xref: /linux/mm/zsmalloc.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60 
61 #define ZSPAGE_MAGIC	0x58
62 
63 /*
64  * This must be power of 2 and greater than of equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN		8
70 
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77 
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * as single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88 
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100 
101 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT	0
111 
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123 
124 #define FULLNESS_BITS	2
125 #define CLASS_BITS	8
126 #define ISOLATED_BITS	3
127 #define MAGIC_VAL_BITS	8
128 
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
135 
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 				      ZS_SIZE_CLASS_DELTA) + 1)
152 
153 enum fullness_group {
154 	ZS_EMPTY,
155 	ZS_ALMOST_EMPTY,
156 	ZS_ALMOST_FULL,
157 	ZS_FULL,
158 	NR_ZS_FULLNESS,
159 };
160 
161 enum zs_stat_type {
162 	CLASS_EMPTY,
163 	CLASS_ALMOST_EMPTY,
164 	CLASS_ALMOST_FULL,
165 	CLASS_FULL,
166 	OBJ_ALLOCATED,
167 	OBJ_USED,
168 	NR_ZS_STAT_TYPE,
169 };
170 
171 struct zs_size_stat {
172 	unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174 
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178 
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182 
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *	n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *	ZS_ALMOST_FULL	when n > N / f
192  *	ZS_EMPTY	when n == 0
193  *	ZS_FULL		when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199 
200 struct size_class {
201 	spinlock_t lock;
202 	struct list_head fullness_list[NR_ZS_FULLNESS];
203 	/*
204 	 * Size of objects stored in this class. Must be multiple
205 	 * of ZS_ALIGN.
206 	 */
207 	int size;
208 	int objs_per_zspage;
209 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 	int pages_per_zspage;
211 
212 	unsigned int index;
213 	struct zs_size_stat stats;
214 };
215 
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219 	SetPageOwnerPriv1(page);
220 }
221 
222 static void ClearPageHugeObject(struct page *page)
223 {
224 	ClearPageOwnerPriv1(page);
225 }
226 
227 static int PageHugeObject(struct page *page)
228 {
229 	return PageOwnerPriv1(page);
230 }
231 
232 /*
233  * Placed within free objects to form a singly linked list.
234  * For every zspage, zspage->freeobj gives head of this list.
235  *
236  * This must be power of 2 and less than or equal to ZS_ALIGN
237  */
238 struct link_free {
239 	union {
240 		/*
241 		 * Free object index;
242 		 * It's valid for non-allocated object
243 		 */
244 		unsigned long next;
245 		/*
246 		 * Handle of allocated object.
247 		 */
248 		unsigned long handle;
249 	};
250 };
251 
252 struct zs_pool {
253 	const char *name;
254 
255 	struct size_class *size_class[ZS_SIZE_CLASSES];
256 	struct kmem_cache *handle_cachep;
257 	struct kmem_cache *zspage_cachep;
258 
259 	atomic_long_t pages_allocated;
260 
261 	struct zs_pool_stats stats;
262 
263 	/* Compact classes */
264 	struct shrinker shrinker;
265 
266 #ifdef CONFIG_ZSMALLOC_STAT
267 	struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270 	struct inode *inode;
271 	struct work_struct free_work;
272 	/* A wait queue for when migration races with async_free_zspage() */
273 	struct wait_queue_head migration_wait;
274 	atomic_long_t isolated_pages;
275 	bool destroying;
276 #endif
277 };
278 
279 struct zspage {
280 	struct {
281 		unsigned int fullness:FULLNESS_BITS;
282 		unsigned int class:CLASS_BITS + 1;
283 		unsigned int isolated:ISOLATED_BITS;
284 		unsigned int magic:MAGIC_VAL_BITS;
285 	};
286 	unsigned int inuse;
287 	unsigned int freeobj;
288 	struct page *first_page;
289 	struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291 	rwlock_t lock;
292 #endif
293 };
294 
295 struct mapping_area {
296 #ifdef CONFIG_PGTABLE_MAPPING
297 	struct vm_struct *vm; /* vm area for mapping object that span pages */
298 #else
299 	char *vm_buf; /* copy buffer for objects that span pages */
300 #endif
301 	char *vm_addr; /* address of kmap_atomic()'ed pages */
302 	enum zs_mapmode vm_mm; /* mapping mode */
303 };
304 
305 #ifdef CONFIG_COMPACTION
306 static int zs_register_migration(struct zs_pool *pool);
307 static void zs_unregister_migration(struct zs_pool *pool);
308 static void migrate_lock_init(struct zspage *zspage);
309 static void migrate_read_lock(struct zspage *zspage);
310 static void migrate_read_unlock(struct zspage *zspage);
311 static void kick_deferred_free(struct zs_pool *pool);
312 static void init_deferred_free(struct zs_pool *pool);
313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
314 #else
315 static int zsmalloc_mount(void) { return 0; }
316 static void zsmalloc_unmount(void) {}
317 static int zs_register_migration(struct zs_pool *pool) { return 0; }
318 static void zs_unregister_migration(struct zs_pool *pool) {}
319 static void migrate_lock_init(struct zspage *zspage) {}
320 static void migrate_read_lock(struct zspage *zspage) {}
321 static void migrate_read_unlock(struct zspage *zspage) {}
322 static void kick_deferred_free(struct zs_pool *pool) {}
323 static void init_deferred_free(struct zs_pool *pool) {}
324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
325 #endif
326 
327 static int create_cache(struct zs_pool *pool)
328 {
329 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
330 					0, 0, NULL);
331 	if (!pool->handle_cachep)
332 		return 1;
333 
334 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
335 					0, 0, NULL);
336 	if (!pool->zspage_cachep) {
337 		kmem_cache_destroy(pool->handle_cachep);
338 		pool->handle_cachep = NULL;
339 		return 1;
340 	}
341 
342 	return 0;
343 }
344 
345 static void destroy_cache(struct zs_pool *pool)
346 {
347 	kmem_cache_destroy(pool->handle_cachep);
348 	kmem_cache_destroy(pool->zspage_cachep);
349 }
350 
351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
352 {
353 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
354 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
355 }
356 
357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
358 {
359 	kmem_cache_free(pool->handle_cachep, (void *)handle);
360 }
361 
362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363 {
364 	return kmem_cache_alloc(pool->zspage_cachep,
365 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
366 }
367 
368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369 {
370 	kmem_cache_free(pool->zspage_cachep, zspage);
371 }
372 
373 static void record_obj(unsigned long handle, unsigned long obj)
374 {
375 	/*
376 	 * lsb of @obj represents handle lock while other bits
377 	 * represent object value the handle is pointing so
378 	 * updating shouldn't do store tearing.
379 	 */
380 	WRITE_ONCE(*(unsigned long *)handle, obj);
381 }
382 
383 /* zpool driver */
384 
385 #ifdef CONFIG_ZPOOL
386 
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388 			     const struct zpool_ops *zpool_ops,
389 			     struct zpool *zpool)
390 {
391 	/*
392 	 * Ignore global gfp flags: zs_malloc() may be invoked from
393 	 * different contexts and its caller must provide a valid
394 	 * gfp mask.
395 	 */
396 	return zs_create_pool(name);
397 }
398 
399 static void zs_zpool_destroy(void *pool)
400 {
401 	zs_destroy_pool(pool);
402 }
403 
404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
405 			unsigned long *handle)
406 {
407 	*handle = zs_malloc(pool, size, gfp);
408 	return *handle ? 0 : -1;
409 }
410 static void zs_zpool_free(void *pool, unsigned long handle)
411 {
412 	zs_free(pool, handle);
413 }
414 
415 static void *zs_zpool_map(void *pool, unsigned long handle,
416 			enum zpool_mapmode mm)
417 {
418 	enum zs_mapmode zs_mm;
419 
420 	switch (mm) {
421 	case ZPOOL_MM_RO:
422 		zs_mm = ZS_MM_RO;
423 		break;
424 	case ZPOOL_MM_WO:
425 		zs_mm = ZS_MM_WO;
426 		break;
427 	case ZPOOL_MM_RW: /* fall through */
428 	default:
429 		zs_mm = ZS_MM_RW;
430 		break;
431 	}
432 
433 	return zs_map_object(pool, handle, zs_mm);
434 }
435 static void zs_zpool_unmap(void *pool, unsigned long handle)
436 {
437 	zs_unmap_object(pool, handle);
438 }
439 
440 static u64 zs_zpool_total_size(void *pool)
441 {
442 	return zs_get_total_pages(pool) << PAGE_SHIFT;
443 }
444 
445 static struct zpool_driver zs_zpool_driver = {
446 	.type =			  "zsmalloc",
447 	.owner =		  THIS_MODULE,
448 	.create =		  zs_zpool_create,
449 	.destroy =		  zs_zpool_destroy,
450 	.malloc_support_movable = true,
451 	.malloc =		  zs_zpool_malloc,
452 	.free =			  zs_zpool_free,
453 	.map =			  zs_zpool_map,
454 	.unmap =		  zs_zpool_unmap,
455 	.total_size =		  zs_zpool_total_size,
456 };
457 
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
460 
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
463 
464 static bool is_zspage_isolated(struct zspage *zspage)
465 {
466 	return zspage->isolated;
467 }
468 
469 static __maybe_unused int is_first_page(struct page *page)
470 {
471 	return PagePrivate(page);
472 }
473 
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage *zspage)
476 {
477 	return zspage->inuse;
478 }
479 
480 
481 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
482 {
483 	zspage->inuse += val;
484 }
485 
486 static inline struct page *get_first_page(struct zspage *zspage)
487 {
488 	struct page *first_page = zspage->first_page;
489 
490 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
491 	return first_page;
492 }
493 
494 static inline int get_first_obj_offset(struct page *page)
495 {
496 	return page->units;
497 }
498 
499 static inline void set_first_obj_offset(struct page *page, int offset)
500 {
501 	page->units = offset;
502 }
503 
504 static inline unsigned int get_freeobj(struct zspage *zspage)
505 {
506 	return zspage->freeobj;
507 }
508 
509 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
510 {
511 	zspage->freeobj = obj;
512 }
513 
514 static void get_zspage_mapping(struct zspage *zspage,
515 				unsigned int *class_idx,
516 				enum fullness_group *fullness)
517 {
518 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
519 
520 	*fullness = zspage->fullness;
521 	*class_idx = zspage->class;
522 }
523 
524 static void set_zspage_mapping(struct zspage *zspage,
525 				unsigned int class_idx,
526 				enum fullness_group fullness)
527 {
528 	zspage->class = class_idx;
529 	zspage->fullness = fullness;
530 }
531 
532 /*
533  * zsmalloc divides the pool into various size classes where each
534  * class maintains a list of zspages where each zspage is divided
535  * into equal sized chunks. Each allocation falls into one of these
536  * classes depending on its size. This function returns index of the
537  * size class which has chunk size big enough to hold the give size.
538  */
539 static int get_size_class_index(int size)
540 {
541 	int idx = 0;
542 
543 	if (likely(size > ZS_MIN_ALLOC_SIZE))
544 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
545 				ZS_SIZE_CLASS_DELTA);
546 
547 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
548 }
549 
550 /* type can be of enum type zs_stat_type or fullness_group */
551 static inline void zs_stat_inc(struct size_class *class,
552 				int type, unsigned long cnt)
553 {
554 	class->stats.objs[type] += cnt;
555 }
556 
557 /* type can be of enum type zs_stat_type or fullness_group */
558 static inline void zs_stat_dec(struct size_class *class,
559 				int type, unsigned long cnt)
560 {
561 	class->stats.objs[type] -= cnt;
562 }
563 
564 /* type can be of enum type zs_stat_type or fullness_group */
565 static inline unsigned long zs_stat_get(struct size_class *class,
566 				int type)
567 {
568 	return class->stats.objs[type];
569 }
570 
571 #ifdef CONFIG_ZSMALLOC_STAT
572 
573 static void __init zs_stat_init(void)
574 {
575 	if (!debugfs_initialized()) {
576 		pr_warn("debugfs not available, stat dir not created\n");
577 		return;
578 	}
579 
580 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
581 }
582 
583 static void __exit zs_stat_exit(void)
584 {
585 	debugfs_remove_recursive(zs_stat_root);
586 }
587 
588 static unsigned long zs_can_compact(struct size_class *class);
589 
590 static int zs_stats_size_show(struct seq_file *s, void *v)
591 {
592 	int i;
593 	struct zs_pool *pool = s->private;
594 	struct size_class *class;
595 	int objs_per_zspage;
596 	unsigned long class_almost_full, class_almost_empty;
597 	unsigned long obj_allocated, obj_used, pages_used, freeable;
598 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
599 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
600 	unsigned long total_freeable = 0;
601 
602 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
603 			"class", "size", "almost_full", "almost_empty",
604 			"obj_allocated", "obj_used", "pages_used",
605 			"pages_per_zspage", "freeable");
606 
607 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
608 		class = pool->size_class[i];
609 
610 		if (class->index != i)
611 			continue;
612 
613 		spin_lock(&class->lock);
614 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
615 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
616 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
617 		obj_used = zs_stat_get(class, OBJ_USED);
618 		freeable = zs_can_compact(class);
619 		spin_unlock(&class->lock);
620 
621 		objs_per_zspage = class->objs_per_zspage;
622 		pages_used = obj_allocated / objs_per_zspage *
623 				class->pages_per_zspage;
624 
625 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
626 				" %10lu %10lu %16d %8lu\n",
627 			i, class->size, class_almost_full, class_almost_empty,
628 			obj_allocated, obj_used, pages_used,
629 			class->pages_per_zspage, freeable);
630 
631 		total_class_almost_full += class_almost_full;
632 		total_class_almost_empty += class_almost_empty;
633 		total_objs += obj_allocated;
634 		total_used_objs += obj_used;
635 		total_pages += pages_used;
636 		total_freeable += freeable;
637 	}
638 
639 	seq_puts(s, "\n");
640 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
641 			"Total", "", total_class_almost_full,
642 			total_class_almost_empty, total_objs,
643 			total_used_objs, total_pages, "", total_freeable);
644 
645 	return 0;
646 }
647 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
648 
649 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650 {
651 	if (!zs_stat_root) {
652 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
653 		return;
654 	}
655 
656 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
657 
658 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
659 			    &zs_stats_size_fops);
660 }
661 
662 static void zs_pool_stat_destroy(struct zs_pool *pool)
663 {
664 	debugfs_remove_recursive(pool->stat_dentry);
665 }
666 
667 #else /* CONFIG_ZSMALLOC_STAT */
668 static void __init zs_stat_init(void)
669 {
670 }
671 
672 static void __exit zs_stat_exit(void)
673 {
674 }
675 
676 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
677 {
678 }
679 
680 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
681 {
682 }
683 #endif
684 
685 
686 /*
687  * For each size class, zspages are divided into different groups
688  * depending on how "full" they are. This was done so that we could
689  * easily find empty or nearly empty zspages when we try to shrink
690  * the pool (not yet implemented). This function returns fullness
691  * status of the given page.
692  */
693 static enum fullness_group get_fullness_group(struct size_class *class,
694 						struct zspage *zspage)
695 {
696 	int inuse, objs_per_zspage;
697 	enum fullness_group fg;
698 
699 	inuse = get_zspage_inuse(zspage);
700 	objs_per_zspage = class->objs_per_zspage;
701 
702 	if (inuse == 0)
703 		fg = ZS_EMPTY;
704 	else if (inuse == objs_per_zspage)
705 		fg = ZS_FULL;
706 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
707 		fg = ZS_ALMOST_EMPTY;
708 	else
709 		fg = ZS_ALMOST_FULL;
710 
711 	return fg;
712 }
713 
714 /*
715  * Each size class maintains various freelists and zspages are assigned
716  * to one of these freelists based on the number of live objects they
717  * have. This functions inserts the given zspage into the freelist
718  * identified by <class, fullness_group>.
719  */
720 static void insert_zspage(struct size_class *class,
721 				struct zspage *zspage,
722 				enum fullness_group fullness)
723 {
724 	struct zspage *head;
725 
726 	zs_stat_inc(class, fullness, 1);
727 	head = list_first_entry_or_null(&class->fullness_list[fullness],
728 					struct zspage, list);
729 	/*
730 	 * We want to see more ZS_FULL pages and less almost empty/full.
731 	 * Put pages with higher ->inuse first.
732 	 */
733 	if (head) {
734 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
735 			list_add(&zspage->list, &head->list);
736 			return;
737 		}
738 	}
739 	list_add(&zspage->list, &class->fullness_list[fullness]);
740 }
741 
742 /*
743  * This function removes the given zspage from the freelist identified
744  * by <class, fullness_group>.
745  */
746 static void remove_zspage(struct size_class *class,
747 				struct zspage *zspage,
748 				enum fullness_group fullness)
749 {
750 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
751 	VM_BUG_ON(is_zspage_isolated(zspage));
752 
753 	list_del_init(&zspage->list);
754 	zs_stat_dec(class, fullness, 1);
755 }
756 
757 /*
758  * Each size class maintains zspages in different fullness groups depending
759  * on the number of live objects they contain. When allocating or freeing
760  * objects, the fullness status of the page can change, say, from ALMOST_FULL
761  * to ALMOST_EMPTY when freeing an object. This function checks if such
762  * a status change has occurred for the given page and accordingly moves the
763  * page from the freelist of the old fullness group to that of the new
764  * fullness group.
765  */
766 static enum fullness_group fix_fullness_group(struct size_class *class,
767 						struct zspage *zspage)
768 {
769 	int class_idx;
770 	enum fullness_group currfg, newfg;
771 
772 	get_zspage_mapping(zspage, &class_idx, &currfg);
773 	newfg = get_fullness_group(class, zspage);
774 	if (newfg == currfg)
775 		goto out;
776 
777 	if (!is_zspage_isolated(zspage)) {
778 		remove_zspage(class, zspage, currfg);
779 		insert_zspage(class, zspage, newfg);
780 	}
781 
782 	set_zspage_mapping(zspage, class_idx, newfg);
783 
784 out:
785 	return newfg;
786 }
787 
788 /*
789  * We have to decide on how many pages to link together
790  * to form a zspage for each size class. This is important
791  * to reduce wastage due to unusable space left at end of
792  * each zspage which is given as:
793  *     wastage = Zp % class_size
794  *     usage = Zp - wastage
795  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
796  *
797  * For example, for size class of 3/8 * PAGE_SIZE, we should
798  * link together 3 PAGE_SIZE sized pages to form a zspage
799  * since then we can perfectly fit in 8 such objects.
800  */
801 static int get_pages_per_zspage(int class_size)
802 {
803 	int i, max_usedpc = 0;
804 	/* zspage order which gives maximum used size per KB */
805 	int max_usedpc_order = 1;
806 
807 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
808 		int zspage_size;
809 		int waste, usedpc;
810 
811 		zspage_size = i * PAGE_SIZE;
812 		waste = zspage_size % class_size;
813 		usedpc = (zspage_size - waste) * 100 / zspage_size;
814 
815 		if (usedpc > max_usedpc) {
816 			max_usedpc = usedpc;
817 			max_usedpc_order = i;
818 		}
819 	}
820 
821 	return max_usedpc_order;
822 }
823 
824 static struct zspage *get_zspage(struct page *page)
825 {
826 	struct zspage *zspage = (struct zspage *)page->private;
827 
828 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
829 	return zspage;
830 }
831 
832 static struct page *get_next_page(struct page *page)
833 {
834 	if (unlikely(PageHugeObject(page)))
835 		return NULL;
836 
837 	return page->freelist;
838 }
839 
840 /**
841  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
842  * @obj: the encoded object value
843  * @page: page object resides in zspage
844  * @obj_idx: object index
845  */
846 static void obj_to_location(unsigned long obj, struct page **page,
847 				unsigned int *obj_idx)
848 {
849 	obj >>= OBJ_TAG_BITS;
850 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
851 	*obj_idx = (obj & OBJ_INDEX_MASK);
852 }
853 
854 /**
855  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
856  * @page: page object resides in zspage
857  * @obj_idx: object index
858  */
859 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
860 {
861 	unsigned long obj;
862 
863 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
864 	obj |= obj_idx & OBJ_INDEX_MASK;
865 	obj <<= OBJ_TAG_BITS;
866 
867 	return obj;
868 }
869 
870 static unsigned long handle_to_obj(unsigned long handle)
871 {
872 	return *(unsigned long *)handle;
873 }
874 
875 static unsigned long obj_to_head(struct page *page, void *obj)
876 {
877 	if (unlikely(PageHugeObject(page))) {
878 		VM_BUG_ON_PAGE(!is_first_page(page), page);
879 		return page->index;
880 	} else
881 		return *(unsigned long *)obj;
882 }
883 
884 static inline int testpin_tag(unsigned long handle)
885 {
886 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
887 }
888 
889 static inline int trypin_tag(unsigned long handle)
890 {
891 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
892 }
893 
894 static void pin_tag(unsigned long handle)
895 {
896 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
897 }
898 
899 static void unpin_tag(unsigned long handle)
900 {
901 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
902 }
903 
904 static void reset_page(struct page *page)
905 {
906 	__ClearPageMovable(page);
907 	ClearPagePrivate(page);
908 	set_page_private(page, 0);
909 	page_mapcount_reset(page);
910 	ClearPageHugeObject(page);
911 	page->freelist = NULL;
912 }
913 
914 static int trylock_zspage(struct zspage *zspage)
915 {
916 	struct page *cursor, *fail;
917 
918 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
919 					get_next_page(cursor)) {
920 		if (!trylock_page(cursor)) {
921 			fail = cursor;
922 			goto unlock;
923 		}
924 	}
925 
926 	return 1;
927 unlock:
928 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
929 					get_next_page(cursor))
930 		unlock_page(cursor);
931 
932 	return 0;
933 }
934 
935 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
936 				struct zspage *zspage)
937 {
938 	struct page *page, *next;
939 	enum fullness_group fg;
940 	unsigned int class_idx;
941 
942 	get_zspage_mapping(zspage, &class_idx, &fg);
943 
944 	assert_spin_locked(&class->lock);
945 
946 	VM_BUG_ON(get_zspage_inuse(zspage));
947 	VM_BUG_ON(fg != ZS_EMPTY);
948 
949 	next = page = get_first_page(zspage);
950 	do {
951 		VM_BUG_ON_PAGE(!PageLocked(page), page);
952 		next = get_next_page(page);
953 		reset_page(page);
954 		unlock_page(page);
955 		dec_zone_page_state(page, NR_ZSPAGES);
956 		put_page(page);
957 		page = next;
958 	} while (page != NULL);
959 
960 	cache_free_zspage(pool, zspage);
961 
962 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
963 	atomic_long_sub(class->pages_per_zspage,
964 					&pool->pages_allocated);
965 }
966 
967 static void free_zspage(struct zs_pool *pool, struct size_class *class,
968 				struct zspage *zspage)
969 {
970 	VM_BUG_ON(get_zspage_inuse(zspage));
971 	VM_BUG_ON(list_empty(&zspage->list));
972 
973 	if (!trylock_zspage(zspage)) {
974 		kick_deferred_free(pool);
975 		return;
976 	}
977 
978 	remove_zspage(class, zspage, ZS_EMPTY);
979 	__free_zspage(pool, class, zspage);
980 }
981 
982 /* Initialize a newly allocated zspage */
983 static void init_zspage(struct size_class *class, struct zspage *zspage)
984 {
985 	unsigned int freeobj = 1;
986 	unsigned long off = 0;
987 	struct page *page = get_first_page(zspage);
988 
989 	while (page) {
990 		struct page *next_page;
991 		struct link_free *link;
992 		void *vaddr;
993 
994 		set_first_obj_offset(page, off);
995 
996 		vaddr = kmap_atomic(page);
997 		link = (struct link_free *)vaddr + off / sizeof(*link);
998 
999 		while ((off += class->size) < PAGE_SIZE) {
1000 			link->next = freeobj++ << OBJ_TAG_BITS;
1001 			link += class->size / sizeof(*link);
1002 		}
1003 
1004 		/*
1005 		 * We now come to the last (full or partial) object on this
1006 		 * page, which must point to the first object on the next
1007 		 * page (if present)
1008 		 */
1009 		next_page = get_next_page(page);
1010 		if (next_page) {
1011 			link->next = freeobj++ << OBJ_TAG_BITS;
1012 		} else {
1013 			/*
1014 			 * Reset OBJ_TAG_BITS bit to last link to tell
1015 			 * whether it's allocated object or not.
1016 			 */
1017 			link->next = -1UL << OBJ_TAG_BITS;
1018 		}
1019 		kunmap_atomic(vaddr);
1020 		page = next_page;
1021 		off %= PAGE_SIZE;
1022 	}
1023 
1024 	set_freeobj(zspage, 0);
1025 }
1026 
1027 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1028 				struct page *pages[])
1029 {
1030 	int i;
1031 	struct page *page;
1032 	struct page *prev_page = NULL;
1033 	int nr_pages = class->pages_per_zspage;
1034 
1035 	/*
1036 	 * Allocate individual pages and link them together as:
1037 	 * 1. all pages are linked together using page->freelist
1038 	 * 2. each sub-page point to zspage using page->private
1039 	 *
1040 	 * we set PG_private to identify the first page (i.e. no other sub-page
1041 	 * has this flag set).
1042 	 */
1043 	for (i = 0; i < nr_pages; i++) {
1044 		page = pages[i];
1045 		set_page_private(page, (unsigned long)zspage);
1046 		page->freelist = NULL;
1047 		if (i == 0) {
1048 			zspage->first_page = page;
1049 			SetPagePrivate(page);
1050 			if (unlikely(class->objs_per_zspage == 1 &&
1051 					class->pages_per_zspage == 1))
1052 				SetPageHugeObject(page);
1053 		} else {
1054 			prev_page->freelist = page;
1055 		}
1056 		prev_page = page;
1057 	}
1058 }
1059 
1060 /*
1061  * Allocate a zspage for the given size class
1062  */
1063 static struct zspage *alloc_zspage(struct zs_pool *pool,
1064 					struct size_class *class,
1065 					gfp_t gfp)
1066 {
1067 	int i;
1068 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1069 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1070 
1071 	if (!zspage)
1072 		return NULL;
1073 
1074 	memset(zspage, 0, sizeof(struct zspage));
1075 	zspage->magic = ZSPAGE_MAGIC;
1076 	migrate_lock_init(zspage);
1077 
1078 	for (i = 0; i < class->pages_per_zspage; i++) {
1079 		struct page *page;
1080 
1081 		page = alloc_page(gfp);
1082 		if (!page) {
1083 			while (--i >= 0) {
1084 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1085 				__free_page(pages[i]);
1086 			}
1087 			cache_free_zspage(pool, zspage);
1088 			return NULL;
1089 		}
1090 
1091 		inc_zone_page_state(page, NR_ZSPAGES);
1092 		pages[i] = page;
1093 	}
1094 
1095 	create_page_chain(class, zspage, pages);
1096 	init_zspage(class, zspage);
1097 
1098 	return zspage;
1099 }
1100 
1101 static struct zspage *find_get_zspage(struct size_class *class)
1102 {
1103 	int i;
1104 	struct zspage *zspage;
1105 
1106 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1107 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1108 				struct zspage, list);
1109 		if (zspage)
1110 			break;
1111 	}
1112 
1113 	return zspage;
1114 }
1115 
1116 #ifdef CONFIG_PGTABLE_MAPPING
1117 static inline int __zs_cpu_up(struct mapping_area *area)
1118 {
1119 	/*
1120 	 * Make sure we don't leak memory if a cpu UP notification
1121 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1122 	 */
1123 	if (area->vm)
1124 		return 0;
1125 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1126 	if (!area->vm)
1127 		return -ENOMEM;
1128 	return 0;
1129 }
1130 
1131 static inline void __zs_cpu_down(struct mapping_area *area)
1132 {
1133 	if (area->vm)
1134 		free_vm_area(area->vm);
1135 	area->vm = NULL;
1136 }
1137 
1138 static inline void *__zs_map_object(struct mapping_area *area,
1139 				struct page *pages[2], int off, int size)
1140 {
1141 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1142 	area->vm_addr = area->vm->addr;
1143 	return area->vm_addr + off;
1144 }
1145 
1146 static inline void __zs_unmap_object(struct mapping_area *area,
1147 				struct page *pages[2], int off, int size)
1148 {
1149 	unsigned long addr = (unsigned long)area->vm_addr;
1150 
1151 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1152 }
1153 
1154 #else /* CONFIG_PGTABLE_MAPPING */
1155 
1156 static inline int __zs_cpu_up(struct mapping_area *area)
1157 {
1158 	/*
1159 	 * Make sure we don't leak memory if a cpu UP notification
1160 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1161 	 */
1162 	if (area->vm_buf)
1163 		return 0;
1164 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1165 	if (!area->vm_buf)
1166 		return -ENOMEM;
1167 	return 0;
1168 }
1169 
1170 static inline void __zs_cpu_down(struct mapping_area *area)
1171 {
1172 	kfree(area->vm_buf);
1173 	area->vm_buf = NULL;
1174 }
1175 
1176 static void *__zs_map_object(struct mapping_area *area,
1177 			struct page *pages[2], int off, int size)
1178 {
1179 	int sizes[2];
1180 	void *addr;
1181 	char *buf = area->vm_buf;
1182 
1183 	/* disable page faults to match kmap_atomic() return conditions */
1184 	pagefault_disable();
1185 
1186 	/* no read fastpath */
1187 	if (area->vm_mm == ZS_MM_WO)
1188 		goto out;
1189 
1190 	sizes[0] = PAGE_SIZE - off;
1191 	sizes[1] = size - sizes[0];
1192 
1193 	/* copy object to per-cpu buffer */
1194 	addr = kmap_atomic(pages[0]);
1195 	memcpy(buf, addr + off, sizes[0]);
1196 	kunmap_atomic(addr);
1197 	addr = kmap_atomic(pages[1]);
1198 	memcpy(buf + sizes[0], addr, sizes[1]);
1199 	kunmap_atomic(addr);
1200 out:
1201 	return area->vm_buf;
1202 }
1203 
1204 static void __zs_unmap_object(struct mapping_area *area,
1205 			struct page *pages[2], int off, int size)
1206 {
1207 	int sizes[2];
1208 	void *addr;
1209 	char *buf;
1210 
1211 	/* no write fastpath */
1212 	if (area->vm_mm == ZS_MM_RO)
1213 		goto out;
1214 
1215 	buf = area->vm_buf;
1216 	buf = buf + ZS_HANDLE_SIZE;
1217 	size -= ZS_HANDLE_SIZE;
1218 	off += ZS_HANDLE_SIZE;
1219 
1220 	sizes[0] = PAGE_SIZE - off;
1221 	sizes[1] = size - sizes[0];
1222 
1223 	/* copy per-cpu buffer to object */
1224 	addr = kmap_atomic(pages[0]);
1225 	memcpy(addr + off, buf, sizes[0]);
1226 	kunmap_atomic(addr);
1227 	addr = kmap_atomic(pages[1]);
1228 	memcpy(addr, buf + sizes[0], sizes[1]);
1229 	kunmap_atomic(addr);
1230 
1231 out:
1232 	/* enable page faults to match kunmap_atomic() return conditions */
1233 	pagefault_enable();
1234 }
1235 
1236 #endif /* CONFIG_PGTABLE_MAPPING */
1237 
1238 static int zs_cpu_prepare(unsigned int cpu)
1239 {
1240 	struct mapping_area *area;
1241 
1242 	area = &per_cpu(zs_map_area, cpu);
1243 	return __zs_cpu_up(area);
1244 }
1245 
1246 static int zs_cpu_dead(unsigned int cpu)
1247 {
1248 	struct mapping_area *area;
1249 
1250 	area = &per_cpu(zs_map_area, cpu);
1251 	__zs_cpu_down(area);
1252 	return 0;
1253 }
1254 
1255 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1256 					int objs_per_zspage)
1257 {
1258 	if (prev->pages_per_zspage == pages_per_zspage &&
1259 		prev->objs_per_zspage == objs_per_zspage)
1260 		return true;
1261 
1262 	return false;
1263 }
1264 
1265 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1266 {
1267 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1268 }
1269 
1270 unsigned long zs_get_total_pages(struct zs_pool *pool)
1271 {
1272 	return atomic_long_read(&pool->pages_allocated);
1273 }
1274 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1275 
1276 /**
1277  * zs_map_object - get address of allocated object from handle.
1278  * @pool: pool from which the object was allocated
1279  * @handle: handle returned from zs_malloc
1280  * @mm: maping mode to use
1281  *
1282  * Before using an object allocated from zs_malloc, it must be mapped using
1283  * this function. When done with the object, it must be unmapped using
1284  * zs_unmap_object.
1285  *
1286  * Only one object can be mapped per cpu at a time. There is no protection
1287  * against nested mappings.
1288  *
1289  * This function returns with preemption and page faults disabled.
1290  */
1291 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1292 			enum zs_mapmode mm)
1293 {
1294 	struct zspage *zspage;
1295 	struct page *page;
1296 	unsigned long obj, off;
1297 	unsigned int obj_idx;
1298 
1299 	unsigned int class_idx;
1300 	enum fullness_group fg;
1301 	struct size_class *class;
1302 	struct mapping_area *area;
1303 	struct page *pages[2];
1304 	void *ret;
1305 
1306 	/*
1307 	 * Because we use per-cpu mapping areas shared among the
1308 	 * pools/users, we can't allow mapping in interrupt context
1309 	 * because it can corrupt another users mappings.
1310 	 */
1311 	BUG_ON(in_interrupt());
1312 
1313 	/* From now on, migration cannot move the object */
1314 	pin_tag(handle);
1315 
1316 	obj = handle_to_obj(handle);
1317 	obj_to_location(obj, &page, &obj_idx);
1318 	zspage = get_zspage(page);
1319 
1320 	/* migration cannot move any subpage in this zspage */
1321 	migrate_read_lock(zspage);
1322 
1323 	get_zspage_mapping(zspage, &class_idx, &fg);
1324 	class = pool->size_class[class_idx];
1325 	off = (class->size * obj_idx) & ~PAGE_MASK;
1326 
1327 	area = &get_cpu_var(zs_map_area);
1328 	area->vm_mm = mm;
1329 	if (off + class->size <= PAGE_SIZE) {
1330 		/* this object is contained entirely within a page */
1331 		area->vm_addr = kmap_atomic(page);
1332 		ret = area->vm_addr + off;
1333 		goto out;
1334 	}
1335 
1336 	/* this object spans two pages */
1337 	pages[0] = page;
1338 	pages[1] = get_next_page(page);
1339 	BUG_ON(!pages[1]);
1340 
1341 	ret = __zs_map_object(area, pages, off, class->size);
1342 out:
1343 	if (likely(!PageHugeObject(page)))
1344 		ret += ZS_HANDLE_SIZE;
1345 
1346 	return ret;
1347 }
1348 EXPORT_SYMBOL_GPL(zs_map_object);
1349 
1350 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1351 {
1352 	struct zspage *zspage;
1353 	struct page *page;
1354 	unsigned long obj, off;
1355 	unsigned int obj_idx;
1356 
1357 	unsigned int class_idx;
1358 	enum fullness_group fg;
1359 	struct size_class *class;
1360 	struct mapping_area *area;
1361 
1362 	obj = handle_to_obj(handle);
1363 	obj_to_location(obj, &page, &obj_idx);
1364 	zspage = get_zspage(page);
1365 	get_zspage_mapping(zspage, &class_idx, &fg);
1366 	class = pool->size_class[class_idx];
1367 	off = (class->size * obj_idx) & ~PAGE_MASK;
1368 
1369 	area = this_cpu_ptr(&zs_map_area);
1370 	if (off + class->size <= PAGE_SIZE)
1371 		kunmap_atomic(area->vm_addr);
1372 	else {
1373 		struct page *pages[2];
1374 
1375 		pages[0] = page;
1376 		pages[1] = get_next_page(page);
1377 		BUG_ON(!pages[1]);
1378 
1379 		__zs_unmap_object(area, pages, off, class->size);
1380 	}
1381 	put_cpu_var(zs_map_area);
1382 
1383 	migrate_read_unlock(zspage);
1384 	unpin_tag(handle);
1385 }
1386 EXPORT_SYMBOL_GPL(zs_unmap_object);
1387 
1388 /**
1389  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1390  *                        zsmalloc &size_class.
1391  * @pool: zsmalloc pool to use
1392  *
1393  * The function returns the size of the first huge class - any object of equal
1394  * or bigger size will be stored in zspage consisting of a single physical
1395  * page.
1396  *
1397  * Context: Any context.
1398  *
1399  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1400  */
1401 size_t zs_huge_class_size(struct zs_pool *pool)
1402 {
1403 	return huge_class_size;
1404 }
1405 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1406 
1407 static unsigned long obj_malloc(struct size_class *class,
1408 				struct zspage *zspage, unsigned long handle)
1409 {
1410 	int i, nr_page, offset;
1411 	unsigned long obj;
1412 	struct link_free *link;
1413 
1414 	struct page *m_page;
1415 	unsigned long m_offset;
1416 	void *vaddr;
1417 
1418 	handle |= OBJ_ALLOCATED_TAG;
1419 	obj = get_freeobj(zspage);
1420 
1421 	offset = obj * class->size;
1422 	nr_page = offset >> PAGE_SHIFT;
1423 	m_offset = offset & ~PAGE_MASK;
1424 	m_page = get_first_page(zspage);
1425 
1426 	for (i = 0; i < nr_page; i++)
1427 		m_page = get_next_page(m_page);
1428 
1429 	vaddr = kmap_atomic(m_page);
1430 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1431 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1432 	if (likely(!PageHugeObject(m_page)))
1433 		/* record handle in the header of allocated chunk */
1434 		link->handle = handle;
1435 	else
1436 		/* record handle to page->index */
1437 		zspage->first_page->index = handle;
1438 
1439 	kunmap_atomic(vaddr);
1440 	mod_zspage_inuse(zspage, 1);
1441 	zs_stat_inc(class, OBJ_USED, 1);
1442 
1443 	obj = location_to_obj(m_page, obj);
1444 
1445 	return obj;
1446 }
1447 
1448 
1449 /**
1450  * zs_malloc - Allocate block of given size from pool.
1451  * @pool: pool to allocate from
1452  * @size: size of block to allocate
1453  * @gfp: gfp flags when allocating object
1454  *
1455  * On success, handle to the allocated object is returned,
1456  * otherwise 0.
1457  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1458  */
1459 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1460 {
1461 	unsigned long handle, obj;
1462 	struct size_class *class;
1463 	enum fullness_group newfg;
1464 	struct zspage *zspage;
1465 
1466 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1467 		return 0;
1468 
1469 	handle = cache_alloc_handle(pool, gfp);
1470 	if (!handle)
1471 		return 0;
1472 
1473 	/* extra space in chunk to keep the handle */
1474 	size += ZS_HANDLE_SIZE;
1475 	class = pool->size_class[get_size_class_index(size)];
1476 
1477 	spin_lock(&class->lock);
1478 	zspage = find_get_zspage(class);
1479 	if (likely(zspage)) {
1480 		obj = obj_malloc(class, zspage, handle);
1481 		/* Now move the zspage to another fullness group, if required */
1482 		fix_fullness_group(class, zspage);
1483 		record_obj(handle, obj);
1484 		spin_unlock(&class->lock);
1485 
1486 		return handle;
1487 	}
1488 
1489 	spin_unlock(&class->lock);
1490 
1491 	zspage = alloc_zspage(pool, class, gfp);
1492 	if (!zspage) {
1493 		cache_free_handle(pool, handle);
1494 		return 0;
1495 	}
1496 
1497 	spin_lock(&class->lock);
1498 	obj = obj_malloc(class, zspage, handle);
1499 	newfg = get_fullness_group(class, zspage);
1500 	insert_zspage(class, zspage, newfg);
1501 	set_zspage_mapping(zspage, class->index, newfg);
1502 	record_obj(handle, obj);
1503 	atomic_long_add(class->pages_per_zspage,
1504 				&pool->pages_allocated);
1505 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1506 
1507 	/* We completely set up zspage so mark them as movable */
1508 	SetZsPageMovable(pool, zspage);
1509 	spin_unlock(&class->lock);
1510 
1511 	return handle;
1512 }
1513 EXPORT_SYMBOL_GPL(zs_malloc);
1514 
1515 static void obj_free(struct size_class *class, unsigned long obj)
1516 {
1517 	struct link_free *link;
1518 	struct zspage *zspage;
1519 	struct page *f_page;
1520 	unsigned long f_offset;
1521 	unsigned int f_objidx;
1522 	void *vaddr;
1523 
1524 	obj &= ~OBJ_ALLOCATED_TAG;
1525 	obj_to_location(obj, &f_page, &f_objidx);
1526 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1527 	zspage = get_zspage(f_page);
1528 
1529 	vaddr = kmap_atomic(f_page);
1530 
1531 	/* Insert this object in containing zspage's freelist */
1532 	link = (struct link_free *)(vaddr + f_offset);
1533 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1534 	kunmap_atomic(vaddr);
1535 	set_freeobj(zspage, f_objidx);
1536 	mod_zspage_inuse(zspage, -1);
1537 	zs_stat_dec(class, OBJ_USED, 1);
1538 }
1539 
1540 void zs_free(struct zs_pool *pool, unsigned long handle)
1541 {
1542 	struct zspage *zspage;
1543 	struct page *f_page;
1544 	unsigned long obj;
1545 	unsigned int f_objidx;
1546 	int class_idx;
1547 	struct size_class *class;
1548 	enum fullness_group fullness;
1549 	bool isolated;
1550 
1551 	if (unlikely(!handle))
1552 		return;
1553 
1554 	pin_tag(handle);
1555 	obj = handle_to_obj(handle);
1556 	obj_to_location(obj, &f_page, &f_objidx);
1557 	zspage = get_zspage(f_page);
1558 
1559 	migrate_read_lock(zspage);
1560 
1561 	get_zspage_mapping(zspage, &class_idx, &fullness);
1562 	class = pool->size_class[class_idx];
1563 
1564 	spin_lock(&class->lock);
1565 	obj_free(class, obj);
1566 	fullness = fix_fullness_group(class, zspage);
1567 	if (fullness != ZS_EMPTY) {
1568 		migrate_read_unlock(zspage);
1569 		goto out;
1570 	}
1571 
1572 	isolated = is_zspage_isolated(zspage);
1573 	migrate_read_unlock(zspage);
1574 	/* If zspage is isolated, zs_page_putback will free the zspage */
1575 	if (likely(!isolated))
1576 		free_zspage(pool, class, zspage);
1577 out:
1578 
1579 	spin_unlock(&class->lock);
1580 	unpin_tag(handle);
1581 	cache_free_handle(pool, handle);
1582 }
1583 EXPORT_SYMBOL_GPL(zs_free);
1584 
1585 static void zs_object_copy(struct size_class *class, unsigned long dst,
1586 				unsigned long src)
1587 {
1588 	struct page *s_page, *d_page;
1589 	unsigned int s_objidx, d_objidx;
1590 	unsigned long s_off, d_off;
1591 	void *s_addr, *d_addr;
1592 	int s_size, d_size, size;
1593 	int written = 0;
1594 
1595 	s_size = d_size = class->size;
1596 
1597 	obj_to_location(src, &s_page, &s_objidx);
1598 	obj_to_location(dst, &d_page, &d_objidx);
1599 
1600 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1601 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1602 
1603 	if (s_off + class->size > PAGE_SIZE)
1604 		s_size = PAGE_SIZE - s_off;
1605 
1606 	if (d_off + class->size > PAGE_SIZE)
1607 		d_size = PAGE_SIZE - d_off;
1608 
1609 	s_addr = kmap_atomic(s_page);
1610 	d_addr = kmap_atomic(d_page);
1611 
1612 	while (1) {
1613 		size = min(s_size, d_size);
1614 		memcpy(d_addr + d_off, s_addr + s_off, size);
1615 		written += size;
1616 
1617 		if (written == class->size)
1618 			break;
1619 
1620 		s_off += size;
1621 		s_size -= size;
1622 		d_off += size;
1623 		d_size -= size;
1624 
1625 		if (s_off >= PAGE_SIZE) {
1626 			kunmap_atomic(d_addr);
1627 			kunmap_atomic(s_addr);
1628 			s_page = get_next_page(s_page);
1629 			s_addr = kmap_atomic(s_page);
1630 			d_addr = kmap_atomic(d_page);
1631 			s_size = class->size - written;
1632 			s_off = 0;
1633 		}
1634 
1635 		if (d_off >= PAGE_SIZE) {
1636 			kunmap_atomic(d_addr);
1637 			d_page = get_next_page(d_page);
1638 			d_addr = kmap_atomic(d_page);
1639 			d_size = class->size - written;
1640 			d_off = 0;
1641 		}
1642 	}
1643 
1644 	kunmap_atomic(d_addr);
1645 	kunmap_atomic(s_addr);
1646 }
1647 
1648 /*
1649  * Find alloced object in zspage from index object and
1650  * return handle.
1651  */
1652 static unsigned long find_alloced_obj(struct size_class *class,
1653 					struct page *page, int *obj_idx)
1654 {
1655 	unsigned long head;
1656 	int offset = 0;
1657 	int index = *obj_idx;
1658 	unsigned long handle = 0;
1659 	void *addr = kmap_atomic(page);
1660 
1661 	offset = get_first_obj_offset(page);
1662 	offset += class->size * index;
1663 
1664 	while (offset < PAGE_SIZE) {
1665 		head = obj_to_head(page, addr + offset);
1666 		if (head & OBJ_ALLOCATED_TAG) {
1667 			handle = head & ~OBJ_ALLOCATED_TAG;
1668 			if (trypin_tag(handle))
1669 				break;
1670 			handle = 0;
1671 		}
1672 
1673 		offset += class->size;
1674 		index++;
1675 	}
1676 
1677 	kunmap_atomic(addr);
1678 
1679 	*obj_idx = index;
1680 
1681 	return handle;
1682 }
1683 
1684 struct zs_compact_control {
1685 	/* Source spage for migration which could be a subpage of zspage */
1686 	struct page *s_page;
1687 	/* Destination page for migration which should be a first page
1688 	 * of zspage. */
1689 	struct page *d_page;
1690 	 /* Starting object index within @s_page which used for live object
1691 	  * in the subpage. */
1692 	int obj_idx;
1693 };
1694 
1695 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1696 				struct zs_compact_control *cc)
1697 {
1698 	unsigned long used_obj, free_obj;
1699 	unsigned long handle;
1700 	struct page *s_page = cc->s_page;
1701 	struct page *d_page = cc->d_page;
1702 	int obj_idx = cc->obj_idx;
1703 	int ret = 0;
1704 
1705 	while (1) {
1706 		handle = find_alloced_obj(class, s_page, &obj_idx);
1707 		if (!handle) {
1708 			s_page = get_next_page(s_page);
1709 			if (!s_page)
1710 				break;
1711 			obj_idx = 0;
1712 			continue;
1713 		}
1714 
1715 		/* Stop if there is no more space */
1716 		if (zspage_full(class, get_zspage(d_page))) {
1717 			unpin_tag(handle);
1718 			ret = -ENOMEM;
1719 			break;
1720 		}
1721 
1722 		used_obj = handle_to_obj(handle);
1723 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1724 		zs_object_copy(class, free_obj, used_obj);
1725 		obj_idx++;
1726 		/*
1727 		 * record_obj updates handle's value to free_obj and it will
1728 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1729 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1730 		 * let's keep the lock bit.
1731 		 */
1732 		free_obj |= BIT(HANDLE_PIN_BIT);
1733 		record_obj(handle, free_obj);
1734 		unpin_tag(handle);
1735 		obj_free(class, used_obj);
1736 	}
1737 
1738 	/* Remember last position in this iteration */
1739 	cc->s_page = s_page;
1740 	cc->obj_idx = obj_idx;
1741 
1742 	return ret;
1743 }
1744 
1745 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1746 {
1747 	int i;
1748 	struct zspage *zspage;
1749 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1750 
1751 	if (!source) {
1752 		fg[0] = ZS_ALMOST_FULL;
1753 		fg[1] = ZS_ALMOST_EMPTY;
1754 	}
1755 
1756 	for (i = 0; i < 2; i++) {
1757 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1758 							struct zspage, list);
1759 		if (zspage) {
1760 			VM_BUG_ON(is_zspage_isolated(zspage));
1761 			remove_zspage(class, zspage, fg[i]);
1762 			return zspage;
1763 		}
1764 	}
1765 
1766 	return zspage;
1767 }
1768 
1769 /*
1770  * putback_zspage - add @zspage into right class's fullness list
1771  * @class: destination class
1772  * @zspage: target page
1773  *
1774  * Return @zspage's fullness_group
1775  */
1776 static enum fullness_group putback_zspage(struct size_class *class,
1777 			struct zspage *zspage)
1778 {
1779 	enum fullness_group fullness;
1780 
1781 	VM_BUG_ON(is_zspage_isolated(zspage));
1782 
1783 	fullness = get_fullness_group(class, zspage);
1784 	insert_zspage(class, zspage, fullness);
1785 	set_zspage_mapping(zspage, class->index, fullness);
1786 
1787 	return fullness;
1788 }
1789 
1790 #ifdef CONFIG_COMPACTION
1791 /*
1792  * To prevent zspage destroy during migration, zspage freeing should
1793  * hold locks of all pages in the zspage.
1794  */
1795 static void lock_zspage(struct zspage *zspage)
1796 {
1797 	struct page *page = get_first_page(zspage);
1798 
1799 	do {
1800 		lock_page(page);
1801 	} while ((page = get_next_page(page)) != NULL);
1802 }
1803 
1804 static int zs_init_fs_context(struct fs_context *fc)
1805 {
1806 	return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1807 }
1808 
1809 static struct file_system_type zsmalloc_fs = {
1810 	.name		= "zsmalloc",
1811 	.init_fs_context = zs_init_fs_context,
1812 	.kill_sb	= kill_anon_super,
1813 };
1814 
1815 static int zsmalloc_mount(void)
1816 {
1817 	int ret = 0;
1818 
1819 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1820 	if (IS_ERR(zsmalloc_mnt))
1821 		ret = PTR_ERR(zsmalloc_mnt);
1822 
1823 	return ret;
1824 }
1825 
1826 static void zsmalloc_unmount(void)
1827 {
1828 	kern_unmount(zsmalloc_mnt);
1829 }
1830 
1831 static void migrate_lock_init(struct zspage *zspage)
1832 {
1833 	rwlock_init(&zspage->lock);
1834 }
1835 
1836 static void migrate_read_lock(struct zspage *zspage)
1837 {
1838 	read_lock(&zspage->lock);
1839 }
1840 
1841 static void migrate_read_unlock(struct zspage *zspage)
1842 {
1843 	read_unlock(&zspage->lock);
1844 }
1845 
1846 static void migrate_write_lock(struct zspage *zspage)
1847 {
1848 	write_lock(&zspage->lock);
1849 }
1850 
1851 static void migrate_write_unlock(struct zspage *zspage)
1852 {
1853 	write_unlock(&zspage->lock);
1854 }
1855 
1856 /* Number of isolated subpage for *page migration* in this zspage */
1857 static void inc_zspage_isolation(struct zspage *zspage)
1858 {
1859 	zspage->isolated++;
1860 }
1861 
1862 static void dec_zspage_isolation(struct zspage *zspage)
1863 {
1864 	zspage->isolated--;
1865 }
1866 
1867 static void putback_zspage_deferred(struct zs_pool *pool,
1868 				    struct size_class *class,
1869 				    struct zspage *zspage)
1870 {
1871 	enum fullness_group fg;
1872 
1873 	fg = putback_zspage(class, zspage);
1874 	if (fg == ZS_EMPTY)
1875 		schedule_work(&pool->free_work);
1876 
1877 }
1878 
1879 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1880 {
1881 	VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1882 	atomic_long_dec(&pool->isolated_pages);
1883 	/*
1884 	 * There's no possibility of racing, since wait_for_isolated_drain()
1885 	 * checks the isolated count under &class->lock after enqueuing
1886 	 * on migration_wait.
1887 	 */
1888 	if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1889 		wake_up_all(&pool->migration_wait);
1890 }
1891 
1892 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1893 				struct page *newpage, struct page *oldpage)
1894 {
1895 	struct page *page;
1896 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1897 	int idx = 0;
1898 
1899 	page = get_first_page(zspage);
1900 	do {
1901 		if (page == oldpage)
1902 			pages[idx] = newpage;
1903 		else
1904 			pages[idx] = page;
1905 		idx++;
1906 	} while ((page = get_next_page(page)) != NULL);
1907 
1908 	create_page_chain(class, zspage, pages);
1909 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1910 	if (unlikely(PageHugeObject(oldpage)))
1911 		newpage->index = oldpage->index;
1912 	__SetPageMovable(newpage, page_mapping(oldpage));
1913 }
1914 
1915 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1916 {
1917 	struct zs_pool *pool;
1918 	struct size_class *class;
1919 	int class_idx;
1920 	enum fullness_group fullness;
1921 	struct zspage *zspage;
1922 	struct address_space *mapping;
1923 
1924 	/*
1925 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1926 	 * lock_zspage in free_zspage.
1927 	 */
1928 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1929 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1930 
1931 	zspage = get_zspage(page);
1932 
1933 	/*
1934 	 * Without class lock, fullness could be stale while class_idx is okay
1935 	 * because class_idx is constant unless page is freed so we should get
1936 	 * fullness again under class lock.
1937 	 */
1938 	get_zspage_mapping(zspage, &class_idx, &fullness);
1939 	mapping = page_mapping(page);
1940 	pool = mapping->private_data;
1941 	class = pool->size_class[class_idx];
1942 
1943 	spin_lock(&class->lock);
1944 	if (get_zspage_inuse(zspage) == 0) {
1945 		spin_unlock(&class->lock);
1946 		return false;
1947 	}
1948 
1949 	/* zspage is isolated for object migration */
1950 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1951 		spin_unlock(&class->lock);
1952 		return false;
1953 	}
1954 
1955 	/*
1956 	 * If this is first time isolation for the zspage, isolate zspage from
1957 	 * size_class to prevent further object allocation from the zspage.
1958 	 */
1959 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1960 		get_zspage_mapping(zspage, &class_idx, &fullness);
1961 		atomic_long_inc(&pool->isolated_pages);
1962 		remove_zspage(class, zspage, fullness);
1963 	}
1964 
1965 	inc_zspage_isolation(zspage);
1966 	spin_unlock(&class->lock);
1967 
1968 	return true;
1969 }
1970 
1971 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1972 		struct page *page, enum migrate_mode mode)
1973 {
1974 	struct zs_pool *pool;
1975 	struct size_class *class;
1976 	int class_idx;
1977 	enum fullness_group fullness;
1978 	struct zspage *zspage;
1979 	struct page *dummy;
1980 	void *s_addr, *d_addr, *addr;
1981 	int offset, pos;
1982 	unsigned long handle, head;
1983 	unsigned long old_obj, new_obj;
1984 	unsigned int obj_idx;
1985 	int ret = -EAGAIN;
1986 
1987 	/*
1988 	 * We cannot support the _NO_COPY case here, because copy needs to
1989 	 * happen under the zs lock, which does not work with
1990 	 * MIGRATE_SYNC_NO_COPY workflow.
1991 	 */
1992 	if (mode == MIGRATE_SYNC_NO_COPY)
1993 		return -EINVAL;
1994 
1995 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1996 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1997 
1998 	zspage = get_zspage(page);
1999 
2000 	/* Concurrent compactor cannot migrate any subpage in zspage */
2001 	migrate_write_lock(zspage);
2002 	get_zspage_mapping(zspage, &class_idx, &fullness);
2003 	pool = mapping->private_data;
2004 	class = pool->size_class[class_idx];
2005 	offset = get_first_obj_offset(page);
2006 
2007 	spin_lock(&class->lock);
2008 	if (!get_zspage_inuse(zspage)) {
2009 		/*
2010 		 * Set "offset" to end of the page so that every loops
2011 		 * skips unnecessary object scanning.
2012 		 */
2013 		offset = PAGE_SIZE;
2014 	}
2015 
2016 	pos = offset;
2017 	s_addr = kmap_atomic(page);
2018 	while (pos < PAGE_SIZE) {
2019 		head = obj_to_head(page, s_addr + pos);
2020 		if (head & OBJ_ALLOCATED_TAG) {
2021 			handle = head & ~OBJ_ALLOCATED_TAG;
2022 			if (!trypin_tag(handle))
2023 				goto unpin_objects;
2024 		}
2025 		pos += class->size;
2026 	}
2027 
2028 	/*
2029 	 * Here, any user cannot access all objects in the zspage so let's move.
2030 	 */
2031 	d_addr = kmap_atomic(newpage);
2032 	memcpy(d_addr, s_addr, PAGE_SIZE);
2033 	kunmap_atomic(d_addr);
2034 
2035 	for (addr = s_addr + offset; addr < s_addr + pos;
2036 					addr += class->size) {
2037 		head = obj_to_head(page, addr);
2038 		if (head & OBJ_ALLOCATED_TAG) {
2039 			handle = head & ~OBJ_ALLOCATED_TAG;
2040 			if (!testpin_tag(handle))
2041 				BUG();
2042 
2043 			old_obj = handle_to_obj(handle);
2044 			obj_to_location(old_obj, &dummy, &obj_idx);
2045 			new_obj = (unsigned long)location_to_obj(newpage,
2046 								obj_idx);
2047 			new_obj |= BIT(HANDLE_PIN_BIT);
2048 			record_obj(handle, new_obj);
2049 		}
2050 	}
2051 
2052 	replace_sub_page(class, zspage, newpage, page);
2053 	get_page(newpage);
2054 
2055 	dec_zspage_isolation(zspage);
2056 
2057 	/*
2058 	 * Page migration is done so let's putback isolated zspage to
2059 	 * the list if @page is final isolated subpage in the zspage.
2060 	 */
2061 	if (!is_zspage_isolated(zspage)) {
2062 		/*
2063 		 * We cannot race with zs_destroy_pool() here because we wait
2064 		 * for isolation to hit zero before we start destroying.
2065 		 * Also, we ensure that everyone can see pool->destroying before
2066 		 * we start waiting.
2067 		 */
2068 		putback_zspage_deferred(pool, class, zspage);
2069 		zs_pool_dec_isolated(pool);
2070 	}
2071 
2072 	if (page_zone(newpage) != page_zone(page)) {
2073 		dec_zone_page_state(page, NR_ZSPAGES);
2074 		inc_zone_page_state(newpage, NR_ZSPAGES);
2075 	}
2076 
2077 	reset_page(page);
2078 	put_page(page);
2079 	page = newpage;
2080 
2081 	ret = MIGRATEPAGE_SUCCESS;
2082 unpin_objects:
2083 	for (addr = s_addr + offset; addr < s_addr + pos;
2084 						addr += class->size) {
2085 		head = obj_to_head(page, addr);
2086 		if (head & OBJ_ALLOCATED_TAG) {
2087 			handle = head & ~OBJ_ALLOCATED_TAG;
2088 			if (!testpin_tag(handle))
2089 				BUG();
2090 			unpin_tag(handle);
2091 		}
2092 	}
2093 	kunmap_atomic(s_addr);
2094 	spin_unlock(&class->lock);
2095 	migrate_write_unlock(zspage);
2096 
2097 	return ret;
2098 }
2099 
2100 static void zs_page_putback(struct page *page)
2101 {
2102 	struct zs_pool *pool;
2103 	struct size_class *class;
2104 	int class_idx;
2105 	enum fullness_group fg;
2106 	struct address_space *mapping;
2107 	struct zspage *zspage;
2108 
2109 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2110 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2111 
2112 	zspage = get_zspage(page);
2113 	get_zspage_mapping(zspage, &class_idx, &fg);
2114 	mapping = page_mapping(page);
2115 	pool = mapping->private_data;
2116 	class = pool->size_class[class_idx];
2117 
2118 	spin_lock(&class->lock);
2119 	dec_zspage_isolation(zspage);
2120 	if (!is_zspage_isolated(zspage)) {
2121 		/*
2122 		 * Due to page_lock, we cannot free zspage immediately
2123 		 * so let's defer.
2124 		 */
2125 		putback_zspage_deferred(pool, class, zspage);
2126 		zs_pool_dec_isolated(pool);
2127 	}
2128 	spin_unlock(&class->lock);
2129 }
2130 
2131 static const struct address_space_operations zsmalloc_aops = {
2132 	.isolate_page = zs_page_isolate,
2133 	.migratepage = zs_page_migrate,
2134 	.putback_page = zs_page_putback,
2135 };
2136 
2137 static int zs_register_migration(struct zs_pool *pool)
2138 {
2139 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2140 	if (IS_ERR(pool->inode)) {
2141 		pool->inode = NULL;
2142 		return 1;
2143 	}
2144 
2145 	pool->inode->i_mapping->private_data = pool;
2146 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2147 	return 0;
2148 }
2149 
2150 static bool pool_isolated_are_drained(struct zs_pool *pool)
2151 {
2152 	return atomic_long_read(&pool->isolated_pages) == 0;
2153 }
2154 
2155 /* Function for resolving migration */
2156 static void wait_for_isolated_drain(struct zs_pool *pool)
2157 {
2158 
2159 	/*
2160 	 * We're in the process of destroying the pool, so there are no
2161 	 * active allocations. zs_page_isolate() fails for completely free
2162 	 * zspages, so we need only wait for the zs_pool's isolated
2163 	 * count to hit zero.
2164 	 */
2165 	wait_event(pool->migration_wait,
2166 		   pool_isolated_are_drained(pool));
2167 }
2168 
2169 static void zs_unregister_migration(struct zs_pool *pool)
2170 {
2171 	pool->destroying = true;
2172 	/*
2173 	 * We need a memory barrier here to ensure global visibility of
2174 	 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2175 	 * case we don't care, or it will be > 0 and pool->destroying will
2176 	 * ensure that we wake up once isolation hits 0.
2177 	 */
2178 	smp_mb();
2179 	wait_for_isolated_drain(pool); /* This can block */
2180 	flush_work(&pool->free_work);
2181 	iput(pool->inode);
2182 }
2183 
2184 /*
2185  * Caller should hold page_lock of all pages in the zspage
2186  * In here, we cannot use zspage meta data.
2187  */
2188 static void async_free_zspage(struct work_struct *work)
2189 {
2190 	int i;
2191 	struct size_class *class;
2192 	unsigned int class_idx;
2193 	enum fullness_group fullness;
2194 	struct zspage *zspage, *tmp;
2195 	LIST_HEAD(free_pages);
2196 	struct zs_pool *pool = container_of(work, struct zs_pool,
2197 					free_work);
2198 
2199 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2200 		class = pool->size_class[i];
2201 		if (class->index != i)
2202 			continue;
2203 
2204 		spin_lock(&class->lock);
2205 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2206 		spin_unlock(&class->lock);
2207 	}
2208 
2209 
2210 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2211 		list_del(&zspage->list);
2212 		lock_zspage(zspage);
2213 
2214 		get_zspage_mapping(zspage, &class_idx, &fullness);
2215 		VM_BUG_ON(fullness != ZS_EMPTY);
2216 		class = pool->size_class[class_idx];
2217 		spin_lock(&class->lock);
2218 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2219 		spin_unlock(&class->lock);
2220 	}
2221 };
2222 
2223 static void kick_deferred_free(struct zs_pool *pool)
2224 {
2225 	schedule_work(&pool->free_work);
2226 }
2227 
2228 static void init_deferred_free(struct zs_pool *pool)
2229 {
2230 	INIT_WORK(&pool->free_work, async_free_zspage);
2231 }
2232 
2233 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2234 {
2235 	struct page *page = get_first_page(zspage);
2236 
2237 	do {
2238 		WARN_ON(!trylock_page(page));
2239 		__SetPageMovable(page, pool->inode->i_mapping);
2240 		unlock_page(page);
2241 	} while ((page = get_next_page(page)) != NULL);
2242 }
2243 #endif
2244 
2245 /*
2246  *
2247  * Based on the number of unused allocated objects calculate
2248  * and return the number of pages that we can free.
2249  */
2250 static unsigned long zs_can_compact(struct size_class *class)
2251 {
2252 	unsigned long obj_wasted;
2253 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2254 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2255 
2256 	if (obj_allocated <= obj_used)
2257 		return 0;
2258 
2259 	obj_wasted = obj_allocated - obj_used;
2260 	obj_wasted /= class->objs_per_zspage;
2261 
2262 	return obj_wasted * class->pages_per_zspage;
2263 }
2264 
2265 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2266 {
2267 	struct zs_compact_control cc;
2268 	struct zspage *src_zspage;
2269 	struct zspage *dst_zspage = NULL;
2270 
2271 	spin_lock(&class->lock);
2272 	while ((src_zspage = isolate_zspage(class, true))) {
2273 
2274 		if (!zs_can_compact(class))
2275 			break;
2276 
2277 		cc.obj_idx = 0;
2278 		cc.s_page = get_first_page(src_zspage);
2279 
2280 		while ((dst_zspage = isolate_zspage(class, false))) {
2281 			cc.d_page = get_first_page(dst_zspage);
2282 			/*
2283 			 * If there is no more space in dst_page, resched
2284 			 * and see if anyone had allocated another zspage.
2285 			 */
2286 			if (!migrate_zspage(pool, class, &cc))
2287 				break;
2288 
2289 			putback_zspage(class, dst_zspage);
2290 		}
2291 
2292 		/* Stop if we couldn't find slot */
2293 		if (dst_zspage == NULL)
2294 			break;
2295 
2296 		putback_zspage(class, dst_zspage);
2297 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2298 			free_zspage(pool, class, src_zspage);
2299 			pool->stats.pages_compacted += class->pages_per_zspage;
2300 		}
2301 		spin_unlock(&class->lock);
2302 		cond_resched();
2303 		spin_lock(&class->lock);
2304 	}
2305 
2306 	if (src_zspage)
2307 		putback_zspage(class, src_zspage);
2308 
2309 	spin_unlock(&class->lock);
2310 }
2311 
2312 unsigned long zs_compact(struct zs_pool *pool)
2313 {
2314 	int i;
2315 	struct size_class *class;
2316 
2317 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2318 		class = pool->size_class[i];
2319 		if (!class)
2320 			continue;
2321 		if (class->index != i)
2322 			continue;
2323 		__zs_compact(pool, class);
2324 	}
2325 
2326 	return pool->stats.pages_compacted;
2327 }
2328 EXPORT_SYMBOL_GPL(zs_compact);
2329 
2330 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2331 {
2332 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2333 }
2334 EXPORT_SYMBOL_GPL(zs_pool_stats);
2335 
2336 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2337 		struct shrink_control *sc)
2338 {
2339 	unsigned long pages_freed;
2340 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2341 			shrinker);
2342 
2343 	pages_freed = pool->stats.pages_compacted;
2344 	/*
2345 	 * Compact classes and calculate compaction delta.
2346 	 * Can run concurrently with a manually triggered
2347 	 * (by user) compaction.
2348 	 */
2349 	pages_freed = zs_compact(pool) - pages_freed;
2350 
2351 	return pages_freed ? pages_freed : SHRINK_STOP;
2352 }
2353 
2354 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2355 		struct shrink_control *sc)
2356 {
2357 	int i;
2358 	struct size_class *class;
2359 	unsigned long pages_to_free = 0;
2360 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2361 			shrinker);
2362 
2363 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2364 		class = pool->size_class[i];
2365 		if (!class)
2366 			continue;
2367 		if (class->index != i)
2368 			continue;
2369 
2370 		pages_to_free += zs_can_compact(class);
2371 	}
2372 
2373 	return pages_to_free;
2374 }
2375 
2376 static void zs_unregister_shrinker(struct zs_pool *pool)
2377 {
2378 	unregister_shrinker(&pool->shrinker);
2379 }
2380 
2381 static int zs_register_shrinker(struct zs_pool *pool)
2382 {
2383 	pool->shrinker.scan_objects = zs_shrinker_scan;
2384 	pool->shrinker.count_objects = zs_shrinker_count;
2385 	pool->shrinker.batch = 0;
2386 	pool->shrinker.seeks = DEFAULT_SEEKS;
2387 
2388 	return register_shrinker(&pool->shrinker);
2389 }
2390 
2391 /**
2392  * zs_create_pool - Creates an allocation pool to work from.
2393  * @name: pool name to be created
2394  *
2395  * This function must be called before anything when using
2396  * the zsmalloc allocator.
2397  *
2398  * On success, a pointer to the newly created pool is returned,
2399  * otherwise NULL.
2400  */
2401 struct zs_pool *zs_create_pool(const char *name)
2402 {
2403 	int i;
2404 	struct zs_pool *pool;
2405 	struct size_class *prev_class = NULL;
2406 
2407 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2408 	if (!pool)
2409 		return NULL;
2410 
2411 	init_deferred_free(pool);
2412 
2413 	pool->name = kstrdup(name, GFP_KERNEL);
2414 	if (!pool->name)
2415 		goto err;
2416 
2417 #ifdef CONFIG_COMPACTION
2418 	init_waitqueue_head(&pool->migration_wait);
2419 #endif
2420 
2421 	if (create_cache(pool))
2422 		goto err;
2423 
2424 	/*
2425 	 * Iterate reversely, because, size of size_class that we want to use
2426 	 * for merging should be larger or equal to current size.
2427 	 */
2428 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2429 		int size;
2430 		int pages_per_zspage;
2431 		int objs_per_zspage;
2432 		struct size_class *class;
2433 		int fullness = 0;
2434 
2435 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2436 		if (size > ZS_MAX_ALLOC_SIZE)
2437 			size = ZS_MAX_ALLOC_SIZE;
2438 		pages_per_zspage = get_pages_per_zspage(size);
2439 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2440 
2441 		/*
2442 		 * We iterate from biggest down to smallest classes,
2443 		 * so huge_class_size holds the size of the first huge
2444 		 * class. Any object bigger than or equal to that will
2445 		 * endup in the huge class.
2446 		 */
2447 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2448 				!huge_class_size) {
2449 			huge_class_size = size;
2450 			/*
2451 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2452 			 * handle. We need to subtract it, because zs_malloc()
2453 			 * unconditionally adds handle size before it performs
2454 			 * size class search - so object may be smaller than
2455 			 * huge class size, yet it still can end up in the huge
2456 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2457 			 * right before class lookup.
2458 			 */
2459 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2460 		}
2461 
2462 		/*
2463 		 * size_class is used for normal zsmalloc operation such
2464 		 * as alloc/free for that size. Although it is natural that we
2465 		 * have one size_class for each size, there is a chance that we
2466 		 * can get more memory utilization if we use one size_class for
2467 		 * many different sizes whose size_class have same
2468 		 * characteristics. So, we makes size_class point to
2469 		 * previous size_class if possible.
2470 		 */
2471 		if (prev_class) {
2472 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2473 				pool->size_class[i] = prev_class;
2474 				continue;
2475 			}
2476 		}
2477 
2478 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2479 		if (!class)
2480 			goto err;
2481 
2482 		class->size = size;
2483 		class->index = i;
2484 		class->pages_per_zspage = pages_per_zspage;
2485 		class->objs_per_zspage = objs_per_zspage;
2486 		spin_lock_init(&class->lock);
2487 		pool->size_class[i] = class;
2488 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2489 							fullness++)
2490 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2491 
2492 		prev_class = class;
2493 	}
2494 
2495 	/* debug only, don't abort if it fails */
2496 	zs_pool_stat_create(pool, name);
2497 
2498 	if (zs_register_migration(pool))
2499 		goto err;
2500 
2501 	/*
2502 	 * Not critical since shrinker is only used to trigger internal
2503 	 * defragmentation of the pool which is pretty optional thing.  If
2504 	 * registration fails we still can use the pool normally and user can
2505 	 * trigger compaction manually. Thus, ignore return code.
2506 	 */
2507 	zs_register_shrinker(pool);
2508 
2509 	return pool;
2510 
2511 err:
2512 	zs_destroy_pool(pool);
2513 	return NULL;
2514 }
2515 EXPORT_SYMBOL_GPL(zs_create_pool);
2516 
2517 void zs_destroy_pool(struct zs_pool *pool)
2518 {
2519 	int i;
2520 
2521 	zs_unregister_shrinker(pool);
2522 	zs_unregister_migration(pool);
2523 	zs_pool_stat_destroy(pool);
2524 
2525 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2526 		int fg;
2527 		struct size_class *class = pool->size_class[i];
2528 
2529 		if (!class)
2530 			continue;
2531 
2532 		if (class->index != i)
2533 			continue;
2534 
2535 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2536 			if (!list_empty(&class->fullness_list[fg])) {
2537 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2538 					class->size, fg);
2539 			}
2540 		}
2541 		kfree(class);
2542 	}
2543 
2544 	destroy_cache(pool);
2545 	kfree(pool->name);
2546 	kfree(pool);
2547 }
2548 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2549 
2550 static int __init zs_init(void)
2551 {
2552 	int ret;
2553 
2554 	ret = zsmalloc_mount();
2555 	if (ret)
2556 		goto out;
2557 
2558 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2559 				zs_cpu_prepare, zs_cpu_dead);
2560 	if (ret)
2561 		goto hp_setup_fail;
2562 
2563 #ifdef CONFIG_ZPOOL
2564 	zpool_register_driver(&zs_zpool_driver);
2565 #endif
2566 
2567 	zs_stat_init();
2568 
2569 	return 0;
2570 
2571 hp_setup_fail:
2572 	zsmalloc_unmount();
2573 out:
2574 	return ret;
2575 }
2576 
2577 static void __exit zs_exit(void)
2578 {
2579 #ifdef CONFIG_ZPOOL
2580 	zpool_unregister_driver(&zs_zpool_driver);
2581 #endif
2582 	zsmalloc_unmount();
2583 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2584 
2585 	zs_stat_exit();
2586 }
2587 
2588 module_init(zs_init);
2589 module_exit(zs_exit);
2590 
2591 MODULE_LICENSE("Dual BSD/GPL");
2592 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2593