; i >= 0; i--) {
1766 		class = pool->size_class[i];
1767 		if (!class)
1768 			continue;
1769 		if (class->index != i)
1770 			continue;
1771 		nr_migrated += __zs_compact(pool, class);
1772 	}
1773 
1774 	return nr_migrated;
1775 }
1776 EXPORT_SYMBOL_GPL(zs_compact);
1777 
1778 /**
1779  * zs_create_pool - Creates an allocation pool to work from.
1780  * @flags: allocation flags used to allocate pool metadata
1781  *
1782  * This function must be called before anything when using
1783  * the zsmalloc allocator.
1784  *
1785  * On success, a pointer to the newly created pool is returned,
1786  * otherwise NULL.
1787  */
1788 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1789 {
1790 	int i;
1791 	struct zs_pool *pool;
1792 	struct size_class *prev_class = NULL;
1793 
1794 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1795 	if (!pool)
1796 		return NULL;
1797 
1798 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1799 			GFP_KERNEL);
1800 	if (!pool->size_class) {
1801 		kfree(pool);
1802 		return NULL;
1803 	}
1804 
1805 	pool->name = kstrdup(name, GFP_KERNEL);
1806 	if (!pool->name)
1807 		goto err;
1808 
1809 	if (create_handle_cache(pool))
1810 		goto err;
1811 
1812 	/*
1813 	 * Iterate reversly, because, size of size_class that we want to use
1814 	 * for merging should be larger or equal to current size.
1815 	 */
1816 	for (i = zs_size_classes - 1; i >= 0; i--) {
1817 		int size;
1818 		int pages_per_zspage;
1819 		struct size_class *class;
1820 
1821 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1822 		if (size > ZS_MAX_ALLOC_SIZE)
1823 			size = ZS_MAX_ALLOC_SIZE;
1824 		pages_per_zspage = get_pages_per_zspage(size);
1825 
1826 		/*
1827 		 * size_class is used for normal zsmalloc operation such
1828 		 * as alloc/free for that size. Although it is natural that we
1829 		 * have one size_class for each size, there is a chance that we
1830 		 * can get more memory utilization if we use one size_class for
1831 		 * many different sizes whose size_class have same
1832 		 * characteristics. So, we makes size_class point to
1833 		 * previous size_class if possible.
1834 		 */
1835 		if (prev_class) {
1836 			if (can_merge(prev_class, size, pages_per_zspage)) {
1837 				pool->size_class[i] = prev_class;
1838 				continue;
1839 			}
1840 		}
1841 
1842 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1843 		if (!class)
1844 			goto err;
1845 
1846 		class->size = size;
1847 		class->index = i;
1848 		class->pages_per_zspage = pages_per_zspage;
1849 		if (pages_per_zspage == 1 &&
1850 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1851 			class->huge = true;
1852 		spin_lock_init(&class->lock);
1853 		pool->size_class[i] = class;
1854 
1855 		prev_class = class;
1856 	}
1857 
1858 	pool->flags = flags;
1859 
1860 	if (zs_pool_stat_create(name, pool))
1861 		goto err;
1862 
1863 	return pool;
1864 
1865 err:
1866 	zs_destroy_pool(pool);
1867 	return NULL;
1868 }
1869 EXPORT_SYMBOL_GPL(zs_create_pool);
1870 
1871 void zs_destroy_pool(struct zs_pool *pool)
1872 {
1873 	int i;
1874 
1875 	zs_pool_stat_destroy(pool);
1876 
1877 	for (i = 0; i < zs_size_classes; i++) {
1878 		int fg;
1879 		struct size_class *class = pool->size_class[i];
1880 
1881 		if (!class)
1882 			continue;
1883 
1884 		if (class->index != i)
1885 			continue;
1886 
1887 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1888 			if (class->fullness_list[fg]) {
1889 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1890 					class->size, fg);
1891 			}
1892 		}
1893 		kfree(class);
1894 	}
1895 
1896 	destroy_handle_cache(pool);
1897 	kfree(pool->size_class);
1898 	kfree(pool->name);
1899 	kfree(pool);
1900 }
1901 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1902 
1903 static int __init zs_init(void)
1904 {
1905 	int ret = zs_register_cpu_notifier();
1906 
1907 	if (ret)
1908 		goto notifier_fail;
1909 
1910 	init_zs_size_classes();
1911 
1912 #ifdef CONFIG_ZPOOL
1913 	zpool_register_driver(&zs_zpool_driver);
1914 #endif
1915 
1916 	ret = zs_stat_init();
1917 	if (ret) {
1918 		pr_err("zs stat initialization failed\n");
1919 		goto stat_fail;
1920 	}
1921 	return 0;
1922 
1923 stat_fail:
1924 #ifdef CONFIG_ZPOOL
1925 	zpool_unregister_driver(&zs_zpool_driver);
1926 #endif
1927 notifier_fail:
1928 	zs_unregister_cpu_notifier();
1929 
1930 	return ret;
1931 }
1932 
1933 static void __exit zs_exit(void)
1934 {
1935 #ifdef CONFIG_ZPOOL
1936 	zpool_unregister_driver(&zs_zpool_driver);
1937 #endif
1938 	zs_unregister_cpu_notifier();
1939 
1940 	zs_stat_exit();
1941 }
1942 
1943 module_init(zs_init);
1944 module_exit(zs_exit);
1945 
1946 MODULE_LICENSE("Dual BSD/GPL");
1947 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1948