xref: /linux/mm/zsmalloc.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58 
59 #define ZSPAGE_MAGIC	0x58
60 
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN		8
68 
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_PHYSMEM_BITS
88 #ifdef CONFIG_HIGHMEM64G
89 #define MAX_PHYSMEM_BITS 36
90 #else /* !CONFIG_HIGHMEM64G */
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
99 
100 /*
101  * Memory for allocating for handle keeps object position by
102  * encoding <page, obj_idx> and the encoded value has a room
103  * in least bit(ie, look at obj_to_location).
104  * We use the bit to synchronize between object access by
105  * user and migration.
106  */
107 #define HANDLE_PIN_BIT	0
108 
109 /*
110  * Head in allocated object should have OBJ_ALLOCATED_TAG
111  * to identify the object was allocated or not.
112  * It's okay to add the status bit in the least bit because
113  * header keeps handle which is 4byte-aligned address so we
114  * have room for two bit at least.
115  */
116 #define OBJ_ALLOCATED_TAG 1
117 #define OBJ_TAG_BITS 1
118 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
119 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 
121 #define FULLNESS_BITS	2
122 #define CLASS_BITS	8
123 #define ISOLATED_BITS	3
124 #define MAGIC_VAL_BITS	8
125 
126 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
132 
133 /*
134  * On systems with 4K page size, this gives 255 size classes! There is a
135  * trader-off here:
136  *  - Large number of size classes is potentially wasteful as free page are
137  *    spread across these classes
138  *  - Small number of size classes causes large internal fragmentation
139  *  - Probably its better to use specific size classes (empirically
140  *    determined). NOTE: all those class sizes must be set as multiple of
141  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142  *
143  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144  *  (reason above)
145  */
146 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 				      ZS_SIZE_CLASS_DELTA) + 1)
149 
150 enum fullness_group {
151 	ZS_EMPTY,
152 	ZS_ALMOST_EMPTY,
153 	ZS_ALMOST_FULL,
154 	ZS_FULL,
155 	NR_ZS_FULLNESS,
156 };
157 
158 enum zs_stat_type {
159 	CLASS_EMPTY,
160 	CLASS_ALMOST_EMPTY,
161 	CLASS_ALMOST_FULL,
162 	CLASS_FULL,
163 	OBJ_ALLOCATED,
164 	OBJ_USED,
165 	NR_ZS_STAT_TYPE,
166 };
167 
168 struct zs_size_stat {
169 	unsigned long objs[NR_ZS_STAT_TYPE];
170 };
171 
172 #ifdef CONFIG_ZSMALLOC_STAT
173 static struct dentry *zs_stat_root;
174 #endif
175 
176 #ifdef CONFIG_COMPACTION
177 static struct vfsmount *zsmalloc_mnt;
178 #endif
179 
180 /*
181  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
182  *	n <= N / f, where
183  * n = number of allocated objects
184  * N = total number of objects zspage can store
185  * f = fullness_threshold_frac
186  *
187  * Similarly, we assign zspage to:
188  *	ZS_ALMOST_FULL	when n > N / f
189  *	ZS_EMPTY	when n == 0
190  *	ZS_FULL		when n == N
191  *
192  * (see: fix_fullness_group())
193  */
194 static const int fullness_threshold_frac = 4;
195 
196 struct size_class {
197 	spinlock_t lock;
198 	struct list_head fullness_list[NR_ZS_FULLNESS];
199 	/*
200 	 * Size of objects stored in this class. Must be multiple
201 	 * of ZS_ALIGN.
202 	 */
203 	int size;
204 	int objs_per_zspage;
205 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
206 	int pages_per_zspage;
207 
208 	unsigned int index;
209 	struct zs_size_stat stats;
210 };
211 
212 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
213 static void SetPageHugeObject(struct page *page)
214 {
215 	SetPageOwnerPriv1(page);
216 }
217 
218 static void ClearPageHugeObject(struct page *page)
219 {
220 	ClearPageOwnerPriv1(page);
221 }
222 
223 static int PageHugeObject(struct page *page)
224 {
225 	return PageOwnerPriv1(page);
226 }
227 
228 /*
229  * Placed within free objects to form a singly linked list.
230  * For every zspage, zspage->freeobj gives head of this list.
231  *
232  * This must be power of 2 and less than or equal to ZS_ALIGN
233  */
234 struct link_free {
235 	union {
236 		/*
237 		 * Free object index;
238 		 * It's valid for non-allocated object
239 		 */
240 		unsigned long next;
241 		/*
242 		 * Handle of allocated object.
243 		 */
244 		unsigned long handle;
245 	};
246 };
247 
248 struct zs_pool {
249 	const char *name;
250 
251 	struct size_class *size_class[ZS_SIZE_CLASSES];
252 	struct kmem_cache *handle_cachep;
253 	struct kmem_cache *zspage_cachep;
254 
255 	atomic_long_t pages_allocated;
256 
257 	struct zs_pool_stats stats;
258 
259 	/* Compact classes */
260 	struct shrinker shrinker;
261 
262 #ifdef CONFIG_ZSMALLOC_STAT
263 	struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266 	struct inode *inode;
267 	struct work_struct free_work;
268 #endif
269 };
270 
271 struct zspage {
272 	struct {
273 		unsigned int fullness:FULLNESS_BITS;
274 		unsigned int class:CLASS_BITS + 1;
275 		unsigned int isolated:ISOLATED_BITS;
276 		unsigned int magic:MAGIC_VAL_BITS;
277 	};
278 	unsigned int inuse;
279 	unsigned int freeobj;
280 	struct page *first_page;
281 	struct list_head list; /* fullness list */
282 #ifdef CONFIG_COMPACTION
283 	rwlock_t lock;
284 #endif
285 };
286 
287 struct mapping_area {
288 #ifdef CONFIG_PGTABLE_MAPPING
289 	struct vm_struct *vm; /* vm area for mapping object that span pages */
290 #else
291 	char *vm_buf; /* copy buffer for objects that span pages */
292 #endif
293 	char *vm_addr; /* address of kmap_atomic()'ed pages */
294 	enum zs_mapmode vm_mm; /* mapping mode */
295 };
296 
297 #ifdef CONFIG_COMPACTION
298 static int zs_register_migration(struct zs_pool *pool);
299 static void zs_unregister_migration(struct zs_pool *pool);
300 static void migrate_lock_init(struct zspage *zspage);
301 static void migrate_read_lock(struct zspage *zspage);
302 static void migrate_read_unlock(struct zspage *zspage);
303 static void kick_deferred_free(struct zs_pool *pool);
304 static void init_deferred_free(struct zs_pool *pool);
305 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
306 #else
307 static int zsmalloc_mount(void) { return 0; }
308 static void zsmalloc_unmount(void) {}
309 static int zs_register_migration(struct zs_pool *pool) { return 0; }
310 static void zs_unregister_migration(struct zs_pool *pool) {}
311 static void migrate_lock_init(struct zspage *zspage) {}
312 static void migrate_read_lock(struct zspage *zspage) {}
313 static void migrate_read_unlock(struct zspage *zspage) {}
314 static void kick_deferred_free(struct zs_pool *pool) {}
315 static void init_deferred_free(struct zs_pool *pool) {}
316 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
317 #endif
318 
319 static int create_cache(struct zs_pool *pool)
320 {
321 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
322 					0, 0, NULL);
323 	if (!pool->handle_cachep)
324 		return 1;
325 
326 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
327 					0, 0, NULL);
328 	if (!pool->zspage_cachep) {
329 		kmem_cache_destroy(pool->handle_cachep);
330 		pool->handle_cachep = NULL;
331 		return 1;
332 	}
333 
334 	return 0;
335 }
336 
337 static void destroy_cache(struct zs_pool *pool)
338 {
339 	kmem_cache_destroy(pool->handle_cachep);
340 	kmem_cache_destroy(pool->zspage_cachep);
341 }
342 
343 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
344 {
345 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
346 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
347 }
348 
349 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
350 {
351 	kmem_cache_free(pool->handle_cachep, (void *)handle);
352 }
353 
354 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
355 {
356 	return kmem_cache_alloc(pool->zspage_cachep,
357 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359 
360 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
361 {
362 	kmem_cache_free(pool->zspage_cachep, zspage);
363 }
364 
365 static void record_obj(unsigned long handle, unsigned long obj)
366 {
367 	/*
368 	 * lsb of @obj represents handle lock while other bits
369 	 * represent object value the handle is pointing so
370 	 * updating shouldn't do store tearing.
371 	 */
372 	WRITE_ONCE(*(unsigned long *)handle, obj);
373 }
374 
375 /* zpool driver */
376 
377 #ifdef CONFIG_ZPOOL
378 
379 static void *zs_zpool_create(const char *name, gfp_t gfp,
380 			     const struct zpool_ops *zpool_ops,
381 			     struct zpool *zpool)
382 {
383 	/*
384 	 * Ignore global gfp flags: zs_malloc() may be invoked from
385 	 * different contexts and its caller must provide a valid
386 	 * gfp mask.
387 	 */
388 	return zs_create_pool(name);
389 }
390 
391 static void zs_zpool_destroy(void *pool)
392 {
393 	zs_destroy_pool(pool);
394 }
395 
396 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
397 			unsigned long *handle)
398 {
399 	*handle = zs_malloc(pool, size, gfp);
400 	return *handle ? 0 : -1;
401 }
402 static void zs_zpool_free(void *pool, unsigned long handle)
403 {
404 	zs_free(pool, handle);
405 }
406 
407 static void *zs_zpool_map(void *pool, unsigned long handle,
408 			enum zpool_mapmode mm)
409 {
410 	enum zs_mapmode zs_mm;
411 
412 	switch (mm) {
413 	case ZPOOL_MM_RO:
414 		zs_mm = ZS_MM_RO;
415 		break;
416 	case ZPOOL_MM_WO:
417 		zs_mm = ZS_MM_WO;
418 		break;
419 	case ZPOOL_MM_RW: /* fallthru */
420 	default:
421 		zs_mm = ZS_MM_RW;
422 		break;
423 	}
424 
425 	return zs_map_object(pool, handle, zs_mm);
426 }
427 static void zs_zpool_unmap(void *pool, unsigned long handle)
428 {
429 	zs_unmap_object(pool, handle);
430 }
431 
432 static u64 zs_zpool_total_size(void *pool)
433 {
434 	return zs_get_total_pages(pool) << PAGE_SHIFT;
435 }
436 
437 static struct zpool_driver zs_zpool_driver = {
438 	.type =		"zsmalloc",
439 	.owner =	THIS_MODULE,
440 	.create =	zs_zpool_create,
441 	.destroy =	zs_zpool_destroy,
442 	.malloc =	zs_zpool_malloc,
443 	.free =		zs_zpool_free,
444 	.map =		zs_zpool_map,
445 	.unmap =	zs_zpool_unmap,
446 	.total_size =	zs_zpool_total_size,
447 };
448 
449 MODULE_ALIAS("zpool-zsmalloc");
450 #endif /* CONFIG_ZPOOL */
451 
452 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
453 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
454 
455 static bool is_zspage_isolated(struct zspage *zspage)
456 {
457 	return zspage->isolated;
458 }
459 
460 static __maybe_unused int is_first_page(struct page *page)
461 {
462 	return PagePrivate(page);
463 }
464 
465 /* Protected by class->lock */
466 static inline int get_zspage_inuse(struct zspage *zspage)
467 {
468 	return zspage->inuse;
469 }
470 
471 static inline void set_zspage_inuse(struct zspage *zspage, int val)
472 {
473 	zspage->inuse = val;
474 }
475 
476 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
477 {
478 	zspage->inuse += val;
479 }
480 
481 static inline struct page *get_first_page(struct zspage *zspage)
482 {
483 	struct page *first_page = zspage->first_page;
484 
485 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
486 	return first_page;
487 }
488 
489 static inline int get_first_obj_offset(struct page *page)
490 {
491 	return page->units;
492 }
493 
494 static inline void set_first_obj_offset(struct page *page, int offset)
495 {
496 	page->units = offset;
497 }
498 
499 static inline unsigned int get_freeobj(struct zspage *zspage)
500 {
501 	return zspage->freeobj;
502 }
503 
504 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
505 {
506 	zspage->freeobj = obj;
507 }
508 
509 static void get_zspage_mapping(struct zspage *zspage,
510 				unsigned int *class_idx,
511 				enum fullness_group *fullness)
512 {
513 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
514 
515 	*fullness = zspage->fullness;
516 	*class_idx = zspage->class;
517 }
518 
519 static void set_zspage_mapping(struct zspage *zspage,
520 				unsigned int class_idx,
521 				enum fullness_group fullness)
522 {
523 	zspage->class = class_idx;
524 	zspage->fullness = fullness;
525 }
526 
527 /*
528  * zsmalloc divides the pool into various size classes where each
529  * class maintains a list of zspages where each zspage is divided
530  * into equal sized chunks. Each allocation falls into one of these
531  * classes depending on its size. This function returns index of the
532  * size class which has chunk size big enough to hold the give size.
533  */
534 static int get_size_class_index(int size)
535 {
536 	int idx = 0;
537 
538 	if (likely(size > ZS_MIN_ALLOC_SIZE))
539 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
540 				ZS_SIZE_CLASS_DELTA);
541 
542 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
543 }
544 
545 /* type can be of enum type zs_stat_type or fullness_group */
546 static inline void zs_stat_inc(struct size_class *class,
547 				int type, unsigned long cnt)
548 {
549 	class->stats.objs[type] += cnt;
550 }
551 
552 /* type can be of enum type zs_stat_type or fullness_group */
553 static inline void zs_stat_dec(struct size_class *class,
554 				int type, unsigned long cnt)
555 {
556 	class->stats.objs[type] -= cnt;
557 }
558 
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline unsigned long zs_stat_get(struct size_class *class,
561 				int type)
562 {
563 	return class->stats.objs[type];
564 }
565 
566 #ifdef CONFIG_ZSMALLOC_STAT
567 
568 static void __init zs_stat_init(void)
569 {
570 	if (!debugfs_initialized()) {
571 		pr_warn("debugfs not available, stat dir not created\n");
572 		return;
573 	}
574 
575 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
576 	if (!zs_stat_root)
577 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
578 }
579 
580 static void __exit zs_stat_exit(void)
581 {
582 	debugfs_remove_recursive(zs_stat_root);
583 }
584 
585 static unsigned long zs_can_compact(struct size_class *class);
586 
587 static int zs_stats_size_show(struct seq_file *s, void *v)
588 {
589 	int i;
590 	struct zs_pool *pool = s->private;
591 	struct size_class *class;
592 	int objs_per_zspage;
593 	unsigned long class_almost_full, class_almost_empty;
594 	unsigned long obj_allocated, obj_used, pages_used, freeable;
595 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597 	unsigned long total_freeable = 0;
598 
599 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 			"class", "size", "almost_full", "almost_empty",
601 			"obj_allocated", "obj_used", "pages_used",
602 			"pages_per_zspage", "freeable");
603 
604 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605 		class = pool->size_class[i];
606 
607 		if (class->index != i)
608 			continue;
609 
610 		spin_lock(&class->lock);
611 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 		obj_used = zs_stat_get(class, OBJ_USED);
615 		freeable = zs_can_compact(class);
616 		spin_unlock(&class->lock);
617 
618 		objs_per_zspage = class->objs_per_zspage;
619 		pages_used = obj_allocated / objs_per_zspage *
620 				class->pages_per_zspage;
621 
622 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 				" %10lu %10lu %16d %8lu\n",
624 			i, class->size, class_almost_full, class_almost_empty,
625 			obj_allocated, obj_used, pages_used,
626 			class->pages_per_zspage, freeable);
627 
628 		total_class_almost_full += class_almost_full;
629 		total_class_almost_empty += class_almost_empty;
630 		total_objs += obj_allocated;
631 		total_used_objs += obj_used;
632 		total_pages += pages_used;
633 		total_freeable += freeable;
634 	}
635 
636 	seq_puts(s, "\n");
637 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 			"Total", "", total_class_almost_full,
639 			total_class_almost_empty, total_objs,
640 			total_used_objs, total_pages, "", total_freeable);
641 
642 	return 0;
643 }
644 
645 static int zs_stats_size_open(struct inode *inode, struct file *file)
646 {
647 	return single_open(file, zs_stats_size_show, inode->i_private);
648 }
649 
650 static const struct file_operations zs_stat_size_ops = {
651 	.open           = zs_stats_size_open,
652 	.read           = seq_read,
653 	.llseek         = seq_lseek,
654 	.release        = single_release,
655 };
656 
657 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
658 {
659 	struct dentry *entry;
660 
661 	if (!zs_stat_root) {
662 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
663 		return;
664 	}
665 
666 	entry = debugfs_create_dir(name, zs_stat_root);
667 	if (!entry) {
668 		pr_warn("debugfs dir <%s> creation failed\n", name);
669 		return;
670 	}
671 	pool->stat_dentry = entry;
672 
673 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
674 			pool->stat_dentry, pool, &zs_stat_size_ops);
675 	if (!entry) {
676 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
677 				name, "classes");
678 		debugfs_remove_recursive(pool->stat_dentry);
679 		pool->stat_dentry = NULL;
680 	}
681 }
682 
683 static void zs_pool_stat_destroy(struct zs_pool *pool)
684 {
685 	debugfs_remove_recursive(pool->stat_dentry);
686 }
687 
688 #else /* CONFIG_ZSMALLOC_STAT */
689 static void __init zs_stat_init(void)
690 {
691 }
692 
693 static void __exit zs_stat_exit(void)
694 {
695 }
696 
697 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
698 {
699 }
700 
701 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
702 {
703 }
704 #endif
705 
706 
707 /*
708  * For each size class, zspages are divided into different groups
709  * depending on how "full" they are. This was done so that we could
710  * easily find empty or nearly empty zspages when we try to shrink
711  * the pool (not yet implemented). This function returns fullness
712  * status of the given page.
713  */
714 static enum fullness_group get_fullness_group(struct size_class *class,
715 						struct zspage *zspage)
716 {
717 	int inuse, objs_per_zspage;
718 	enum fullness_group fg;
719 
720 	inuse = get_zspage_inuse(zspage);
721 	objs_per_zspage = class->objs_per_zspage;
722 
723 	if (inuse == 0)
724 		fg = ZS_EMPTY;
725 	else if (inuse == objs_per_zspage)
726 		fg = ZS_FULL;
727 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
728 		fg = ZS_ALMOST_EMPTY;
729 	else
730 		fg = ZS_ALMOST_FULL;
731 
732 	return fg;
733 }
734 
735 /*
736  * Each size class maintains various freelists and zspages are assigned
737  * to one of these freelists based on the number of live objects they
738  * have. This functions inserts the given zspage into the freelist
739  * identified by <class, fullness_group>.
740  */
741 static void insert_zspage(struct size_class *class,
742 				struct zspage *zspage,
743 				enum fullness_group fullness)
744 {
745 	struct zspage *head;
746 
747 	zs_stat_inc(class, fullness, 1);
748 	head = list_first_entry_or_null(&class->fullness_list[fullness],
749 					struct zspage, list);
750 	/*
751 	 * We want to see more ZS_FULL pages and less almost empty/full.
752 	 * Put pages with higher ->inuse first.
753 	 */
754 	if (head) {
755 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
756 			list_add(&zspage->list, &head->list);
757 			return;
758 		}
759 	}
760 	list_add(&zspage->list, &class->fullness_list[fullness]);
761 }
762 
763 /*
764  * This function removes the given zspage from the freelist identified
765  * by <class, fullness_group>.
766  */
767 static void remove_zspage(struct size_class *class,
768 				struct zspage *zspage,
769 				enum fullness_group fullness)
770 {
771 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
772 	VM_BUG_ON(is_zspage_isolated(zspage));
773 
774 	list_del_init(&zspage->list);
775 	zs_stat_dec(class, fullness, 1);
776 }
777 
778 /*
779  * Each size class maintains zspages in different fullness groups depending
780  * on the number of live objects they contain. When allocating or freeing
781  * objects, the fullness status of the page can change, say, from ALMOST_FULL
782  * to ALMOST_EMPTY when freeing an object. This function checks if such
783  * a status change has occurred for the given page and accordingly moves the
784  * page from the freelist of the old fullness group to that of the new
785  * fullness group.
786  */
787 static enum fullness_group fix_fullness_group(struct size_class *class,
788 						struct zspage *zspage)
789 {
790 	int class_idx;
791 	enum fullness_group currfg, newfg;
792 
793 	get_zspage_mapping(zspage, &class_idx, &currfg);
794 	newfg = get_fullness_group(class, zspage);
795 	if (newfg == currfg)
796 		goto out;
797 
798 	if (!is_zspage_isolated(zspage)) {
799 		remove_zspage(class, zspage, currfg);
800 		insert_zspage(class, zspage, newfg);
801 	}
802 
803 	set_zspage_mapping(zspage, class_idx, newfg);
804 
805 out:
806 	return newfg;
807 }
808 
809 /*
810  * We have to decide on how many pages to link together
811  * to form a zspage for each size class. This is important
812  * to reduce wastage due to unusable space left at end of
813  * each zspage which is given as:
814  *     wastage = Zp % class_size
815  *     usage = Zp - wastage
816  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
817  *
818  * For example, for size class of 3/8 * PAGE_SIZE, we should
819  * link together 3 PAGE_SIZE sized pages to form a zspage
820  * since then we can perfectly fit in 8 such objects.
821  */
822 static int get_pages_per_zspage(int class_size)
823 {
824 	int i, max_usedpc = 0;
825 	/* zspage order which gives maximum used size per KB */
826 	int max_usedpc_order = 1;
827 
828 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
829 		int zspage_size;
830 		int waste, usedpc;
831 
832 		zspage_size = i * PAGE_SIZE;
833 		waste = zspage_size % class_size;
834 		usedpc = (zspage_size - waste) * 100 / zspage_size;
835 
836 		if (usedpc > max_usedpc) {
837 			max_usedpc = usedpc;
838 			max_usedpc_order = i;
839 		}
840 	}
841 
842 	return max_usedpc_order;
843 }
844 
845 static struct zspage *get_zspage(struct page *page)
846 {
847 	struct zspage *zspage = (struct zspage *)page->private;
848 
849 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
850 	return zspage;
851 }
852 
853 static struct page *get_next_page(struct page *page)
854 {
855 	if (unlikely(PageHugeObject(page)))
856 		return NULL;
857 
858 	return page->freelist;
859 }
860 
861 /**
862  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
863  * @page: page object resides in zspage
864  * @obj_idx: object index
865  */
866 static void obj_to_location(unsigned long obj, struct page **page,
867 				unsigned int *obj_idx)
868 {
869 	obj >>= OBJ_TAG_BITS;
870 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
871 	*obj_idx = (obj & OBJ_INDEX_MASK);
872 }
873 
874 /**
875  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
876  * @page: page object resides in zspage
877  * @obj_idx: object index
878  */
879 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
880 {
881 	unsigned long obj;
882 
883 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
884 	obj |= obj_idx & OBJ_INDEX_MASK;
885 	obj <<= OBJ_TAG_BITS;
886 
887 	return obj;
888 }
889 
890 static unsigned long handle_to_obj(unsigned long handle)
891 {
892 	return *(unsigned long *)handle;
893 }
894 
895 static unsigned long obj_to_head(struct page *page, void *obj)
896 {
897 	if (unlikely(PageHugeObject(page))) {
898 		VM_BUG_ON_PAGE(!is_first_page(page), page);
899 		return page->index;
900 	} else
901 		return *(unsigned long *)obj;
902 }
903 
904 static inline int testpin_tag(unsigned long handle)
905 {
906 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
907 }
908 
909 static inline int trypin_tag(unsigned long handle)
910 {
911 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
912 }
913 
914 static void pin_tag(unsigned long handle)
915 {
916 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
917 }
918 
919 static void unpin_tag(unsigned long handle)
920 {
921 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
922 }
923 
924 static void reset_page(struct page *page)
925 {
926 	__ClearPageMovable(page);
927 	ClearPagePrivate(page);
928 	set_page_private(page, 0);
929 	page_mapcount_reset(page);
930 	ClearPageHugeObject(page);
931 	page->freelist = NULL;
932 }
933 
934 /*
935  * To prevent zspage destroy during migration, zspage freeing should
936  * hold locks of all pages in the zspage.
937  */
938 void lock_zspage(struct zspage *zspage)
939 {
940 	struct page *page = get_first_page(zspage);
941 
942 	do {
943 		lock_page(page);
944 	} while ((page = get_next_page(page)) != NULL);
945 }
946 
947 int trylock_zspage(struct zspage *zspage)
948 {
949 	struct page *cursor, *fail;
950 
951 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
952 					get_next_page(cursor)) {
953 		if (!trylock_page(cursor)) {
954 			fail = cursor;
955 			goto unlock;
956 		}
957 	}
958 
959 	return 1;
960 unlock:
961 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
962 					get_next_page(cursor))
963 		unlock_page(cursor);
964 
965 	return 0;
966 }
967 
968 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
969 				struct zspage *zspage)
970 {
971 	struct page *page, *next;
972 	enum fullness_group fg;
973 	unsigned int class_idx;
974 
975 	get_zspage_mapping(zspage, &class_idx, &fg);
976 
977 	assert_spin_locked(&class->lock);
978 
979 	VM_BUG_ON(get_zspage_inuse(zspage));
980 	VM_BUG_ON(fg != ZS_EMPTY);
981 
982 	next = page = get_first_page(zspage);
983 	do {
984 		VM_BUG_ON_PAGE(!PageLocked(page), page);
985 		next = get_next_page(page);
986 		reset_page(page);
987 		unlock_page(page);
988 		dec_zone_page_state(page, NR_ZSPAGES);
989 		put_page(page);
990 		page = next;
991 	} while (page != NULL);
992 
993 	cache_free_zspage(pool, zspage);
994 
995 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
996 	atomic_long_sub(class->pages_per_zspage,
997 					&pool->pages_allocated);
998 }
999 
1000 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1001 				struct zspage *zspage)
1002 {
1003 	VM_BUG_ON(get_zspage_inuse(zspage));
1004 	VM_BUG_ON(list_empty(&zspage->list));
1005 
1006 	if (!trylock_zspage(zspage)) {
1007 		kick_deferred_free(pool);
1008 		return;
1009 	}
1010 
1011 	remove_zspage(class, zspage, ZS_EMPTY);
1012 	__free_zspage(pool, class, zspage);
1013 }
1014 
1015 /* Initialize a newly allocated zspage */
1016 static void init_zspage(struct size_class *class, struct zspage *zspage)
1017 {
1018 	unsigned int freeobj = 1;
1019 	unsigned long off = 0;
1020 	struct page *page = get_first_page(zspage);
1021 
1022 	while (page) {
1023 		struct page *next_page;
1024 		struct link_free *link;
1025 		void *vaddr;
1026 
1027 		set_first_obj_offset(page, off);
1028 
1029 		vaddr = kmap_atomic(page);
1030 		link = (struct link_free *)vaddr + off / sizeof(*link);
1031 
1032 		while ((off += class->size) < PAGE_SIZE) {
1033 			link->next = freeobj++ << OBJ_TAG_BITS;
1034 			link += class->size / sizeof(*link);
1035 		}
1036 
1037 		/*
1038 		 * We now come to the last (full or partial) object on this
1039 		 * page, which must point to the first object on the next
1040 		 * page (if present)
1041 		 */
1042 		next_page = get_next_page(page);
1043 		if (next_page) {
1044 			link->next = freeobj++ << OBJ_TAG_BITS;
1045 		} else {
1046 			/*
1047 			 * Reset OBJ_TAG_BITS bit to last link to tell
1048 			 * whether it's allocated object or not.
1049 			 */
1050 			link->next = -1UL << OBJ_TAG_BITS;
1051 		}
1052 		kunmap_atomic(vaddr);
1053 		page = next_page;
1054 		off %= PAGE_SIZE;
1055 	}
1056 
1057 	set_freeobj(zspage, 0);
1058 }
1059 
1060 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1061 				struct page *pages[])
1062 {
1063 	int i;
1064 	struct page *page;
1065 	struct page *prev_page = NULL;
1066 	int nr_pages = class->pages_per_zspage;
1067 
1068 	/*
1069 	 * Allocate individual pages and link them together as:
1070 	 * 1. all pages are linked together using page->freelist
1071 	 * 2. each sub-page point to zspage using page->private
1072 	 *
1073 	 * we set PG_private to identify the first page (i.e. no other sub-page
1074 	 * has this flag set).
1075 	 */
1076 	for (i = 0; i < nr_pages; i++) {
1077 		page = pages[i];
1078 		set_page_private(page, (unsigned long)zspage);
1079 		page->freelist = NULL;
1080 		if (i == 0) {
1081 			zspage->first_page = page;
1082 			SetPagePrivate(page);
1083 			if (unlikely(class->objs_per_zspage == 1 &&
1084 					class->pages_per_zspage == 1))
1085 				SetPageHugeObject(page);
1086 		} else {
1087 			prev_page->freelist = page;
1088 		}
1089 		prev_page = page;
1090 	}
1091 }
1092 
1093 /*
1094  * Allocate a zspage for the given size class
1095  */
1096 static struct zspage *alloc_zspage(struct zs_pool *pool,
1097 					struct size_class *class,
1098 					gfp_t gfp)
1099 {
1100 	int i;
1101 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1102 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1103 
1104 	if (!zspage)
1105 		return NULL;
1106 
1107 	memset(zspage, 0, sizeof(struct zspage));
1108 	zspage->magic = ZSPAGE_MAGIC;
1109 	migrate_lock_init(zspage);
1110 
1111 	for (i = 0; i < class->pages_per_zspage; i++) {
1112 		struct page *page;
1113 
1114 		page = alloc_page(gfp);
1115 		if (!page) {
1116 			while (--i >= 0) {
1117 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1118 				__free_page(pages[i]);
1119 			}
1120 			cache_free_zspage(pool, zspage);
1121 			return NULL;
1122 		}
1123 
1124 		inc_zone_page_state(page, NR_ZSPAGES);
1125 		pages[i] = page;
1126 	}
1127 
1128 	create_page_chain(class, zspage, pages);
1129 	init_zspage(class, zspage);
1130 
1131 	return zspage;
1132 }
1133 
1134 static struct zspage *find_get_zspage(struct size_class *class)
1135 {
1136 	int i;
1137 	struct zspage *zspage;
1138 
1139 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1140 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1141 				struct zspage, list);
1142 		if (zspage)
1143 			break;
1144 	}
1145 
1146 	return zspage;
1147 }
1148 
1149 #ifdef CONFIG_PGTABLE_MAPPING
1150 static inline int __zs_cpu_up(struct mapping_area *area)
1151 {
1152 	/*
1153 	 * Make sure we don't leak memory if a cpu UP notification
1154 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1155 	 */
1156 	if (area->vm)
1157 		return 0;
1158 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1159 	if (!area->vm)
1160 		return -ENOMEM;
1161 	return 0;
1162 }
1163 
1164 static inline void __zs_cpu_down(struct mapping_area *area)
1165 {
1166 	if (area->vm)
1167 		free_vm_area(area->vm);
1168 	area->vm = NULL;
1169 }
1170 
1171 static inline void *__zs_map_object(struct mapping_area *area,
1172 				struct page *pages[2], int off, int size)
1173 {
1174 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1175 	area->vm_addr = area->vm->addr;
1176 	return area->vm_addr + off;
1177 }
1178 
1179 static inline void __zs_unmap_object(struct mapping_area *area,
1180 				struct page *pages[2], int off, int size)
1181 {
1182 	unsigned long addr = (unsigned long)area->vm_addr;
1183 
1184 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1185 }
1186 
1187 #else /* CONFIG_PGTABLE_MAPPING */
1188 
1189 static inline int __zs_cpu_up(struct mapping_area *area)
1190 {
1191 	/*
1192 	 * Make sure we don't leak memory if a cpu UP notification
1193 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1194 	 */
1195 	if (area->vm_buf)
1196 		return 0;
1197 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1198 	if (!area->vm_buf)
1199 		return -ENOMEM;
1200 	return 0;
1201 }
1202 
1203 static inline void __zs_cpu_down(struct mapping_area *area)
1204 {
1205 	kfree(area->vm_buf);
1206 	area->vm_buf = NULL;
1207 }
1208 
1209 static void *__zs_map_object(struct mapping_area *area,
1210 			struct page *pages[2], int off, int size)
1211 {
1212 	int sizes[2];
1213 	void *addr;
1214 	char *buf = area->vm_buf;
1215 
1216 	/* disable page faults to match kmap_atomic() return conditions */
1217 	pagefault_disable();
1218 
1219 	/* no read fastpath */
1220 	if (area->vm_mm == ZS_MM_WO)
1221 		goto out;
1222 
1223 	sizes[0] = PAGE_SIZE - off;
1224 	sizes[1] = size - sizes[0];
1225 
1226 	/* copy object to per-cpu buffer */
1227 	addr = kmap_atomic(pages[0]);
1228 	memcpy(buf, addr + off, sizes[0]);
1229 	kunmap_atomic(addr);
1230 	addr = kmap_atomic(pages[1]);
1231 	memcpy(buf + sizes[0], addr, sizes[1]);
1232 	kunmap_atomic(addr);
1233 out:
1234 	return area->vm_buf;
1235 }
1236 
1237 static void __zs_unmap_object(struct mapping_area *area,
1238 			struct page *pages[2], int off, int size)
1239 {
1240 	int sizes[2];
1241 	void *addr;
1242 	char *buf;
1243 
1244 	/* no write fastpath */
1245 	if (area->vm_mm == ZS_MM_RO)
1246 		goto out;
1247 
1248 	buf = area->vm_buf;
1249 	buf = buf + ZS_HANDLE_SIZE;
1250 	size -= ZS_HANDLE_SIZE;
1251 	off += ZS_HANDLE_SIZE;
1252 
1253 	sizes[0] = PAGE_SIZE - off;
1254 	sizes[1] = size - sizes[0];
1255 
1256 	/* copy per-cpu buffer to object */
1257 	addr = kmap_atomic(pages[0]);
1258 	memcpy(addr + off, buf, sizes[0]);
1259 	kunmap_atomic(addr);
1260 	addr = kmap_atomic(pages[1]);
1261 	memcpy(addr, buf + sizes[0], sizes[1]);
1262 	kunmap_atomic(addr);
1263 
1264 out:
1265 	/* enable page faults to match kunmap_atomic() return conditions */
1266 	pagefault_enable();
1267 }
1268 
1269 #endif /* CONFIG_PGTABLE_MAPPING */
1270 
1271 static int zs_cpu_prepare(unsigned int cpu)
1272 {
1273 	struct mapping_area *area;
1274 
1275 	area = &per_cpu(zs_map_area, cpu);
1276 	return __zs_cpu_up(area);
1277 }
1278 
1279 static int zs_cpu_dead(unsigned int cpu)
1280 {
1281 	struct mapping_area *area;
1282 
1283 	area = &per_cpu(zs_map_area, cpu);
1284 	__zs_cpu_down(area);
1285 	return 0;
1286 }
1287 
1288 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1289 					int objs_per_zspage)
1290 {
1291 	if (prev->pages_per_zspage == pages_per_zspage &&
1292 		prev->objs_per_zspage == objs_per_zspage)
1293 		return true;
1294 
1295 	return false;
1296 }
1297 
1298 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1299 {
1300 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1301 }
1302 
1303 unsigned long zs_get_total_pages(struct zs_pool *pool)
1304 {
1305 	return atomic_long_read(&pool->pages_allocated);
1306 }
1307 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1308 
1309 /**
1310  * zs_map_object - get address of allocated object from handle.
1311  * @pool: pool from which the object was allocated
1312  * @handle: handle returned from zs_malloc
1313  *
1314  * Before using an object allocated from zs_malloc, it must be mapped using
1315  * this function. When done with the object, it must be unmapped using
1316  * zs_unmap_object.
1317  *
1318  * Only one object can be mapped per cpu at a time. There is no protection
1319  * against nested mappings.
1320  *
1321  * This function returns with preemption and page faults disabled.
1322  */
1323 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1324 			enum zs_mapmode mm)
1325 {
1326 	struct zspage *zspage;
1327 	struct page *page;
1328 	unsigned long obj, off;
1329 	unsigned int obj_idx;
1330 
1331 	unsigned int class_idx;
1332 	enum fullness_group fg;
1333 	struct size_class *class;
1334 	struct mapping_area *area;
1335 	struct page *pages[2];
1336 	void *ret;
1337 
1338 	/*
1339 	 * Because we use per-cpu mapping areas shared among the
1340 	 * pools/users, we can't allow mapping in interrupt context
1341 	 * because it can corrupt another users mappings.
1342 	 */
1343 	BUG_ON(in_interrupt());
1344 
1345 	/* From now on, migration cannot move the object */
1346 	pin_tag(handle);
1347 
1348 	obj = handle_to_obj(handle);
1349 	obj_to_location(obj, &page, &obj_idx);
1350 	zspage = get_zspage(page);
1351 
1352 	/* migration cannot move any subpage in this zspage */
1353 	migrate_read_lock(zspage);
1354 
1355 	get_zspage_mapping(zspage, &class_idx, &fg);
1356 	class = pool->size_class[class_idx];
1357 	off = (class->size * obj_idx) & ~PAGE_MASK;
1358 
1359 	area = &get_cpu_var(zs_map_area);
1360 	area->vm_mm = mm;
1361 	if (off + class->size <= PAGE_SIZE) {
1362 		/* this object is contained entirely within a page */
1363 		area->vm_addr = kmap_atomic(page);
1364 		ret = area->vm_addr + off;
1365 		goto out;
1366 	}
1367 
1368 	/* this object spans two pages */
1369 	pages[0] = page;
1370 	pages[1] = get_next_page(page);
1371 	BUG_ON(!pages[1]);
1372 
1373 	ret = __zs_map_object(area, pages, off, class->size);
1374 out:
1375 	if (likely(!PageHugeObject(page)))
1376 		ret += ZS_HANDLE_SIZE;
1377 
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL_GPL(zs_map_object);
1381 
1382 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1383 {
1384 	struct zspage *zspage;
1385 	struct page *page;
1386 	unsigned long obj, off;
1387 	unsigned int obj_idx;
1388 
1389 	unsigned int class_idx;
1390 	enum fullness_group fg;
1391 	struct size_class *class;
1392 	struct mapping_area *area;
1393 
1394 	obj = handle_to_obj(handle);
1395 	obj_to_location(obj, &page, &obj_idx);
1396 	zspage = get_zspage(page);
1397 	get_zspage_mapping(zspage, &class_idx, &fg);
1398 	class = pool->size_class[class_idx];
1399 	off = (class->size * obj_idx) & ~PAGE_MASK;
1400 
1401 	area = this_cpu_ptr(&zs_map_area);
1402 	if (off + class->size <= PAGE_SIZE)
1403 		kunmap_atomic(area->vm_addr);
1404 	else {
1405 		struct page *pages[2];
1406 
1407 		pages[0] = page;
1408 		pages[1] = get_next_page(page);
1409 		BUG_ON(!pages[1]);
1410 
1411 		__zs_unmap_object(area, pages, off, class->size);
1412 	}
1413 	put_cpu_var(zs_map_area);
1414 
1415 	migrate_read_unlock(zspage);
1416 	unpin_tag(handle);
1417 }
1418 EXPORT_SYMBOL_GPL(zs_unmap_object);
1419 
1420 static unsigned long obj_malloc(struct size_class *class,
1421 				struct zspage *zspage, unsigned long handle)
1422 {
1423 	int i, nr_page, offset;
1424 	unsigned long obj;
1425 	struct link_free *link;
1426 
1427 	struct page *m_page;
1428 	unsigned long m_offset;
1429 	void *vaddr;
1430 
1431 	handle |= OBJ_ALLOCATED_TAG;
1432 	obj = get_freeobj(zspage);
1433 
1434 	offset = obj * class->size;
1435 	nr_page = offset >> PAGE_SHIFT;
1436 	m_offset = offset & ~PAGE_MASK;
1437 	m_page = get_first_page(zspage);
1438 
1439 	for (i = 0; i < nr_page; i++)
1440 		m_page = get_next_page(m_page);
1441 
1442 	vaddr = kmap_atomic(m_page);
1443 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1444 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1445 	if (likely(!PageHugeObject(m_page)))
1446 		/* record handle in the header of allocated chunk */
1447 		link->handle = handle;
1448 	else
1449 		/* record handle to page->index */
1450 		zspage->first_page->index = handle;
1451 
1452 	kunmap_atomic(vaddr);
1453 	mod_zspage_inuse(zspage, 1);
1454 	zs_stat_inc(class, OBJ_USED, 1);
1455 
1456 	obj = location_to_obj(m_page, obj);
1457 
1458 	return obj;
1459 }
1460 
1461 
1462 /**
1463  * zs_malloc - Allocate block of given size from pool.
1464  * @pool: pool to allocate from
1465  * @size: size of block to allocate
1466  * @gfp: gfp flags when allocating object
1467  *
1468  * On success, handle to the allocated object is returned,
1469  * otherwise 0.
1470  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1471  */
1472 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1473 {
1474 	unsigned long handle, obj;
1475 	struct size_class *class;
1476 	enum fullness_group newfg;
1477 	struct zspage *zspage;
1478 
1479 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1480 		return 0;
1481 
1482 	handle = cache_alloc_handle(pool, gfp);
1483 	if (!handle)
1484 		return 0;
1485 
1486 	/* extra space in chunk to keep the handle */
1487 	size += ZS_HANDLE_SIZE;
1488 	class = pool->size_class[get_size_class_index(size)];
1489 
1490 	spin_lock(&class->lock);
1491 	zspage = find_get_zspage(class);
1492 	if (likely(zspage)) {
1493 		obj = obj_malloc(class, zspage, handle);
1494 		/* Now move the zspage to another fullness group, if required */
1495 		fix_fullness_group(class, zspage);
1496 		record_obj(handle, obj);
1497 		spin_unlock(&class->lock);
1498 
1499 		return handle;
1500 	}
1501 
1502 	spin_unlock(&class->lock);
1503 
1504 	zspage = alloc_zspage(pool, class, gfp);
1505 	if (!zspage) {
1506 		cache_free_handle(pool, handle);
1507 		return 0;
1508 	}
1509 
1510 	spin_lock(&class->lock);
1511 	obj = obj_malloc(class, zspage, handle);
1512 	newfg = get_fullness_group(class, zspage);
1513 	insert_zspage(class, zspage, newfg);
1514 	set_zspage_mapping(zspage, class->index, newfg);
1515 	record_obj(handle, obj);
1516 	atomic_long_add(class->pages_per_zspage,
1517 				&pool->pages_allocated);
1518 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1519 
1520 	/* We completely set up zspage so mark them as movable */
1521 	SetZsPageMovable(pool, zspage);
1522 	spin_unlock(&class->lock);
1523 
1524 	return handle;
1525 }
1526 EXPORT_SYMBOL_GPL(zs_malloc);
1527 
1528 static void obj_free(struct size_class *class, unsigned long obj)
1529 {
1530 	struct link_free *link;
1531 	struct zspage *zspage;
1532 	struct page *f_page;
1533 	unsigned long f_offset;
1534 	unsigned int f_objidx;
1535 	void *vaddr;
1536 
1537 	obj &= ~OBJ_ALLOCATED_TAG;
1538 	obj_to_location(obj, &f_page, &f_objidx);
1539 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1540 	zspage = get_zspage(f_page);
1541 
1542 	vaddr = kmap_atomic(f_page);
1543 
1544 	/* Insert this object in containing zspage's freelist */
1545 	link = (struct link_free *)(vaddr + f_offset);
1546 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1547 	kunmap_atomic(vaddr);
1548 	set_freeobj(zspage, f_objidx);
1549 	mod_zspage_inuse(zspage, -1);
1550 	zs_stat_dec(class, OBJ_USED, 1);
1551 }
1552 
1553 void zs_free(struct zs_pool *pool, unsigned long handle)
1554 {
1555 	struct zspage *zspage;
1556 	struct page *f_page;
1557 	unsigned long obj;
1558 	unsigned int f_objidx;
1559 	int class_idx;
1560 	struct size_class *class;
1561 	enum fullness_group fullness;
1562 	bool isolated;
1563 
1564 	if (unlikely(!handle))
1565 		return;
1566 
1567 	pin_tag(handle);
1568 	obj = handle_to_obj(handle);
1569 	obj_to_location(obj, &f_page, &f_objidx);
1570 	zspage = get_zspage(f_page);
1571 
1572 	migrate_read_lock(zspage);
1573 
1574 	get_zspage_mapping(zspage, &class_idx, &fullness);
1575 	class = pool->size_class[class_idx];
1576 
1577 	spin_lock(&class->lock);
1578 	obj_free(class, obj);
1579 	fullness = fix_fullness_group(class, zspage);
1580 	if (fullness != ZS_EMPTY) {
1581 		migrate_read_unlock(zspage);
1582 		goto out;
1583 	}
1584 
1585 	isolated = is_zspage_isolated(zspage);
1586 	migrate_read_unlock(zspage);
1587 	/* If zspage is isolated, zs_page_putback will free the zspage */
1588 	if (likely(!isolated))
1589 		free_zspage(pool, class, zspage);
1590 out:
1591 
1592 	spin_unlock(&class->lock);
1593 	unpin_tag(handle);
1594 	cache_free_handle(pool, handle);
1595 }
1596 EXPORT_SYMBOL_GPL(zs_free);
1597 
1598 static void zs_object_copy(struct size_class *class, unsigned long dst,
1599 				unsigned long src)
1600 {
1601 	struct page *s_page, *d_page;
1602 	unsigned int s_objidx, d_objidx;
1603 	unsigned long s_off, d_off;
1604 	void *s_addr, *d_addr;
1605 	int s_size, d_size, size;
1606 	int written = 0;
1607 
1608 	s_size = d_size = class->size;
1609 
1610 	obj_to_location(src, &s_page, &s_objidx);
1611 	obj_to_location(dst, &d_page, &d_objidx);
1612 
1613 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1614 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1615 
1616 	if (s_off + class->size > PAGE_SIZE)
1617 		s_size = PAGE_SIZE - s_off;
1618 
1619 	if (d_off + class->size > PAGE_SIZE)
1620 		d_size = PAGE_SIZE - d_off;
1621 
1622 	s_addr = kmap_atomic(s_page);
1623 	d_addr = kmap_atomic(d_page);
1624 
1625 	while (1) {
1626 		size = min(s_size, d_size);
1627 		memcpy(d_addr + d_off, s_addr + s_off, size);
1628 		written += size;
1629 
1630 		if (written == class->size)
1631 			break;
1632 
1633 		s_off += size;
1634 		s_size -= size;
1635 		d_off += size;
1636 		d_size -= size;
1637 
1638 		if (s_off >= PAGE_SIZE) {
1639 			kunmap_atomic(d_addr);
1640 			kunmap_atomic(s_addr);
1641 			s_page = get_next_page(s_page);
1642 			s_addr = kmap_atomic(s_page);
1643 			d_addr = kmap_atomic(d_page);
1644 			s_size = class->size - written;
1645 			s_off = 0;
1646 		}
1647 
1648 		if (d_off >= PAGE_SIZE) {
1649 			kunmap_atomic(d_addr);
1650 			d_page = get_next_page(d_page);
1651 			d_addr = kmap_atomic(d_page);
1652 			d_size = class->size - written;
1653 			d_off = 0;
1654 		}
1655 	}
1656 
1657 	kunmap_atomic(d_addr);
1658 	kunmap_atomic(s_addr);
1659 }
1660 
1661 /*
1662  * Find alloced object in zspage from index object and
1663  * return handle.
1664  */
1665 static unsigned long find_alloced_obj(struct size_class *class,
1666 					struct page *page, int *obj_idx)
1667 {
1668 	unsigned long head;
1669 	int offset = 0;
1670 	int index = *obj_idx;
1671 	unsigned long handle = 0;
1672 	void *addr = kmap_atomic(page);
1673 
1674 	offset = get_first_obj_offset(page);
1675 	offset += class->size * index;
1676 
1677 	while (offset < PAGE_SIZE) {
1678 		head = obj_to_head(page, addr + offset);
1679 		if (head & OBJ_ALLOCATED_TAG) {
1680 			handle = head & ~OBJ_ALLOCATED_TAG;
1681 			if (trypin_tag(handle))
1682 				break;
1683 			handle = 0;
1684 		}
1685 
1686 		offset += class->size;
1687 		index++;
1688 	}
1689 
1690 	kunmap_atomic(addr);
1691 
1692 	*obj_idx = index;
1693 
1694 	return handle;
1695 }
1696 
1697 struct zs_compact_control {
1698 	/* Source spage for migration which could be a subpage of zspage */
1699 	struct page *s_page;
1700 	/* Destination page for migration which should be a first page
1701 	 * of zspage. */
1702 	struct page *d_page;
1703 	 /* Starting object index within @s_page which used for live object
1704 	  * in the subpage. */
1705 	int obj_idx;
1706 };
1707 
1708 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1709 				struct zs_compact_control *cc)
1710 {
1711 	unsigned long used_obj, free_obj;
1712 	unsigned long handle;
1713 	struct page *s_page = cc->s_page;
1714 	struct page *d_page = cc->d_page;
1715 	int obj_idx = cc->obj_idx;
1716 	int ret = 0;
1717 
1718 	while (1) {
1719 		handle = find_alloced_obj(class, s_page, &obj_idx);
1720 		if (!handle) {
1721 			s_page = get_next_page(s_page);
1722 			if (!s_page)
1723 				break;
1724 			obj_idx = 0;
1725 			continue;
1726 		}
1727 
1728 		/* Stop if there is no more space */
1729 		if (zspage_full(class, get_zspage(d_page))) {
1730 			unpin_tag(handle);
1731 			ret = -ENOMEM;
1732 			break;
1733 		}
1734 
1735 		used_obj = handle_to_obj(handle);
1736 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1737 		zs_object_copy(class, free_obj, used_obj);
1738 		obj_idx++;
1739 		/*
1740 		 * record_obj updates handle's value to free_obj and it will
1741 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1742 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1743 		 * let's keep the lock bit.
1744 		 */
1745 		free_obj |= BIT(HANDLE_PIN_BIT);
1746 		record_obj(handle, free_obj);
1747 		unpin_tag(handle);
1748 		obj_free(class, used_obj);
1749 	}
1750 
1751 	/* Remember last position in this iteration */
1752 	cc->s_page = s_page;
1753 	cc->obj_idx = obj_idx;
1754 
1755 	return ret;
1756 }
1757 
1758 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1759 {
1760 	int i;
1761 	struct zspage *zspage;
1762 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1763 
1764 	if (!source) {
1765 		fg[0] = ZS_ALMOST_FULL;
1766 		fg[1] = ZS_ALMOST_EMPTY;
1767 	}
1768 
1769 	for (i = 0; i < 2; i++) {
1770 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1771 							struct zspage, list);
1772 		if (zspage) {
1773 			VM_BUG_ON(is_zspage_isolated(zspage));
1774 			remove_zspage(class, zspage, fg[i]);
1775 			return zspage;
1776 		}
1777 	}
1778 
1779 	return zspage;
1780 }
1781 
1782 /*
1783  * putback_zspage - add @zspage into right class's fullness list
1784  * @class: destination class
1785  * @zspage: target page
1786  *
1787  * Return @zspage's fullness_group
1788  */
1789 static enum fullness_group putback_zspage(struct size_class *class,
1790 			struct zspage *zspage)
1791 {
1792 	enum fullness_group fullness;
1793 
1794 	VM_BUG_ON(is_zspage_isolated(zspage));
1795 
1796 	fullness = get_fullness_group(class, zspage);
1797 	insert_zspage(class, zspage, fullness);
1798 	set_zspage_mapping(zspage, class->index, fullness);
1799 
1800 	return fullness;
1801 }
1802 
1803 #ifdef CONFIG_COMPACTION
1804 static struct dentry *zs_mount(struct file_system_type *fs_type,
1805 				int flags, const char *dev_name, void *data)
1806 {
1807 	static const struct dentry_operations ops = {
1808 		.d_dname = simple_dname,
1809 	};
1810 
1811 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1812 }
1813 
1814 static struct file_system_type zsmalloc_fs = {
1815 	.name		= "zsmalloc",
1816 	.mount		= zs_mount,
1817 	.kill_sb	= kill_anon_super,
1818 };
1819 
1820 static int zsmalloc_mount(void)
1821 {
1822 	int ret = 0;
1823 
1824 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1825 	if (IS_ERR(zsmalloc_mnt))
1826 		ret = PTR_ERR(zsmalloc_mnt);
1827 
1828 	return ret;
1829 }
1830 
1831 static void zsmalloc_unmount(void)
1832 {
1833 	kern_unmount(zsmalloc_mnt);
1834 }
1835 
1836 static void migrate_lock_init(struct zspage *zspage)
1837 {
1838 	rwlock_init(&zspage->lock);
1839 }
1840 
1841 static void migrate_read_lock(struct zspage *zspage)
1842 {
1843 	read_lock(&zspage->lock);
1844 }
1845 
1846 static void migrate_read_unlock(struct zspage *zspage)
1847 {
1848 	read_unlock(&zspage->lock);
1849 }
1850 
1851 static void migrate_write_lock(struct zspage *zspage)
1852 {
1853 	write_lock(&zspage->lock);
1854 }
1855 
1856 static void migrate_write_unlock(struct zspage *zspage)
1857 {
1858 	write_unlock(&zspage->lock);
1859 }
1860 
1861 /* Number of isolated subpage for *page migration* in this zspage */
1862 static void inc_zspage_isolation(struct zspage *zspage)
1863 {
1864 	zspage->isolated++;
1865 }
1866 
1867 static void dec_zspage_isolation(struct zspage *zspage)
1868 {
1869 	zspage->isolated--;
1870 }
1871 
1872 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1873 				struct page *newpage, struct page *oldpage)
1874 {
1875 	struct page *page;
1876 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1877 	int idx = 0;
1878 
1879 	page = get_first_page(zspage);
1880 	do {
1881 		if (page == oldpage)
1882 			pages[idx] = newpage;
1883 		else
1884 			pages[idx] = page;
1885 		idx++;
1886 	} while ((page = get_next_page(page)) != NULL);
1887 
1888 	create_page_chain(class, zspage, pages);
1889 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1890 	if (unlikely(PageHugeObject(oldpage)))
1891 		newpage->index = oldpage->index;
1892 	__SetPageMovable(newpage, page_mapping(oldpage));
1893 }
1894 
1895 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1896 {
1897 	struct zs_pool *pool;
1898 	struct size_class *class;
1899 	int class_idx;
1900 	enum fullness_group fullness;
1901 	struct zspage *zspage;
1902 	struct address_space *mapping;
1903 
1904 	/*
1905 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1906 	 * lock_zspage in free_zspage.
1907 	 */
1908 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1909 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1910 
1911 	zspage = get_zspage(page);
1912 
1913 	/*
1914 	 * Without class lock, fullness could be stale while class_idx is okay
1915 	 * because class_idx is constant unless page is freed so we should get
1916 	 * fullness again under class lock.
1917 	 */
1918 	get_zspage_mapping(zspage, &class_idx, &fullness);
1919 	mapping = page_mapping(page);
1920 	pool = mapping->private_data;
1921 	class = pool->size_class[class_idx];
1922 
1923 	spin_lock(&class->lock);
1924 	if (get_zspage_inuse(zspage) == 0) {
1925 		spin_unlock(&class->lock);
1926 		return false;
1927 	}
1928 
1929 	/* zspage is isolated for object migration */
1930 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1931 		spin_unlock(&class->lock);
1932 		return false;
1933 	}
1934 
1935 	/*
1936 	 * If this is first time isolation for the zspage, isolate zspage from
1937 	 * size_class to prevent further object allocation from the zspage.
1938 	 */
1939 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1940 		get_zspage_mapping(zspage, &class_idx, &fullness);
1941 		remove_zspage(class, zspage, fullness);
1942 	}
1943 
1944 	inc_zspage_isolation(zspage);
1945 	spin_unlock(&class->lock);
1946 
1947 	return true;
1948 }
1949 
1950 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1951 		struct page *page, enum migrate_mode mode)
1952 {
1953 	struct zs_pool *pool;
1954 	struct size_class *class;
1955 	int class_idx;
1956 	enum fullness_group fullness;
1957 	struct zspage *zspage;
1958 	struct page *dummy;
1959 	void *s_addr, *d_addr, *addr;
1960 	int offset, pos;
1961 	unsigned long handle, head;
1962 	unsigned long old_obj, new_obj;
1963 	unsigned int obj_idx;
1964 	int ret = -EAGAIN;
1965 
1966 	/*
1967 	 * We cannot support the _NO_COPY case here, because copy needs to
1968 	 * happen under the zs lock, which does not work with
1969 	 * MIGRATE_SYNC_NO_COPY workflow.
1970 	 */
1971 	if (mode == MIGRATE_SYNC_NO_COPY)
1972 		return -EINVAL;
1973 
1974 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1975 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1976 
1977 	zspage = get_zspage(page);
1978 
1979 	/* Concurrent compactor cannot migrate any subpage in zspage */
1980 	migrate_write_lock(zspage);
1981 	get_zspage_mapping(zspage, &class_idx, &fullness);
1982 	pool = mapping->private_data;
1983 	class = pool->size_class[class_idx];
1984 	offset = get_first_obj_offset(page);
1985 
1986 	spin_lock(&class->lock);
1987 	if (!get_zspage_inuse(zspage)) {
1988 		/*
1989 		 * Set "offset" to end of the page so that every loops
1990 		 * skips unnecessary object scanning.
1991 		 */
1992 		offset = PAGE_SIZE;
1993 	}
1994 
1995 	pos = offset;
1996 	s_addr = kmap_atomic(page);
1997 	while (pos < PAGE_SIZE) {
1998 		head = obj_to_head(page, s_addr + pos);
1999 		if (head & OBJ_ALLOCATED_TAG) {
2000 			handle = head & ~OBJ_ALLOCATED_TAG;
2001 			if (!trypin_tag(handle))
2002 				goto unpin_objects;
2003 		}
2004 		pos += class->size;
2005 	}
2006 
2007 	/*
2008 	 * Here, any user cannot access all objects in the zspage so let's move.
2009 	 */
2010 	d_addr = kmap_atomic(newpage);
2011 	memcpy(d_addr, s_addr, PAGE_SIZE);
2012 	kunmap_atomic(d_addr);
2013 
2014 	for (addr = s_addr + offset; addr < s_addr + pos;
2015 					addr += class->size) {
2016 		head = obj_to_head(page, addr);
2017 		if (head & OBJ_ALLOCATED_TAG) {
2018 			handle = head & ~OBJ_ALLOCATED_TAG;
2019 			if (!testpin_tag(handle))
2020 				BUG();
2021 
2022 			old_obj = handle_to_obj(handle);
2023 			obj_to_location(old_obj, &dummy, &obj_idx);
2024 			new_obj = (unsigned long)location_to_obj(newpage,
2025 								obj_idx);
2026 			new_obj |= BIT(HANDLE_PIN_BIT);
2027 			record_obj(handle, new_obj);
2028 		}
2029 	}
2030 
2031 	replace_sub_page(class, zspage, newpage, page);
2032 	get_page(newpage);
2033 
2034 	dec_zspage_isolation(zspage);
2035 
2036 	/*
2037 	 * Page migration is done so let's putback isolated zspage to
2038 	 * the list if @page is final isolated subpage in the zspage.
2039 	 */
2040 	if (!is_zspage_isolated(zspage))
2041 		putback_zspage(class, zspage);
2042 
2043 	reset_page(page);
2044 	put_page(page);
2045 	page = newpage;
2046 
2047 	ret = MIGRATEPAGE_SUCCESS;
2048 unpin_objects:
2049 	for (addr = s_addr + offset; addr < s_addr + pos;
2050 						addr += class->size) {
2051 		head = obj_to_head(page, addr);
2052 		if (head & OBJ_ALLOCATED_TAG) {
2053 			handle = head & ~OBJ_ALLOCATED_TAG;
2054 			if (!testpin_tag(handle))
2055 				BUG();
2056 			unpin_tag(handle);
2057 		}
2058 	}
2059 	kunmap_atomic(s_addr);
2060 	spin_unlock(&class->lock);
2061 	migrate_write_unlock(zspage);
2062 
2063 	return ret;
2064 }
2065 
2066 void zs_page_putback(struct page *page)
2067 {
2068 	struct zs_pool *pool;
2069 	struct size_class *class;
2070 	int class_idx;
2071 	enum fullness_group fg;
2072 	struct address_space *mapping;
2073 	struct zspage *zspage;
2074 
2075 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2076 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2077 
2078 	zspage = get_zspage(page);
2079 	get_zspage_mapping(zspage, &class_idx, &fg);
2080 	mapping = page_mapping(page);
2081 	pool = mapping->private_data;
2082 	class = pool->size_class[class_idx];
2083 
2084 	spin_lock(&class->lock);
2085 	dec_zspage_isolation(zspage);
2086 	if (!is_zspage_isolated(zspage)) {
2087 		fg = putback_zspage(class, zspage);
2088 		/*
2089 		 * Due to page_lock, we cannot free zspage immediately
2090 		 * so let's defer.
2091 		 */
2092 		if (fg == ZS_EMPTY)
2093 			schedule_work(&pool->free_work);
2094 	}
2095 	spin_unlock(&class->lock);
2096 }
2097 
2098 const struct address_space_operations zsmalloc_aops = {
2099 	.isolate_page = zs_page_isolate,
2100 	.migratepage = zs_page_migrate,
2101 	.putback_page = zs_page_putback,
2102 };
2103 
2104 static int zs_register_migration(struct zs_pool *pool)
2105 {
2106 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2107 	if (IS_ERR(pool->inode)) {
2108 		pool->inode = NULL;
2109 		return 1;
2110 	}
2111 
2112 	pool->inode->i_mapping->private_data = pool;
2113 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2114 	return 0;
2115 }
2116 
2117 static void zs_unregister_migration(struct zs_pool *pool)
2118 {
2119 	flush_work(&pool->free_work);
2120 	iput(pool->inode);
2121 }
2122 
2123 /*
2124  * Caller should hold page_lock of all pages in the zspage
2125  * In here, we cannot use zspage meta data.
2126  */
2127 static void async_free_zspage(struct work_struct *work)
2128 {
2129 	int i;
2130 	struct size_class *class;
2131 	unsigned int class_idx;
2132 	enum fullness_group fullness;
2133 	struct zspage *zspage, *tmp;
2134 	LIST_HEAD(free_pages);
2135 	struct zs_pool *pool = container_of(work, struct zs_pool,
2136 					free_work);
2137 
2138 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2139 		class = pool->size_class[i];
2140 		if (class->index != i)
2141 			continue;
2142 
2143 		spin_lock(&class->lock);
2144 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2145 		spin_unlock(&class->lock);
2146 	}
2147 
2148 
2149 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2150 		list_del(&zspage->list);
2151 		lock_zspage(zspage);
2152 
2153 		get_zspage_mapping(zspage, &class_idx, &fullness);
2154 		VM_BUG_ON(fullness != ZS_EMPTY);
2155 		class = pool->size_class[class_idx];
2156 		spin_lock(&class->lock);
2157 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2158 		spin_unlock(&class->lock);
2159 	}
2160 };
2161 
2162 static void kick_deferred_free(struct zs_pool *pool)
2163 {
2164 	schedule_work(&pool->free_work);
2165 }
2166 
2167 static void init_deferred_free(struct zs_pool *pool)
2168 {
2169 	INIT_WORK(&pool->free_work, async_free_zspage);
2170 }
2171 
2172 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2173 {
2174 	struct page *page = get_first_page(zspage);
2175 
2176 	do {
2177 		WARN_ON(!trylock_page(page));
2178 		__SetPageMovable(page, pool->inode->i_mapping);
2179 		unlock_page(page);
2180 	} while ((page = get_next_page(page)) != NULL);
2181 }
2182 #endif
2183 
2184 /*
2185  *
2186  * Based on the number of unused allocated objects calculate
2187  * and return the number of pages that we can free.
2188  */
2189 static unsigned long zs_can_compact(struct size_class *class)
2190 {
2191 	unsigned long obj_wasted;
2192 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2193 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2194 
2195 	if (obj_allocated <= obj_used)
2196 		return 0;
2197 
2198 	obj_wasted = obj_allocated - obj_used;
2199 	obj_wasted /= class->objs_per_zspage;
2200 
2201 	return obj_wasted * class->pages_per_zspage;
2202 }
2203 
2204 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2205 {
2206 	struct zs_compact_control cc;
2207 	struct zspage *src_zspage;
2208 	struct zspage *dst_zspage = NULL;
2209 
2210 	spin_lock(&class->lock);
2211 	while ((src_zspage = isolate_zspage(class, true))) {
2212 
2213 		if (!zs_can_compact(class))
2214 			break;
2215 
2216 		cc.obj_idx = 0;
2217 		cc.s_page = get_first_page(src_zspage);
2218 
2219 		while ((dst_zspage = isolate_zspage(class, false))) {
2220 			cc.d_page = get_first_page(dst_zspage);
2221 			/*
2222 			 * If there is no more space in dst_page, resched
2223 			 * and see if anyone had allocated another zspage.
2224 			 */
2225 			if (!migrate_zspage(pool, class, &cc))
2226 				break;
2227 
2228 			putback_zspage(class, dst_zspage);
2229 		}
2230 
2231 		/* Stop if we couldn't find slot */
2232 		if (dst_zspage == NULL)
2233 			break;
2234 
2235 		putback_zspage(class, dst_zspage);
2236 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2237 			free_zspage(pool, class, src_zspage);
2238 			pool->stats.pages_compacted += class->pages_per_zspage;
2239 		}
2240 		spin_unlock(&class->lock);
2241 		cond_resched();
2242 		spin_lock(&class->lock);
2243 	}
2244 
2245 	if (src_zspage)
2246 		putback_zspage(class, src_zspage);
2247 
2248 	spin_unlock(&class->lock);
2249 }
2250 
2251 unsigned long zs_compact(struct zs_pool *pool)
2252 {
2253 	int i;
2254 	struct size_class *class;
2255 
2256 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2257 		class = pool->size_class[i];
2258 		if (!class)
2259 			continue;
2260 		if (class->index != i)
2261 			continue;
2262 		__zs_compact(pool, class);
2263 	}
2264 
2265 	return pool->stats.pages_compacted;
2266 }
2267 EXPORT_SYMBOL_GPL(zs_compact);
2268 
2269 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2270 {
2271 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2272 }
2273 EXPORT_SYMBOL_GPL(zs_pool_stats);
2274 
2275 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2276 		struct shrink_control *sc)
2277 {
2278 	unsigned long pages_freed;
2279 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2280 			shrinker);
2281 
2282 	pages_freed = pool->stats.pages_compacted;
2283 	/*
2284 	 * Compact classes and calculate compaction delta.
2285 	 * Can run concurrently with a manually triggered
2286 	 * (by user) compaction.
2287 	 */
2288 	pages_freed = zs_compact(pool) - pages_freed;
2289 
2290 	return pages_freed ? pages_freed : SHRINK_STOP;
2291 }
2292 
2293 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2294 		struct shrink_control *sc)
2295 {
2296 	int i;
2297 	struct size_class *class;
2298 	unsigned long pages_to_free = 0;
2299 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2300 			shrinker);
2301 
2302 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2303 		class = pool->size_class[i];
2304 		if (!class)
2305 			continue;
2306 		if (class->index != i)
2307 			continue;
2308 
2309 		pages_to_free += zs_can_compact(class);
2310 	}
2311 
2312 	return pages_to_free;
2313 }
2314 
2315 static void zs_unregister_shrinker(struct zs_pool *pool)
2316 {
2317 	unregister_shrinker(&pool->shrinker);
2318 }
2319 
2320 static int zs_register_shrinker(struct zs_pool *pool)
2321 {
2322 	pool->shrinker.scan_objects = zs_shrinker_scan;
2323 	pool->shrinker.count_objects = zs_shrinker_count;
2324 	pool->shrinker.batch = 0;
2325 	pool->shrinker.seeks = DEFAULT_SEEKS;
2326 
2327 	return register_shrinker(&pool->shrinker);
2328 }
2329 
2330 /**
2331  * zs_create_pool - Creates an allocation pool to work from.
2332  * @name: pool name to be created
2333  *
2334  * This function must be called before anything when using
2335  * the zsmalloc allocator.
2336  *
2337  * On success, a pointer to the newly created pool is returned,
2338  * otherwise NULL.
2339  */
2340 struct zs_pool *zs_create_pool(const char *name)
2341 {
2342 	int i;
2343 	struct zs_pool *pool;
2344 	struct size_class *prev_class = NULL;
2345 
2346 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2347 	if (!pool)
2348 		return NULL;
2349 
2350 	init_deferred_free(pool);
2351 
2352 	pool->name = kstrdup(name, GFP_KERNEL);
2353 	if (!pool->name)
2354 		goto err;
2355 
2356 	if (create_cache(pool))
2357 		goto err;
2358 
2359 	/*
2360 	 * Iterate reversely, because, size of size_class that we want to use
2361 	 * for merging should be larger or equal to current size.
2362 	 */
2363 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2364 		int size;
2365 		int pages_per_zspage;
2366 		int objs_per_zspage;
2367 		struct size_class *class;
2368 		int fullness = 0;
2369 
2370 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2371 		if (size > ZS_MAX_ALLOC_SIZE)
2372 			size = ZS_MAX_ALLOC_SIZE;
2373 		pages_per_zspage = get_pages_per_zspage(size);
2374 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2375 
2376 		/*
2377 		 * size_class is used for normal zsmalloc operation such
2378 		 * as alloc/free for that size. Although it is natural that we
2379 		 * have one size_class for each size, there is a chance that we
2380 		 * can get more memory utilization if we use one size_class for
2381 		 * many different sizes whose size_class have same
2382 		 * characteristics. So, we makes size_class point to
2383 		 * previous size_class if possible.
2384 		 */
2385 		if (prev_class) {
2386 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2387 				pool->size_class[i] = prev_class;
2388 				continue;
2389 			}
2390 		}
2391 
2392 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2393 		if (!class)
2394 			goto err;
2395 
2396 		class->size = size;
2397 		class->index = i;
2398 		class->pages_per_zspage = pages_per_zspage;
2399 		class->objs_per_zspage = objs_per_zspage;
2400 		spin_lock_init(&class->lock);
2401 		pool->size_class[i] = class;
2402 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2403 							fullness++)
2404 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2405 
2406 		prev_class = class;
2407 	}
2408 
2409 	/* debug only, don't abort if it fails */
2410 	zs_pool_stat_create(pool, name);
2411 
2412 	if (zs_register_migration(pool))
2413 		goto err;
2414 
2415 	/*
2416 	 * Not critical since shrinker is only used to trigger internal
2417 	 * defragmentation of the pool which is pretty optional thing.  If
2418 	 * registration fails we still can use the pool normally and user can
2419 	 * trigger compaction manually. Thus, ignore return code.
2420 	 */
2421 	zs_register_shrinker(pool);
2422 
2423 	return pool;
2424 
2425 err:
2426 	zs_destroy_pool(pool);
2427 	return NULL;
2428 }
2429 EXPORT_SYMBOL_GPL(zs_create_pool);
2430 
2431 void zs_destroy_pool(struct zs_pool *pool)
2432 {
2433 	int i;
2434 
2435 	zs_unregister_shrinker(pool);
2436 	zs_unregister_migration(pool);
2437 	zs_pool_stat_destroy(pool);
2438 
2439 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2440 		int fg;
2441 		struct size_class *class = pool->size_class[i];
2442 
2443 		if (!class)
2444 			continue;
2445 
2446 		if (class->index != i)
2447 			continue;
2448 
2449 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2450 			if (!list_empty(&class->fullness_list[fg])) {
2451 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2452 					class->size, fg);
2453 			}
2454 		}
2455 		kfree(class);
2456 	}
2457 
2458 	destroy_cache(pool);
2459 	kfree(pool->name);
2460 	kfree(pool);
2461 }
2462 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2463 
2464 static int __init zs_init(void)
2465 {
2466 	int ret;
2467 
2468 	ret = zsmalloc_mount();
2469 	if (ret)
2470 		goto out;
2471 
2472 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2473 				zs_cpu_prepare, zs_cpu_dead);
2474 	if (ret)
2475 		goto hp_setup_fail;
2476 
2477 #ifdef CONFIG_ZPOOL
2478 	zpool_register_driver(&zs_zpool_driver);
2479 #endif
2480 
2481 	zs_stat_init();
2482 
2483 	return 0;
2484 
2485 hp_setup_fail:
2486 	zsmalloc_unmount();
2487 out:
2488 	return ret;
2489 }
2490 
2491 static void __exit zs_exit(void)
2492 {
2493 #ifdef CONFIG_ZPOOL
2494 	zpool_unregister_driver(&zs_zpool_driver);
2495 #endif
2496 	zsmalloc_unmount();
2497 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2498 
2499 	zs_stat_exit();
2500 }
2501 
2502 module_init(zs_init);
2503 module_exit(zs_exit);
2504 
2505 MODULE_LICENSE("Dual BSD/GPL");
2506 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2507