1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->lock 37 * zspage->lock 38 */ 39 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/sched.h> 43 #include <linux/bitops.h> 44 #include <linux/errno.h> 45 #include <linux/highmem.h> 46 #include <linux/string.h> 47 #include <linux/slab.h> 48 #include <linux/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <linux/cpumask.h> 51 #include <linux/cpu.h> 52 #include <linux/vmalloc.h> 53 #include <linux/preempt.h> 54 #include <linux/spinlock.h> 55 #include <linux/shrinker.h> 56 #include <linux/types.h> 57 #include <linux/debugfs.h> 58 #include <linux/zsmalloc.h> 59 #include <linux/zpool.h> 60 #include <linux/migrate.h> 61 #include <linux/wait.h> 62 #include <linux/pagemap.h> 63 #include <linux/fs.h> 64 #include <linux/local_lock.h> 65 66 #define ZSPAGE_MAGIC 0x58 67 68 /* 69 * This must be power of 2 and greater than or equal to sizeof(link_free). 70 * These two conditions ensure that any 'struct link_free' itself doesn't 71 * span more than 1 page which avoids complex case of mapping 2 pages simply 72 * to restore link_free pointer values. 73 */ 74 #define ZS_ALIGN 8 75 76 /* 77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 79 */ 80 #define ZS_MAX_ZSPAGE_ORDER 2 81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 82 83 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 84 85 /* 86 * Object location (<PFN>, <obj_idx>) is encoded as 87 * a single (unsigned long) handle value. 88 * 89 * Note that object index <obj_idx> starts from 0. 90 * 91 * This is made more complicated by various memory models and PAE. 92 */ 93 94 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 95 #ifdef MAX_PHYSMEM_BITS 96 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 97 #else 98 /* 99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 100 * be PAGE_SHIFT 101 */ 102 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 103 #endif 104 #endif 105 106 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 107 108 /* 109 * Head in allocated object should have OBJ_ALLOCATED_TAG 110 * to identify the object was allocated or not. 111 * It's okay to add the status bit in the least bit because 112 * header keeps handle which is 4byte-aligned address so we 113 * have room for two bit at least. 114 */ 115 #define OBJ_ALLOCATED_TAG 1 116 #define OBJ_TAG_BITS 1 117 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 118 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 119 120 #define HUGE_BITS 1 121 #define FULLNESS_BITS 2 122 #define CLASS_BITS 8 123 #define ISOLATED_BITS 3 124 #define MAGIC_VAL_BITS 8 125 126 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 128 #define ZS_MIN_ALLOC_SIZE \ 129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 130 /* each chunk includes extra space to keep handle */ 131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 132 133 /* 134 * On systems with 4K page size, this gives 255 size classes! There is a 135 * trader-off here: 136 * - Large number of size classes is potentially wasteful as free page are 137 * spread across these classes 138 * - Small number of size classes causes large internal fragmentation 139 * - Probably its better to use specific size classes (empirically 140 * determined). NOTE: all those class sizes must be set as multiple of 141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 142 * 143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 144 * (reason above) 145 */ 146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 148 ZS_SIZE_CLASS_DELTA) + 1) 149 150 enum fullness_group { 151 ZS_EMPTY, 152 ZS_ALMOST_EMPTY, 153 ZS_ALMOST_FULL, 154 ZS_FULL, 155 NR_ZS_FULLNESS, 156 }; 157 158 enum class_stat_type { 159 CLASS_EMPTY, 160 CLASS_ALMOST_EMPTY, 161 CLASS_ALMOST_FULL, 162 CLASS_FULL, 163 OBJ_ALLOCATED, 164 OBJ_USED, 165 NR_ZS_STAT_TYPE, 166 }; 167 168 struct zs_size_stat { 169 unsigned long objs[NR_ZS_STAT_TYPE]; 170 }; 171 172 #ifdef CONFIG_ZSMALLOC_STAT 173 static struct dentry *zs_stat_root; 174 #endif 175 176 /* 177 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 178 * n <= N / f, where 179 * n = number of allocated objects 180 * N = total number of objects zspage can store 181 * f = fullness_threshold_frac 182 * 183 * Similarly, we assign zspage to: 184 * ZS_ALMOST_FULL when n > N / f 185 * ZS_EMPTY when n == 0 186 * ZS_FULL when n == N 187 * 188 * (see: fix_fullness_group()) 189 */ 190 static const int fullness_threshold_frac = 4; 191 static size_t huge_class_size; 192 193 struct size_class { 194 struct list_head fullness_list[NR_ZS_FULLNESS]; 195 /* 196 * Size of objects stored in this class. Must be multiple 197 * of ZS_ALIGN. 198 */ 199 int size; 200 int objs_per_zspage; 201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 202 int pages_per_zspage; 203 204 unsigned int index; 205 struct zs_size_stat stats; 206 }; 207 208 /* 209 * Placed within free objects to form a singly linked list. 210 * For every zspage, zspage->freeobj gives head of this list. 211 * 212 * This must be power of 2 and less than or equal to ZS_ALIGN 213 */ 214 struct link_free { 215 union { 216 /* 217 * Free object index; 218 * It's valid for non-allocated object 219 */ 220 unsigned long next; 221 /* 222 * Handle of allocated object. 223 */ 224 unsigned long handle; 225 }; 226 }; 227 228 struct zs_pool { 229 const char *name; 230 231 struct size_class *size_class[ZS_SIZE_CLASSES]; 232 struct kmem_cache *handle_cachep; 233 struct kmem_cache *zspage_cachep; 234 235 atomic_long_t pages_allocated; 236 237 struct zs_pool_stats stats; 238 239 /* Compact classes */ 240 struct shrinker shrinker; 241 242 #ifdef CONFIG_ZPOOL 243 /* List tracking the zspages in LRU order by most recently added object */ 244 struct list_head lru; 245 struct zpool *zpool; 246 const struct zpool_ops *zpool_ops; 247 #endif 248 249 #ifdef CONFIG_ZSMALLOC_STAT 250 struct dentry *stat_dentry; 251 #endif 252 #ifdef CONFIG_COMPACTION 253 struct work_struct free_work; 254 #endif 255 spinlock_t lock; 256 }; 257 258 struct zspage { 259 struct { 260 unsigned int huge:HUGE_BITS; 261 unsigned int fullness:FULLNESS_BITS; 262 unsigned int class:CLASS_BITS + 1; 263 unsigned int isolated:ISOLATED_BITS; 264 unsigned int magic:MAGIC_VAL_BITS; 265 }; 266 unsigned int inuse; 267 unsigned int freeobj; 268 struct page *first_page; 269 struct list_head list; /* fullness list */ 270 271 #ifdef CONFIG_ZPOOL 272 /* links the zspage to the lru list in the pool */ 273 struct list_head lru; 274 bool under_reclaim; 275 /* list of unfreed handles whose objects have been reclaimed */ 276 unsigned long *deferred_handles; 277 #endif 278 279 struct zs_pool *pool; 280 rwlock_t lock; 281 }; 282 283 struct mapping_area { 284 local_lock_t lock; 285 char *vm_buf; /* copy buffer for objects that span pages */ 286 char *vm_addr; /* address of kmap_atomic()'ed pages */ 287 enum zs_mapmode vm_mm; /* mapping mode */ 288 }; 289 290 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 291 static void SetZsHugePage(struct zspage *zspage) 292 { 293 zspage->huge = 1; 294 } 295 296 static bool ZsHugePage(struct zspage *zspage) 297 { 298 return zspage->huge; 299 } 300 301 static void migrate_lock_init(struct zspage *zspage); 302 static void migrate_read_lock(struct zspage *zspage); 303 static void migrate_read_unlock(struct zspage *zspage); 304 305 #ifdef CONFIG_COMPACTION 306 static void migrate_write_lock(struct zspage *zspage); 307 static void migrate_write_lock_nested(struct zspage *zspage); 308 static void migrate_write_unlock(struct zspage *zspage); 309 static void kick_deferred_free(struct zs_pool *pool); 310 static void init_deferred_free(struct zs_pool *pool); 311 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 312 #else 313 static void migrate_write_lock(struct zspage *zspage) {} 314 static void migrate_write_lock_nested(struct zspage *zspage) {} 315 static void migrate_write_unlock(struct zspage *zspage) {} 316 static void kick_deferred_free(struct zs_pool *pool) {} 317 static void init_deferred_free(struct zs_pool *pool) {} 318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 319 #endif 320 321 static int create_cache(struct zs_pool *pool) 322 { 323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 324 0, 0, NULL); 325 if (!pool->handle_cachep) 326 return 1; 327 328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 329 0, 0, NULL); 330 if (!pool->zspage_cachep) { 331 kmem_cache_destroy(pool->handle_cachep); 332 pool->handle_cachep = NULL; 333 return 1; 334 } 335 336 return 0; 337 } 338 339 static void destroy_cache(struct zs_pool *pool) 340 { 341 kmem_cache_destroy(pool->handle_cachep); 342 kmem_cache_destroy(pool->zspage_cachep); 343 } 344 345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 346 { 347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 349 } 350 351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 352 { 353 kmem_cache_free(pool->handle_cachep, (void *)handle); 354 } 355 356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 357 { 358 return kmem_cache_zalloc(pool->zspage_cachep, 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 360 } 361 362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 363 { 364 kmem_cache_free(pool->zspage_cachep, zspage); 365 } 366 367 /* pool->lock(which owns the handle) synchronizes races */ 368 static void record_obj(unsigned long handle, unsigned long obj) 369 { 370 *(unsigned long *)handle = obj; 371 } 372 373 /* zpool driver */ 374 375 #ifdef CONFIG_ZPOOL 376 377 static void *zs_zpool_create(const char *name, gfp_t gfp, 378 const struct zpool_ops *zpool_ops, 379 struct zpool *zpool) 380 { 381 /* 382 * Ignore global gfp flags: zs_malloc() may be invoked from 383 * different contexts and its caller must provide a valid 384 * gfp mask. 385 */ 386 struct zs_pool *pool = zs_create_pool(name); 387 388 if (pool) { 389 pool->zpool = zpool; 390 pool->zpool_ops = zpool_ops; 391 } 392 393 return pool; 394 } 395 396 static void zs_zpool_destroy(void *pool) 397 { 398 zs_destroy_pool(pool); 399 } 400 401 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 402 unsigned long *handle) 403 { 404 *handle = zs_malloc(pool, size, gfp); 405 406 if (IS_ERR_VALUE(*handle)) 407 return PTR_ERR((void *)*handle); 408 return 0; 409 } 410 static void zs_zpool_free(void *pool, unsigned long handle) 411 { 412 zs_free(pool, handle); 413 } 414 415 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries); 416 417 static int zs_zpool_shrink(void *pool, unsigned int pages, 418 unsigned int *reclaimed) 419 { 420 unsigned int total = 0; 421 int ret = -EINVAL; 422 423 while (total < pages) { 424 ret = zs_reclaim_page(pool, 8); 425 if (ret < 0) 426 break; 427 total++; 428 } 429 430 if (reclaimed) 431 *reclaimed = total; 432 433 return ret; 434 } 435 436 static void *zs_zpool_map(void *pool, unsigned long handle, 437 enum zpool_mapmode mm) 438 { 439 enum zs_mapmode zs_mm; 440 441 switch (mm) { 442 case ZPOOL_MM_RO: 443 zs_mm = ZS_MM_RO; 444 break; 445 case ZPOOL_MM_WO: 446 zs_mm = ZS_MM_WO; 447 break; 448 case ZPOOL_MM_RW: 449 default: 450 zs_mm = ZS_MM_RW; 451 break; 452 } 453 454 return zs_map_object(pool, handle, zs_mm); 455 } 456 static void zs_zpool_unmap(void *pool, unsigned long handle) 457 { 458 zs_unmap_object(pool, handle); 459 } 460 461 static u64 zs_zpool_total_size(void *pool) 462 { 463 return zs_get_total_pages(pool) << PAGE_SHIFT; 464 } 465 466 static struct zpool_driver zs_zpool_driver = { 467 .type = "zsmalloc", 468 .owner = THIS_MODULE, 469 .create = zs_zpool_create, 470 .destroy = zs_zpool_destroy, 471 .malloc_support_movable = true, 472 .malloc = zs_zpool_malloc, 473 .free = zs_zpool_free, 474 .shrink = zs_zpool_shrink, 475 .map = zs_zpool_map, 476 .unmap = zs_zpool_unmap, 477 .total_size = zs_zpool_total_size, 478 }; 479 480 MODULE_ALIAS("zpool-zsmalloc"); 481 #endif /* CONFIG_ZPOOL */ 482 483 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 484 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 485 .lock = INIT_LOCAL_LOCK(lock), 486 }; 487 488 static __maybe_unused int is_first_page(struct page *page) 489 { 490 return PagePrivate(page); 491 } 492 493 /* Protected by pool->lock */ 494 static inline int get_zspage_inuse(struct zspage *zspage) 495 { 496 return zspage->inuse; 497 } 498 499 500 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 501 { 502 zspage->inuse += val; 503 } 504 505 static inline struct page *get_first_page(struct zspage *zspage) 506 { 507 struct page *first_page = zspage->first_page; 508 509 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 510 return first_page; 511 } 512 513 static inline unsigned int get_first_obj_offset(struct page *page) 514 { 515 return page->page_type; 516 } 517 518 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 519 { 520 page->page_type = offset; 521 } 522 523 static inline unsigned int get_freeobj(struct zspage *zspage) 524 { 525 return zspage->freeobj; 526 } 527 528 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 529 { 530 zspage->freeobj = obj; 531 } 532 533 static void get_zspage_mapping(struct zspage *zspage, 534 unsigned int *class_idx, 535 enum fullness_group *fullness) 536 { 537 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 538 539 *fullness = zspage->fullness; 540 *class_idx = zspage->class; 541 } 542 543 static struct size_class *zspage_class(struct zs_pool *pool, 544 struct zspage *zspage) 545 { 546 return pool->size_class[zspage->class]; 547 } 548 549 static void set_zspage_mapping(struct zspage *zspage, 550 unsigned int class_idx, 551 enum fullness_group fullness) 552 { 553 zspage->class = class_idx; 554 zspage->fullness = fullness; 555 } 556 557 /* 558 * zsmalloc divides the pool into various size classes where each 559 * class maintains a list of zspages where each zspage is divided 560 * into equal sized chunks. Each allocation falls into one of these 561 * classes depending on its size. This function returns index of the 562 * size class which has chunk size big enough to hold the given size. 563 */ 564 static int get_size_class_index(int size) 565 { 566 int idx = 0; 567 568 if (likely(size > ZS_MIN_ALLOC_SIZE)) 569 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 570 ZS_SIZE_CLASS_DELTA); 571 572 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 573 } 574 575 /* type can be of enum type class_stat_type or fullness_group */ 576 static inline void class_stat_inc(struct size_class *class, 577 int type, unsigned long cnt) 578 { 579 class->stats.objs[type] += cnt; 580 } 581 582 /* type can be of enum type class_stat_type or fullness_group */ 583 static inline void class_stat_dec(struct size_class *class, 584 int type, unsigned long cnt) 585 { 586 class->stats.objs[type] -= cnt; 587 } 588 589 /* type can be of enum type class_stat_type or fullness_group */ 590 static inline unsigned long zs_stat_get(struct size_class *class, 591 int type) 592 { 593 return class->stats.objs[type]; 594 } 595 596 #ifdef CONFIG_ZSMALLOC_STAT 597 598 static void __init zs_stat_init(void) 599 { 600 if (!debugfs_initialized()) { 601 pr_warn("debugfs not available, stat dir not created\n"); 602 return; 603 } 604 605 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 606 } 607 608 static void __exit zs_stat_exit(void) 609 { 610 debugfs_remove_recursive(zs_stat_root); 611 } 612 613 static unsigned long zs_can_compact(struct size_class *class); 614 615 static int zs_stats_size_show(struct seq_file *s, void *v) 616 { 617 int i; 618 struct zs_pool *pool = s->private; 619 struct size_class *class; 620 int objs_per_zspage; 621 unsigned long class_almost_full, class_almost_empty; 622 unsigned long obj_allocated, obj_used, pages_used, freeable; 623 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 624 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 625 unsigned long total_freeable = 0; 626 627 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 628 "class", "size", "almost_full", "almost_empty", 629 "obj_allocated", "obj_used", "pages_used", 630 "pages_per_zspage", "freeable"); 631 632 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 633 class = pool->size_class[i]; 634 635 if (class->index != i) 636 continue; 637 638 spin_lock(&pool->lock); 639 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 640 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 641 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 642 obj_used = zs_stat_get(class, OBJ_USED); 643 freeable = zs_can_compact(class); 644 spin_unlock(&pool->lock); 645 646 objs_per_zspage = class->objs_per_zspage; 647 pages_used = obj_allocated / objs_per_zspage * 648 class->pages_per_zspage; 649 650 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 651 " %10lu %10lu %16d %8lu\n", 652 i, class->size, class_almost_full, class_almost_empty, 653 obj_allocated, obj_used, pages_used, 654 class->pages_per_zspage, freeable); 655 656 total_class_almost_full += class_almost_full; 657 total_class_almost_empty += class_almost_empty; 658 total_objs += obj_allocated; 659 total_used_objs += obj_used; 660 total_pages += pages_used; 661 total_freeable += freeable; 662 } 663 664 seq_puts(s, "\n"); 665 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 666 "Total", "", total_class_almost_full, 667 total_class_almost_empty, total_objs, 668 total_used_objs, total_pages, "", total_freeable); 669 670 return 0; 671 } 672 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 673 674 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 675 { 676 if (!zs_stat_root) { 677 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 678 return; 679 } 680 681 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 682 683 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 684 &zs_stats_size_fops); 685 } 686 687 static void zs_pool_stat_destroy(struct zs_pool *pool) 688 { 689 debugfs_remove_recursive(pool->stat_dentry); 690 } 691 692 #else /* CONFIG_ZSMALLOC_STAT */ 693 static void __init zs_stat_init(void) 694 { 695 } 696 697 static void __exit zs_stat_exit(void) 698 { 699 } 700 701 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 702 { 703 } 704 705 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 706 { 707 } 708 #endif 709 710 711 /* 712 * For each size class, zspages are divided into different groups 713 * depending on how "full" they are. This was done so that we could 714 * easily find empty or nearly empty zspages when we try to shrink 715 * the pool (not yet implemented). This function returns fullness 716 * status of the given page. 717 */ 718 static enum fullness_group get_fullness_group(struct size_class *class, 719 struct zspage *zspage) 720 { 721 int inuse, objs_per_zspage; 722 enum fullness_group fg; 723 724 inuse = get_zspage_inuse(zspage); 725 objs_per_zspage = class->objs_per_zspage; 726 727 if (inuse == 0) 728 fg = ZS_EMPTY; 729 else if (inuse == objs_per_zspage) 730 fg = ZS_FULL; 731 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 732 fg = ZS_ALMOST_EMPTY; 733 else 734 fg = ZS_ALMOST_FULL; 735 736 return fg; 737 } 738 739 /* 740 * Each size class maintains various freelists and zspages are assigned 741 * to one of these freelists based on the number of live objects they 742 * have. This functions inserts the given zspage into the freelist 743 * identified by <class, fullness_group>. 744 */ 745 static void insert_zspage(struct size_class *class, 746 struct zspage *zspage, 747 enum fullness_group fullness) 748 { 749 struct zspage *head; 750 751 class_stat_inc(class, fullness, 1); 752 head = list_first_entry_or_null(&class->fullness_list[fullness], 753 struct zspage, list); 754 /* 755 * We want to see more ZS_FULL pages and less almost empty/full. 756 * Put pages with higher ->inuse first. 757 */ 758 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head)) 759 list_add(&zspage->list, &head->list); 760 else 761 list_add(&zspage->list, &class->fullness_list[fullness]); 762 } 763 764 /* 765 * This function removes the given zspage from the freelist identified 766 * by <class, fullness_group>. 767 */ 768 static void remove_zspage(struct size_class *class, 769 struct zspage *zspage, 770 enum fullness_group fullness) 771 { 772 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 773 774 list_del_init(&zspage->list); 775 class_stat_dec(class, fullness, 1); 776 } 777 778 /* 779 * Each size class maintains zspages in different fullness groups depending 780 * on the number of live objects they contain. When allocating or freeing 781 * objects, the fullness status of the page can change, say, from ALMOST_FULL 782 * to ALMOST_EMPTY when freeing an object. This function checks if such 783 * a status change has occurred for the given page and accordingly moves the 784 * page from the freelist of the old fullness group to that of the new 785 * fullness group. 786 */ 787 static enum fullness_group fix_fullness_group(struct size_class *class, 788 struct zspage *zspage) 789 { 790 int class_idx; 791 enum fullness_group currfg, newfg; 792 793 get_zspage_mapping(zspage, &class_idx, &currfg); 794 newfg = get_fullness_group(class, zspage); 795 if (newfg == currfg) 796 goto out; 797 798 remove_zspage(class, zspage, currfg); 799 insert_zspage(class, zspage, newfg); 800 set_zspage_mapping(zspage, class_idx, newfg); 801 out: 802 return newfg; 803 } 804 805 /* 806 * We have to decide on how many pages to link together 807 * to form a zspage for each size class. This is important 808 * to reduce wastage due to unusable space left at end of 809 * each zspage which is given as: 810 * wastage = Zp % class_size 811 * usage = Zp - wastage 812 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 813 * 814 * For example, for size class of 3/8 * PAGE_SIZE, we should 815 * link together 3 PAGE_SIZE sized pages to form a zspage 816 * since then we can perfectly fit in 8 such objects. 817 */ 818 static int get_pages_per_zspage(int class_size) 819 { 820 int i, max_usedpc = 0; 821 /* zspage order which gives maximum used size per KB */ 822 int max_usedpc_order = 1; 823 824 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 825 int zspage_size; 826 int waste, usedpc; 827 828 zspage_size = i * PAGE_SIZE; 829 waste = zspage_size % class_size; 830 usedpc = (zspage_size - waste) * 100 / zspage_size; 831 832 if (usedpc > max_usedpc) { 833 max_usedpc = usedpc; 834 max_usedpc_order = i; 835 } 836 } 837 838 return max_usedpc_order; 839 } 840 841 static struct zspage *get_zspage(struct page *page) 842 { 843 struct zspage *zspage = (struct zspage *)page_private(page); 844 845 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 846 return zspage; 847 } 848 849 static struct page *get_next_page(struct page *page) 850 { 851 struct zspage *zspage = get_zspage(page); 852 853 if (unlikely(ZsHugePage(zspage))) 854 return NULL; 855 856 return (struct page *)page->index; 857 } 858 859 /** 860 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 861 * @obj: the encoded object value 862 * @page: page object resides in zspage 863 * @obj_idx: object index 864 */ 865 static void obj_to_location(unsigned long obj, struct page **page, 866 unsigned int *obj_idx) 867 { 868 obj >>= OBJ_TAG_BITS; 869 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 870 *obj_idx = (obj & OBJ_INDEX_MASK); 871 } 872 873 static void obj_to_page(unsigned long obj, struct page **page) 874 { 875 obj >>= OBJ_TAG_BITS; 876 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 877 } 878 879 /** 880 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 881 * @page: page object resides in zspage 882 * @obj_idx: object index 883 */ 884 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 885 { 886 unsigned long obj; 887 888 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 889 obj |= obj_idx & OBJ_INDEX_MASK; 890 obj <<= OBJ_TAG_BITS; 891 892 return obj; 893 } 894 895 static unsigned long handle_to_obj(unsigned long handle) 896 { 897 return *(unsigned long *)handle; 898 } 899 900 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) 901 { 902 unsigned long handle; 903 struct zspage *zspage = get_zspage(page); 904 905 if (unlikely(ZsHugePage(zspage))) { 906 VM_BUG_ON_PAGE(!is_first_page(page), page); 907 handle = page->index; 908 } else 909 handle = *(unsigned long *)obj; 910 911 if (!(handle & OBJ_ALLOCATED_TAG)) 912 return false; 913 914 *phandle = handle & ~OBJ_ALLOCATED_TAG; 915 return true; 916 } 917 918 static void reset_page(struct page *page) 919 { 920 __ClearPageMovable(page); 921 ClearPagePrivate(page); 922 set_page_private(page, 0); 923 page_mapcount_reset(page); 924 page->index = 0; 925 } 926 927 static int trylock_zspage(struct zspage *zspage) 928 { 929 struct page *cursor, *fail; 930 931 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 932 get_next_page(cursor)) { 933 if (!trylock_page(cursor)) { 934 fail = cursor; 935 goto unlock; 936 } 937 } 938 939 return 1; 940 unlock: 941 for (cursor = get_first_page(zspage); cursor != fail; cursor = 942 get_next_page(cursor)) 943 unlock_page(cursor); 944 945 return 0; 946 } 947 948 #ifdef CONFIG_ZPOOL 949 /* 950 * Free all the deferred handles whose objects are freed in zs_free. 951 */ 952 static void free_handles(struct zs_pool *pool, struct zspage *zspage) 953 { 954 unsigned long handle = (unsigned long)zspage->deferred_handles; 955 956 while (handle) { 957 unsigned long nxt_handle = handle_to_obj(handle); 958 959 cache_free_handle(pool, handle); 960 handle = nxt_handle; 961 } 962 } 963 #else 964 static inline void free_handles(struct zs_pool *pool, struct zspage *zspage) {} 965 #endif 966 967 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 968 struct zspage *zspage) 969 { 970 struct page *page, *next; 971 enum fullness_group fg; 972 unsigned int class_idx; 973 974 get_zspage_mapping(zspage, &class_idx, &fg); 975 976 assert_spin_locked(&pool->lock); 977 978 VM_BUG_ON(get_zspage_inuse(zspage)); 979 VM_BUG_ON(fg != ZS_EMPTY); 980 981 /* Free all deferred handles from zs_free */ 982 free_handles(pool, zspage); 983 984 next = page = get_first_page(zspage); 985 do { 986 VM_BUG_ON_PAGE(!PageLocked(page), page); 987 next = get_next_page(page); 988 reset_page(page); 989 unlock_page(page); 990 dec_zone_page_state(page, NR_ZSPAGES); 991 put_page(page); 992 page = next; 993 } while (page != NULL); 994 995 cache_free_zspage(pool, zspage); 996 997 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 998 atomic_long_sub(class->pages_per_zspage, 999 &pool->pages_allocated); 1000 } 1001 1002 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1003 struct zspage *zspage) 1004 { 1005 VM_BUG_ON(get_zspage_inuse(zspage)); 1006 VM_BUG_ON(list_empty(&zspage->list)); 1007 1008 /* 1009 * Since zs_free couldn't be sleepable, this function cannot call 1010 * lock_page. The page locks trylock_zspage got will be released 1011 * by __free_zspage. 1012 */ 1013 if (!trylock_zspage(zspage)) { 1014 kick_deferred_free(pool); 1015 return; 1016 } 1017 1018 remove_zspage(class, zspage, ZS_EMPTY); 1019 #ifdef CONFIG_ZPOOL 1020 list_del(&zspage->lru); 1021 #endif 1022 __free_zspage(pool, class, zspage); 1023 } 1024 1025 /* Initialize a newly allocated zspage */ 1026 static void init_zspage(struct size_class *class, struct zspage *zspage) 1027 { 1028 unsigned int freeobj = 1; 1029 unsigned long off = 0; 1030 struct page *page = get_first_page(zspage); 1031 1032 while (page) { 1033 struct page *next_page; 1034 struct link_free *link; 1035 void *vaddr; 1036 1037 set_first_obj_offset(page, off); 1038 1039 vaddr = kmap_atomic(page); 1040 link = (struct link_free *)vaddr + off / sizeof(*link); 1041 1042 while ((off += class->size) < PAGE_SIZE) { 1043 link->next = freeobj++ << OBJ_TAG_BITS; 1044 link += class->size / sizeof(*link); 1045 } 1046 1047 /* 1048 * We now come to the last (full or partial) object on this 1049 * page, which must point to the first object on the next 1050 * page (if present) 1051 */ 1052 next_page = get_next_page(page); 1053 if (next_page) { 1054 link->next = freeobj++ << OBJ_TAG_BITS; 1055 } else { 1056 /* 1057 * Reset OBJ_TAG_BITS bit to last link to tell 1058 * whether it's allocated object or not. 1059 */ 1060 link->next = -1UL << OBJ_TAG_BITS; 1061 } 1062 kunmap_atomic(vaddr); 1063 page = next_page; 1064 off %= PAGE_SIZE; 1065 } 1066 1067 #ifdef CONFIG_ZPOOL 1068 INIT_LIST_HEAD(&zspage->lru); 1069 zspage->under_reclaim = false; 1070 zspage->deferred_handles = NULL; 1071 #endif 1072 1073 set_freeobj(zspage, 0); 1074 } 1075 1076 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1077 struct page *pages[]) 1078 { 1079 int i; 1080 struct page *page; 1081 struct page *prev_page = NULL; 1082 int nr_pages = class->pages_per_zspage; 1083 1084 /* 1085 * Allocate individual pages and link them together as: 1086 * 1. all pages are linked together using page->index 1087 * 2. each sub-page point to zspage using page->private 1088 * 1089 * we set PG_private to identify the first page (i.e. no other sub-page 1090 * has this flag set). 1091 */ 1092 for (i = 0; i < nr_pages; i++) { 1093 page = pages[i]; 1094 set_page_private(page, (unsigned long)zspage); 1095 page->index = 0; 1096 if (i == 0) { 1097 zspage->first_page = page; 1098 SetPagePrivate(page); 1099 if (unlikely(class->objs_per_zspage == 1 && 1100 class->pages_per_zspage == 1)) 1101 SetZsHugePage(zspage); 1102 } else { 1103 prev_page->index = (unsigned long)page; 1104 } 1105 prev_page = page; 1106 } 1107 } 1108 1109 /* 1110 * Allocate a zspage for the given size class 1111 */ 1112 static struct zspage *alloc_zspage(struct zs_pool *pool, 1113 struct size_class *class, 1114 gfp_t gfp) 1115 { 1116 int i; 1117 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1118 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1119 1120 if (!zspage) 1121 return NULL; 1122 1123 zspage->magic = ZSPAGE_MAGIC; 1124 migrate_lock_init(zspage); 1125 1126 for (i = 0; i < class->pages_per_zspage; i++) { 1127 struct page *page; 1128 1129 page = alloc_page(gfp); 1130 if (!page) { 1131 while (--i >= 0) { 1132 dec_zone_page_state(pages[i], NR_ZSPAGES); 1133 __free_page(pages[i]); 1134 } 1135 cache_free_zspage(pool, zspage); 1136 return NULL; 1137 } 1138 1139 inc_zone_page_state(page, NR_ZSPAGES); 1140 pages[i] = page; 1141 } 1142 1143 create_page_chain(class, zspage, pages); 1144 init_zspage(class, zspage); 1145 zspage->pool = pool; 1146 1147 return zspage; 1148 } 1149 1150 static struct zspage *find_get_zspage(struct size_class *class) 1151 { 1152 int i; 1153 struct zspage *zspage; 1154 1155 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1156 zspage = list_first_entry_or_null(&class->fullness_list[i], 1157 struct zspage, list); 1158 if (zspage) 1159 break; 1160 } 1161 1162 return zspage; 1163 } 1164 1165 static inline int __zs_cpu_up(struct mapping_area *area) 1166 { 1167 /* 1168 * Make sure we don't leak memory if a cpu UP notification 1169 * and zs_init() race and both call zs_cpu_up() on the same cpu 1170 */ 1171 if (area->vm_buf) 1172 return 0; 1173 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1174 if (!area->vm_buf) 1175 return -ENOMEM; 1176 return 0; 1177 } 1178 1179 static inline void __zs_cpu_down(struct mapping_area *area) 1180 { 1181 kfree(area->vm_buf); 1182 area->vm_buf = NULL; 1183 } 1184 1185 static void *__zs_map_object(struct mapping_area *area, 1186 struct page *pages[2], int off, int size) 1187 { 1188 int sizes[2]; 1189 void *addr; 1190 char *buf = area->vm_buf; 1191 1192 /* disable page faults to match kmap_atomic() return conditions */ 1193 pagefault_disable(); 1194 1195 /* no read fastpath */ 1196 if (area->vm_mm == ZS_MM_WO) 1197 goto out; 1198 1199 sizes[0] = PAGE_SIZE - off; 1200 sizes[1] = size - sizes[0]; 1201 1202 /* copy object to per-cpu buffer */ 1203 addr = kmap_atomic(pages[0]); 1204 memcpy(buf, addr + off, sizes[0]); 1205 kunmap_atomic(addr); 1206 addr = kmap_atomic(pages[1]); 1207 memcpy(buf + sizes[0], addr, sizes[1]); 1208 kunmap_atomic(addr); 1209 out: 1210 return area->vm_buf; 1211 } 1212 1213 static void __zs_unmap_object(struct mapping_area *area, 1214 struct page *pages[2], int off, int size) 1215 { 1216 int sizes[2]; 1217 void *addr; 1218 char *buf; 1219 1220 /* no write fastpath */ 1221 if (area->vm_mm == ZS_MM_RO) 1222 goto out; 1223 1224 buf = area->vm_buf; 1225 buf = buf + ZS_HANDLE_SIZE; 1226 size -= ZS_HANDLE_SIZE; 1227 off += ZS_HANDLE_SIZE; 1228 1229 sizes[0] = PAGE_SIZE - off; 1230 sizes[1] = size - sizes[0]; 1231 1232 /* copy per-cpu buffer to object */ 1233 addr = kmap_atomic(pages[0]); 1234 memcpy(addr + off, buf, sizes[0]); 1235 kunmap_atomic(addr); 1236 addr = kmap_atomic(pages[1]); 1237 memcpy(addr, buf + sizes[0], sizes[1]); 1238 kunmap_atomic(addr); 1239 1240 out: 1241 /* enable page faults to match kunmap_atomic() return conditions */ 1242 pagefault_enable(); 1243 } 1244 1245 static int zs_cpu_prepare(unsigned int cpu) 1246 { 1247 struct mapping_area *area; 1248 1249 area = &per_cpu(zs_map_area, cpu); 1250 return __zs_cpu_up(area); 1251 } 1252 1253 static int zs_cpu_dead(unsigned int cpu) 1254 { 1255 struct mapping_area *area; 1256 1257 area = &per_cpu(zs_map_area, cpu); 1258 __zs_cpu_down(area); 1259 return 0; 1260 } 1261 1262 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1263 int objs_per_zspage) 1264 { 1265 if (prev->pages_per_zspage == pages_per_zspage && 1266 prev->objs_per_zspage == objs_per_zspage) 1267 return true; 1268 1269 return false; 1270 } 1271 1272 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1273 { 1274 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1275 } 1276 1277 /** 1278 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1279 * that hold objects of the provided size. 1280 * @pool: zsmalloc pool to use 1281 * @size: object size 1282 * 1283 * Context: Any context. 1284 * 1285 * Return: the index of the zsmalloc &size_class that hold objects of the 1286 * provided size. 1287 */ 1288 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1289 { 1290 struct size_class *class; 1291 1292 class = pool->size_class[get_size_class_index(size)]; 1293 1294 return class->index; 1295 } 1296 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1297 1298 unsigned long zs_get_total_pages(struct zs_pool *pool) 1299 { 1300 return atomic_long_read(&pool->pages_allocated); 1301 } 1302 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1303 1304 /** 1305 * zs_map_object - get address of allocated object from handle. 1306 * @pool: pool from which the object was allocated 1307 * @handle: handle returned from zs_malloc 1308 * @mm: mapping mode to use 1309 * 1310 * Before using an object allocated from zs_malloc, it must be mapped using 1311 * this function. When done with the object, it must be unmapped using 1312 * zs_unmap_object. 1313 * 1314 * Only one object can be mapped per cpu at a time. There is no protection 1315 * against nested mappings. 1316 * 1317 * This function returns with preemption and page faults disabled. 1318 */ 1319 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1320 enum zs_mapmode mm) 1321 { 1322 struct zspage *zspage; 1323 struct page *page; 1324 unsigned long obj, off; 1325 unsigned int obj_idx; 1326 1327 struct size_class *class; 1328 struct mapping_area *area; 1329 struct page *pages[2]; 1330 void *ret; 1331 1332 /* 1333 * Because we use per-cpu mapping areas shared among the 1334 * pools/users, we can't allow mapping in interrupt context 1335 * because it can corrupt another users mappings. 1336 */ 1337 BUG_ON(in_interrupt()); 1338 1339 /* It guarantees it can get zspage from handle safely */ 1340 spin_lock(&pool->lock); 1341 obj = handle_to_obj(handle); 1342 obj_to_location(obj, &page, &obj_idx); 1343 zspage = get_zspage(page); 1344 1345 #ifdef CONFIG_ZPOOL 1346 /* 1347 * Move the zspage to front of pool's LRU. 1348 * 1349 * Note that this is swap-specific, so by definition there are no ongoing 1350 * accesses to the memory while the page is swapped out that would make 1351 * it "hot". A new entry is hot, then ages to the tail until it gets either 1352 * written back or swaps back in. 1353 * 1354 * Furthermore, map is also called during writeback. We must not put an 1355 * isolated page on the LRU mid-reclaim. 1356 * 1357 * As a result, only update the LRU when the page is mapped for write 1358 * when it's first instantiated. 1359 * 1360 * This is a deviation from the other backends, which perform this update 1361 * in the allocation function (zbud_alloc, z3fold_alloc). 1362 */ 1363 if (mm == ZS_MM_WO) { 1364 if (!list_empty(&zspage->lru)) 1365 list_del(&zspage->lru); 1366 list_add(&zspage->lru, &pool->lru); 1367 } 1368 #endif 1369 1370 /* 1371 * migration cannot move any zpages in this zspage. Here, pool->lock 1372 * is too heavy since callers would take some time until they calls 1373 * zs_unmap_object API so delegate the locking from class to zspage 1374 * which is smaller granularity. 1375 */ 1376 migrate_read_lock(zspage); 1377 spin_unlock(&pool->lock); 1378 1379 class = zspage_class(pool, zspage); 1380 off = (class->size * obj_idx) & ~PAGE_MASK; 1381 1382 local_lock(&zs_map_area.lock); 1383 area = this_cpu_ptr(&zs_map_area); 1384 area->vm_mm = mm; 1385 if (off + class->size <= PAGE_SIZE) { 1386 /* this object is contained entirely within a page */ 1387 area->vm_addr = kmap_atomic(page); 1388 ret = area->vm_addr + off; 1389 goto out; 1390 } 1391 1392 /* this object spans two pages */ 1393 pages[0] = page; 1394 pages[1] = get_next_page(page); 1395 BUG_ON(!pages[1]); 1396 1397 ret = __zs_map_object(area, pages, off, class->size); 1398 out: 1399 if (likely(!ZsHugePage(zspage))) 1400 ret += ZS_HANDLE_SIZE; 1401 1402 return ret; 1403 } 1404 EXPORT_SYMBOL_GPL(zs_map_object); 1405 1406 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1407 { 1408 struct zspage *zspage; 1409 struct page *page; 1410 unsigned long obj, off; 1411 unsigned int obj_idx; 1412 1413 struct size_class *class; 1414 struct mapping_area *area; 1415 1416 obj = handle_to_obj(handle); 1417 obj_to_location(obj, &page, &obj_idx); 1418 zspage = get_zspage(page); 1419 class = zspage_class(pool, zspage); 1420 off = (class->size * obj_idx) & ~PAGE_MASK; 1421 1422 area = this_cpu_ptr(&zs_map_area); 1423 if (off + class->size <= PAGE_SIZE) 1424 kunmap_atomic(area->vm_addr); 1425 else { 1426 struct page *pages[2]; 1427 1428 pages[0] = page; 1429 pages[1] = get_next_page(page); 1430 BUG_ON(!pages[1]); 1431 1432 __zs_unmap_object(area, pages, off, class->size); 1433 } 1434 local_unlock(&zs_map_area.lock); 1435 1436 migrate_read_unlock(zspage); 1437 } 1438 EXPORT_SYMBOL_GPL(zs_unmap_object); 1439 1440 /** 1441 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1442 * zsmalloc &size_class. 1443 * @pool: zsmalloc pool to use 1444 * 1445 * The function returns the size of the first huge class - any object of equal 1446 * or bigger size will be stored in zspage consisting of a single physical 1447 * page. 1448 * 1449 * Context: Any context. 1450 * 1451 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1452 */ 1453 size_t zs_huge_class_size(struct zs_pool *pool) 1454 { 1455 return huge_class_size; 1456 } 1457 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1458 1459 static unsigned long obj_malloc(struct zs_pool *pool, 1460 struct zspage *zspage, unsigned long handle) 1461 { 1462 int i, nr_page, offset; 1463 unsigned long obj; 1464 struct link_free *link; 1465 struct size_class *class; 1466 1467 struct page *m_page; 1468 unsigned long m_offset; 1469 void *vaddr; 1470 1471 class = pool->size_class[zspage->class]; 1472 handle |= OBJ_ALLOCATED_TAG; 1473 obj = get_freeobj(zspage); 1474 1475 offset = obj * class->size; 1476 nr_page = offset >> PAGE_SHIFT; 1477 m_offset = offset & ~PAGE_MASK; 1478 m_page = get_first_page(zspage); 1479 1480 for (i = 0; i < nr_page; i++) 1481 m_page = get_next_page(m_page); 1482 1483 vaddr = kmap_atomic(m_page); 1484 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1485 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1486 if (likely(!ZsHugePage(zspage))) 1487 /* record handle in the header of allocated chunk */ 1488 link->handle = handle; 1489 else 1490 /* record handle to page->index */ 1491 zspage->first_page->index = handle; 1492 1493 kunmap_atomic(vaddr); 1494 mod_zspage_inuse(zspage, 1); 1495 1496 obj = location_to_obj(m_page, obj); 1497 1498 return obj; 1499 } 1500 1501 1502 /** 1503 * zs_malloc - Allocate block of given size from pool. 1504 * @pool: pool to allocate from 1505 * @size: size of block to allocate 1506 * @gfp: gfp flags when allocating object 1507 * 1508 * On success, handle to the allocated object is returned, 1509 * otherwise an ERR_PTR(). 1510 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1511 */ 1512 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1513 { 1514 unsigned long handle, obj; 1515 struct size_class *class; 1516 enum fullness_group newfg; 1517 struct zspage *zspage; 1518 1519 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1520 return (unsigned long)ERR_PTR(-EINVAL); 1521 1522 handle = cache_alloc_handle(pool, gfp); 1523 if (!handle) 1524 return (unsigned long)ERR_PTR(-ENOMEM); 1525 1526 /* extra space in chunk to keep the handle */ 1527 size += ZS_HANDLE_SIZE; 1528 class = pool->size_class[get_size_class_index(size)]; 1529 1530 /* pool->lock effectively protects the zpage migration */ 1531 spin_lock(&pool->lock); 1532 zspage = find_get_zspage(class); 1533 if (likely(zspage)) { 1534 obj = obj_malloc(pool, zspage, handle); 1535 /* Now move the zspage to another fullness group, if required */ 1536 fix_fullness_group(class, zspage); 1537 record_obj(handle, obj); 1538 class_stat_inc(class, OBJ_USED, 1); 1539 spin_unlock(&pool->lock); 1540 1541 return handle; 1542 } 1543 1544 spin_unlock(&pool->lock); 1545 1546 zspage = alloc_zspage(pool, class, gfp); 1547 if (!zspage) { 1548 cache_free_handle(pool, handle); 1549 return (unsigned long)ERR_PTR(-ENOMEM); 1550 } 1551 1552 spin_lock(&pool->lock); 1553 obj = obj_malloc(pool, zspage, handle); 1554 newfg = get_fullness_group(class, zspage); 1555 insert_zspage(class, zspage, newfg); 1556 set_zspage_mapping(zspage, class->index, newfg); 1557 record_obj(handle, obj); 1558 atomic_long_add(class->pages_per_zspage, 1559 &pool->pages_allocated); 1560 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1561 class_stat_inc(class, OBJ_USED, 1); 1562 1563 /* We completely set up zspage so mark them as movable */ 1564 SetZsPageMovable(pool, zspage); 1565 spin_unlock(&pool->lock); 1566 1567 return handle; 1568 } 1569 EXPORT_SYMBOL_GPL(zs_malloc); 1570 1571 static void obj_free(int class_size, unsigned long obj) 1572 { 1573 struct link_free *link; 1574 struct zspage *zspage; 1575 struct page *f_page; 1576 unsigned long f_offset; 1577 unsigned int f_objidx; 1578 void *vaddr; 1579 1580 obj_to_location(obj, &f_page, &f_objidx); 1581 f_offset = (class_size * f_objidx) & ~PAGE_MASK; 1582 zspage = get_zspage(f_page); 1583 1584 vaddr = kmap_atomic(f_page); 1585 1586 /* Insert this object in containing zspage's freelist */ 1587 link = (struct link_free *)(vaddr + f_offset); 1588 if (likely(!ZsHugePage(zspage))) 1589 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1590 else 1591 f_page->index = 0; 1592 kunmap_atomic(vaddr); 1593 set_freeobj(zspage, f_objidx); 1594 mod_zspage_inuse(zspage, -1); 1595 } 1596 1597 void zs_free(struct zs_pool *pool, unsigned long handle) 1598 { 1599 struct zspage *zspage; 1600 struct page *f_page; 1601 unsigned long obj; 1602 struct size_class *class; 1603 enum fullness_group fullness; 1604 1605 if (IS_ERR_OR_NULL((void *)handle)) 1606 return; 1607 1608 /* 1609 * The pool->lock protects the race with zpage's migration 1610 * so it's safe to get the page from handle. 1611 */ 1612 spin_lock(&pool->lock); 1613 obj = handle_to_obj(handle); 1614 obj_to_page(obj, &f_page); 1615 zspage = get_zspage(f_page); 1616 class = zspage_class(pool, zspage); 1617 1618 obj_free(class->size, obj); 1619 class_stat_dec(class, OBJ_USED, 1); 1620 1621 #ifdef CONFIG_ZPOOL 1622 if (zspage->under_reclaim) { 1623 /* 1624 * Reclaim needs the handles during writeback. It'll free 1625 * them along with the zspage when it's done with them. 1626 * 1627 * Record current deferred handle at the memory location 1628 * whose address is given by handle. 1629 */ 1630 record_obj(handle, (unsigned long)zspage->deferred_handles); 1631 zspage->deferred_handles = (unsigned long *)handle; 1632 spin_unlock(&pool->lock); 1633 return; 1634 } 1635 #endif 1636 fullness = fix_fullness_group(class, zspage); 1637 if (fullness == ZS_EMPTY) 1638 free_zspage(pool, class, zspage); 1639 1640 spin_unlock(&pool->lock); 1641 cache_free_handle(pool, handle); 1642 } 1643 EXPORT_SYMBOL_GPL(zs_free); 1644 1645 static void zs_object_copy(struct size_class *class, unsigned long dst, 1646 unsigned long src) 1647 { 1648 struct page *s_page, *d_page; 1649 unsigned int s_objidx, d_objidx; 1650 unsigned long s_off, d_off; 1651 void *s_addr, *d_addr; 1652 int s_size, d_size, size; 1653 int written = 0; 1654 1655 s_size = d_size = class->size; 1656 1657 obj_to_location(src, &s_page, &s_objidx); 1658 obj_to_location(dst, &d_page, &d_objidx); 1659 1660 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1661 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1662 1663 if (s_off + class->size > PAGE_SIZE) 1664 s_size = PAGE_SIZE - s_off; 1665 1666 if (d_off + class->size > PAGE_SIZE) 1667 d_size = PAGE_SIZE - d_off; 1668 1669 s_addr = kmap_atomic(s_page); 1670 d_addr = kmap_atomic(d_page); 1671 1672 while (1) { 1673 size = min(s_size, d_size); 1674 memcpy(d_addr + d_off, s_addr + s_off, size); 1675 written += size; 1676 1677 if (written == class->size) 1678 break; 1679 1680 s_off += size; 1681 s_size -= size; 1682 d_off += size; 1683 d_size -= size; 1684 1685 /* 1686 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1687 * calls must occurs in reverse order of calls to kmap_atomic(). 1688 * So, to call kunmap_atomic(s_addr) we should first call 1689 * kunmap_atomic(d_addr). For more details see 1690 * Documentation/mm/highmem.rst. 1691 */ 1692 if (s_off >= PAGE_SIZE) { 1693 kunmap_atomic(d_addr); 1694 kunmap_atomic(s_addr); 1695 s_page = get_next_page(s_page); 1696 s_addr = kmap_atomic(s_page); 1697 d_addr = kmap_atomic(d_page); 1698 s_size = class->size - written; 1699 s_off = 0; 1700 } 1701 1702 if (d_off >= PAGE_SIZE) { 1703 kunmap_atomic(d_addr); 1704 d_page = get_next_page(d_page); 1705 d_addr = kmap_atomic(d_page); 1706 d_size = class->size - written; 1707 d_off = 0; 1708 } 1709 } 1710 1711 kunmap_atomic(d_addr); 1712 kunmap_atomic(s_addr); 1713 } 1714 1715 /* 1716 * Find alloced object in zspage from index object and 1717 * return handle. 1718 */ 1719 static unsigned long find_alloced_obj(struct size_class *class, 1720 struct page *page, int *obj_idx) 1721 { 1722 unsigned int offset; 1723 int index = *obj_idx; 1724 unsigned long handle = 0; 1725 void *addr = kmap_atomic(page); 1726 1727 offset = get_first_obj_offset(page); 1728 offset += class->size * index; 1729 1730 while (offset < PAGE_SIZE) { 1731 if (obj_allocated(page, addr + offset, &handle)) 1732 break; 1733 1734 offset += class->size; 1735 index++; 1736 } 1737 1738 kunmap_atomic(addr); 1739 1740 *obj_idx = index; 1741 1742 return handle; 1743 } 1744 1745 struct zs_compact_control { 1746 /* Source spage for migration which could be a subpage of zspage */ 1747 struct page *s_page; 1748 /* Destination page for migration which should be a first page 1749 * of zspage. */ 1750 struct page *d_page; 1751 /* Starting object index within @s_page which used for live object 1752 * in the subpage. */ 1753 int obj_idx; 1754 }; 1755 1756 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1757 struct zs_compact_control *cc) 1758 { 1759 unsigned long used_obj, free_obj; 1760 unsigned long handle; 1761 struct page *s_page = cc->s_page; 1762 struct page *d_page = cc->d_page; 1763 int obj_idx = cc->obj_idx; 1764 int ret = 0; 1765 1766 while (1) { 1767 handle = find_alloced_obj(class, s_page, &obj_idx); 1768 if (!handle) { 1769 s_page = get_next_page(s_page); 1770 if (!s_page) 1771 break; 1772 obj_idx = 0; 1773 continue; 1774 } 1775 1776 /* Stop if there is no more space */ 1777 if (zspage_full(class, get_zspage(d_page))) { 1778 ret = -ENOMEM; 1779 break; 1780 } 1781 1782 used_obj = handle_to_obj(handle); 1783 free_obj = obj_malloc(pool, get_zspage(d_page), handle); 1784 zs_object_copy(class, free_obj, used_obj); 1785 obj_idx++; 1786 record_obj(handle, free_obj); 1787 obj_free(class->size, used_obj); 1788 } 1789 1790 /* Remember last position in this iteration */ 1791 cc->s_page = s_page; 1792 cc->obj_idx = obj_idx; 1793 1794 return ret; 1795 } 1796 1797 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1798 { 1799 int i; 1800 struct zspage *zspage; 1801 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1802 1803 if (!source) { 1804 fg[0] = ZS_ALMOST_FULL; 1805 fg[1] = ZS_ALMOST_EMPTY; 1806 } 1807 1808 for (i = 0; i < 2; i++) { 1809 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1810 struct zspage, list); 1811 if (zspage) { 1812 remove_zspage(class, zspage, fg[i]); 1813 return zspage; 1814 } 1815 } 1816 1817 return zspage; 1818 } 1819 1820 /* 1821 * putback_zspage - add @zspage into right class's fullness list 1822 * @class: destination class 1823 * @zspage: target page 1824 * 1825 * Return @zspage's fullness_group 1826 */ 1827 static enum fullness_group putback_zspage(struct size_class *class, 1828 struct zspage *zspage) 1829 { 1830 enum fullness_group fullness; 1831 1832 fullness = get_fullness_group(class, zspage); 1833 insert_zspage(class, zspage, fullness); 1834 set_zspage_mapping(zspage, class->index, fullness); 1835 1836 return fullness; 1837 } 1838 1839 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) 1840 /* 1841 * To prevent zspage destroy during migration, zspage freeing should 1842 * hold locks of all pages in the zspage. 1843 */ 1844 static void lock_zspage(struct zspage *zspage) 1845 { 1846 struct page *curr_page, *page; 1847 1848 /* 1849 * Pages we haven't locked yet can be migrated off the list while we're 1850 * trying to lock them, so we need to be careful and only attempt to 1851 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1852 * may no longer belong to the zspage. This means that we may wait for 1853 * the wrong page to unlock, so we must take a reference to the page 1854 * prior to waiting for it to unlock outside migrate_read_lock(). 1855 */ 1856 while (1) { 1857 migrate_read_lock(zspage); 1858 page = get_first_page(zspage); 1859 if (trylock_page(page)) 1860 break; 1861 get_page(page); 1862 migrate_read_unlock(zspage); 1863 wait_on_page_locked(page); 1864 put_page(page); 1865 } 1866 1867 curr_page = page; 1868 while ((page = get_next_page(curr_page))) { 1869 if (trylock_page(page)) { 1870 curr_page = page; 1871 } else { 1872 get_page(page); 1873 migrate_read_unlock(zspage); 1874 wait_on_page_locked(page); 1875 put_page(page); 1876 migrate_read_lock(zspage); 1877 } 1878 } 1879 migrate_read_unlock(zspage); 1880 } 1881 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */ 1882 1883 #ifdef CONFIG_ZPOOL 1884 /* 1885 * Unlocks all the pages of the zspage. 1886 * 1887 * pool->lock must be held before this function is called 1888 * to prevent the underlying pages from migrating. 1889 */ 1890 static void unlock_zspage(struct zspage *zspage) 1891 { 1892 struct page *page = get_first_page(zspage); 1893 1894 do { 1895 unlock_page(page); 1896 } while ((page = get_next_page(page)) != NULL); 1897 } 1898 #endif /* CONFIG_ZPOOL */ 1899 1900 static void migrate_lock_init(struct zspage *zspage) 1901 { 1902 rwlock_init(&zspage->lock); 1903 } 1904 1905 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1906 { 1907 read_lock(&zspage->lock); 1908 } 1909 1910 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1911 { 1912 read_unlock(&zspage->lock); 1913 } 1914 1915 #ifdef CONFIG_COMPACTION 1916 static void migrate_write_lock(struct zspage *zspage) 1917 { 1918 write_lock(&zspage->lock); 1919 } 1920 1921 static void migrate_write_lock_nested(struct zspage *zspage) 1922 { 1923 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 1924 } 1925 1926 static void migrate_write_unlock(struct zspage *zspage) 1927 { 1928 write_unlock(&zspage->lock); 1929 } 1930 1931 /* Number of isolated subpage for *page migration* in this zspage */ 1932 static void inc_zspage_isolation(struct zspage *zspage) 1933 { 1934 zspage->isolated++; 1935 } 1936 1937 static void dec_zspage_isolation(struct zspage *zspage) 1938 { 1939 VM_BUG_ON(zspage->isolated == 0); 1940 zspage->isolated--; 1941 } 1942 1943 static const struct movable_operations zsmalloc_mops; 1944 1945 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1946 struct page *newpage, struct page *oldpage) 1947 { 1948 struct page *page; 1949 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1950 int idx = 0; 1951 1952 page = get_first_page(zspage); 1953 do { 1954 if (page == oldpage) 1955 pages[idx] = newpage; 1956 else 1957 pages[idx] = page; 1958 idx++; 1959 } while ((page = get_next_page(page)) != NULL); 1960 1961 create_page_chain(class, zspage, pages); 1962 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1963 if (unlikely(ZsHugePage(zspage))) 1964 newpage->index = oldpage->index; 1965 __SetPageMovable(newpage, &zsmalloc_mops); 1966 } 1967 1968 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1969 { 1970 struct zspage *zspage; 1971 1972 /* 1973 * Page is locked so zspage couldn't be destroyed. For detail, look at 1974 * lock_zspage in free_zspage. 1975 */ 1976 VM_BUG_ON_PAGE(!PageMovable(page), page); 1977 VM_BUG_ON_PAGE(PageIsolated(page), page); 1978 1979 zspage = get_zspage(page); 1980 migrate_write_lock(zspage); 1981 inc_zspage_isolation(zspage); 1982 migrate_write_unlock(zspage); 1983 1984 return true; 1985 } 1986 1987 static int zs_page_migrate(struct page *newpage, struct page *page, 1988 enum migrate_mode mode) 1989 { 1990 struct zs_pool *pool; 1991 struct size_class *class; 1992 struct zspage *zspage; 1993 struct page *dummy; 1994 void *s_addr, *d_addr, *addr; 1995 unsigned int offset; 1996 unsigned long handle; 1997 unsigned long old_obj, new_obj; 1998 unsigned int obj_idx; 1999 2000 /* 2001 * We cannot support the _NO_COPY case here, because copy needs to 2002 * happen under the zs lock, which does not work with 2003 * MIGRATE_SYNC_NO_COPY workflow. 2004 */ 2005 if (mode == MIGRATE_SYNC_NO_COPY) 2006 return -EINVAL; 2007 2008 VM_BUG_ON_PAGE(!PageMovable(page), page); 2009 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2010 2011 /* The page is locked, so this pointer must remain valid */ 2012 zspage = get_zspage(page); 2013 pool = zspage->pool; 2014 2015 /* 2016 * The pool's lock protects the race between zpage migration 2017 * and zs_free. 2018 */ 2019 spin_lock(&pool->lock); 2020 class = zspage_class(pool, zspage); 2021 2022 /* the migrate_write_lock protects zpage access via zs_map_object */ 2023 migrate_write_lock(zspage); 2024 2025 offset = get_first_obj_offset(page); 2026 s_addr = kmap_atomic(page); 2027 2028 /* 2029 * Here, any user cannot access all objects in the zspage so let's move. 2030 */ 2031 d_addr = kmap_atomic(newpage); 2032 memcpy(d_addr, s_addr, PAGE_SIZE); 2033 kunmap_atomic(d_addr); 2034 2035 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 2036 addr += class->size) { 2037 if (obj_allocated(page, addr, &handle)) { 2038 2039 old_obj = handle_to_obj(handle); 2040 obj_to_location(old_obj, &dummy, &obj_idx); 2041 new_obj = (unsigned long)location_to_obj(newpage, 2042 obj_idx); 2043 record_obj(handle, new_obj); 2044 } 2045 } 2046 kunmap_atomic(s_addr); 2047 2048 replace_sub_page(class, zspage, newpage, page); 2049 /* 2050 * Since we complete the data copy and set up new zspage structure, 2051 * it's okay to release the pool's lock. 2052 */ 2053 spin_unlock(&pool->lock); 2054 dec_zspage_isolation(zspage); 2055 migrate_write_unlock(zspage); 2056 2057 get_page(newpage); 2058 if (page_zone(newpage) != page_zone(page)) { 2059 dec_zone_page_state(page, NR_ZSPAGES); 2060 inc_zone_page_state(newpage, NR_ZSPAGES); 2061 } 2062 2063 reset_page(page); 2064 put_page(page); 2065 2066 return MIGRATEPAGE_SUCCESS; 2067 } 2068 2069 static void zs_page_putback(struct page *page) 2070 { 2071 struct zspage *zspage; 2072 2073 VM_BUG_ON_PAGE(!PageMovable(page), page); 2074 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2075 2076 zspage = get_zspage(page); 2077 migrate_write_lock(zspage); 2078 dec_zspage_isolation(zspage); 2079 migrate_write_unlock(zspage); 2080 } 2081 2082 static const struct movable_operations zsmalloc_mops = { 2083 .isolate_page = zs_page_isolate, 2084 .migrate_page = zs_page_migrate, 2085 .putback_page = zs_page_putback, 2086 }; 2087 2088 /* 2089 * Caller should hold page_lock of all pages in the zspage 2090 * In here, we cannot use zspage meta data. 2091 */ 2092 static void async_free_zspage(struct work_struct *work) 2093 { 2094 int i; 2095 struct size_class *class; 2096 unsigned int class_idx; 2097 enum fullness_group fullness; 2098 struct zspage *zspage, *tmp; 2099 LIST_HEAD(free_pages); 2100 struct zs_pool *pool = container_of(work, struct zs_pool, 2101 free_work); 2102 2103 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2104 class = pool->size_class[i]; 2105 if (class->index != i) 2106 continue; 2107 2108 spin_lock(&pool->lock); 2109 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2110 spin_unlock(&pool->lock); 2111 } 2112 2113 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2114 list_del(&zspage->list); 2115 lock_zspage(zspage); 2116 2117 get_zspage_mapping(zspage, &class_idx, &fullness); 2118 VM_BUG_ON(fullness != ZS_EMPTY); 2119 class = pool->size_class[class_idx]; 2120 spin_lock(&pool->lock); 2121 #ifdef CONFIG_ZPOOL 2122 list_del(&zspage->lru); 2123 #endif 2124 __free_zspage(pool, class, zspage); 2125 spin_unlock(&pool->lock); 2126 } 2127 }; 2128 2129 static void kick_deferred_free(struct zs_pool *pool) 2130 { 2131 schedule_work(&pool->free_work); 2132 } 2133 2134 static void zs_flush_migration(struct zs_pool *pool) 2135 { 2136 flush_work(&pool->free_work); 2137 } 2138 2139 static void init_deferred_free(struct zs_pool *pool) 2140 { 2141 INIT_WORK(&pool->free_work, async_free_zspage); 2142 } 2143 2144 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2145 { 2146 struct page *page = get_first_page(zspage); 2147 2148 do { 2149 WARN_ON(!trylock_page(page)); 2150 __SetPageMovable(page, &zsmalloc_mops); 2151 unlock_page(page); 2152 } while ((page = get_next_page(page)) != NULL); 2153 } 2154 #else 2155 static inline void zs_flush_migration(struct zs_pool *pool) { } 2156 #endif 2157 2158 /* 2159 * 2160 * Based on the number of unused allocated objects calculate 2161 * and return the number of pages that we can free. 2162 */ 2163 static unsigned long zs_can_compact(struct size_class *class) 2164 { 2165 unsigned long obj_wasted; 2166 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2167 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2168 2169 if (obj_allocated <= obj_used) 2170 return 0; 2171 2172 obj_wasted = obj_allocated - obj_used; 2173 obj_wasted /= class->objs_per_zspage; 2174 2175 return obj_wasted * class->pages_per_zspage; 2176 } 2177 2178 static unsigned long __zs_compact(struct zs_pool *pool, 2179 struct size_class *class) 2180 { 2181 struct zs_compact_control cc; 2182 struct zspage *src_zspage; 2183 struct zspage *dst_zspage = NULL; 2184 unsigned long pages_freed = 0; 2185 2186 /* 2187 * protect the race between zpage migration and zs_free 2188 * as well as zpage allocation/free 2189 */ 2190 spin_lock(&pool->lock); 2191 while ((src_zspage = isolate_zspage(class, true))) { 2192 /* protect someone accessing the zspage(i.e., zs_map_object) */ 2193 migrate_write_lock(src_zspage); 2194 2195 if (!zs_can_compact(class)) 2196 break; 2197 2198 cc.obj_idx = 0; 2199 cc.s_page = get_first_page(src_zspage); 2200 2201 while ((dst_zspage = isolate_zspage(class, false))) { 2202 migrate_write_lock_nested(dst_zspage); 2203 2204 cc.d_page = get_first_page(dst_zspage); 2205 /* 2206 * If there is no more space in dst_page, resched 2207 * and see if anyone had allocated another zspage. 2208 */ 2209 if (!migrate_zspage(pool, class, &cc)) 2210 break; 2211 2212 putback_zspage(class, dst_zspage); 2213 migrate_write_unlock(dst_zspage); 2214 dst_zspage = NULL; 2215 if (spin_is_contended(&pool->lock)) 2216 break; 2217 } 2218 2219 /* Stop if we couldn't find slot */ 2220 if (dst_zspage == NULL) 2221 break; 2222 2223 putback_zspage(class, dst_zspage); 2224 migrate_write_unlock(dst_zspage); 2225 2226 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2227 migrate_write_unlock(src_zspage); 2228 free_zspage(pool, class, src_zspage); 2229 pages_freed += class->pages_per_zspage; 2230 } else 2231 migrate_write_unlock(src_zspage); 2232 spin_unlock(&pool->lock); 2233 cond_resched(); 2234 spin_lock(&pool->lock); 2235 } 2236 2237 if (src_zspage) { 2238 putback_zspage(class, src_zspage); 2239 migrate_write_unlock(src_zspage); 2240 } 2241 2242 spin_unlock(&pool->lock); 2243 2244 return pages_freed; 2245 } 2246 2247 unsigned long zs_compact(struct zs_pool *pool) 2248 { 2249 int i; 2250 struct size_class *class; 2251 unsigned long pages_freed = 0; 2252 2253 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2254 class = pool->size_class[i]; 2255 if (class->index != i) 2256 continue; 2257 pages_freed += __zs_compact(pool, class); 2258 } 2259 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2260 2261 return pages_freed; 2262 } 2263 EXPORT_SYMBOL_GPL(zs_compact); 2264 2265 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2266 { 2267 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2268 } 2269 EXPORT_SYMBOL_GPL(zs_pool_stats); 2270 2271 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2272 struct shrink_control *sc) 2273 { 2274 unsigned long pages_freed; 2275 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2276 shrinker); 2277 2278 /* 2279 * Compact classes and calculate compaction delta. 2280 * Can run concurrently with a manually triggered 2281 * (by user) compaction. 2282 */ 2283 pages_freed = zs_compact(pool); 2284 2285 return pages_freed ? pages_freed : SHRINK_STOP; 2286 } 2287 2288 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2289 struct shrink_control *sc) 2290 { 2291 int i; 2292 struct size_class *class; 2293 unsigned long pages_to_free = 0; 2294 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2295 shrinker); 2296 2297 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2298 class = pool->size_class[i]; 2299 if (class->index != i) 2300 continue; 2301 2302 pages_to_free += zs_can_compact(class); 2303 } 2304 2305 return pages_to_free; 2306 } 2307 2308 static void zs_unregister_shrinker(struct zs_pool *pool) 2309 { 2310 unregister_shrinker(&pool->shrinker); 2311 } 2312 2313 static int zs_register_shrinker(struct zs_pool *pool) 2314 { 2315 pool->shrinker.scan_objects = zs_shrinker_scan; 2316 pool->shrinker.count_objects = zs_shrinker_count; 2317 pool->shrinker.batch = 0; 2318 pool->shrinker.seeks = DEFAULT_SEEKS; 2319 2320 return register_shrinker(&pool->shrinker, "mm-zspool:%s", 2321 pool->name); 2322 } 2323 2324 /** 2325 * zs_create_pool - Creates an allocation pool to work from. 2326 * @name: pool name to be created 2327 * 2328 * This function must be called before anything when using 2329 * the zsmalloc allocator. 2330 * 2331 * On success, a pointer to the newly created pool is returned, 2332 * otherwise NULL. 2333 */ 2334 struct zs_pool *zs_create_pool(const char *name) 2335 { 2336 int i; 2337 struct zs_pool *pool; 2338 struct size_class *prev_class = NULL; 2339 2340 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2341 if (!pool) 2342 return NULL; 2343 2344 init_deferred_free(pool); 2345 spin_lock_init(&pool->lock); 2346 2347 pool->name = kstrdup(name, GFP_KERNEL); 2348 if (!pool->name) 2349 goto err; 2350 2351 if (create_cache(pool)) 2352 goto err; 2353 2354 /* 2355 * Iterate reversely, because, size of size_class that we want to use 2356 * for merging should be larger or equal to current size. 2357 */ 2358 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2359 int size; 2360 int pages_per_zspage; 2361 int objs_per_zspage; 2362 struct size_class *class; 2363 int fullness = 0; 2364 2365 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2366 if (size > ZS_MAX_ALLOC_SIZE) 2367 size = ZS_MAX_ALLOC_SIZE; 2368 pages_per_zspage = get_pages_per_zspage(size); 2369 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2370 2371 /* 2372 * We iterate from biggest down to smallest classes, 2373 * so huge_class_size holds the size of the first huge 2374 * class. Any object bigger than or equal to that will 2375 * endup in the huge class. 2376 */ 2377 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2378 !huge_class_size) { 2379 huge_class_size = size; 2380 /* 2381 * The object uses ZS_HANDLE_SIZE bytes to store the 2382 * handle. We need to subtract it, because zs_malloc() 2383 * unconditionally adds handle size before it performs 2384 * size class search - so object may be smaller than 2385 * huge class size, yet it still can end up in the huge 2386 * class because it grows by ZS_HANDLE_SIZE extra bytes 2387 * right before class lookup. 2388 */ 2389 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2390 } 2391 2392 /* 2393 * size_class is used for normal zsmalloc operation such 2394 * as alloc/free for that size. Although it is natural that we 2395 * have one size_class for each size, there is a chance that we 2396 * can get more memory utilization if we use one size_class for 2397 * many different sizes whose size_class have same 2398 * characteristics. So, we makes size_class point to 2399 * previous size_class if possible. 2400 */ 2401 if (prev_class) { 2402 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2403 pool->size_class[i] = prev_class; 2404 continue; 2405 } 2406 } 2407 2408 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2409 if (!class) 2410 goto err; 2411 2412 class->size = size; 2413 class->index = i; 2414 class->pages_per_zspage = pages_per_zspage; 2415 class->objs_per_zspage = objs_per_zspage; 2416 pool->size_class[i] = class; 2417 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2418 fullness++) 2419 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2420 2421 prev_class = class; 2422 } 2423 2424 /* debug only, don't abort if it fails */ 2425 zs_pool_stat_create(pool, name); 2426 2427 /* 2428 * Not critical since shrinker is only used to trigger internal 2429 * defragmentation of the pool which is pretty optional thing. If 2430 * registration fails we still can use the pool normally and user can 2431 * trigger compaction manually. Thus, ignore return code. 2432 */ 2433 zs_register_shrinker(pool); 2434 2435 #ifdef CONFIG_ZPOOL 2436 INIT_LIST_HEAD(&pool->lru); 2437 #endif 2438 2439 return pool; 2440 2441 err: 2442 zs_destroy_pool(pool); 2443 return NULL; 2444 } 2445 EXPORT_SYMBOL_GPL(zs_create_pool); 2446 2447 void zs_destroy_pool(struct zs_pool *pool) 2448 { 2449 int i; 2450 2451 zs_unregister_shrinker(pool); 2452 zs_flush_migration(pool); 2453 zs_pool_stat_destroy(pool); 2454 2455 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2456 int fg; 2457 struct size_class *class = pool->size_class[i]; 2458 2459 if (!class) 2460 continue; 2461 2462 if (class->index != i) 2463 continue; 2464 2465 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2466 if (!list_empty(&class->fullness_list[fg])) { 2467 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2468 class->size, fg); 2469 } 2470 } 2471 kfree(class); 2472 } 2473 2474 destroy_cache(pool); 2475 kfree(pool->name); 2476 kfree(pool); 2477 } 2478 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2479 2480 #ifdef CONFIG_ZPOOL 2481 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries) 2482 { 2483 int i, obj_idx, ret = 0; 2484 unsigned long handle; 2485 struct zspage *zspage; 2486 struct page *page; 2487 enum fullness_group fullness; 2488 2489 /* Lock LRU and fullness list */ 2490 spin_lock(&pool->lock); 2491 if (list_empty(&pool->lru)) { 2492 spin_unlock(&pool->lock); 2493 return -EINVAL; 2494 } 2495 2496 for (i = 0; i < retries; i++) { 2497 struct size_class *class; 2498 2499 zspage = list_last_entry(&pool->lru, struct zspage, lru); 2500 list_del(&zspage->lru); 2501 2502 /* zs_free may free objects, but not the zspage and handles */ 2503 zspage->under_reclaim = true; 2504 2505 class = zspage_class(pool, zspage); 2506 fullness = get_fullness_group(class, zspage); 2507 2508 /* Lock out object allocations and object compaction */ 2509 remove_zspage(class, zspage, fullness); 2510 2511 spin_unlock(&pool->lock); 2512 cond_resched(); 2513 2514 /* Lock backing pages into place */ 2515 lock_zspage(zspage); 2516 2517 obj_idx = 0; 2518 page = get_first_page(zspage); 2519 while (1) { 2520 handle = find_alloced_obj(class, page, &obj_idx); 2521 if (!handle) { 2522 page = get_next_page(page); 2523 if (!page) 2524 break; 2525 obj_idx = 0; 2526 continue; 2527 } 2528 2529 /* 2530 * This will write the object and call zs_free. 2531 * 2532 * zs_free will free the object, but the 2533 * under_reclaim flag prevents it from freeing 2534 * the zspage altogether. This is necessary so 2535 * that we can continue working with the 2536 * zspage potentially after the last object 2537 * has been freed. 2538 */ 2539 ret = pool->zpool_ops->evict(pool->zpool, handle); 2540 if (ret) 2541 goto next; 2542 2543 obj_idx++; 2544 } 2545 2546 next: 2547 /* For freeing the zspage, or putting it back in the pool and LRU list. */ 2548 spin_lock(&pool->lock); 2549 zspage->under_reclaim = false; 2550 2551 if (!get_zspage_inuse(zspage)) { 2552 /* 2553 * Fullness went stale as zs_free() won't touch it 2554 * while the page is removed from the pool. Fix it 2555 * up for the check in __free_zspage(). 2556 */ 2557 zspage->fullness = ZS_EMPTY; 2558 2559 __free_zspage(pool, class, zspage); 2560 spin_unlock(&pool->lock); 2561 return 0; 2562 } 2563 2564 putback_zspage(class, zspage); 2565 list_add(&zspage->lru, &pool->lru); 2566 unlock_zspage(zspage); 2567 } 2568 2569 spin_unlock(&pool->lock); 2570 return -EAGAIN; 2571 } 2572 #endif /* CONFIG_ZPOOL */ 2573 2574 static int __init zs_init(void) 2575 { 2576 int ret; 2577 2578 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2579 zs_cpu_prepare, zs_cpu_dead); 2580 if (ret) 2581 goto out; 2582 2583 #ifdef CONFIG_ZPOOL 2584 zpool_register_driver(&zs_zpool_driver); 2585 #endif 2586 2587 zs_stat_init(); 2588 2589 return 0; 2590 2591 out: 2592 return ret; 2593 } 2594 2595 static void __exit zs_exit(void) 2596 { 2597 #ifdef CONFIG_ZPOOL 2598 zpool_unregister_driver(&zs_zpool_driver); 2599 #endif 2600 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2601 2602 zs_stat_exit(); 2603 } 2604 2605 module_init(zs_init); 2606 module_exit(zs_exit); 2607 2608 MODULE_LICENSE("Dual BSD/GPL"); 2609 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2610