xref: /linux/mm/zsmalloc.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->lock
37  *	zspage->lock
38  */
39 
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65 
66 #define ZSPAGE_MAGIC	0x58
67 
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * a single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Head in allocated object should have OBJ_ALLOCATED_TAG
103  * to identify the object was allocated or not.
104  * It's okay to add the status bit in the least bit because
105  * header keeps handle which is 4byte-aligned address so we
106  * have room for two bit at least.
107  */
108 #define OBJ_ALLOCATED_TAG 1
109 
110 #define OBJ_TAG_BITS	1
111 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
112 
113 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
114 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
115 
116 #define HUGE_BITS	1
117 #define FULLNESS_BITS	4
118 #define CLASS_BITS	8
119 #define MAGIC_VAL_BITS	8
120 
121 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
122 
123 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
124 
125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
126 #define ZS_MIN_ALLOC_SIZE \
127 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
128 /* each chunk includes extra space to keep handle */
129 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
130 
131 /*
132  * On systems with 4K page size, this gives 255 size classes! There is a
133  * trader-off here:
134  *  - Large number of size classes is potentially wasteful as free page are
135  *    spread across these classes
136  *  - Small number of size classes causes large internal fragmentation
137  *  - Probably its better to use specific size classes (empirically
138  *    determined). NOTE: all those class sizes must be set as multiple of
139  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
140  *
141  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
142  *  (reason above)
143  */
144 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
145 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
146 				      ZS_SIZE_CLASS_DELTA) + 1)
147 
148 /*
149  * Pages are distinguished by the ratio of used memory (that is the ratio
150  * of ->inuse objects to all objects that page can store). For example,
151  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
152  *
153  * The number of fullness groups is not random. It allows us to keep
154  * difference between the least busy page in the group (minimum permitted
155  * number of ->inuse objects) and the most busy page (maximum permitted
156  * number of ->inuse objects) at a reasonable value.
157  */
158 enum fullness_group {
159 	ZS_INUSE_RATIO_0,
160 	ZS_INUSE_RATIO_10,
161 	/* NOTE: 8 more fullness groups here */
162 	ZS_INUSE_RATIO_99       = 10,
163 	ZS_INUSE_RATIO_100,
164 	NR_FULLNESS_GROUPS,
165 };
166 
167 enum class_stat_type {
168 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
169 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
170 	ZS_OBJS_INUSE,
171 	NR_CLASS_STAT_TYPES,
172 };
173 
174 struct zs_size_stat {
175 	unsigned long objs[NR_CLASS_STAT_TYPES];
176 };
177 
178 #ifdef CONFIG_ZSMALLOC_STAT
179 static struct dentry *zs_stat_root;
180 #endif
181 
182 static size_t huge_class_size;
183 
184 struct size_class {
185 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
186 	/*
187 	 * Size of objects stored in this class. Must be multiple
188 	 * of ZS_ALIGN.
189 	 */
190 	int size;
191 	int objs_per_zspage;
192 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
193 	int pages_per_zspage;
194 
195 	unsigned int index;
196 	struct zs_size_stat stats;
197 };
198 
199 /*
200  * Placed within free objects to form a singly linked list.
201  * For every zspage, zspage->freeobj gives head of this list.
202  *
203  * This must be power of 2 and less than or equal to ZS_ALIGN
204  */
205 struct link_free {
206 	union {
207 		/*
208 		 * Free object index;
209 		 * It's valid for non-allocated object
210 		 */
211 		unsigned long next;
212 		/*
213 		 * Handle of allocated object.
214 		 */
215 		unsigned long handle;
216 	};
217 };
218 
219 struct zs_pool {
220 	const char *name;
221 
222 	struct size_class *size_class[ZS_SIZE_CLASSES];
223 	struct kmem_cache *handle_cachep;
224 	struct kmem_cache *zspage_cachep;
225 
226 	atomic_long_t pages_allocated;
227 
228 	struct zs_pool_stats stats;
229 
230 	/* Compact classes */
231 	struct shrinker *shrinker;
232 
233 #ifdef CONFIG_ZSMALLOC_STAT
234 	struct dentry *stat_dentry;
235 #endif
236 #ifdef CONFIG_COMPACTION
237 	struct work_struct free_work;
238 #endif
239 	spinlock_t lock;
240 	atomic_t compaction_in_progress;
241 };
242 
243 struct zspage {
244 	struct {
245 		unsigned int huge:HUGE_BITS;
246 		unsigned int fullness:FULLNESS_BITS;
247 		unsigned int class:CLASS_BITS + 1;
248 		unsigned int magic:MAGIC_VAL_BITS;
249 	};
250 	unsigned int inuse;
251 	unsigned int freeobj;
252 	struct page *first_page;
253 	struct list_head list; /* fullness list */
254 	struct zs_pool *pool;
255 	rwlock_t lock;
256 };
257 
258 struct mapping_area {
259 	local_lock_t lock;
260 	char *vm_buf; /* copy buffer for objects that span pages */
261 	char *vm_addr; /* address of kmap_atomic()'ed pages */
262 	enum zs_mapmode vm_mm; /* mapping mode */
263 };
264 
265 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
266 static void SetZsHugePage(struct zspage *zspage)
267 {
268 	zspage->huge = 1;
269 }
270 
271 static bool ZsHugePage(struct zspage *zspage)
272 {
273 	return zspage->huge;
274 }
275 
276 static void migrate_lock_init(struct zspage *zspage);
277 static void migrate_read_lock(struct zspage *zspage);
278 static void migrate_read_unlock(struct zspage *zspage);
279 static void migrate_write_lock(struct zspage *zspage);
280 static void migrate_write_unlock(struct zspage *zspage);
281 
282 #ifdef CONFIG_COMPACTION
283 static void kick_deferred_free(struct zs_pool *pool);
284 static void init_deferred_free(struct zs_pool *pool);
285 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
286 #else
287 static void kick_deferred_free(struct zs_pool *pool) {}
288 static void init_deferred_free(struct zs_pool *pool) {}
289 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
290 #endif
291 
292 static int create_cache(struct zs_pool *pool)
293 {
294 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
295 					0, 0, NULL);
296 	if (!pool->handle_cachep)
297 		return 1;
298 
299 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
300 					0, 0, NULL);
301 	if (!pool->zspage_cachep) {
302 		kmem_cache_destroy(pool->handle_cachep);
303 		pool->handle_cachep = NULL;
304 		return 1;
305 	}
306 
307 	return 0;
308 }
309 
310 static void destroy_cache(struct zs_pool *pool)
311 {
312 	kmem_cache_destroy(pool->handle_cachep);
313 	kmem_cache_destroy(pool->zspage_cachep);
314 }
315 
316 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
317 {
318 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
319 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
320 }
321 
322 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
323 {
324 	kmem_cache_free(pool->handle_cachep, (void *)handle);
325 }
326 
327 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
328 {
329 	return kmem_cache_zalloc(pool->zspage_cachep,
330 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
331 }
332 
333 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
334 {
335 	kmem_cache_free(pool->zspage_cachep, zspage);
336 }
337 
338 /* pool->lock(which owns the handle) synchronizes races */
339 static void record_obj(unsigned long handle, unsigned long obj)
340 {
341 	*(unsigned long *)handle = obj;
342 }
343 
344 /* zpool driver */
345 
346 #ifdef CONFIG_ZPOOL
347 
348 static void *zs_zpool_create(const char *name, gfp_t gfp)
349 {
350 	/*
351 	 * Ignore global gfp flags: zs_malloc() may be invoked from
352 	 * different contexts and its caller must provide a valid
353 	 * gfp mask.
354 	 */
355 	return zs_create_pool(name);
356 }
357 
358 static void zs_zpool_destroy(void *pool)
359 {
360 	zs_destroy_pool(pool);
361 }
362 
363 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
364 			unsigned long *handle)
365 {
366 	*handle = zs_malloc(pool, size, gfp);
367 
368 	if (IS_ERR_VALUE(*handle))
369 		return PTR_ERR((void *)*handle);
370 	return 0;
371 }
372 static void zs_zpool_free(void *pool, unsigned long handle)
373 {
374 	zs_free(pool, handle);
375 }
376 
377 static void *zs_zpool_map(void *pool, unsigned long handle,
378 			enum zpool_mapmode mm)
379 {
380 	enum zs_mapmode zs_mm;
381 
382 	switch (mm) {
383 	case ZPOOL_MM_RO:
384 		zs_mm = ZS_MM_RO;
385 		break;
386 	case ZPOOL_MM_WO:
387 		zs_mm = ZS_MM_WO;
388 		break;
389 	case ZPOOL_MM_RW:
390 	default:
391 		zs_mm = ZS_MM_RW;
392 		break;
393 	}
394 
395 	return zs_map_object(pool, handle, zs_mm);
396 }
397 static void zs_zpool_unmap(void *pool, unsigned long handle)
398 {
399 	zs_unmap_object(pool, handle);
400 }
401 
402 static u64 zs_zpool_total_pages(void *pool)
403 {
404 	return zs_get_total_pages(pool);
405 }
406 
407 static struct zpool_driver zs_zpool_driver = {
408 	.type =			  "zsmalloc",
409 	.owner =		  THIS_MODULE,
410 	.create =		  zs_zpool_create,
411 	.destroy =		  zs_zpool_destroy,
412 	.malloc_support_movable = true,
413 	.malloc =		  zs_zpool_malloc,
414 	.free =			  zs_zpool_free,
415 	.map =			  zs_zpool_map,
416 	.unmap =		  zs_zpool_unmap,
417 	.total_pages =		  zs_zpool_total_pages,
418 };
419 
420 MODULE_ALIAS("zpool-zsmalloc");
421 #endif /* CONFIG_ZPOOL */
422 
423 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
424 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
425 	.lock	= INIT_LOCAL_LOCK(lock),
426 };
427 
428 static __maybe_unused int is_first_page(struct page *page)
429 {
430 	return PagePrivate(page);
431 }
432 
433 /* Protected by pool->lock */
434 static inline int get_zspage_inuse(struct zspage *zspage)
435 {
436 	return zspage->inuse;
437 }
438 
439 
440 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
441 {
442 	zspage->inuse += val;
443 }
444 
445 static inline struct page *get_first_page(struct zspage *zspage)
446 {
447 	struct page *first_page = zspage->first_page;
448 
449 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
450 	return first_page;
451 }
452 
453 static inline unsigned int get_first_obj_offset(struct page *page)
454 {
455 	return page->page_type;
456 }
457 
458 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
459 {
460 	page->page_type = offset;
461 }
462 
463 static inline unsigned int get_freeobj(struct zspage *zspage)
464 {
465 	return zspage->freeobj;
466 }
467 
468 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
469 {
470 	zspage->freeobj = obj;
471 }
472 
473 static struct size_class *zspage_class(struct zs_pool *pool,
474 				       struct zspage *zspage)
475 {
476 	return pool->size_class[zspage->class];
477 }
478 
479 /*
480  * zsmalloc divides the pool into various size classes where each
481  * class maintains a list of zspages where each zspage is divided
482  * into equal sized chunks. Each allocation falls into one of these
483  * classes depending on its size. This function returns index of the
484  * size class which has chunk size big enough to hold the given size.
485  */
486 static int get_size_class_index(int size)
487 {
488 	int idx = 0;
489 
490 	if (likely(size > ZS_MIN_ALLOC_SIZE))
491 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
492 				ZS_SIZE_CLASS_DELTA);
493 
494 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
495 }
496 
497 static inline void class_stat_inc(struct size_class *class,
498 				int type, unsigned long cnt)
499 {
500 	class->stats.objs[type] += cnt;
501 }
502 
503 static inline void class_stat_dec(struct size_class *class,
504 				int type, unsigned long cnt)
505 {
506 	class->stats.objs[type] -= cnt;
507 }
508 
509 static inline unsigned long zs_stat_get(struct size_class *class, int type)
510 {
511 	return class->stats.objs[type];
512 }
513 
514 #ifdef CONFIG_ZSMALLOC_STAT
515 
516 static void __init zs_stat_init(void)
517 {
518 	if (!debugfs_initialized()) {
519 		pr_warn("debugfs not available, stat dir not created\n");
520 		return;
521 	}
522 
523 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
524 }
525 
526 static void __exit zs_stat_exit(void)
527 {
528 	debugfs_remove_recursive(zs_stat_root);
529 }
530 
531 static unsigned long zs_can_compact(struct size_class *class);
532 
533 static int zs_stats_size_show(struct seq_file *s, void *v)
534 {
535 	int i, fg;
536 	struct zs_pool *pool = s->private;
537 	struct size_class *class;
538 	int objs_per_zspage;
539 	unsigned long obj_allocated, obj_used, pages_used, freeable;
540 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
541 	unsigned long total_freeable = 0;
542 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
543 
544 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
545 			"class", "size", "10%", "20%", "30%", "40%",
546 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
547 			"obj_allocated", "obj_used", "pages_used",
548 			"pages_per_zspage", "freeable");
549 
550 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
551 
552 		class = pool->size_class[i];
553 
554 		if (class->index != i)
555 			continue;
556 
557 		spin_lock(&pool->lock);
558 
559 		seq_printf(s, " %5u %5u ", i, class->size);
560 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
561 			inuse_totals[fg] += zs_stat_get(class, fg);
562 			seq_printf(s, "%9lu ", zs_stat_get(class, fg));
563 		}
564 
565 		obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
566 		obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
567 		freeable = zs_can_compact(class);
568 		spin_unlock(&pool->lock);
569 
570 		objs_per_zspage = class->objs_per_zspage;
571 		pages_used = obj_allocated / objs_per_zspage *
572 				class->pages_per_zspage;
573 
574 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
575 			   obj_allocated, obj_used, pages_used,
576 			   class->pages_per_zspage, freeable);
577 
578 		total_objs += obj_allocated;
579 		total_used_objs += obj_used;
580 		total_pages += pages_used;
581 		total_freeable += freeable;
582 	}
583 
584 	seq_puts(s, "\n");
585 	seq_printf(s, " %5s %5s ", "Total", "");
586 
587 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
588 		seq_printf(s, "%9lu ", inuse_totals[fg]);
589 
590 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
591 		   total_objs, total_used_objs, total_pages, "",
592 		   total_freeable);
593 
594 	return 0;
595 }
596 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
597 
598 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
599 {
600 	if (!zs_stat_root) {
601 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
602 		return;
603 	}
604 
605 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
606 
607 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
608 			    &zs_stats_size_fops);
609 }
610 
611 static void zs_pool_stat_destroy(struct zs_pool *pool)
612 {
613 	debugfs_remove_recursive(pool->stat_dentry);
614 }
615 
616 #else /* CONFIG_ZSMALLOC_STAT */
617 static void __init zs_stat_init(void)
618 {
619 }
620 
621 static void __exit zs_stat_exit(void)
622 {
623 }
624 
625 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
626 {
627 }
628 
629 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
630 {
631 }
632 #endif
633 
634 
635 /*
636  * For each size class, zspages are divided into different groups
637  * depending on their usage ratio. This function returns fullness
638  * status of the given page.
639  */
640 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
641 {
642 	int inuse, objs_per_zspage, ratio;
643 
644 	inuse = get_zspage_inuse(zspage);
645 	objs_per_zspage = class->objs_per_zspage;
646 
647 	if (inuse == 0)
648 		return ZS_INUSE_RATIO_0;
649 	if (inuse == objs_per_zspage)
650 		return ZS_INUSE_RATIO_100;
651 
652 	ratio = 100 * inuse / objs_per_zspage;
653 	/*
654 	 * Take integer division into consideration: a page with one inuse
655 	 * object out of 127 possible, will end up having 0 usage ratio,
656 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
657 	 */
658 	return ratio / 10 + 1;
659 }
660 
661 /*
662  * Each size class maintains various freelists and zspages are assigned
663  * to one of these freelists based on the number of live objects they
664  * have. This functions inserts the given zspage into the freelist
665  * identified by <class, fullness_group>.
666  */
667 static void insert_zspage(struct size_class *class,
668 				struct zspage *zspage,
669 				int fullness)
670 {
671 	class_stat_inc(class, fullness, 1);
672 	list_add(&zspage->list, &class->fullness_list[fullness]);
673 	zspage->fullness = fullness;
674 }
675 
676 /*
677  * This function removes the given zspage from the freelist identified
678  * by <class, fullness_group>.
679  */
680 static void remove_zspage(struct size_class *class, struct zspage *zspage)
681 {
682 	int fullness = zspage->fullness;
683 
684 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
685 
686 	list_del_init(&zspage->list);
687 	class_stat_dec(class, fullness, 1);
688 }
689 
690 /*
691  * Each size class maintains zspages in different fullness groups depending
692  * on the number of live objects they contain. When allocating or freeing
693  * objects, the fullness status of the page can change, for instance, from
694  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
695  * checks if such a status change has occurred for the given page and
696  * accordingly moves the page from the list of the old fullness group to that
697  * of the new fullness group.
698  */
699 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
700 {
701 	int newfg;
702 
703 	newfg = get_fullness_group(class, zspage);
704 	if (newfg == zspage->fullness)
705 		goto out;
706 
707 	remove_zspage(class, zspage);
708 	insert_zspage(class, zspage, newfg);
709 out:
710 	return newfg;
711 }
712 
713 static struct zspage *get_zspage(struct page *page)
714 {
715 	struct zspage *zspage = (struct zspage *)page_private(page);
716 
717 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
718 	return zspage;
719 }
720 
721 static struct page *get_next_page(struct page *page)
722 {
723 	struct zspage *zspage = get_zspage(page);
724 
725 	if (unlikely(ZsHugePage(zspage)))
726 		return NULL;
727 
728 	return (struct page *)page->index;
729 }
730 
731 /**
732  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
733  * @obj: the encoded object value
734  * @page: page object resides in zspage
735  * @obj_idx: object index
736  */
737 static void obj_to_location(unsigned long obj, struct page **page,
738 				unsigned int *obj_idx)
739 {
740 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
741 	*obj_idx = (obj & OBJ_INDEX_MASK);
742 }
743 
744 static void obj_to_page(unsigned long obj, struct page **page)
745 {
746 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
747 }
748 
749 /**
750  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
751  * @page: page object resides in zspage
752  * @obj_idx: object index
753  */
754 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
755 {
756 	unsigned long obj;
757 
758 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
759 	obj |= obj_idx & OBJ_INDEX_MASK;
760 
761 	return obj;
762 }
763 
764 static unsigned long handle_to_obj(unsigned long handle)
765 {
766 	return *(unsigned long *)handle;
767 }
768 
769 static inline bool obj_allocated(struct page *page, void *obj,
770 				 unsigned long *phandle)
771 {
772 	unsigned long handle;
773 	struct zspage *zspage = get_zspage(page);
774 
775 	if (unlikely(ZsHugePage(zspage))) {
776 		VM_BUG_ON_PAGE(!is_first_page(page), page);
777 		handle = page->index;
778 	} else
779 		handle = *(unsigned long *)obj;
780 
781 	if (!(handle & OBJ_ALLOCATED_TAG))
782 		return false;
783 
784 	/* Clear all tags before returning the handle */
785 	*phandle = handle & ~OBJ_TAG_MASK;
786 	return true;
787 }
788 
789 static void reset_page(struct page *page)
790 {
791 	__ClearPageMovable(page);
792 	ClearPagePrivate(page);
793 	set_page_private(page, 0);
794 	page_mapcount_reset(page);
795 	page->index = 0;
796 }
797 
798 static int trylock_zspage(struct zspage *zspage)
799 {
800 	struct page *cursor, *fail;
801 
802 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
803 					get_next_page(cursor)) {
804 		if (!trylock_page(cursor)) {
805 			fail = cursor;
806 			goto unlock;
807 		}
808 	}
809 
810 	return 1;
811 unlock:
812 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
813 					get_next_page(cursor))
814 		unlock_page(cursor);
815 
816 	return 0;
817 }
818 
819 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
820 				struct zspage *zspage)
821 {
822 	struct page *page, *next;
823 
824 	assert_spin_locked(&pool->lock);
825 
826 	VM_BUG_ON(get_zspage_inuse(zspage));
827 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
828 
829 	next = page = get_first_page(zspage);
830 	do {
831 		VM_BUG_ON_PAGE(!PageLocked(page), page);
832 		next = get_next_page(page);
833 		reset_page(page);
834 		unlock_page(page);
835 		dec_zone_page_state(page, NR_ZSPAGES);
836 		put_page(page);
837 		page = next;
838 	} while (page != NULL);
839 
840 	cache_free_zspage(pool, zspage);
841 
842 	class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
843 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
844 }
845 
846 static void free_zspage(struct zs_pool *pool, struct size_class *class,
847 				struct zspage *zspage)
848 {
849 	VM_BUG_ON(get_zspage_inuse(zspage));
850 	VM_BUG_ON(list_empty(&zspage->list));
851 
852 	/*
853 	 * Since zs_free couldn't be sleepable, this function cannot call
854 	 * lock_page. The page locks trylock_zspage got will be released
855 	 * by __free_zspage.
856 	 */
857 	if (!trylock_zspage(zspage)) {
858 		kick_deferred_free(pool);
859 		return;
860 	}
861 
862 	remove_zspage(class, zspage);
863 	__free_zspage(pool, class, zspage);
864 }
865 
866 /* Initialize a newly allocated zspage */
867 static void init_zspage(struct size_class *class, struct zspage *zspage)
868 {
869 	unsigned int freeobj = 1;
870 	unsigned long off = 0;
871 	struct page *page = get_first_page(zspage);
872 
873 	while (page) {
874 		struct page *next_page;
875 		struct link_free *link;
876 		void *vaddr;
877 
878 		set_first_obj_offset(page, off);
879 
880 		vaddr = kmap_atomic(page);
881 		link = (struct link_free *)vaddr + off / sizeof(*link);
882 
883 		while ((off += class->size) < PAGE_SIZE) {
884 			link->next = freeobj++ << OBJ_TAG_BITS;
885 			link += class->size / sizeof(*link);
886 		}
887 
888 		/*
889 		 * We now come to the last (full or partial) object on this
890 		 * page, which must point to the first object on the next
891 		 * page (if present)
892 		 */
893 		next_page = get_next_page(page);
894 		if (next_page) {
895 			link->next = freeobj++ << OBJ_TAG_BITS;
896 		} else {
897 			/*
898 			 * Reset OBJ_TAG_BITS bit to last link to tell
899 			 * whether it's allocated object or not.
900 			 */
901 			link->next = -1UL << OBJ_TAG_BITS;
902 		}
903 		kunmap_atomic(vaddr);
904 		page = next_page;
905 		off %= PAGE_SIZE;
906 	}
907 
908 	set_freeobj(zspage, 0);
909 }
910 
911 static void create_page_chain(struct size_class *class, struct zspage *zspage,
912 				struct page *pages[])
913 {
914 	int i;
915 	struct page *page;
916 	struct page *prev_page = NULL;
917 	int nr_pages = class->pages_per_zspage;
918 
919 	/*
920 	 * Allocate individual pages and link them together as:
921 	 * 1. all pages are linked together using page->index
922 	 * 2. each sub-page point to zspage using page->private
923 	 *
924 	 * we set PG_private to identify the first page (i.e. no other sub-page
925 	 * has this flag set).
926 	 */
927 	for (i = 0; i < nr_pages; i++) {
928 		page = pages[i];
929 		set_page_private(page, (unsigned long)zspage);
930 		page->index = 0;
931 		if (i == 0) {
932 			zspage->first_page = page;
933 			SetPagePrivate(page);
934 			if (unlikely(class->objs_per_zspage == 1 &&
935 					class->pages_per_zspage == 1))
936 				SetZsHugePage(zspage);
937 		} else {
938 			prev_page->index = (unsigned long)page;
939 		}
940 		prev_page = page;
941 	}
942 }
943 
944 /*
945  * Allocate a zspage for the given size class
946  */
947 static struct zspage *alloc_zspage(struct zs_pool *pool,
948 					struct size_class *class,
949 					gfp_t gfp)
950 {
951 	int i;
952 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
953 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
954 
955 	if (!zspage)
956 		return NULL;
957 
958 	zspage->magic = ZSPAGE_MAGIC;
959 	migrate_lock_init(zspage);
960 
961 	for (i = 0; i < class->pages_per_zspage; i++) {
962 		struct page *page;
963 
964 		page = alloc_page(gfp);
965 		if (!page) {
966 			while (--i >= 0) {
967 				dec_zone_page_state(pages[i], NR_ZSPAGES);
968 				__free_page(pages[i]);
969 			}
970 			cache_free_zspage(pool, zspage);
971 			return NULL;
972 		}
973 
974 		inc_zone_page_state(page, NR_ZSPAGES);
975 		pages[i] = page;
976 	}
977 
978 	create_page_chain(class, zspage, pages);
979 	init_zspage(class, zspage);
980 	zspage->pool = pool;
981 	zspage->class = class->index;
982 
983 	return zspage;
984 }
985 
986 static struct zspage *find_get_zspage(struct size_class *class)
987 {
988 	int i;
989 	struct zspage *zspage;
990 
991 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
992 		zspage = list_first_entry_or_null(&class->fullness_list[i],
993 						  struct zspage, list);
994 		if (zspage)
995 			break;
996 	}
997 
998 	return zspage;
999 }
1000 
1001 static inline int __zs_cpu_up(struct mapping_area *area)
1002 {
1003 	/*
1004 	 * Make sure we don't leak memory if a cpu UP notification
1005 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1006 	 */
1007 	if (area->vm_buf)
1008 		return 0;
1009 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1010 	if (!area->vm_buf)
1011 		return -ENOMEM;
1012 	return 0;
1013 }
1014 
1015 static inline void __zs_cpu_down(struct mapping_area *area)
1016 {
1017 	kfree(area->vm_buf);
1018 	area->vm_buf = NULL;
1019 }
1020 
1021 static void *__zs_map_object(struct mapping_area *area,
1022 			struct page *pages[2], int off, int size)
1023 {
1024 	int sizes[2];
1025 	void *addr;
1026 	char *buf = area->vm_buf;
1027 
1028 	/* disable page faults to match kmap_atomic() return conditions */
1029 	pagefault_disable();
1030 
1031 	/* no read fastpath */
1032 	if (area->vm_mm == ZS_MM_WO)
1033 		goto out;
1034 
1035 	sizes[0] = PAGE_SIZE - off;
1036 	sizes[1] = size - sizes[0];
1037 
1038 	/* copy object to per-cpu buffer */
1039 	addr = kmap_atomic(pages[0]);
1040 	memcpy(buf, addr + off, sizes[0]);
1041 	kunmap_atomic(addr);
1042 	addr = kmap_atomic(pages[1]);
1043 	memcpy(buf + sizes[0], addr, sizes[1]);
1044 	kunmap_atomic(addr);
1045 out:
1046 	return area->vm_buf;
1047 }
1048 
1049 static void __zs_unmap_object(struct mapping_area *area,
1050 			struct page *pages[2], int off, int size)
1051 {
1052 	int sizes[2];
1053 	void *addr;
1054 	char *buf;
1055 
1056 	/* no write fastpath */
1057 	if (area->vm_mm == ZS_MM_RO)
1058 		goto out;
1059 
1060 	buf = area->vm_buf;
1061 	buf = buf + ZS_HANDLE_SIZE;
1062 	size -= ZS_HANDLE_SIZE;
1063 	off += ZS_HANDLE_SIZE;
1064 
1065 	sizes[0] = PAGE_SIZE - off;
1066 	sizes[1] = size - sizes[0];
1067 
1068 	/* copy per-cpu buffer to object */
1069 	addr = kmap_atomic(pages[0]);
1070 	memcpy(addr + off, buf, sizes[0]);
1071 	kunmap_atomic(addr);
1072 	addr = kmap_atomic(pages[1]);
1073 	memcpy(addr, buf + sizes[0], sizes[1]);
1074 	kunmap_atomic(addr);
1075 
1076 out:
1077 	/* enable page faults to match kunmap_atomic() return conditions */
1078 	pagefault_enable();
1079 }
1080 
1081 static int zs_cpu_prepare(unsigned int cpu)
1082 {
1083 	struct mapping_area *area;
1084 
1085 	area = &per_cpu(zs_map_area, cpu);
1086 	return __zs_cpu_up(area);
1087 }
1088 
1089 static int zs_cpu_dead(unsigned int cpu)
1090 {
1091 	struct mapping_area *area;
1092 
1093 	area = &per_cpu(zs_map_area, cpu);
1094 	__zs_cpu_down(area);
1095 	return 0;
1096 }
1097 
1098 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1099 					int objs_per_zspage)
1100 {
1101 	if (prev->pages_per_zspage == pages_per_zspage &&
1102 		prev->objs_per_zspage == objs_per_zspage)
1103 		return true;
1104 
1105 	return false;
1106 }
1107 
1108 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1109 {
1110 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1111 }
1112 
1113 static bool zspage_empty(struct zspage *zspage)
1114 {
1115 	return get_zspage_inuse(zspage) == 0;
1116 }
1117 
1118 /**
1119  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1120  * that hold objects of the provided size.
1121  * @pool: zsmalloc pool to use
1122  * @size: object size
1123  *
1124  * Context: Any context.
1125  *
1126  * Return: the index of the zsmalloc &size_class that hold objects of the
1127  * provided size.
1128  */
1129 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1130 {
1131 	struct size_class *class;
1132 
1133 	class = pool->size_class[get_size_class_index(size)];
1134 
1135 	return class->index;
1136 }
1137 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1138 
1139 unsigned long zs_get_total_pages(struct zs_pool *pool)
1140 {
1141 	return atomic_long_read(&pool->pages_allocated);
1142 }
1143 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1144 
1145 /**
1146  * zs_map_object - get address of allocated object from handle.
1147  * @pool: pool from which the object was allocated
1148  * @handle: handle returned from zs_malloc
1149  * @mm: mapping mode to use
1150  *
1151  * Before using an object allocated from zs_malloc, it must be mapped using
1152  * this function. When done with the object, it must be unmapped using
1153  * zs_unmap_object.
1154  *
1155  * Only one object can be mapped per cpu at a time. There is no protection
1156  * against nested mappings.
1157  *
1158  * This function returns with preemption and page faults disabled.
1159  */
1160 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1161 			enum zs_mapmode mm)
1162 {
1163 	struct zspage *zspage;
1164 	struct page *page;
1165 	unsigned long obj, off;
1166 	unsigned int obj_idx;
1167 
1168 	struct size_class *class;
1169 	struct mapping_area *area;
1170 	struct page *pages[2];
1171 	void *ret;
1172 
1173 	/*
1174 	 * Because we use per-cpu mapping areas shared among the
1175 	 * pools/users, we can't allow mapping in interrupt context
1176 	 * because it can corrupt another users mappings.
1177 	 */
1178 	BUG_ON(in_interrupt());
1179 
1180 	/* It guarantees it can get zspage from handle safely */
1181 	spin_lock(&pool->lock);
1182 	obj = handle_to_obj(handle);
1183 	obj_to_location(obj, &page, &obj_idx);
1184 	zspage = get_zspage(page);
1185 
1186 	/*
1187 	 * migration cannot move any zpages in this zspage. Here, pool->lock
1188 	 * is too heavy since callers would take some time until they calls
1189 	 * zs_unmap_object API so delegate the locking from class to zspage
1190 	 * which is smaller granularity.
1191 	 */
1192 	migrate_read_lock(zspage);
1193 	spin_unlock(&pool->lock);
1194 
1195 	class = zspage_class(pool, zspage);
1196 	off = offset_in_page(class->size * obj_idx);
1197 
1198 	local_lock(&zs_map_area.lock);
1199 	area = this_cpu_ptr(&zs_map_area);
1200 	area->vm_mm = mm;
1201 	if (off + class->size <= PAGE_SIZE) {
1202 		/* this object is contained entirely within a page */
1203 		area->vm_addr = kmap_atomic(page);
1204 		ret = area->vm_addr + off;
1205 		goto out;
1206 	}
1207 
1208 	/* this object spans two pages */
1209 	pages[0] = page;
1210 	pages[1] = get_next_page(page);
1211 	BUG_ON(!pages[1]);
1212 
1213 	ret = __zs_map_object(area, pages, off, class->size);
1214 out:
1215 	if (likely(!ZsHugePage(zspage)))
1216 		ret += ZS_HANDLE_SIZE;
1217 
1218 	return ret;
1219 }
1220 EXPORT_SYMBOL_GPL(zs_map_object);
1221 
1222 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1223 {
1224 	struct zspage *zspage;
1225 	struct page *page;
1226 	unsigned long obj, off;
1227 	unsigned int obj_idx;
1228 
1229 	struct size_class *class;
1230 	struct mapping_area *area;
1231 
1232 	obj = handle_to_obj(handle);
1233 	obj_to_location(obj, &page, &obj_idx);
1234 	zspage = get_zspage(page);
1235 	class = zspage_class(pool, zspage);
1236 	off = offset_in_page(class->size * obj_idx);
1237 
1238 	area = this_cpu_ptr(&zs_map_area);
1239 	if (off + class->size <= PAGE_SIZE)
1240 		kunmap_atomic(area->vm_addr);
1241 	else {
1242 		struct page *pages[2];
1243 
1244 		pages[0] = page;
1245 		pages[1] = get_next_page(page);
1246 		BUG_ON(!pages[1]);
1247 
1248 		__zs_unmap_object(area, pages, off, class->size);
1249 	}
1250 	local_unlock(&zs_map_area.lock);
1251 
1252 	migrate_read_unlock(zspage);
1253 }
1254 EXPORT_SYMBOL_GPL(zs_unmap_object);
1255 
1256 /**
1257  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1258  *                        zsmalloc &size_class.
1259  * @pool: zsmalloc pool to use
1260  *
1261  * The function returns the size of the first huge class - any object of equal
1262  * or bigger size will be stored in zspage consisting of a single physical
1263  * page.
1264  *
1265  * Context: Any context.
1266  *
1267  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1268  */
1269 size_t zs_huge_class_size(struct zs_pool *pool)
1270 {
1271 	return huge_class_size;
1272 }
1273 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1274 
1275 static unsigned long obj_malloc(struct zs_pool *pool,
1276 				struct zspage *zspage, unsigned long handle)
1277 {
1278 	int i, nr_page, offset;
1279 	unsigned long obj;
1280 	struct link_free *link;
1281 	struct size_class *class;
1282 
1283 	struct page *m_page;
1284 	unsigned long m_offset;
1285 	void *vaddr;
1286 
1287 	class = pool->size_class[zspage->class];
1288 	handle |= OBJ_ALLOCATED_TAG;
1289 	obj = get_freeobj(zspage);
1290 
1291 	offset = obj * class->size;
1292 	nr_page = offset >> PAGE_SHIFT;
1293 	m_offset = offset_in_page(offset);
1294 	m_page = get_first_page(zspage);
1295 
1296 	for (i = 0; i < nr_page; i++)
1297 		m_page = get_next_page(m_page);
1298 
1299 	vaddr = kmap_atomic(m_page);
1300 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1301 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1302 	if (likely(!ZsHugePage(zspage)))
1303 		/* record handle in the header of allocated chunk */
1304 		link->handle = handle;
1305 	else
1306 		/* record handle to page->index */
1307 		zspage->first_page->index = handle;
1308 
1309 	kunmap_atomic(vaddr);
1310 	mod_zspage_inuse(zspage, 1);
1311 
1312 	obj = location_to_obj(m_page, obj);
1313 
1314 	return obj;
1315 }
1316 
1317 
1318 /**
1319  * zs_malloc - Allocate block of given size from pool.
1320  * @pool: pool to allocate from
1321  * @size: size of block to allocate
1322  * @gfp: gfp flags when allocating object
1323  *
1324  * On success, handle to the allocated object is returned,
1325  * otherwise an ERR_PTR().
1326  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1327  */
1328 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1329 {
1330 	unsigned long handle, obj;
1331 	struct size_class *class;
1332 	int newfg;
1333 	struct zspage *zspage;
1334 
1335 	if (unlikely(!size))
1336 		return (unsigned long)ERR_PTR(-EINVAL);
1337 
1338 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1339 		return (unsigned long)ERR_PTR(-ENOSPC);
1340 
1341 	handle = cache_alloc_handle(pool, gfp);
1342 	if (!handle)
1343 		return (unsigned long)ERR_PTR(-ENOMEM);
1344 
1345 	/* extra space in chunk to keep the handle */
1346 	size += ZS_HANDLE_SIZE;
1347 	class = pool->size_class[get_size_class_index(size)];
1348 
1349 	/* pool->lock effectively protects the zpage migration */
1350 	spin_lock(&pool->lock);
1351 	zspage = find_get_zspage(class);
1352 	if (likely(zspage)) {
1353 		obj = obj_malloc(pool, zspage, handle);
1354 		/* Now move the zspage to another fullness group, if required */
1355 		fix_fullness_group(class, zspage);
1356 		record_obj(handle, obj);
1357 		class_stat_inc(class, ZS_OBJS_INUSE, 1);
1358 
1359 		goto out;
1360 	}
1361 
1362 	spin_unlock(&pool->lock);
1363 
1364 	zspage = alloc_zspage(pool, class, gfp);
1365 	if (!zspage) {
1366 		cache_free_handle(pool, handle);
1367 		return (unsigned long)ERR_PTR(-ENOMEM);
1368 	}
1369 
1370 	spin_lock(&pool->lock);
1371 	obj = obj_malloc(pool, zspage, handle);
1372 	newfg = get_fullness_group(class, zspage);
1373 	insert_zspage(class, zspage, newfg);
1374 	record_obj(handle, obj);
1375 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1376 	class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1377 	class_stat_inc(class, ZS_OBJS_INUSE, 1);
1378 
1379 	/* We completely set up zspage so mark them as movable */
1380 	SetZsPageMovable(pool, zspage);
1381 out:
1382 	spin_unlock(&pool->lock);
1383 
1384 	return handle;
1385 }
1386 EXPORT_SYMBOL_GPL(zs_malloc);
1387 
1388 static void obj_free(int class_size, unsigned long obj)
1389 {
1390 	struct link_free *link;
1391 	struct zspage *zspage;
1392 	struct page *f_page;
1393 	unsigned long f_offset;
1394 	unsigned int f_objidx;
1395 	void *vaddr;
1396 
1397 	obj_to_location(obj, &f_page, &f_objidx);
1398 	f_offset = offset_in_page(class_size * f_objidx);
1399 	zspage = get_zspage(f_page);
1400 
1401 	vaddr = kmap_atomic(f_page);
1402 	link = (struct link_free *)(vaddr + f_offset);
1403 
1404 	/* Insert this object in containing zspage's freelist */
1405 	if (likely(!ZsHugePage(zspage)))
1406 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1407 	else
1408 		f_page->index = 0;
1409 	set_freeobj(zspage, f_objidx);
1410 
1411 	kunmap_atomic(vaddr);
1412 	mod_zspage_inuse(zspage, -1);
1413 }
1414 
1415 void zs_free(struct zs_pool *pool, unsigned long handle)
1416 {
1417 	struct zspage *zspage;
1418 	struct page *f_page;
1419 	unsigned long obj;
1420 	struct size_class *class;
1421 	int fullness;
1422 
1423 	if (IS_ERR_OR_NULL((void *)handle))
1424 		return;
1425 
1426 	/*
1427 	 * The pool->lock protects the race with zpage's migration
1428 	 * so it's safe to get the page from handle.
1429 	 */
1430 	spin_lock(&pool->lock);
1431 	obj = handle_to_obj(handle);
1432 	obj_to_page(obj, &f_page);
1433 	zspage = get_zspage(f_page);
1434 	class = zspage_class(pool, zspage);
1435 
1436 	class_stat_dec(class, ZS_OBJS_INUSE, 1);
1437 	obj_free(class->size, obj);
1438 
1439 	fullness = fix_fullness_group(class, zspage);
1440 	if (fullness == ZS_INUSE_RATIO_0)
1441 		free_zspage(pool, class, zspage);
1442 
1443 	spin_unlock(&pool->lock);
1444 	cache_free_handle(pool, handle);
1445 }
1446 EXPORT_SYMBOL_GPL(zs_free);
1447 
1448 static void zs_object_copy(struct size_class *class, unsigned long dst,
1449 				unsigned long src)
1450 {
1451 	struct page *s_page, *d_page;
1452 	unsigned int s_objidx, d_objidx;
1453 	unsigned long s_off, d_off;
1454 	void *s_addr, *d_addr;
1455 	int s_size, d_size, size;
1456 	int written = 0;
1457 
1458 	s_size = d_size = class->size;
1459 
1460 	obj_to_location(src, &s_page, &s_objidx);
1461 	obj_to_location(dst, &d_page, &d_objidx);
1462 
1463 	s_off = offset_in_page(class->size * s_objidx);
1464 	d_off = offset_in_page(class->size * d_objidx);
1465 
1466 	if (s_off + class->size > PAGE_SIZE)
1467 		s_size = PAGE_SIZE - s_off;
1468 
1469 	if (d_off + class->size > PAGE_SIZE)
1470 		d_size = PAGE_SIZE - d_off;
1471 
1472 	s_addr = kmap_atomic(s_page);
1473 	d_addr = kmap_atomic(d_page);
1474 
1475 	while (1) {
1476 		size = min(s_size, d_size);
1477 		memcpy(d_addr + d_off, s_addr + s_off, size);
1478 		written += size;
1479 
1480 		if (written == class->size)
1481 			break;
1482 
1483 		s_off += size;
1484 		s_size -= size;
1485 		d_off += size;
1486 		d_size -= size;
1487 
1488 		/*
1489 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1490 		 * calls must occurs in reverse order of calls to kmap_atomic().
1491 		 * So, to call kunmap_atomic(s_addr) we should first call
1492 		 * kunmap_atomic(d_addr). For more details see
1493 		 * Documentation/mm/highmem.rst.
1494 		 */
1495 		if (s_off >= PAGE_SIZE) {
1496 			kunmap_atomic(d_addr);
1497 			kunmap_atomic(s_addr);
1498 			s_page = get_next_page(s_page);
1499 			s_addr = kmap_atomic(s_page);
1500 			d_addr = kmap_atomic(d_page);
1501 			s_size = class->size - written;
1502 			s_off = 0;
1503 		}
1504 
1505 		if (d_off >= PAGE_SIZE) {
1506 			kunmap_atomic(d_addr);
1507 			d_page = get_next_page(d_page);
1508 			d_addr = kmap_atomic(d_page);
1509 			d_size = class->size - written;
1510 			d_off = 0;
1511 		}
1512 	}
1513 
1514 	kunmap_atomic(d_addr);
1515 	kunmap_atomic(s_addr);
1516 }
1517 
1518 /*
1519  * Find alloced object in zspage from index object and
1520  * return handle.
1521  */
1522 static unsigned long find_alloced_obj(struct size_class *class,
1523 				      struct page *page, int *obj_idx)
1524 {
1525 	unsigned int offset;
1526 	int index = *obj_idx;
1527 	unsigned long handle = 0;
1528 	void *addr = kmap_atomic(page);
1529 
1530 	offset = get_first_obj_offset(page);
1531 	offset += class->size * index;
1532 
1533 	while (offset < PAGE_SIZE) {
1534 		if (obj_allocated(page, addr + offset, &handle))
1535 			break;
1536 
1537 		offset += class->size;
1538 		index++;
1539 	}
1540 
1541 	kunmap_atomic(addr);
1542 
1543 	*obj_idx = index;
1544 
1545 	return handle;
1546 }
1547 
1548 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1549 			   struct zspage *dst_zspage)
1550 {
1551 	unsigned long used_obj, free_obj;
1552 	unsigned long handle;
1553 	int obj_idx = 0;
1554 	struct page *s_page = get_first_page(src_zspage);
1555 	struct size_class *class = pool->size_class[src_zspage->class];
1556 
1557 	while (1) {
1558 		handle = find_alloced_obj(class, s_page, &obj_idx);
1559 		if (!handle) {
1560 			s_page = get_next_page(s_page);
1561 			if (!s_page)
1562 				break;
1563 			obj_idx = 0;
1564 			continue;
1565 		}
1566 
1567 		used_obj = handle_to_obj(handle);
1568 		free_obj = obj_malloc(pool, dst_zspage, handle);
1569 		zs_object_copy(class, free_obj, used_obj);
1570 		obj_idx++;
1571 		record_obj(handle, free_obj);
1572 		obj_free(class->size, used_obj);
1573 
1574 		/* Stop if there is no more space */
1575 		if (zspage_full(class, dst_zspage))
1576 			break;
1577 
1578 		/* Stop if there are no more objects to migrate */
1579 		if (zspage_empty(src_zspage))
1580 			break;
1581 	}
1582 }
1583 
1584 static struct zspage *isolate_src_zspage(struct size_class *class)
1585 {
1586 	struct zspage *zspage;
1587 	int fg;
1588 
1589 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1590 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1591 						  struct zspage, list);
1592 		if (zspage) {
1593 			remove_zspage(class, zspage);
1594 			return zspage;
1595 		}
1596 	}
1597 
1598 	return zspage;
1599 }
1600 
1601 static struct zspage *isolate_dst_zspage(struct size_class *class)
1602 {
1603 	struct zspage *zspage;
1604 	int fg;
1605 
1606 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1607 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1608 						  struct zspage, list);
1609 		if (zspage) {
1610 			remove_zspage(class, zspage);
1611 			return zspage;
1612 		}
1613 	}
1614 
1615 	return zspage;
1616 }
1617 
1618 /*
1619  * putback_zspage - add @zspage into right class's fullness list
1620  * @class: destination class
1621  * @zspage: target page
1622  *
1623  * Return @zspage's fullness status
1624  */
1625 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1626 {
1627 	int fullness;
1628 
1629 	fullness = get_fullness_group(class, zspage);
1630 	insert_zspage(class, zspage, fullness);
1631 
1632 	return fullness;
1633 }
1634 
1635 #ifdef CONFIG_COMPACTION
1636 /*
1637  * To prevent zspage destroy during migration, zspage freeing should
1638  * hold locks of all pages in the zspage.
1639  */
1640 static void lock_zspage(struct zspage *zspage)
1641 {
1642 	struct page *curr_page, *page;
1643 
1644 	/*
1645 	 * Pages we haven't locked yet can be migrated off the list while we're
1646 	 * trying to lock them, so we need to be careful and only attempt to
1647 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1648 	 * may no longer belong to the zspage. This means that we may wait for
1649 	 * the wrong page to unlock, so we must take a reference to the page
1650 	 * prior to waiting for it to unlock outside migrate_read_lock().
1651 	 */
1652 	while (1) {
1653 		migrate_read_lock(zspage);
1654 		page = get_first_page(zspage);
1655 		if (trylock_page(page))
1656 			break;
1657 		get_page(page);
1658 		migrate_read_unlock(zspage);
1659 		wait_on_page_locked(page);
1660 		put_page(page);
1661 	}
1662 
1663 	curr_page = page;
1664 	while ((page = get_next_page(curr_page))) {
1665 		if (trylock_page(page)) {
1666 			curr_page = page;
1667 		} else {
1668 			get_page(page);
1669 			migrate_read_unlock(zspage);
1670 			wait_on_page_locked(page);
1671 			put_page(page);
1672 			migrate_read_lock(zspage);
1673 		}
1674 	}
1675 	migrate_read_unlock(zspage);
1676 }
1677 #endif /* CONFIG_COMPACTION */
1678 
1679 static void migrate_lock_init(struct zspage *zspage)
1680 {
1681 	rwlock_init(&zspage->lock);
1682 }
1683 
1684 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1685 {
1686 	read_lock(&zspage->lock);
1687 }
1688 
1689 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1690 {
1691 	read_unlock(&zspage->lock);
1692 }
1693 
1694 static void migrate_write_lock(struct zspage *zspage)
1695 {
1696 	write_lock(&zspage->lock);
1697 }
1698 
1699 static void migrate_write_unlock(struct zspage *zspage)
1700 {
1701 	write_unlock(&zspage->lock);
1702 }
1703 
1704 #ifdef CONFIG_COMPACTION
1705 
1706 static const struct movable_operations zsmalloc_mops;
1707 
1708 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1709 				struct page *newpage, struct page *oldpage)
1710 {
1711 	struct page *page;
1712 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1713 	int idx = 0;
1714 
1715 	page = get_first_page(zspage);
1716 	do {
1717 		if (page == oldpage)
1718 			pages[idx] = newpage;
1719 		else
1720 			pages[idx] = page;
1721 		idx++;
1722 	} while ((page = get_next_page(page)) != NULL);
1723 
1724 	create_page_chain(class, zspage, pages);
1725 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1726 	if (unlikely(ZsHugePage(zspage)))
1727 		newpage->index = oldpage->index;
1728 	__SetPageMovable(newpage, &zsmalloc_mops);
1729 }
1730 
1731 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1732 {
1733 	/*
1734 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1735 	 * lock_zspage in free_zspage.
1736 	 */
1737 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1738 
1739 	return true;
1740 }
1741 
1742 static int zs_page_migrate(struct page *newpage, struct page *page,
1743 		enum migrate_mode mode)
1744 {
1745 	struct zs_pool *pool;
1746 	struct size_class *class;
1747 	struct zspage *zspage;
1748 	struct page *dummy;
1749 	void *s_addr, *d_addr, *addr;
1750 	unsigned int offset;
1751 	unsigned long handle;
1752 	unsigned long old_obj, new_obj;
1753 	unsigned int obj_idx;
1754 
1755 	/*
1756 	 * We cannot support the _NO_COPY case here, because copy needs to
1757 	 * happen under the zs lock, which does not work with
1758 	 * MIGRATE_SYNC_NO_COPY workflow.
1759 	 */
1760 	if (mode == MIGRATE_SYNC_NO_COPY)
1761 		return -EINVAL;
1762 
1763 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1764 
1765 	/* The page is locked, so this pointer must remain valid */
1766 	zspage = get_zspage(page);
1767 	pool = zspage->pool;
1768 
1769 	/*
1770 	 * The pool's lock protects the race between zpage migration
1771 	 * and zs_free.
1772 	 */
1773 	spin_lock(&pool->lock);
1774 	class = zspage_class(pool, zspage);
1775 
1776 	/* the migrate_write_lock protects zpage access via zs_map_object */
1777 	migrate_write_lock(zspage);
1778 
1779 	offset = get_first_obj_offset(page);
1780 	s_addr = kmap_atomic(page);
1781 
1782 	/*
1783 	 * Here, any user cannot access all objects in the zspage so let's move.
1784 	 */
1785 	d_addr = kmap_atomic(newpage);
1786 	copy_page(d_addr, s_addr);
1787 	kunmap_atomic(d_addr);
1788 
1789 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1790 					addr += class->size) {
1791 		if (obj_allocated(page, addr, &handle)) {
1792 
1793 			old_obj = handle_to_obj(handle);
1794 			obj_to_location(old_obj, &dummy, &obj_idx);
1795 			new_obj = (unsigned long)location_to_obj(newpage,
1796 								obj_idx);
1797 			record_obj(handle, new_obj);
1798 		}
1799 	}
1800 	kunmap_atomic(s_addr);
1801 
1802 	replace_sub_page(class, zspage, newpage, page);
1803 	/*
1804 	 * Since we complete the data copy and set up new zspage structure,
1805 	 * it's okay to release the pool's lock.
1806 	 */
1807 	spin_unlock(&pool->lock);
1808 	migrate_write_unlock(zspage);
1809 
1810 	get_page(newpage);
1811 	if (page_zone(newpage) != page_zone(page)) {
1812 		dec_zone_page_state(page, NR_ZSPAGES);
1813 		inc_zone_page_state(newpage, NR_ZSPAGES);
1814 	}
1815 
1816 	reset_page(page);
1817 	put_page(page);
1818 
1819 	return MIGRATEPAGE_SUCCESS;
1820 }
1821 
1822 static void zs_page_putback(struct page *page)
1823 {
1824 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1825 }
1826 
1827 static const struct movable_operations zsmalloc_mops = {
1828 	.isolate_page = zs_page_isolate,
1829 	.migrate_page = zs_page_migrate,
1830 	.putback_page = zs_page_putback,
1831 };
1832 
1833 /*
1834  * Caller should hold page_lock of all pages in the zspage
1835  * In here, we cannot use zspage meta data.
1836  */
1837 static void async_free_zspage(struct work_struct *work)
1838 {
1839 	int i;
1840 	struct size_class *class;
1841 	struct zspage *zspage, *tmp;
1842 	LIST_HEAD(free_pages);
1843 	struct zs_pool *pool = container_of(work, struct zs_pool,
1844 					free_work);
1845 
1846 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1847 		class = pool->size_class[i];
1848 		if (class->index != i)
1849 			continue;
1850 
1851 		spin_lock(&pool->lock);
1852 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1853 				 &free_pages);
1854 		spin_unlock(&pool->lock);
1855 	}
1856 
1857 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1858 		list_del(&zspage->list);
1859 		lock_zspage(zspage);
1860 
1861 		spin_lock(&pool->lock);
1862 		class = zspage_class(pool, zspage);
1863 		__free_zspage(pool, class, zspage);
1864 		spin_unlock(&pool->lock);
1865 	}
1866 };
1867 
1868 static void kick_deferred_free(struct zs_pool *pool)
1869 {
1870 	schedule_work(&pool->free_work);
1871 }
1872 
1873 static void zs_flush_migration(struct zs_pool *pool)
1874 {
1875 	flush_work(&pool->free_work);
1876 }
1877 
1878 static void init_deferred_free(struct zs_pool *pool)
1879 {
1880 	INIT_WORK(&pool->free_work, async_free_zspage);
1881 }
1882 
1883 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1884 {
1885 	struct page *page = get_first_page(zspage);
1886 
1887 	do {
1888 		WARN_ON(!trylock_page(page));
1889 		__SetPageMovable(page, &zsmalloc_mops);
1890 		unlock_page(page);
1891 	} while ((page = get_next_page(page)) != NULL);
1892 }
1893 #else
1894 static inline void zs_flush_migration(struct zs_pool *pool) { }
1895 #endif
1896 
1897 /*
1898  *
1899  * Based on the number of unused allocated objects calculate
1900  * and return the number of pages that we can free.
1901  */
1902 static unsigned long zs_can_compact(struct size_class *class)
1903 {
1904 	unsigned long obj_wasted;
1905 	unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
1906 	unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1907 
1908 	if (obj_allocated <= obj_used)
1909 		return 0;
1910 
1911 	obj_wasted = obj_allocated - obj_used;
1912 	obj_wasted /= class->objs_per_zspage;
1913 
1914 	return obj_wasted * class->pages_per_zspage;
1915 }
1916 
1917 static unsigned long __zs_compact(struct zs_pool *pool,
1918 				  struct size_class *class)
1919 {
1920 	struct zspage *src_zspage = NULL;
1921 	struct zspage *dst_zspage = NULL;
1922 	unsigned long pages_freed = 0;
1923 
1924 	/*
1925 	 * protect the race between zpage migration and zs_free
1926 	 * as well as zpage allocation/free
1927 	 */
1928 	spin_lock(&pool->lock);
1929 	while (zs_can_compact(class)) {
1930 		int fg;
1931 
1932 		if (!dst_zspage) {
1933 			dst_zspage = isolate_dst_zspage(class);
1934 			if (!dst_zspage)
1935 				break;
1936 		}
1937 
1938 		src_zspage = isolate_src_zspage(class);
1939 		if (!src_zspage)
1940 			break;
1941 
1942 		migrate_write_lock(src_zspage);
1943 		migrate_zspage(pool, src_zspage, dst_zspage);
1944 		migrate_write_unlock(src_zspage);
1945 
1946 		fg = putback_zspage(class, src_zspage);
1947 		if (fg == ZS_INUSE_RATIO_0) {
1948 			free_zspage(pool, class, src_zspage);
1949 			pages_freed += class->pages_per_zspage;
1950 		}
1951 		src_zspage = NULL;
1952 
1953 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1954 		    || spin_is_contended(&pool->lock)) {
1955 			putback_zspage(class, dst_zspage);
1956 			dst_zspage = NULL;
1957 
1958 			spin_unlock(&pool->lock);
1959 			cond_resched();
1960 			spin_lock(&pool->lock);
1961 		}
1962 	}
1963 
1964 	if (src_zspage)
1965 		putback_zspage(class, src_zspage);
1966 
1967 	if (dst_zspage)
1968 		putback_zspage(class, dst_zspage);
1969 
1970 	spin_unlock(&pool->lock);
1971 
1972 	return pages_freed;
1973 }
1974 
1975 unsigned long zs_compact(struct zs_pool *pool)
1976 {
1977 	int i;
1978 	struct size_class *class;
1979 	unsigned long pages_freed = 0;
1980 
1981 	/*
1982 	 * Pool compaction is performed under pool->lock so it is basically
1983 	 * single-threaded. Having more than one thread in __zs_compact()
1984 	 * will increase pool->lock contention, which will impact other
1985 	 * zsmalloc operations that need pool->lock.
1986 	 */
1987 	if (atomic_xchg(&pool->compaction_in_progress, 1))
1988 		return 0;
1989 
1990 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1991 		class = pool->size_class[i];
1992 		if (class->index != i)
1993 			continue;
1994 		pages_freed += __zs_compact(pool, class);
1995 	}
1996 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1997 	atomic_set(&pool->compaction_in_progress, 0);
1998 
1999 	return pages_freed;
2000 }
2001 EXPORT_SYMBOL_GPL(zs_compact);
2002 
2003 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2004 {
2005 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2006 }
2007 EXPORT_SYMBOL_GPL(zs_pool_stats);
2008 
2009 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2010 		struct shrink_control *sc)
2011 {
2012 	unsigned long pages_freed;
2013 	struct zs_pool *pool = shrinker->private_data;
2014 
2015 	/*
2016 	 * Compact classes and calculate compaction delta.
2017 	 * Can run concurrently with a manually triggered
2018 	 * (by user) compaction.
2019 	 */
2020 	pages_freed = zs_compact(pool);
2021 
2022 	return pages_freed ? pages_freed : SHRINK_STOP;
2023 }
2024 
2025 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2026 		struct shrink_control *sc)
2027 {
2028 	int i;
2029 	struct size_class *class;
2030 	unsigned long pages_to_free = 0;
2031 	struct zs_pool *pool = shrinker->private_data;
2032 
2033 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2034 		class = pool->size_class[i];
2035 		if (class->index != i)
2036 			continue;
2037 
2038 		pages_to_free += zs_can_compact(class);
2039 	}
2040 
2041 	return pages_to_free;
2042 }
2043 
2044 static void zs_unregister_shrinker(struct zs_pool *pool)
2045 {
2046 	shrinker_free(pool->shrinker);
2047 }
2048 
2049 static int zs_register_shrinker(struct zs_pool *pool)
2050 {
2051 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2052 	if (!pool->shrinker)
2053 		return -ENOMEM;
2054 
2055 	pool->shrinker->scan_objects = zs_shrinker_scan;
2056 	pool->shrinker->count_objects = zs_shrinker_count;
2057 	pool->shrinker->batch = 0;
2058 	pool->shrinker->private_data = pool;
2059 
2060 	shrinker_register(pool->shrinker);
2061 
2062 	return 0;
2063 }
2064 
2065 static int calculate_zspage_chain_size(int class_size)
2066 {
2067 	int i, min_waste = INT_MAX;
2068 	int chain_size = 1;
2069 
2070 	if (is_power_of_2(class_size))
2071 		return chain_size;
2072 
2073 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2074 		int waste;
2075 
2076 		waste = (i * PAGE_SIZE) % class_size;
2077 		if (waste < min_waste) {
2078 			min_waste = waste;
2079 			chain_size = i;
2080 		}
2081 	}
2082 
2083 	return chain_size;
2084 }
2085 
2086 /**
2087  * zs_create_pool - Creates an allocation pool to work from.
2088  * @name: pool name to be created
2089  *
2090  * This function must be called before anything when using
2091  * the zsmalloc allocator.
2092  *
2093  * On success, a pointer to the newly created pool is returned,
2094  * otherwise NULL.
2095  */
2096 struct zs_pool *zs_create_pool(const char *name)
2097 {
2098 	int i;
2099 	struct zs_pool *pool;
2100 	struct size_class *prev_class = NULL;
2101 
2102 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2103 	if (!pool)
2104 		return NULL;
2105 
2106 	init_deferred_free(pool);
2107 	spin_lock_init(&pool->lock);
2108 	atomic_set(&pool->compaction_in_progress, 0);
2109 
2110 	pool->name = kstrdup(name, GFP_KERNEL);
2111 	if (!pool->name)
2112 		goto err;
2113 
2114 	if (create_cache(pool))
2115 		goto err;
2116 
2117 	/*
2118 	 * Iterate reversely, because, size of size_class that we want to use
2119 	 * for merging should be larger or equal to current size.
2120 	 */
2121 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2122 		int size;
2123 		int pages_per_zspage;
2124 		int objs_per_zspage;
2125 		struct size_class *class;
2126 		int fullness;
2127 
2128 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2129 		if (size > ZS_MAX_ALLOC_SIZE)
2130 			size = ZS_MAX_ALLOC_SIZE;
2131 		pages_per_zspage = calculate_zspage_chain_size(size);
2132 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2133 
2134 		/*
2135 		 * We iterate from biggest down to smallest classes,
2136 		 * so huge_class_size holds the size of the first huge
2137 		 * class. Any object bigger than or equal to that will
2138 		 * endup in the huge class.
2139 		 */
2140 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2141 				!huge_class_size) {
2142 			huge_class_size = size;
2143 			/*
2144 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2145 			 * handle. We need to subtract it, because zs_malloc()
2146 			 * unconditionally adds handle size before it performs
2147 			 * size class search - so object may be smaller than
2148 			 * huge class size, yet it still can end up in the huge
2149 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2150 			 * right before class lookup.
2151 			 */
2152 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2153 		}
2154 
2155 		/*
2156 		 * size_class is used for normal zsmalloc operation such
2157 		 * as alloc/free for that size. Although it is natural that we
2158 		 * have one size_class for each size, there is a chance that we
2159 		 * can get more memory utilization if we use one size_class for
2160 		 * many different sizes whose size_class have same
2161 		 * characteristics. So, we makes size_class point to
2162 		 * previous size_class if possible.
2163 		 */
2164 		if (prev_class) {
2165 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2166 				pool->size_class[i] = prev_class;
2167 				continue;
2168 			}
2169 		}
2170 
2171 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2172 		if (!class)
2173 			goto err;
2174 
2175 		class->size = size;
2176 		class->index = i;
2177 		class->pages_per_zspage = pages_per_zspage;
2178 		class->objs_per_zspage = objs_per_zspage;
2179 		pool->size_class[i] = class;
2180 
2181 		fullness = ZS_INUSE_RATIO_0;
2182 		while (fullness < NR_FULLNESS_GROUPS) {
2183 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2184 			fullness++;
2185 		}
2186 
2187 		prev_class = class;
2188 	}
2189 
2190 	/* debug only, don't abort if it fails */
2191 	zs_pool_stat_create(pool, name);
2192 
2193 	/*
2194 	 * Not critical since shrinker is only used to trigger internal
2195 	 * defragmentation of the pool which is pretty optional thing.  If
2196 	 * registration fails we still can use the pool normally and user can
2197 	 * trigger compaction manually. Thus, ignore return code.
2198 	 */
2199 	zs_register_shrinker(pool);
2200 
2201 	return pool;
2202 
2203 err:
2204 	zs_destroy_pool(pool);
2205 	return NULL;
2206 }
2207 EXPORT_SYMBOL_GPL(zs_create_pool);
2208 
2209 void zs_destroy_pool(struct zs_pool *pool)
2210 {
2211 	int i;
2212 
2213 	zs_unregister_shrinker(pool);
2214 	zs_flush_migration(pool);
2215 	zs_pool_stat_destroy(pool);
2216 
2217 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2218 		int fg;
2219 		struct size_class *class = pool->size_class[i];
2220 
2221 		if (!class)
2222 			continue;
2223 
2224 		if (class->index != i)
2225 			continue;
2226 
2227 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2228 			if (list_empty(&class->fullness_list[fg]))
2229 				continue;
2230 
2231 			pr_err("Class-%d fullness group %d is not empty\n",
2232 			       class->size, fg);
2233 		}
2234 		kfree(class);
2235 	}
2236 
2237 	destroy_cache(pool);
2238 	kfree(pool->name);
2239 	kfree(pool);
2240 }
2241 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2242 
2243 static int __init zs_init(void)
2244 {
2245 	int ret;
2246 
2247 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2248 				zs_cpu_prepare, zs_cpu_dead);
2249 	if (ret)
2250 		goto out;
2251 
2252 #ifdef CONFIG_ZPOOL
2253 	zpool_register_driver(&zs_zpool_driver);
2254 #endif
2255 
2256 	zs_stat_init();
2257 
2258 	return 0;
2259 
2260 out:
2261 	return ret;
2262 }
2263 
2264 static void __exit zs_exit(void)
2265 {
2266 #ifdef CONFIG_ZPOOL
2267 	zpool_unregister_driver(&zs_zpool_driver);
2268 #endif
2269 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2270 
2271 	zs_stat_exit();
2272 }
2273 
2274 module_init(zs_init);
2275 module_exit(zs_exit);
2276 
2277 MODULE_LICENSE("Dual BSD/GPL");
2278 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2279