1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/migrate.h> 56 #include <linux/pagemap.h> 57 #include <linux/fs.h> 58 59 #define ZSPAGE_MAGIC 0x58 60 61 /* 62 * This must be power of 2 and greater than of equal to sizeof(link_free). 63 * These two conditions ensure that any 'struct link_free' itself doesn't 64 * span more than 1 page which avoids complex case of mapping 2 pages simply 65 * to restore link_free pointer values. 66 */ 67 #define ZS_ALIGN 8 68 69 /* 70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 72 */ 73 #define ZS_MAX_ZSPAGE_ORDER 2 74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * as single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_PHYSMEM_BITS 88 #ifdef CONFIG_HIGHMEM64G 89 #define MAX_PHYSMEM_BITS 36 90 #else /* !CONFIG_HIGHMEM64G */ 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 99 100 /* 101 * Memory for allocating for handle keeps object position by 102 * encoding <page, obj_idx> and the encoded value has a room 103 * in least bit(ie, look at obj_to_location). 104 * We use the bit to synchronize between object access by 105 * user and migration. 106 */ 107 #define HANDLE_PIN_BIT 0 108 109 /* 110 * Head in allocated object should have OBJ_ALLOCATED_TAG 111 * to identify the object was allocated or not. 112 * It's okay to add the status bit in the least bit because 113 * header keeps handle which is 4byte-aligned address so we 114 * have room for two bit at least. 115 */ 116 #define OBJ_ALLOCATED_TAG 1 117 #define OBJ_TAG_BITS 1 118 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 119 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 120 121 #define FULLNESS_BITS 2 122 #define CLASS_BITS 8 123 #define ISOLATED_BITS 3 124 #define MAGIC_VAL_BITS 8 125 126 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 128 #define ZS_MIN_ALLOC_SIZE \ 129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 130 /* each chunk includes extra space to keep handle */ 131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 132 133 /* 134 * On systems with 4K page size, this gives 255 size classes! There is a 135 * trader-off here: 136 * - Large number of size classes is potentially wasteful as free page are 137 * spread across these classes 138 * - Small number of size classes causes large internal fragmentation 139 * - Probably its better to use specific size classes (empirically 140 * determined). NOTE: all those class sizes must be set as multiple of 141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 142 * 143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 144 * (reason above) 145 */ 146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 148 ZS_SIZE_CLASS_DELTA) + 1) 149 150 enum fullness_group { 151 ZS_EMPTY, 152 ZS_ALMOST_EMPTY, 153 ZS_ALMOST_FULL, 154 ZS_FULL, 155 NR_ZS_FULLNESS, 156 }; 157 158 enum zs_stat_type { 159 CLASS_EMPTY, 160 CLASS_ALMOST_EMPTY, 161 CLASS_ALMOST_FULL, 162 CLASS_FULL, 163 OBJ_ALLOCATED, 164 OBJ_USED, 165 NR_ZS_STAT_TYPE, 166 }; 167 168 struct zs_size_stat { 169 unsigned long objs[NR_ZS_STAT_TYPE]; 170 }; 171 172 #ifdef CONFIG_ZSMALLOC_STAT 173 static struct dentry *zs_stat_root; 174 #endif 175 176 #ifdef CONFIG_COMPACTION 177 static struct vfsmount *zsmalloc_mnt; 178 #endif 179 180 /* 181 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 182 * n <= N / f, where 183 * n = number of allocated objects 184 * N = total number of objects zspage can store 185 * f = fullness_threshold_frac 186 * 187 * Similarly, we assign zspage to: 188 * ZS_ALMOST_FULL when n > N / f 189 * ZS_EMPTY when n == 0 190 * ZS_FULL when n == N 191 * 192 * (see: fix_fullness_group()) 193 */ 194 static const int fullness_threshold_frac = 4; 195 196 struct size_class { 197 spinlock_t lock; 198 struct list_head fullness_list[NR_ZS_FULLNESS]; 199 /* 200 * Size of objects stored in this class. Must be multiple 201 * of ZS_ALIGN. 202 */ 203 int size; 204 int objs_per_zspage; 205 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 206 int pages_per_zspage; 207 208 unsigned int index; 209 struct zs_size_stat stats; 210 }; 211 212 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 213 static void SetPageHugeObject(struct page *page) 214 { 215 SetPageOwnerPriv1(page); 216 } 217 218 static void ClearPageHugeObject(struct page *page) 219 { 220 ClearPageOwnerPriv1(page); 221 } 222 223 static int PageHugeObject(struct page *page) 224 { 225 return PageOwnerPriv1(page); 226 } 227 228 /* 229 * Placed within free objects to form a singly linked list. 230 * For every zspage, zspage->freeobj gives head of this list. 231 * 232 * This must be power of 2 and less than or equal to ZS_ALIGN 233 */ 234 struct link_free { 235 union { 236 /* 237 * Free object index; 238 * It's valid for non-allocated object 239 */ 240 unsigned long next; 241 /* 242 * Handle of allocated object. 243 */ 244 unsigned long handle; 245 }; 246 }; 247 248 struct zs_pool { 249 const char *name; 250 251 struct size_class *size_class[ZS_SIZE_CLASSES]; 252 struct kmem_cache *handle_cachep; 253 struct kmem_cache *zspage_cachep; 254 255 atomic_long_t pages_allocated; 256 257 struct zs_pool_stats stats; 258 259 /* Compact classes */ 260 struct shrinker shrinker; 261 262 #ifdef CONFIG_ZSMALLOC_STAT 263 struct dentry *stat_dentry; 264 #endif 265 #ifdef CONFIG_COMPACTION 266 struct inode *inode; 267 struct work_struct free_work; 268 #endif 269 }; 270 271 struct zspage { 272 struct { 273 unsigned int fullness:FULLNESS_BITS; 274 unsigned int class:CLASS_BITS + 1; 275 unsigned int isolated:ISOLATED_BITS; 276 unsigned int magic:MAGIC_VAL_BITS; 277 }; 278 unsigned int inuse; 279 unsigned int freeobj; 280 struct page *first_page; 281 struct list_head list; /* fullness list */ 282 #ifdef CONFIG_COMPACTION 283 rwlock_t lock; 284 #endif 285 }; 286 287 struct mapping_area { 288 #ifdef CONFIG_PGTABLE_MAPPING 289 struct vm_struct *vm; /* vm area for mapping object that span pages */ 290 #else 291 char *vm_buf; /* copy buffer for objects that span pages */ 292 #endif 293 char *vm_addr; /* address of kmap_atomic()'ed pages */ 294 enum zs_mapmode vm_mm; /* mapping mode */ 295 }; 296 297 #ifdef CONFIG_COMPACTION 298 static int zs_register_migration(struct zs_pool *pool); 299 static void zs_unregister_migration(struct zs_pool *pool); 300 static void migrate_lock_init(struct zspage *zspage); 301 static void migrate_read_lock(struct zspage *zspage); 302 static void migrate_read_unlock(struct zspage *zspage); 303 static void kick_deferred_free(struct zs_pool *pool); 304 static void init_deferred_free(struct zs_pool *pool); 305 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 306 #else 307 static int zsmalloc_mount(void) { return 0; } 308 static void zsmalloc_unmount(void) {} 309 static int zs_register_migration(struct zs_pool *pool) { return 0; } 310 static void zs_unregister_migration(struct zs_pool *pool) {} 311 static void migrate_lock_init(struct zspage *zspage) {} 312 static void migrate_read_lock(struct zspage *zspage) {} 313 static void migrate_read_unlock(struct zspage *zspage) {} 314 static void kick_deferred_free(struct zs_pool *pool) {} 315 static void init_deferred_free(struct zs_pool *pool) {} 316 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 317 #endif 318 319 static int create_cache(struct zs_pool *pool) 320 { 321 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 322 0, 0, NULL); 323 if (!pool->handle_cachep) 324 return 1; 325 326 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 327 0, 0, NULL); 328 if (!pool->zspage_cachep) { 329 kmem_cache_destroy(pool->handle_cachep); 330 pool->handle_cachep = NULL; 331 return 1; 332 } 333 334 return 0; 335 } 336 337 static void destroy_cache(struct zs_pool *pool) 338 { 339 kmem_cache_destroy(pool->handle_cachep); 340 kmem_cache_destroy(pool->zspage_cachep); 341 } 342 343 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 344 { 345 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 346 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 347 } 348 349 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 350 { 351 kmem_cache_free(pool->handle_cachep, (void *)handle); 352 } 353 354 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 355 { 356 return kmem_cache_alloc(pool->zspage_cachep, 357 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 358 } 359 360 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 361 { 362 kmem_cache_free(pool->zspage_cachep, zspage); 363 } 364 365 static void record_obj(unsigned long handle, unsigned long obj) 366 { 367 /* 368 * lsb of @obj represents handle lock while other bits 369 * represent object value the handle is pointing so 370 * updating shouldn't do store tearing. 371 */ 372 WRITE_ONCE(*(unsigned long *)handle, obj); 373 } 374 375 /* zpool driver */ 376 377 #ifdef CONFIG_ZPOOL 378 379 static void *zs_zpool_create(const char *name, gfp_t gfp, 380 const struct zpool_ops *zpool_ops, 381 struct zpool *zpool) 382 { 383 /* 384 * Ignore global gfp flags: zs_malloc() may be invoked from 385 * different contexts and its caller must provide a valid 386 * gfp mask. 387 */ 388 return zs_create_pool(name); 389 } 390 391 static void zs_zpool_destroy(void *pool) 392 { 393 zs_destroy_pool(pool); 394 } 395 396 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 397 unsigned long *handle) 398 { 399 *handle = zs_malloc(pool, size, gfp); 400 return *handle ? 0 : -1; 401 } 402 static void zs_zpool_free(void *pool, unsigned long handle) 403 { 404 zs_free(pool, handle); 405 } 406 407 static void *zs_zpool_map(void *pool, unsigned long handle, 408 enum zpool_mapmode mm) 409 { 410 enum zs_mapmode zs_mm; 411 412 switch (mm) { 413 case ZPOOL_MM_RO: 414 zs_mm = ZS_MM_RO; 415 break; 416 case ZPOOL_MM_WO: 417 zs_mm = ZS_MM_WO; 418 break; 419 case ZPOOL_MM_RW: /* fallthru */ 420 default: 421 zs_mm = ZS_MM_RW; 422 break; 423 } 424 425 return zs_map_object(pool, handle, zs_mm); 426 } 427 static void zs_zpool_unmap(void *pool, unsigned long handle) 428 { 429 zs_unmap_object(pool, handle); 430 } 431 432 static u64 zs_zpool_total_size(void *pool) 433 { 434 return zs_get_total_pages(pool) << PAGE_SHIFT; 435 } 436 437 static struct zpool_driver zs_zpool_driver = { 438 .type = "zsmalloc", 439 .owner = THIS_MODULE, 440 .create = zs_zpool_create, 441 .destroy = zs_zpool_destroy, 442 .malloc = zs_zpool_malloc, 443 .free = zs_zpool_free, 444 .map = zs_zpool_map, 445 .unmap = zs_zpool_unmap, 446 .total_size = zs_zpool_total_size, 447 }; 448 449 MODULE_ALIAS("zpool-zsmalloc"); 450 #endif /* CONFIG_ZPOOL */ 451 452 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 453 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 454 455 static bool is_zspage_isolated(struct zspage *zspage) 456 { 457 return zspage->isolated; 458 } 459 460 static __maybe_unused int is_first_page(struct page *page) 461 { 462 return PagePrivate(page); 463 } 464 465 /* Protected by class->lock */ 466 static inline int get_zspage_inuse(struct zspage *zspage) 467 { 468 return zspage->inuse; 469 } 470 471 static inline void set_zspage_inuse(struct zspage *zspage, int val) 472 { 473 zspage->inuse = val; 474 } 475 476 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 477 { 478 zspage->inuse += val; 479 } 480 481 static inline struct page *get_first_page(struct zspage *zspage) 482 { 483 struct page *first_page = zspage->first_page; 484 485 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 486 return first_page; 487 } 488 489 static inline int get_first_obj_offset(struct page *page) 490 { 491 return page->units; 492 } 493 494 static inline void set_first_obj_offset(struct page *page, int offset) 495 { 496 page->units = offset; 497 } 498 499 static inline unsigned int get_freeobj(struct zspage *zspage) 500 { 501 return zspage->freeobj; 502 } 503 504 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 505 { 506 zspage->freeobj = obj; 507 } 508 509 static void get_zspage_mapping(struct zspage *zspage, 510 unsigned int *class_idx, 511 enum fullness_group *fullness) 512 { 513 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 514 515 *fullness = zspage->fullness; 516 *class_idx = zspage->class; 517 } 518 519 static void set_zspage_mapping(struct zspage *zspage, 520 unsigned int class_idx, 521 enum fullness_group fullness) 522 { 523 zspage->class = class_idx; 524 zspage->fullness = fullness; 525 } 526 527 /* 528 * zsmalloc divides the pool into various size classes where each 529 * class maintains a list of zspages where each zspage is divided 530 * into equal sized chunks. Each allocation falls into one of these 531 * classes depending on its size. This function returns index of the 532 * size class which has chunk size big enough to hold the give size. 533 */ 534 static int get_size_class_index(int size) 535 { 536 int idx = 0; 537 538 if (likely(size > ZS_MIN_ALLOC_SIZE)) 539 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 540 ZS_SIZE_CLASS_DELTA); 541 542 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 543 } 544 545 /* type can be of enum type zs_stat_type or fullness_group */ 546 static inline void zs_stat_inc(struct size_class *class, 547 int type, unsigned long cnt) 548 { 549 class->stats.objs[type] += cnt; 550 } 551 552 /* type can be of enum type zs_stat_type or fullness_group */ 553 static inline void zs_stat_dec(struct size_class *class, 554 int type, unsigned long cnt) 555 { 556 class->stats.objs[type] -= cnt; 557 } 558 559 /* type can be of enum type zs_stat_type or fullness_group */ 560 static inline unsigned long zs_stat_get(struct size_class *class, 561 int type) 562 { 563 return class->stats.objs[type]; 564 } 565 566 #ifdef CONFIG_ZSMALLOC_STAT 567 568 static void __init zs_stat_init(void) 569 { 570 if (!debugfs_initialized()) { 571 pr_warn("debugfs not available, stat dir not created\n"); 572 return; 573 } 574 575 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 576 if (!zs_stat_root) 577 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 578 } 579 580 static void __exit zs_stat_exit(void) 581 { 582 debugfs_remove_recursive(zs_stat_root); 583 } 584 585 static unsigned long zs_can_compact(struct size_class *class); 586 587 static int zs_stats_size_show(struct seq_file *s, void *v) 588 { 589 int i; 590 struct zs_pool *pool = s->private; 591 struct size_class *class; 592 int objs_per_zspage; 593 unsigned long class_almost_full, class_almost_empty; 594 unsigned long obj_allocated, obj_used, pages_used, freeable; 595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 597 unsigned long total_freeable = 0; 598 599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 600 "class", "size", "almost_full", "almost_empty", 601 "obj_allocated", "obj_used", "pages_used", 602 "pages_per_zspage", "freeable"); 603 604 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 605 class = pool->size_class[i]; 606 607 if (class->index != i) 608 continue; 609 610 spin_lock(&class->lock); 611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 614 obj_used = zs_stat_get(class, OBJ_USED); 615 freeable = zs_can_compact(class); 616 spin_unlock(&class->lock); 617 618 objs_per_zspage = class->objs_per_zspage; 619 pages_used = obj_allocated / objs_per_zspage * 620 class->pages_per_zspage; 621 622 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 623 " %10lu %10lu %16d %8lu\n", 624 i, class->size, class_almost_full, class_almost_empty, 625 obj_allocated, obj_used, pages_used, 626 class->pages_per_zspage, freeable); 627 628 total_class_almost_full += class_almost_full; 629 total_class_almost_empty += class_almost_empty; 630 total_objs += obj_allocated; 631 total_used_objs += obj_used; 632 total_pages += pages_used; 633 total_freeable += freeable; 634 } 635 636 seq_puts(s, "\n"); 637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 638 "Total", "", total_class_almost_full, 639 total_class_almost_empty, total_objs, 640 total_used_objs, total_pages, "", total_freeable); 641 642 return 0; 643 } 644 645 static int zs_stats_size_open(struct inode *inode, struct file *file) 646 { 647 return single_open(file, zs_stats_size_show, inode->i_private); 648 } 649 650 static const struct file_operations zs_stat_size_ops = { 651 .open = zs_stats_size_open, 652 .read = seq_read, 653 .llseek = seq_lseek, 654 .release = single_release, 655 }; 656 657 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 658 { 659 struct dentry *entry; 660 661 if (!zs_stat_root) { 662 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 663 return; 664 } 665 666 entry = debugfs_create_dir(name, zs_stat_root); 667 if (!entry) { 668 pr_warn("debugfs dir <%s> creation failed\n", name); 669 return; 670 } 671 pool->stat_dentry = entry; 672 673 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 674 pool->stat_dentry, pool, &zs_stat_size_ops); 675 if (!entry) { 676 pr_warn("%s: debugfs file entry <%s> creation failed\n", 677 name, "classes"); 678 debugfs_remove_recursive(pool->stat_dentry); 679 pool->stat_dentry = NULL; 680 } 681 } 682 683 static void zs_pool_stat_destroy(struct zs_pool *pool) 684 { 685 debugfs_remove_recursive(pool->stat_dentry); 686 } 687 688 #else /* CONFIG_ZSMALLOC_STAT */ 689 static void __init zs_stat_init(void) 690 { 691 } 692 693 static void __exit zs_stat_exit(void) 694 { 695 } 696 697 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 698 { 699 } 700 701 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 702 { 703 } 704 #endif 705 706 707 /* 708 * For each size class, zspages are divided into different groups 709 * depending on how "full" they are. This was done so that we could 710 * easily find empty or nearly empty zspages when we try to shrink 711 * the pool (not yet implemented). This function returns fullness 712 * status of the given page. 713 */ 714 static enum fullness_group get_fullness_group(struct size_class *class, 715 struct zspage *zspage) 716 { 717 int inuse, objs_per_zspage; 718 enum fullness_group fg; 719 720 inuse = get_zspage_inuse(zspage); 721 objs_per_zspage = class->objs_per_zspage; 722 723 if (inuse == 0) 724 fg = ZS_EMPTY; 725 else if (inuse == objs_per_zspage) 726 fg = ZS_FULL; 727 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 728 fg = ZS_ALMOST_EMPTY; 729 else 730 fg = ZS_ALMOST_FULL; 731 732 return fg; 733 } 734 735 /* 736 * Each size class maintains various freelists and zspages are assigned 737 * to one of these freelists based on the number of live objects they 738 * have. This functions inserts the given zspage into the freelist 739 * identified by <class, fullness_group>. 740 */ 741 static void insert_zspage(struct size_class *class, 742 struct zspage *zspage, 743 enum fullness_group fullness) 744 { 745 struct zspage *head; 746 747 zs_stat_inc(class, fullness, 1); 748 head = list_first_entry_or_null(&class->fullness_list[fullness], 749 struct zspage, list); 750 /* 751 * We want to see more ZS_FULL pages and less almost empty/full. 752 * Put pages with higher ->inuse first. 753 */ 754 if (head) { 755 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 756 list_add(&zspage->list, &head->list); 757 return; 758 } 759 } 760 list_add(&zspage->list, &class->fullness_list[fullness]); 761 } 762 763 /* 764 * This function removes the given zspage from the freelist identified 765 * by <class, fullness_group>. 766 */ 767 static void remove_zspage(struct size_class *class, 768 struct zspage *zspage, 769 enum fullness_group fullness) 770 { 771 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 772 VM_BUG_ON(is_zspage_isolated(zspage)); 773 774 list_del_init(&zspage->list); 775 zs_stat_dec(class, fullness, 1); 776 } 777 778 /* 779 * Each size class maintains zspages in different fullness groups depending 780 * on the number of live objects they contain. When allocating or freeing 781 * objects, the fullness status of the page can change, say, from ALMOST_FULL 782 * to ALMOST_EMPTY when freeing an object. This function checks if such 783 * a status change has occurred for the given page and accordingly moves the 784 * page from the freelist of the old fullness group to that of the new 785 * fullness group. 786 */ 787 static enum fullness_group fix_fullness_group(struct size_class *class, 788 struct zspage *zspage) 789 { 790 int class_idx; 791 enum fullness_group currfg, newfg; 792 793 get_zspage_mapping(zspage, &class_idx, &currfg); 794 newfg = get_fullness_group(class, zspage); 795 if (newfg == currfg) 796 goto out; 797 798 if (!is_zspage_isolated(zspage)) { 799 remove_zspage(class, zspage, currfg); 800 insert_zspage(class, zspage, newfg); 801 } 802 803 set_zspage_mapping(zspage, class_idx, newfg); 804 805 out: 806 return newfg; 807 } 808 809 /* 810 * We have to decide on how many pages to link together 811 * to form a zspage for each size class. This is important 812 * to reduce wastage due to unusable space left at end of 813 * each zspage which is given as: 814 * wastage = Zp % class_size 815 * usage = Zp - wastage 816 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 817 * 818 * For example, for size class of 3/8 * PAGE_SIZE, we should 819 * link together 3 PAGE_SIZE sized pages to form a zspage 820 * since then we can perfectly fit in 8 such objects. 821 */ 822 static int get_pages_per_zspage(int class_size) 823 { 824 int i, max_usedpc = 0; 825 /* zspage order which gives maximum used size per KB */ 826 int max_usedpc_order = 1; 827 828 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 829 int zspage_size; 830 int waste, usedpc; 831 832 zspage_size = i * PAGE_SIZE; 833 waste = zspage_size % class_size; 834 usedpc = (zspage_size - waste) * 100 / zspage_size; 835 836 if (usedpc > max_usedpc) { 837 max_usedpc = usedpc; 838 max_usedpc_order = i; 839 } 840 } 841 842 return max_usedpc_order; 843 } 844 845 static struct zspage *get_zspage(struct page *page) 846 { 847 struct zspage *zspage = (struct zspage *)page->private; 848 849 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 850 return zspage; 851 } 852 853 static struct page *get_next_page(struct page *page) 854 { 855 if (unlikely(PageHugeObject(page))) 856 return NULL; 857 858 return page->freelist; 859 } 860 861 /** 862 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 863 * @page: page object resides in zspage 864 * @obj_idx: object index 865 */ 866 static void obj_to_location(unsigned long obj, struct page **page, 867 unsigned int *obj_idx) 868 { 869 obj >>= OBJ_TAG_BITS; 870 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 871 *obj_idx = (obj & OBJ_INDEX_MASK); 872 } 873 874 /** 875 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 876 * @page: page object resides in zspage 877 * @obj_idx: object index 878 */ 879 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 880 { 881 unsigned long obj; 882 883 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 884 obj |= obj_idx & OBJ_INDEX_MASK; 885 obj <<= OBJ_TAG_BITS; 886 887 return obj; 888 } 889 890 static unsigned long handle_to_obj(unsigned long handle) 891 { 892 return *(unsigned long *)handle; 893 } 894 895 static unsigned long obj_to_head(struct page *page, void *obj) 896 { 897 if (unlikely(PageHugeObject(page))) { 898 VM_BUG_ON_PAGE(!is_first_page(page), page); 899 return page->index; 900 } else 901 return *(unsigned long *)obj; 902 } 903 904 static inline int testpin_tag(unsigned long handle) 905 { 906 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 907 } 908 909 static inline int trypin_tag(unsigned long handle) 910 { 911 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 912 } 913 914 static void pin_tag(unsigned long handle) 915 { 916 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 917 } 918 919 static void unpin_tag(unsigned long handle) 920 { 921 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 922 } 923 924 static void reset_page(struct page *page) 925 { 926 __ClearPageMovable(page); 927 ClearPagePrivate(page); 928 set_page_private(page, 0); 929 page_mapcount_reset(page); 930 ClearPageHugeObject(page); 931 page->freelist = NULL; 932 } 933 934 /* 935 * To prevent zspage destroy during migration, zspage freeing should 936 * hold locks of all pages in the zspage. 937 */ 938 void lock_zspage(struct zspage *zspage) 939 { 940 struct page *page = get_first_page(zspage); 941 942 do { 943 lock_page(page); 944 } while ((page = get_next_page(page)) != NULL); 945 } 946 947 int trylock_zspage(struct zspage *zspage) 948 { 949 struct page *cursor, *fail; 950 951 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 952 get_next_page(cursor)) { 953 if (!trylock_page(cursor)) { 954 fail = cursor; 955 goto unlock; 956 } 957 } 958 959 return 1; 960 unlock: 961 for (cursor = get_first_page(zspage); cursor != fail; cursor = 962 get_next_page(cursor)) 963 unlock_page(cursor); 964 965 return 0; 966 } 967 968 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 969 struct zspage *zspage) 970 { 971 struct page *page, *next; 972 enum fullness_group fg; 973 unsigned int class_idx; 974 975 get_zspage_mapping(zspage, &class_idx, &fg); 976 977 assert_spin_locked(&class->lock); 978 979 VM_BUG_ON(get_zspage_inuse(zspage)); 980 VM_BUG_ON(fg != ZS_EMPTY); 981 982 next = page = get_first_page(zspage); 983 do { 984 VM_BUG_ON_PAGE(!PageLocked(page), page); 985 next = get_next_page(page); 986 reset_page(page); 987 unlock_page(page); 988 dec_zone_page_state(page, NR_ZSPAGES); 989 put_page(page); 990 page = next; 991 } while (page != NULL); 992 993 cache_free_zspage(pool, zspage); 994 995 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 996 atomic_long_sub(class->pages_per_zspage, 997 &pool->pages_allocated); 998 } 999 1000 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1001 struct zspage *zspage) 1002 { 1003 VM_BUG_ON(get_zspage_inuse(zspage)); 1004 VM_BUG_ON(list_empty(&zspage->list)); 1005 1006 if (!trylock_zspage(zspage)) { 1007 kick_deferred_free(pool); 1008 return; 1009 } 1010 1011 remove_zspage(class, zspage, ZS_EMPTY); 1012 __free_zspage(pool, class, zspage); 1013 } 1014 1015 /* Initialize a newly allocated zspage */ 1016 static void init_zspage(struct size_class *class, struct zspage *zspage) 1017 { 1018 unsigned int freeobj = 1; 1019 unsigned long off = 0; 1020 struct page *page = get_first_page(zspage); 1021 1022 while (page) { 1023 struct page *next_page; 1024 struct link_free *link; 1025 void *vaddr; 1026 1027 set_first_obj_offset(page, off); 1028 1029 vaddr = kmap_atomic(page); 1030 link = (struct link_free *)vaddr + off / sizeof(*link); 1031 1032 while ((off += class->size) < PAGE_SIZE) { 1033 link->next = freeobj++ << OBJ_TAG_BITS; 1034 link += class->size / sizeof(*link); 1035 } 1036 1037 /* 1038 * We now come to the last (full or partial) object on this 1039 * page, which must point to the first object on the next 1040 * page (if present) 1041 */ 1042 next_page = get_next_page(page); 1043 if (next_page) { 1044 link->next = freeobj++ << OBJ_TAG_BITS; 1045 } else { 1046 /* 1047 * Reset OBJ_TAG_BITS bit to last link to tell 1048 * whether it's allocated object or not. 1049 */ 1050 link->next = -1UL << OBJ_TAG_BITS; 1051 } 1052 kunmap_atomic(vaddr); 1053 page = next_page; 1054 off %= PAGE_SIZE; 1055 } 1056 1057 set_freeobj(zspage, 0); 1058 } 1059 1060 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1061 struct page *pages[]) 1062 { 1063 int i; 1064 struct page *page; 1065 struct page *prev_page = NULL; 1066 int nr_pages = class->pages_per_zspage; 1067 1068 /* 1069 * Allocate individual pages and link them together as: 1070 * 1. all pages are linked together using page->freelist 1071 * 2. each sub-page point to zspage using page->private 1072 * 1073 * we set PG_private to identify the first page (i.e. no other sub-page 1074 * has this flag set). 1075 */ 1076 for (i = 0; i < nr_pages; i++) { 1077 page = pages[i]; 1078 set_page_private(page, (unsigned long)zspage); 1079 page->freelist = NULL; 1080 if (i == 0) { 1081 zspage->first_page = page; 1082 SetPagePrivate(page); 1083 if (unlikely(class->objs_per_zspage == 1 && 1084 class->pages_per_zspage == 1)) 1085 SetPageHugeObject(page); 1086 } else { 1087 prev_page->freelist = page; 1088 } 1089 prev_page = page; 1090 } 1091 } 1092 1093 /* 1094 * Allocate a zspage for the given size class 1095 */ 1096 static struct zspage *alloc_zspage(struct zs_pool *pool, 1097 struct size_class *class, 1098 gfp_t gfp) 1099 { 1100 int i; 1101 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1102 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1103 1104 if (!zspage) 1105 return NULL; 1106 1107 memset(zspage, 0, sizeof(struct zspage)); 1108 zspage->magic = ZSPAGE_MAGIC; 1109 migrate_lock_init(zspage); 1110 1111 for (i = 0; i < class->pages_per_zspage; i++) { 1112 struct page *page; 1113 1114 page = alloc_page(gfp); 1115 if (!page) { 1116 while (--i >= 0) { 1117 dec_zone_page_state(pages[i], NR_ZSPAGES); 1118 __free_page(pages[i]); 1119 } 1120 cache_free_zspage(pool, zspage); 1121 return NULL; 1122 } 1123 1124 inc_zone_page_state(page, NR_ZSPAGES); 1125 pages[i] = page; 1126 } 1127 1128 create_page_chain(class, zspage, pages); 1129 init_zspage(class, zspage); 1130 1131 return zspage; 1132 } 1133 1134 static struct zspage *find_get_zspage(struct size_class *class) 1135 { 1136 int i; 1137 struct zspage *zspage; 1138 1139 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1140 zspage = list_first_entry_or_null(&class->fullness_list[i], 1141 struct zspage, list); 1142 if (zspage) 1143 break; 1144 } 1145 1146 return zspage; 1147 } 1148 1149 #ifdef CONFIG_PGTABLE_MAPPING 1150 static inline int __zs_cpu_up(struct mapping_area *area) 1151 { 1152 /* 1153 * Make sure we don't leak memory if a cpu UP notification 1154 * and zs_init() race and both call zs_cpu_up() on the same cpu 1155 */ 1156 if (area->vm) 1157 return 0; 1158 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1159 if (!area->vm) 1160 return -ENOMEM; 1161 return 0; 1162 } 1163 1164 static inline void __zs_cpu_down(struct mapping_area *area) 1165 { 1166 if (area->vm) 1167 free_vm_area(area->vm); 1168 area->vm = NULL; 1169 } 1170 1171 static inline void *__zs_map_object(struct mapping_area *area, 1172 struct page *pages[2], int off, int size) 1173 { 1174 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1175 area->vm_addr = area->vm->addr; 1176 return area->vm_addr + off; 1177 } 1178 1179 static inline void __zs_unmap_object(struct mapping_area *area, 1180 struct page *pages[2], int off, int size) 1181 { 1182 unsigned long addr = (unsigned long)area->vm_addr; 1183 1184 unmap_kernel_range(addr, PAGE_SIZE * 2); 1185 } 1186 1187 #else /* CONFIG_PGTABLE_MAPPING */ 1188 1189 static inline int __zs_cpu_up(struct mapping_area *area) 1190 { 1191 /* 1192 * Make sure we don't leak memory if a cpu UP notification 1193 * and zs_init() race and both call zs_cpu_up() on the same cpu 1194 */ 1195 if (area->vm_buf) 1196 return 0; 1197 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1198 if (!area->vm_buf) 1199 return -ENOMEM; 1200 return 0; 1201 } 1202 1203 static inline void __zs_cpu_down(struct mapping_area *area) 1204 { 1205 kfree(area->vm_buf); 1206 area->vm_buf = NULL; 1207 } 1208 1209 static void *__zs_map_object(struct mapping_area *area, 1210 struct page *pages[2], int off, int size) 1211 { 1212 int sizes[2]; 1213 void *addr; 1214 char *buf = area->vm_buf; 1215 1216 /* disable page faults to match kmap_atomic() return conditions */ 1217 pagefault_disable(); 1218 1219 /* no read fastpath */ 1220 if (area->vm_mm == ZS_MM_WO) 1221 goto out; 1222 1223 sizes[0] = PAGE_SIZE - off; 1224 sizes[1] = size - sizes[0]; 1225 1226 /* copy object to per-cpu buffer */ 1227 addr = kmap_atomic(pages[0]); 1228 memcpy(buf, addr + off, sizes[0]); 1229 kunmap_atomic(addr); 1230 addr = kmap_atomic(pages[1]); 1231 memcpy(buf + sizes[0], addr, sizes[1]); 1232 kunmap_atomic(addr); 1233 out: 1234 return area->vm_buf; 1235 } 1236 1237 static void __zs_unmap_object(struct mapping_area *area, 1238 struct page *pages[2], int off, int size) 1239 { 1240 int sizes[2]; 1241 void *addr; 1242 char *buf; 1243 1244 /* no write fastpath */ 1245 if (area->vm_mm == ZS_MM_RO) 1246 goto out; 1247 1248 buf = area->vm_buf; 1249 buf = buf + ZS_HANDLE_SIZE; 1250 size -= ZS_HANDLE_SIZE; 1251 off += ZS_HANDLE_SIZE; 1252 1253 sizes[0] = PAGE_SIZE - off; 1254 sizes[1] = size - sizes[0]; 1255 1256 /* copy per-cpu buffer to object */ 1257 addr = kmap_atomic(pages[0]); 1258 memcpy(addr + off, buf, sizes[0]); 1259 kunmap_atomic(addr); 1260 addr = kmap_atomic(pages[1]); 1261 memcpy(addr, buf + sizes[0], sizes[1]); 1262 kunmap_atomic(addr); 1263 1264 out: 1265 /* enable page faults to match kunmap_atomic() return conditions */ 1266 pagefault_enable(); 1267 } 1268 1269 #endif /* CONFIG_PGTABLE_MAPPING */ 1270 1271 static int zs_cpu_prepare(unsigned int cpu) 1272 { 1273 struct mapping_area *area; 1274 1275 area = &per_cpu(zs_map_area, cpu); 1276 return __zs_cpu_up(area); 1277 } 1278 1279 static int zs_cpu_dead(unsigned int cpu) 1280 { 1281 struct mapping_area *area; 1282 1283 area = &per_cpu(zs_map_area, cpu); 1284 __zs_cpu_down(area); 1285 return 0; 1286 } 1287 1288 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1289 int objs_per_zspage) 1290 { 1291 if (prev->pages_per_zspage == pages_per_zspage && 1292 prev->objs_per_zspage == objs_per_zspage) 1293 return true; 1294 1295 return false; 1296 } 1297 1298 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1299 { 1300 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1301 } 1302 1303 unsigned long zs_get_total_pages(struct zs_pool *pool) 1304 { 1305 return atomic_long_read(&pool->pages_allocated); 1306 } 1307 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1308 1309 /** 1310 * zs_map_object - get address of allocated object from handle. 1311 * @pool: pool from which the object was allocated 1312 * @handle: handle returned from zs_malloc 1313 * 1314 * Before using an object allocated from zs_malloc, it must be mapped using 1315 * this function. When done with the object, it must be unmapped using 1316 * zs_unmap_object. 1317 * 1318 * Only one object can be mapped per cpu at a time. There is no protection 1319 * against nested mappings. 1320 * 1321 * This function returns with preemption and page faults disabled. 1322 */ 1323 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1324 enum zs_mapmode mm) 1325 { 1326 struct zspage *zspage; 1327 struct page *page; 1328 unsigned long obj, off; 1329 unsigned int obj_idx; 1330 1331 unsigned int class_idx; 1332 enum fullness_group fg; 1333 struct size_class *class; 1334 struct mapping_area *area; 1335 struct page *pages[2]; 1336 void *ret; 1337 1338 /* 1339 * Because we use per-cpu mapping areas shared among the 1340 * pools/users, we can't allow mapping in interrupt context 1341 * because it can corrupt another users mappings. 1342 */ 1343 BUG_ON(in_interrupt()); 1344 1345 /* From now on, migration cannot move the object */ 1346 pin_tag(handle); 1347 1348 obj = handle_to_obj(handle); 1349 obj_to_location(obj, &page, &obj_idx); 1350 zspage = get_zspage(page); 1351 1352 /* migration cannot move any subpage in this zspage */ 1353 migrate_read_lock(zspage); 1354 1355 get_zspage_mapping(zspage, &class_idx, &fg); 1356 class = pool->size_class[class_idx]; 1357 off = (class->size * obj_idx) & ~PAGE_MASK; 1358 1359 area = &get_cpu_var(zs_map_area); 1360 area->vm_mm = mm; 1361 if (off + class->size <= PAGE_SIZE) { 1362 /* this object is contained entirely within a page */ 1363 area->vm_addr = kmap_atomic(page); 1364 ret = area->vm_addr + off; 1365 goto out; 1366 } 1367 1368 /* this object spans two pages */ 1369 pages[0] = page; 1370 pages[1] = get_next_page(page); 1371 BUG_ON(!pages[1]); 1372 1373 ret = __zs_map_object(area, pages, off, class->size); 1374 out: 1375 if (likely(!PageHugeObject(page))) 1376 ret += ZS_HANDLE_SIZE; 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL_GPL(zs_map_object); 1381 1382 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1383 { 1384 struct zspage *zspage; 1385 struct page *page; 1386 unsigned long obj, off; 1387 unsigned int obj_idx; 1388 1389 unsigned int class_idx; 1390 enum fullness_group fg; 1391 struct size_class *class; 1392 struct mapping_area *area; 1393 1394 obj = handle_to_obj(handle); 1395 obj_to_location(obj, &page, &obj_idx); 1396 zspage = get_zspage(page); 1397 get_zspage_mapping(zspage, &class_idx, &fg); 1398 class = pool->size_class[class_idx]; 1399 off = (class->size * obj_idx) & ~PAGE_MASK; 1400 1401 area = this_cpu_ptr(&zs_map_area); 1402 if (off + class->size <= PAGE_SIZE) 1403 kunmap_atomic(area->vm_addr); 1404 else { 1405 struct page *pages[2]; 1406 1407 pages[0] = page; 1408 pages[1] = get_next_page(page); 1409 BUG_ON(!pages[1]); 1410 1411 __zs_unmap_object(area, pages, off, class->size); 1412 } 1413 put_cpu_var(zs_map_area); 1414 1415 migrate_read_unlock(zspage); 1416 unpin_tag(handle); 1417 } 1418 EXPORT_SYMBOL_GPL(zs_unmap_object); 1419 1420 static unsigned long obj_malloc(struct size_class *class, 1421 struct zspage *zspage, unsigned long handle) 1422 { 1423 int i, nr_page, offset; 1424 unsigned long obj; 1425 struct link_free *link; 1426 1427 struct page *m_page; 1428 unsigned long m_offset; 1429 void *vaddr; 1430 1431 handle |= OBJ_ALLOCATED_TAG; 1432 obj = get_freeobj(zspage); 1433 1434 offset = obj * class->size; 1435 nr_page = offset >> PAGE_SHIFT; 1436 m_offset = offset & ~PAGE_MASK; 1437 m_page = get_first_page(zspage); 1438 1439 for (i = 0; i < nr_page; i++) 1440 m_page = get_next_page(m_page); 1441 1442 vaddr = kmap_atomic(m_page); 1443 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1444 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1445 if (likely(!PageHugeObject(m_page))) 1446 /* record handle in the header of allocated chunk */ 1447 link->handle = handle; 1448 else 1449 /* record handle to page->index */ 1450 zspage->first_page->index = handle; 1451 1452 kunmap_atomic(vaddr); 1453 mod_zspage_inuse(zspage, 1); 1454 zs_stat_inc(class, OBJ_USED, 1); 1455 1456 obj = location_to_obj(m_page, obj); 1457 1458 return obj; 1459 } 1460 1461 1462 /** 1463 * zs_malloc - Allocate block of given size from pool. 1464 * @pool: pool to allocate from 1465 * @size: size of block to allocate 1466 * @gfp: gfp flags when allocating object 1467 * 1468 * On success, handle to the allocated object is returned, 1469 * otherwise 0. 1470 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1471 */ 1472 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1473 { 1474 unsigned long handle, obj; 1475 struct size_class *class; 1476 enum fullness_group newfg; 1477 struct zspage *zspage; 1478 1479 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1480 return 0; 1481 1482 handle = cache_alloc_handle(pool, gfp); 1483 if (!handle) 1484 return 0; 1485 1486 /* extra space in chunk to keep the handle */ 1487 size += ZS_HANDLE_SIZE; 1488 class = pool->size_class[get_size_class_index(size)]; 1489 1490 spin_lock(&class->lock); 1491 zspage = find_get_zspage(class); 1492 if (likely(zspage)) { 1493 obj = obj_malloc(class, zspage, handle); 1494 /* Now move the zspage to another fullness group, if required */ 1495 fix_fullness_group(class, zspage); 1496 record_obj(handle, obj); 1497 spin_unlock(&class->lock); 1498 1499 return handle; 1500 } 1501 1502 spin_unlock(&class->lock); 1503 1504 zspage = alloc_zspage(pool, class, gfp); 1505 if (!zspage) { 1506 cache_free_handle(pool, handle); 1507 return 0; 1508 } 1509 1510 spin_lock(&class->lock); 1511 obj = obj_malloc(class, zspage, handle); 1512 newfg = get_fullness_group(class, zspage); 1513 insert_zspage(class, zspage, newfg); 1514 set_zspage_mapping(zspage, class->index, newfg); 1515 record_obj(handle, obj); 1516 atomic_long_add(class->pages_per_zspage, 1517 &pool->pages_allocated); 1518 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1519 1520 /* We completely set up zspage so mark them as movable */ 1521 SetZsPageMovable(pool, zspage); 1522 spin_unlock(&class->lock); 1523 1524 return handle; 1525 } 1526 EXPORT_SYMBOL_GPL(zs_malloc); 1527 1528 static void obj_free(struct size_class *class, unsigned long obj) 1529 { 1530 struct link_free *link; 1531 struct zspage *zspage; 1532 struct page *f_page; 1533 unsigned long f_offset; 1534 unsigned int f_objidx; 1535 void *vaddr; 1536 1537 obj &= ~OBJ_ALLOCATED_TAG; 1538 obj_to_location(obj, &f_page, &f_objidx); 1539 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1540 zspage = get_zspage(f_page); 1541 1542 vaddr = kmap_atomic(f_page); 1543 1544 /* Insert this object in containing zspage's freelist */ 1545 link = (struct link_free *)(vaddr + f_offset); 1546 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1547 kunmap_atomic(vaddr); 1548 set_freeobj(zspage, f_objidx); 1549 mod_zspage_inuse(zspage, -1); 1550 zs_stat_dec(class, OBJ_USED, 1); 1551 } 1552 1553 void zs_free(struct zs_pool *pool, unsigned long handle) 1554 { 1555 struct zspage *zspage; 1556 struct page *f_page; 1557 unsigned long obj; 1558 unsigned int f_objidx; 1559 int class_idx; 1560 struct size_class *class; 1561 enum fullness_group fullness; 1562 bool isolated; 1563 1564 if (unlikely(!handle)) 1565 return; 1566 1567 pin_tag(handle); 1568 obj = handle_to_obj(handle); 1569 obj_to_location(obj, &f_page, &f_objidx); 1570 zspage = get_zspage(f_page); 1571 1572 migrate_read_lock(zspage); 1573 1574 get_zspage_mapping(zspage, &class_idx, &fullness); 1575 class = pool->size_class[class_idx]; 1576 1577 spin_lock(&class->lock); 1578 obj_free(class, obj); 1579 fullness = fix_fullness_group(class, zspage); 1580 if (fullness != ZS_EMPTY) { 1581 migrate_read_unlock(zspage); 1582 goto out; 1583 } 1584 1585 isolated = is_zspage_isolated(zspage); 1586 migrate_read_unlock(zspage); 1587 /* If zspage is isolated, zs_page_putback will free the zspage */ 1588 if (likely(!isolated)) 1589 free_zspage(pool, class, zspage); 1590 out: 1591 1592 spin_unlock(&class->lock); 1593 unpin_tag(handle); 1594 cache_free_handle(pool, handle); 1595 } 1596 EXPORT_SYMBOL_GPL(zs_free); 1597 1598 static void zs_object_copy(struct size_class *class, unsigned long dst, 1599 unsigned long src) 1600 { 1601 struct page *s_page, *d_page; 1602 unsigned int s_objidx, d_objidx; 1603 unsigned long s_off, d_off; 1604 void *s_addr, *d_addr; 1605 int s_size, d_size, size; 1606 int written = 0; 1607 1608 s_size = d_size = class->size; 1609 1610 obj_to_location(src, &s_page, &s_objidx); 1611 obj_to_location(dst, &d_page, &d_objidx); 1612 1613 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1614 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1615 1616 if (s_off + class->size > PAGE_SIZE) 1617 s_size = PAGE_SIZE - s_off; 1618 1619 if (d_off + class->size > PAGE_SIZE) 1620 d_size = PAGE_SIZE - d_off; 1621 1622 s_addr = kmap_atomic(s_page); 1623 d_addr = kmap_atomic(d_page); 1624 1625 while (1) { 1626 size = min(s_size, d_size); 1627 memcpy(d_addr + d_off, s_addr + s_off, size); 1628 written += size; 1629 1630 if (written == class->size) 1631 break; 1632 1633 s_off += size; 1634 s_size -= size; 1635 d_off += size; 1636 d_size -= size; 1637 1638 if (s_off >= PAGE_SIZE) { 1639 kunmap_atomic(d_addr); 1640 kunmap_atomic(s_addr); 1641 s_page = get_next_page(s_page); 1642 s_addr = kmap_atomic(s_page); 1643 d_addr = kmap_atomic(d_page); 1644 s_size = class->size - written; 1645 s_off = 0; 1646 } 1647 1648 if (d_off >= PAGE_SIZE) { 1649 kunmap_atomic(d_addr); 1650 d_page = get_next_page(d_page); 1651 d_addr = kmap_atomic(d_page); 1652 d_size = class->size - written; 1653 d_off = 0; 1654 } 1655 } 1656 1657 kunmap_atomic(d_addr); 1658 kunmap_atomic(s_addr); 1659 } 1660 1661 /* 1662 * Find alloced object in zspage from index object and 1663 * return handle. 1664 */ 1665 static unsigned long find_alloced_obj(struct size_class *class, 1666 struct page *page, int *obj_idx) 1667 { 1668 unsigned long head; 1669 int offset = 0; 1670 int index = *obj_idx; 1671 unsigned long handle = 0; 1672 void *addr = kmap_atomic(page); 1673 1674 offset = get_first_obj_offset(page); 1675 offset += class->size * index; 1676 1677 while (offset < PAGE_SIZE) { 1678 head = obj_to_head(page, addr + offset); 1679 if (head & OBJ_ALLOCATED_TAG) { 1680 handle = head & ~OBJ_ALLOCATED_TAG; 1681 if (trypin_tag(handle)) 1682 break; 1683 handle = 0; 1684 } 1685 1686 offset += class->size; 1687 index++; 1688 } 1689 1690 kunmap_atomic(addr); 1691 1692 *obj_idx = index; 1693 1694 return handle; 1695 } 1696 1697 struct zs_compact_control { 1698 /* Source spage for migration which could be a subpage of zspage */ 1699 struct page *s_page; 1700 /* Destination page for migration which should be a first page 1701 * of zspage. */ 1702 struct page *d_page; 1703 /* Starting object index within @s_page which used for live object 1704 * in the subpage. */ 1705 int obj_idx; 1706 }; 1707 1708 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1709 struct zs_compact_control *cc) 1710 { 1711 unsigned long used_obj, free_obj; 1712 unsigned long handle; 1713 struct page *s_page = cc->s_page; 1714 struct page *d_page = cc->d_page; 1715 int obj_idx = cc->obj_idx; 1716 int ret = 0; 1717 1718 while (1) { 1719 handle = find_alloced_obj(class, s_page, &obj_idx); 1720 if (!handle) { 1721 s_page = get_next_page(s_page); 1722 if (!s_page) 1723 break; 1724 obj_idx = 0; 1725 continue; 1726 } 1727 1728 /* Stop if there is no more space */ 1729 if (zspage_full(class, get_zspage(d_page))) { 1730 unpin_tag(handle); 1731 ret = -ENOMEM; 1732 break; 1733 } 1734 1735 used_obj = handle_to_obj(handle); 1736 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1737 zs_object_copy(class, free_obj, used_obj); 1738 obj_idx++; 1739 /* 1740 * record_obj updates handle's value to free_obj and it will 1741 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1742 * breaks synchronization using pin_tag(e,g, zs_free) so 1743 * let's keep the lock bit. 1744 */ 1745 free_obj |= BIT(HANDLE_PIN_BIT); 1746 record_obj(handle, free_obj); 1747 unpin_tag(handle); 1748 obj_free(class, used_obj); 1749 } 1750 1751 /* Remember last position in this iteration */ 1752 cc->s_page = s_page; 1753 cc->obj_idx = obj_idx; 1754 1755 return ret; 1756 } 1757 1758 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1759 { 1760 int i; 1761 struct zspage *zspage; 1762 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1763 1764 if (!source) { 1765 fg[0] = ZS_ALMOST_FULL; 1766 fg[1] = ZS_ALMOST_EMPTY; 1767 } 1768 1769 for (i = 0; i < 2; i++) { 1770 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1771 struct zspage, list); 1772 if (zspage) { 1773 VM_BUG_ON(is_zspage_isolated(zspage)); 1774 remove_zspage(class, zspage, fg[i]); 1775 return zspage; 1776 } 1777 } 1778 1779 return zspage; 1780 } 1781 1782 /* 1783 * putback_zspage - add @zspage into right class's fullness list 1784 * @class: destination class 1785 * @zspage: target page 1786 * 1787 * Return @zspage's fullness_group 1788 */ 1789 static enum fullness_group putback_zspage(struct size_class *class, 1790 struct zspage *zspage) 1791 { 1792 enum fullness_group fullness; 1793 1794 VM_BUG_ON(is_zspage_isolated(zspage)); 1795 1796 fullness = get_fullness_group(class, zspage); 1797 insert_zspage(class, zspage, fullness); 1798 set_zspage_mapping(zspage, class->index, fullness); 1799 1800 return fullness; 1801 } 1802 1803 #ifdef CONFIG_COMPACTION 1804 static struct dentry *zs_mount(struct file_system_type *fs_type, 1805 int flags, const char *dev_name, void *data) 1806 { 1807 static const struct dentry_operations ops = { 1808 .d_dname = simple_dname, 1809 }; 1810 1811 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1812 } 1813 1814 static struct file_system_type zsmalloc_fs = { 1815 .name = "zsmalloc", 1816 .mount = zs_mount, 1817 .kill_sb = kill_anon_super, 1818 }; 1819 1820 static int zsmalloc_mount(void) 1821 { 1822 int ret = 0; 1823 1824 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1825 if (IS_ERR(zsmalloc_mnt)) 1826 ret = PTR_ERR(zsmalloc_mnt); 1827 1828 return ret; 1829 } 1830 1831 static void zsmalloc_unmount(void) 1832 { 1833 kern_unmount(zsmalloc_mnt); 1834 } 1835 1836 static void migrate_lock_init(struct zspage *zspage) 1837 { 1838 rwlock_init(&zspage->lock); 1839 } 1840 1841 static void migrate_read_lock(struct zspage *zspage) 1842 { 1843 read_lock(&zspage->lock); 1844 } 1845 1846 static void migrate_read_unlock(struct zspage *zspage) 1847 { 1848 read_unlock(&zspage->lock); 1849 } 1850 1851 static void migrate_write_lock(struct zspage *zspage) 1852 { 1853 write_lock(&zspage->lock); 1854 } 1855 1856 static void migrate_write_unlock(struct zspage *zspage) 1857 { 1858 write_unlock(&zspage->lock); 1859 } 1860 1861 /* Number of isolated subpage for *page migration* in this zspage */ 1862 static void inc_zspage_isolation(struct zspage *zspage) 1863 { 1864 zspage->isolated++; 1865 } 1866 1867 static void dec_zspage_isolation(struct zspage *zspage) 1868 { 1869 zspage->isolated--; 1870 } 1871 1872 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1873 struct page *newpage, struct page *oldpage) 1874 { 1875 struct page *page; 1876 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1877 int idx = 0; 1878 1879 page = get_first_page(zspage); 1880 do { 1881 if (page == oldpage) 1882 pages[idx] = newpage; 1883 else 1884 pages[idx] = page; 1885 idx++; 1886 } while ((page = get_next_page(page)) != NULL); 1887 1888 create_page_chain(class, zspage, pages); 1889 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1890 if (unlikely(PageHugeObject(oldpage))) 1891 newpage->index = oldpage->index; 1892 __SetPageMovable(newpage, page_mapping(oldpage)); 1893 } 1894 1895 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1896 { 1897 struct zs_pool *pool; 1898 struct size_class *class; 1899 int class_idx; 1900 enum fullness_group fullness; 1901 struct zspage *zspage; 1902 struct address_space *mapping; 1903 1904 /* 1905 * Page is locked so zspage couldn't be destroyed. For detail, look at 1906 * lock_zspage in free_zspage. 1907 */ 1908 VM_BUG_ON_PAGE(!PageMovable(page), page); 1909 VM_BUG_ON_PAGE(PageIsolated(page), page); 1910 1911 zspage = get_zspage(page); 1912 1913 /* 1914 * Without class lock, fullness could be stale while class_idx is okay 1915 * because class_idx is constant unless page is freed so we should get 1916 * fullness again under class lock. 1917 */ 1918 get_zspage_mapping(zspage, &class_idx, &fullness); 1919 mapping = page_mapping(page); 1920 pool = mapping->private_data; 1921 class = pool->size_class[class_idx]; 1922 1923 spin_lock(&class->lock); 1924 if (get_zspage_inuse(zspage) == 0) { 1925 spin_unlock(&class->lock); 1926 return false; 1927 } 1928 1929 /* zspage is isolated for object migration */ 1930 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1931 spin_unlock(&class->lock); 1932 return false; 1933 } 1934 1935 /* 1936 * If this is first time isolation for the zspage, isolate zspage from 1937 * size_class to prevent further object allocation from the zspage. 1938 */ 1939 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1940 get_zspage_mapping(zspage, &class_idx, &fullness); 1941 remove_zspage(class, zspage, fullness); 1942 } 1943 1944 inc_zspage_isolation(zspage); 1945 spin_unlock(&class->lock); 1946 1947 return true; 1948 } 1949 1950 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1951 struct page *page, enum migrate_mode mode) 1952 { 1953 struct zs_pool *pool; 1954 struct size_class *class; 1955 int class_idx; 1956 enum fullness_group fullness; 1957 struct zspage *zspage; 1958 struct page *dummy; 1959 void *s_addr, *d_addr, *addr; 1960 int offset, pos; 1961 unsigned long handle, head; 1962 unsigned long old_obj, new_obj; 1963 unsigned int obj_idx; 1964 int ret = -EAGAIN; 1965 1966 /* 1967 * We cannot support the _NO_COPY case here, because copy needs to 1968 * happen under the zs lock, which does not work with 1969 * MIGRATE_SYNC_NO_COPY workflow. 1970 */ 1971 if (mode == MIGRATE_SYNC_NO_COPY) 1972 return -EINVAL; 1973 1974 VM_BUG_ON_PAGE(!PageMovable(page), page); 1975 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1976 1977 zspage = get_zspage(page); 1978 1979 /* Concurrent compactor cannot migrate any subpage in zspage */ 1980 migrate_write_lock(zspage); 1981 get_zspage_mapping(zspage, &class_idx, &fullness); 1982 pool = mapping->private_data; 1983 class = pool->size_class[class_idx]; 1984 offset = get_first_obj_offset(page); 1985 1986 spin_lock(&class->lock); 1987 if (!get_zspage_inuse(zspage)) { 1988 /* 1989 * Set "offset" to end of the page so that every loops 1990 * skips unnecessary object scanning. 1991 */ 1992 offset = PAGE_SIZE; 1993 } 1994 1995 pos = offset; 1996 s_addr = kmap_atomic(page); 1997 while (pos < PAGE_SIZE) { 1998 head = obj_to_head(page, s_addr + pos); 1999 if (head & OBJ_ALLOCATED_TAG) { 2000 handle = head & ~OBJ_ALLOCATED_TAG; 2001 if (!trypin_tag(handle)) 2002 goto unpin_objects; 2003 } 2004 pos += class->size; 2005 } 2006 2007 /* 2008 * Here, any user cannot access all objects in the zspage so let's move. 2009 */ 2010 d_addr = kmap_atomic(newpage); 2011 memcpy(d_addr, s_addr, PAGE_SIZE); 2012 kunmap_atomic(d_addr); 2013 2014 for (addr = s_addr + offset; addr < s_addr + pos; 2015 addr += class->size) { 2016 head = obj_to_head(page, addr); 2017 if (head & OBJ_ALLOCATED_TAG) { 2018 handle = head & ~OBJ_ALLOCATED_TAG; 2019 if (!testpin_tag(handle)) 2020 BUG(); 2021 2022 old_obj = handle_to_obj(handle); 2023 obj_to_location(old_obj, &dummy, &obj_idx); 2024 new_obj = (unsigned long)location_to_obj(newpage, 2025 obj_idx); 2026 new_obj |= BIT(HANDLE_PIN_BIT); 2027 record_obj(handle, new_obj); 2028 } 2029 } 2030 2031 replace_sub_page(class, zspage, newpage, page); 2032 get_page(newpage); 2033 2034 dec_zspage_isolation(zspage); 2035 2036 /* 2037 * Page migration is done so let's putback isolated zspage to 2038 * the list if @page is final isolated subpage in the zspage. 2039 */ 2040 if (!is_zspage_isolated(zspage)) 2041 putback_zspage(class, zspage); 2042 2043 reset_page(page); 2044 put_page(page); 2045 page = newpage; 2046 2047 ret = MIGRATEPAGE_SUCCESS; 2048 unpin_objects: 2049 for (addr = s_addr + offset; addr < s_addr + pos; 2050 addr += class->size) { 2051 head = obj_to_head(page, addr); 2052 if (head & OBJ_ALLOCATED_TAG) { 2053 handle = head & ~OBJ_ALLOCATED_TAG; 2054 if (!testpin_tag(handle)) 2055 BUG(); 2056 unpin_tag(handle); 2057 } 2058 } 2059 kunmap_atomic(s_addr); 2060 spin_unlock(&class->lock); 2061 migrate_write_unlock(zspage); 2062 2063 return ret; 2064 } 2065 2066 void zs_page_putback(struct page *page) 2067 { 2068 struct zs_pool *pool; 2069 struct size_class *class; 2070 int class_idx; 2071 enum fullness_group fg; 2072 struct address_space *mapping; 2073 struct zspage *zspage; 2074 2075 VM_BUG_ON_PAGE(!PageMovable(page), page); 2076 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2077 2078 zspage = get_zspage(page); 2079 get_zspage_mapping(zspage, &class_idx, &fg); 2080 mapping = page_mapping(page); 2081 pool = mapping->private_data; 2082 class = pool->size_class[class_idx]; 2083 2084 spin_lock(&class->lock); 2085 dec_zspage_isolation(zspage); 2086 if (!is_zspage_isolated(zspage)) { 2087 fg = putback_zspage(class, zspage); 2088 /* 2089 * Due to page_lock, we cannot free zspage immediately 2090 * so let's defer. 2091 */ 2092 if (fg == ZS_EMPTY) 2093 schedule_work(&pool->free_work); 2094 } 2095 spin_unlock(&class->lock); 2096 } 2097 2098 const struct address_space_operations zsmalloc_aops = { 2099 .isolate_page = zs_page_isolate, 2100 .migratepage = zs_page_migrate, 2101 .putback_page = zs_page_putback, 2102 }; 2103 2104 static int zs_register_migration(struct zs_pool *pool) 2105 { 2106 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2107 if (IS_ERR(pool->inode)) { 2108 pool->inode = NULL; 2109 return 1; 2110 } 2111 2112 pool->inode->i_mapping->private_data = pool; 2113 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2114 return 0; 2115 } 2116 2117 static void zs_unregister_migration(struct zs_pool *pool) 2118 { 2119 flush_work(&pool->free_work); 2120 iput(pool->inode); 2121 } 2122 2123 /* 2124 * Caller should hold page_lock of all pages in the zspage 2125 * In here, we cannot use zspage meta data. 2126 */ 2127 static void async_free_zspage(struct work_struct *work) 2128 { 2129 int i; 2130 struct size_class *class; 2131 unsigned int class_idx; 2132 enum fullness_group fullness; 2133 struct zspage *zspage, *tmp; 2134 LIST_HEAD(free_pages); 2135 struct zs_pool *pool = container_of(work, struct zs_pool, 2136 free_work); 2137 2138 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2139 class = pool->size_class[i]; 2140 if (class->index != i) 2141 continue; 2142 2143 spin_lock(&class->lock); 2144 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2145 spin_unlock(&class->lock); 2146 } 2147 2148 2149 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2150 list_del(&zspage->list); 2151 lock_zspage(zspage); 2152 2153 get_zspage_mapping(zspage, &class_idx, &fullness); 2154 VM_BUG_ON(fullness != ZS_EMPTY); 2155 class = pool->size_class[class_idx]; 2156 spin_lock(&class->lock); 2157 __free_zspage(pool, pool->size_class[class_idx], zspage); 2158 spin_unlock(&class->lock); 2159 } 2160 }; 2161 2162 static void kick_deferred_free(struct zs_pool *pool) 2163 { 2164 schedule_work(&pool->free_work); 2165 } 2166 2167 static void init_deferred_free(struct zs_pool *pool) 2168 { 2169 INIT_WORK(&pool->free_work, async_free_zspage); 2170 } 2171 2172 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2173 { 2174 struct page *page = get_first_page(zspage); 2175 2176 do { 2177 WARN_ON(!trylock_page(page)); 2178 __SetPageMovable(page, pool->inode->i_mapping); 2179 unlock_page(page); 2180 } while ((page = get_next_page(page)) != NULL); 2181 } 2182 #endif 2183 2184 /* 2185 * 2186 * Based on the number of unused allocated objects calculate 2187 * and return the number of pages that we can free. 2188 */ 2189 static unsigned long zs_can_compact(struct size_class *class) 2190 { 2191 unsigned long obj_wasted; 2192 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2193 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2194 2195 if (obj_allocated <= obj_used) 2196 return 0; 2197 2198 obj_wasted = obj_allocated - obj_used; 2199 obj_wasted /= class->objs_per_zspage; 2200 2201 return obj_wasted * class->pages_per_zspage; 2202 } 2203 2204 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2205 { 2206 struct zs_compact_control cc; 2207 struct zspage *src_zspage; 2208 struct zspage *dst_zspage = NULL; 2209 2210 spin_lock(&class->lock); 2211 while ((src_zspage = isolate_zspage(class, true))) { 2212 2213 if (!zs_can_compact(class)) 2214 break; 2215 2216 cc.obj_idx = 0; 2217 cc.s_page = get_first_page(src_zspage); 2218 2219 while ((dst_zspage = isolate_zspage(class, false))) { 2220 cc.d_page = get_first_page(dst_zspage); 2221 /* 2222 * If there is no more space in dst_page, resched 2223 * and see if anyone had allocated another zspage. 2224 */ 2225 if (!migrate_zspage(pool, class, &cc)) 2226 break; 2227 2228 putback_zspage(class, dst_zspage); 2229 } 2230 2231 /* Stop if we couldn't find slot */ 2232 if (dst_zspage == NULL) 2233 break; 2234 2235 putback_zspage(class, dst_zspage); 2236 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2237 free_zspage(pool, class, src_zspage); 2238 pool->stats.pages_compacted += class->pages_per_zspage; 2239 } 2240 spin_unlock(&class->lock); 2241 cond_resched(); 2242 spin_lock(&class->lock); 2243 } 2244 2245 if (src_zspage) 2246 putback_zspage(class, src_zspage); 2247 2248 spin_unlock(&class->lock); 2249 } 2250 2251 unsigned long zs_compact(struct zs_pool *pool) 2252 { 2253 int i; 2254 struct size_class *class; 2255 2256 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2257 class = pool->size_class[i]; 2258 if (!class) 2259 continue; 2260 if (class->index != i) 2261 continue; 2262 __zs_compact(pool, class); 2263 } 2264 2265 return pool->stats.pages_compacted; 2266 } 2267 EXPORT_SYMBOL_GPL(zs_compact); 2268 2269 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2270 { 2271 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2272 } 2273 EXPORT_SYMBOL_GPL(zs_pool_stats); 2274 2275 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2276 struct shrink_control *sc) 2277 { 2278 unsigned long pages_freed; 2279 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2280 shrinker); 2281 2282 pages_freed = pool->stats.pages_compacted; 2283 /* 2284 * Compact classes and calculate compaction delta. 2285 * Can run concurrently with a manually triggered 2286 * (by user) compaction. 2287 */ 2288 pages_freed = zs_compact(pool) - pages_freed; 2289 2290 return pages_freed ? pages_freed : SHRINK_STOP; 2291 } 2292 2293 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2294 struct shrink_control *sc) 2295 { 2296 int i; 2297 struct size_class *class; 2298 unsigned long pages_to_free = 0; 2299 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2300 shrinker); 2301 2302 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2303 class = pool->size_class[i]; 2304 if (!class) 2305 continue; 2306 if (class->index != i) 2307 continue; 2308 2309 pages_to_free += zs_can_compact(class); 2310 } 2311 2312 return pages_to_free; 2313 } 2314 2315 static void zs_unregister_shrinker(struct zs_pool *pool) 2316 { 2317 unregister_shrinker(&pool->shrinker); 2318 } 2319 2320 static int zs_register_shrinker(struct zs_pool *pool) 2321 { 2322 pool->shrinker.scan_objects = zs_shrinker_scan; 2323 pool->shrinker.count_objects = zs_shrinker_count; 2324 pool->shrinker.batch = 0; 2325 pool->shrinker.seeks = DEFAULT_SEEKS; 2326 2327 return register_shrinker(&pool->shrinker); 2328 } 2329 2330 /** 2331 * zs_create_pool - Creates an allocation pool to work from. 2332 * @name: pool name to be created 2333 * 2334 * This function must be called before anything when using 2335 * the zsmalloc allocator. 2336 * 2337 * On success, a pointer to the newly created pool is returned, 2338 * otherwise NULL. 2339 */ 2340 struct zs_pool *zs_create_pool(const char *name) 2341 { 2342 int i; 2343 struct zs_pool *pool; 2344 struct size_class *prev_class = NULL; 2345 2346 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2347 if (!pool) 2348 return NULL; 2349 2350 init_deferred_free(pool); 2351 2352 pool->name = kstrdup(name, GFP_KERNEL); 2353 if (!pool->name) 2354 goto err; 2355 2356 if (create_cache(pool)) 2357 goto err; 2358 2359 /* 2360 * Iterate reversely, because, size of size_class that we want to use 2361 * for merging should be larger or equal to current size. 2362 */ 2363 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2364 int size; 2365 int pages_per_zspage; 2366 int objs_per_zspage; 2367 struct size_class *class; 2368 int fullness = 0; 2369 2370 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2371 if (size > ZS_MAX_ALLOC_SIZE) 2372 size = ZS_MAX_ALLOC_SIZE; 2373 pages_per_zspage = get_pages_per_zspage(size); 2374 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2375 2376 /* 2377 * size_class is used for normal zsmalloc operation such 2378 * as alloc/free for that size. Although it is natural that we 2379 * have one size_class for each size, there is a chance that we 2380 * can get more memory utilization if we use one size_class for 2381 * many different sizes whose size_class have same 2382 * characteristics. So, we makes size_class point to 2383 * previous size_class if possible. 2384 */ 2385 if (prev_class) { 2386 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2387 pool->size_class[i] = prev_class; 2388 continue; 2389 } 2390 } 2391 2392 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2393 if (!class) 2394 goto err; 2395 2396 class->size = size; 2397 class->index = i; 2398 class->pages_per_zspage = pages_per_zspage; 2399 class->objs_per_zspage = objs_per_zspage; 2400 spin_lock_init(&class->lock); 2401 pool->size_class[i] = class; 2402 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2403 fullness++) 2404 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2405 2406 prev_class = class; 2407 } 2408 2409 /* debug only, don't abort if it fails */ 2410 zs_pool_stat_create(pool, name); 2411 2412 if (zs_register_migration(pool)) 2413 goto err; 2414 2415 /* 2416 * Not critical since shrinker is only used to trigger internal 2417 * defragmentation of the pool which is pretty optional thing. If 2418 * registration fails we still can use the pool normally and user can 2419 * trigger compaction manually. Thus, ignore return code. 2420 */ 2421 zs_register_shrinker(pool); 2422 2423 return pool; 2424 2425 err: 2426 zs_destroy_pool(pool); 2427 return NULL; 2428 } 2429 EXPORT_SYMBOL_GPL(zs_create_pool); 2430 2431 void zs_destroy_pool(struct zs_pool *pool) 2432 { 2433 int i; 2434 2435 zs_unregister_shrinker(pool); 2436 zs_unregister_migration(pool); 2437 zs_pool_stat_destroy(pool); 2438 2439 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2440 int fg; 2441 struct size_class *class = pool->size_class[i]; 2442 2443 if (!class) 2444 continue; 2445 2446 if (class->index != i) 2447 continue; 2448 2449 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2450 if (!list_empty(&class->fullness_list[fg])) { 2451 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2452 class->size, fg); 2453 } 2454 } 2455 kfree(class); 2456 } 2457 2458 destroy_cache(pool); 2459 kfree(pool->name); 2460 kfree(pool); 2461 } 2462 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2463 2464 static int __init zs_init(void) 2465 { 2466 int ret; 2467 2468 ret = zsmalloc_mount(); 2469 if (ret) 2470 goto out; 2471 2472 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2473 zs_cpu_prepare, zs_cpu_dead); 2474 if (ret) 2475 goto hp_setup_fail; 2476 2477 #ifdef CONFIG_ZPOOL 2478 zpool_register_driver(&zs_zpool_driver); 2479 #endif 2480 2481 zs_stat_init(); 2482 2483 return 0; 2484 2485 hp_setup_fail: 2486 zsmalloc_unmount(); 2487 out: 2488 return ret; 2489 } 2490 2491 static void __exit zs_exit(void) 2492 { 2493 #ifdef CONFIG_ZPOOL 2494 zpool_unregister_driver(&zs_zpool_driver); 2495 #endif 2496 zsmalloc_unmount(); 2497 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2498 2499 zs_stat_exit(); 2500 } 2501 2502 module_init(zs_init); 2503 module_exit(zs_exit); 2504 2505 MODULE_LICENSE("Dual BSD/GPL"); 2506 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2507