xref: /linux/mm/zsmalloc.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private: refers to the component page after the first page
30  *		If the page is first_page for huge object, it stores handle.
31  *		Look at size_class->huge.
32  *	page->freelist: points to the first free object in zspage.
33  *		Free objects are linked together using in-place
34  *		metadata.
35  *	page->objects: maximum number of objects we can store in this
36  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
37  *	page->lru: links together first pages of various zspages.
38  *		Basically forming list of zspages in a fullness group.
39  *	page->mapping: class index and fullness group of the zspage
40  *	page->inuse: the number of objects that are used in this zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/preempt.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
67 
68 /*
69  * This must be power of 2 and greater than of equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82 
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84 
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * as single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> is relative to system
90  * page <PFN> it is stored in, so for each sub-page belonging
91  * to a zspage, obj_idx starts with 0.
92  *
93  * This is made more complicated by various memory models and PAE.
94  */
95 
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
100 /*
101  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102  * be PAGE_SHIFT
103  */
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
108 
109 /*
110  * Memory for allocating for handle keeps object position by
111  * encoding <page, obj_idx> and the encoded value has a room
112  * in least bit(ie, look at obj_to_location).
113  * We use the bit to synchronize between object access by
114  * user and migration.
115  */
116 #define HANDLE_PIN_BIT	0
117 
118 /*
119  * Head in allocated object should have OBJ_ALLOCATED_TAG
120  * to identify the object was allocated or not.
121  * It's okay to add the status bit in the least bit because
122  * header keeps handle which is 4byte-aligned address so we
123  * have room for two bit at least.
124  */
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129 
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 
137 /*
138  * On systems with 4K page size, this gives 255 size classes! There is a
139  * trader-off here:
140  *  - Large number of size classes is potentially wasteful as free page are
141  *    spread across these classes
142  *  - Small number of size classes causes large internal fragmentation
143  *  - Probably its better to use specific size classes (empirically
144  *    determined). NOTE: all those class sizes must be set as multiple of
145  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146  *
147  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148  *  (reason above)
149  */
150 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 
152 /*
153  * We do not maintain any list for completely empty or full pages
154  */
155 enum fullness_group {
156 	ZS_ALMOST_FULL,
157 	ZS_ALMOST_EMPTY,
158 	_ZS_NR_FULLNESS_GROUPS,
159 
160 	ZS_EMPTY,
161 	ZS_FULL
162 };
163 
164 enum zs_stat_type {
165 	OBJ_ALLOCATED,
166 	OBJ_USED,
167 	CLASS_ALMOST_FULL,
168 	CLASS_ALMOST_EMPTY,
169 };
170 
171 #ifdef CONFIG_ZSMALLOC_STAT
172 #define NR_ZS_STAT_TYPE	(CLASS_ALMOST_EMPTY + 1)
173 #else
174 #define NR_ZS_STAT_TYPE	(OBJ_USED + 1)
175 #endif
176 
177 struct zs_size_stat {
178 	unsigned long objs[NR_ZS_STAT_TYPE];
179 };
180 
181 #ifdef CONFIG_ZSMALLOC_STAT
182 static struct dentry *zs_stat_root;
183 #endif
184 
185 /*
186  * number of size_classes
187  */
188 static int zs_size_classes;
189 
190 /*
191  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192  *	n <= N / f, where
193  * n = number of allocated objects
194  * N = total number of objects zspage can store
195  * f = fullness_threshold_frac
196  *
197  * Similarly, we assign zspage to:
198  *	ZS_ALMOST_FULL	when n > N / f
199  *	ZS_EMPTY	when n == 0
200  *	ZS_FULL		when n == N
201  *
202  * (see: fix_fullness_group())
203  */
204 static const int fullness_threshold_frac = 4;
205 
206 struct size_class {
207 	spinlock_t lock;
208 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 	/*
210 	 * Size of objects stored in this class. Must be multiple
211 	 * of ZS_ALIGN.
212 	 */
213 	int size;
214 	unsigned int index;
215 
216 	struct zs_size_stat stats;
217 
218 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 	int pages_per_zspage;
220 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 	bool huge;
222 };
223 
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, first_page->freelist gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231 	union {
232 		/*
233 		 * Position of next free chunk (encodes <PFN, obj_idx>)
234 		 * It's valid for non-allocated object
235 		 */
236 		void *next;
237 		/*
238 		 * Handle of allocated object.
239 		 */
240 		unsigned long handle;
241 	};
242 };
243 
244 struct zs_pool {
245 	const char *name;
246 
247 	struct size_class **size_class;
248 	struct kmem_cache *handle_cachep;
249 
250 	atomic_long_t pages_allocated;
251 
252 	struct zs_pool_stats stats;
253 
254 	/* Compact classes */
255 	struct shrinker shrinker;
256 	/*
257 	 * To signify that register_shrinker() was successful
258 	 * and unregister_shrinker() will not Oops.
259 	 */
260 	bool shrinker_enabled;
261 #ifdef CONFIG_ZSMALLOC_STAT
262 	struct dentry *stat_dentry;
263 #endif
264 };
265 
266 /*
267  * A zspage's class index and fullness group
268  * are encoded in its (first)page->mapping
269  */
270 #define CLASS_IDX_BITS	28
271 #define FULLNESS_BITS	4
272 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
273 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
274 
275 struct mapping_area {
276 #ifdef CONFIG_PGTABLE_MAPPING
277 	struct vm_struct *vm; /* vm area for mapping object that span pages */
278 #else
279 	char *vm_buf; /* copy buffer for objects that span pages */
280 #endif
281 	char *vm_addr; /* address of kmap_atomic()'ed pages */
282 	enum zs_mapmode vm_mm; /* mapping mode */
283 };
284 
285 static int create_handle_cache(struct zs_pool *pool)
286 {
287 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
288 					0, 0, NULL);
289 	return pool->handle_cachep ? 0 : 1;
290 }
291 
292 static void destroy_handle_cache(struct zs_pool *pool)
293 {
294 	kmem_cache_destroy(pool->handle_cachep);
295 }
296 
297 static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
298 {
299 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
300 			gfp & ~__GFP_HIGHMEM);
301 }
302 
303 static void free_handle(struct zs_pool *pool, unsigned long handle)
304 {
305 	kmem_cache_free(pool->handle_cachep, (void *)handle);
306 }
307 
308 static void record_obj(unsigned long handle, unsigned long obj)
309 {
310 	/*
311 	 * lsb of @obj represents handle lock while other bits
312 	 * represent object value the handle is pointing so
313 	 * updating shouldn't do store tearing.
314 	 */
315 	WRITE_ONCE(*(unsigned long *)handle, obj);
316 }
317 
318 /* zpool driver */
319 
320 #ifdef CONFIG_ZPOOL
321 
322 static void *zs_zpool_create(const char *name, gfp_t gfp,
323 			     const struct zpool_ops *zpool_ops,
324 			     struct zpool *zpool)
325 {
326 	/*
327 	 * Ignore global gfp flags: zs_malloc() may be invoked from
328 	 * different contexts and its caller must provide a valid
329 	 * gfp mask.
330 	 */
331 	return zs_create_pool(name);
332 }
333 
334 static void zs_zpool_destroy(void *pool)
335 {
336 	zs_destroy_pool(pool);
337 }
338 
339 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
340 			unsigned long *handle)
341 {
342 	*handle = zs_malloc(pool, size, gfp);
343 	return *handle ? 0 : -1;
344 }
345 static void zs_zpool_free(void *pool, unsigned long handle)
346 {
347 	zs_free(pool, handle);
348 }
349 
350 static int zs_zpool_shrink(void *pool, unsigned int pages,
351 			unsigned int *reclaimed)
352 {
353 	return -EINVAL;
354 }
355 
356 static void *zs_zpool_map(void *pool, unsigned long handle,
357 			enum zpool_mapmode mm)
358 {
359 	enum zs_mapmode zs_mm;
360 
361 	switch (mm) {
362 	case ZPOOL_MM_RO:
363 		zs_mm = ZS_MM_RO;
364 		break;
365 	case ZPOOL_MM_WO:
366 		zs_mm = ZS_MM_WO;
367 		break;
368 	case ZPOOL_MM_RW: /* fallthru */
369 	default:
370 		zs_mm = ZS_MM_RW;
371 		break;
372 	}
373 
374 	return zs_map_object(pool, handle, zs_mm);
375 }
376 static void zs_zpool_unmap(void *pool, unsigned long handle)
377 {
378 	zs_unmap_object(pool, handle);
379 }
380 
381 static u64 zs_zpool_total_size(void *pool)
382 {
383 	return zs_get_total_pages(pool) << PAGE_SHIFT;
384 }
385 
386 static struct zpool_driver zs_zpool_driver = {
387 	.type =		"zsmalloc",
388 	.owner =	THIS_MODULE,
389 	.create =	zs_zpool_create,
390 	.destroy =	zs_zpool_destroy,
391 	.malloc =	zs_zpool_malloc,
392 	.free =		zs_zpool_free,
393 	.shrink =	zs_zpool_shrink,
394 	.map =		zs_zpool_map,
395 	.unmap =	zs_zpool_unmap,
396 	.total_size =	zs_zpool_total_size,
397 };
398 
399 MODULE_ALIAS("zpool-zsmalloc");
400 #endif /* CONFIG_ZPOOL */
401 
402 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
403 {
404 	return pages_per_zspage * PAGE_SIZE / size;
405 }
406 
407 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
408 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
409 
410 static int is_first_page(struct page *page)
411 {
412 	return PagePrivate(page);
413 }
414 
415 static int is_last_page(struct page *page)
416 {
417 	return PagePrivate2(page);
418 }
419 
420 static void get_zspage_mapping(struct page *first_page,
421 				unsigned int *class_idx,
422 				enum fullness_group *fullness)
423 {
424 	unsigned long m;
425 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
426 
427 	m = (unsigned long)first_page->mapping;
428 	*fullness = m & FULLNESS_MASK;
429 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
430 }
431 
432 static void set_zspage_mapping(struct page *first_page,
433 				unsigned int class_idx,
434 				enum fullness_group fullness)
435 {
436 	unsigned long m;
437 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
438 
439 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
440 			(fullness & FULLNESS_MASK);
441 	first_page->mapping = (struct address_space *)m;
442 }
443 
444 /*
445  * zsmalloc divides the pool into various size classes where each
446  * class maintains a list of zspages where each zspage is divided
447  * into equal sized chunks. Each allocation falls into one of these
448  * classes depending on its size. This function returns index of the
449  * size class which has chunk size big enough to hold the give size.
450  */
451 static int get_size_class_index(int size)
452 {
453 	int idx = 0;
454 
455 	if (likely(size > ZS_MIN_ALLOC_SIZE))
456 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
457 				ZS_SIZE_CLASS_DELTA);
458 
459 	return min(zs_size_classes - 1, idx);
460 }
461 
462 static inline void zs_stat_inc(struct size_class *class,
463 				enum zs_stat_type type, unsigned long cnt)
464 {
465 	if (type < NR_ZS_STAT_TYPE)
466 		class->stats.objs[type] += cnt;
467 }
468 
469 static inline void zs_stat_dec(struct size_class *class,
470 				enum zs_stat_type type, unsigned long cnt)
471 {
472 	if (type < NR_ZS_STAT_TYPE)
473 		class->stats.objs[type] -= cnt;
474 }
475 
476 static inline unsigned long zs_stat_get(struct size_class *class,
477 				enum zs_stat_type type)
478 {
479 	if (type < NR_ZS_STAT_TYPE)
480 		return class->stats.objs[type];
481 	return 0;
482 }
483 
484 #ifdef CONFIG_ZSMALLOC_STAT
485 
486 static int __init zs_stat_init(void)
487 {
488 	if (!debugfs_initialized())
489 		return -ENODEV;
490 
491 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
492 	if (!zs_stat_root)
493 		return -ENOMEM;
494 
495 	return 0;
496 }
497 
498 static void __exit zs_stat_exit(void)
499 {
500 	debugfs_remove_recursive(zs_stat_root);
501 }
502 
503 static unsigned long zs_can_compact(struct size_class *class);
504 
505 static int zs_stats_size_show(struct seq_file *s, void *v)
506 {
507 	int i;
508 	struct zs_pool *pool = s->private;
509 	struct size_class *class;
510 	int objs_per_zspage;
511 	unsigned long class_almost_full, class_almost_empty;
512 	unsigned long obj_allocated, obj_used, pages_used, freeable;
513 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
514 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
515 	unsigned long total_freeable = 0;
516 
517 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
518 			"class", "size", "almost_full", "almost_empty",
519 			"obj_allocated", "obj_used", "pages_used",
520 			"pages_per_zspage", "freeable");
521 
522 	for (i = 0; i < zs_size_classes; i++) {
523 		class = pool->size_class[i];
524 
525 		if (class->index != i)
526 			continue;
527 
528 		spin_lock(&class->lock);
529 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
530 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
531 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
532 		obj_used = zs_stat_get(class, OBJ_USED);
533 		freeable = zs_can_compact(class);
534 		spin_unlock(&class->lock);
535 
536 		objs_per_zspage = get_maxobj_per_zspage(class->size,
537 				class->pages_per_zspage);
538 		pages_used = obj_allocated / objs_per_zspage *
539 				class->pages_per_zspage;
540 
541 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
542 				" %10lu %10lu %16d %8lu\n",
543 			i, class->size, class_almost_full, class_almost_empty,
544 			obj_allocated, obj_used, pages_used,
545 			class->pages_per_zspage, freeable);
546 
547 		total_class_almost_full += class_almost_full;
548 		total_class_almost_empty += class_almost_empty;
549 		total_objs += obj_allocated;
550 		total_used_objs += obj_used;
551 		total_pages += pages_used;
552 		total_freeable += freeable;
553 	}
554 
555 	seq_puts(s, "\n");
556 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
557 			"Total", "", total_class_almost_full,
558 			total_class_almost_empty, total_objs,
559 			total_used_objs, total_pages, "", total_freeable);
560 
561 	return 0;
562 }
563 
564 static int zs_stats_size_open(struct inode *inode, struct file *file)
565 {
566 	return single_open(file, zs_stats_size_show, inode->i_private);
567 }
568 
569 static const struct file_operations zs_stat_size_ops = {
570 	.open           = zs_stats_size_open,
571 	.read           = seq_read,
572 	.llseek         = seq_lseek,
573 	.release        = single_release,
574 };
575 
576 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
577 {
578 	struct dentry *entry;
579 
580 	if (!zs_stat_root)
581 		return;
582 
583 	entry = debugfs_create_dir(name, zs_stat_root);
584 	if (!entry) {
585 		pr_warn("debugfs dir <%s> creation failed\n", name);
586 		return;
587 	}
588 	pool->stat_dentry = entry;
589 
590 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
591 			pool->stat_dentry, pool, &zs_stat_size_ops);
592 	if (!entry) {
593 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
594 				name, "classes");
595 		return;
596 	}
597 }
598 
599 static void zs_pool_stat_destroy(struct zs_pool *pool)
600 {
601 	debugfs_remove_recursive(pool->stat_dentry);
602 }
603 
604 #else /* CONFIG_ZSMALLOC_STAT */
605 static int __init zs_stat_init(void)
606 {
607 	return 0;
608 }
609 
610 static void __exit zs_stat_exit(void)
611 {
612 }
613 
614 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
615 {
616 }
617 
618 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
619 {
620 }
621 #endif
622 
623 /*
624  * For each size class, zspages are divided into different groups
625  * depending on how "full" they are. This was done so that we could
626  * easily find empty or nearly empty zspages when we try to shrink
627  * the pool (not yet implemented). This function returns fullness
628  * status of the given page.
629  */
630 static enum fullness_group get_fullness_group(struct page *first_page)
631 {
632 	int inuse, max_objects;
633 	enum fullness_group fg;
634 
635 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
636 
637 	inuse = first_page->inuse;
638 	max_objects = first_page->objects;
639 
640 	if (inuse == 0)
641 		fg = ZS_EMPTY;
642 	else if (inuse == max_objects)
643 		fg = ZS_FULL;
644 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
645 		fg = ZS_ALMOST_EMPTY;
646 	else
647 		fg = ZS_ALMOST_FULL;
648 
649 	return fg;
650 }
651 
652 /*
653  * Each size class maintains various freelists and zspages are assigned
654  * to one of these freelists based on the number of live objects they
655  * have. This functions inserts the given zspage into the freelist
656  * identified by <class, fullness_group>.
657  */
658 static void insert_zspage(struct size_class *class,
659 				enum fullness_group fullness,
660 				struct page *first_page)
661 {
662 	struct page **head;
663 
664 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
665 
666 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
667 		return;
668 
669 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
670 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
671 
672 	head = &class->fullness_list[fullness];
673 	if (!*head) {
674 		*head = first_page;
675 		return;
676 	}
677 
678 	/*
679 	 * We want to see more ZS_FULL pages and less almost
680 	 * empty/full. Put pages with higher ->inuse first.
681 	 */
682 	list_add_tail(&first_page->lru, &(*head)->lru);
683 	if (first_page->inuse >= (*head)->inuse)
684 		*head = first_page;
685 }
686 
687 /*
688  * This function removes the given zspage from the freelist identified
689  * by <class, fullness_group>.
690  */
691 static void remove_zspage(struct size_class *class,
692 				enum fullness_group fullness,
693 				struct page *first_page)
694 {
695 	struct page **head;
696 
697 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
698 
699 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
700 		return;
701 
702 	head = &class->fullness_list[fullness];
703 	VM_BUG_ON_PAGE(!*head, first_page);
704 	if (list_empty(&(*head)->lru))
705 		*head = NULL;
706 	else if (*head == first_page)
707 		*head = (struct page *)list_entry((*head)->lru.next,
708 					struct page, lru);
709 
710 	list_del_init(&first_page->lru);
711 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
712 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
713 }
714 
715 /*
716  * Each size class maintains zspages in different fullness groups depending
717  * on the number of live objects they contain. When allocating or freeing
718  * objects, the fullness status of the page can change, say, from ALMOST_FULL
719  * to ALMOST_EMPTY when freeing an object. This function checks if such
720  * a status change has occurred for the given page and accordingly moves the
721  * page from the freelist of the old fullness group to that of the new
722  * fullness group.
723  */
724 static enum fullness_group fix_fullness_group(struct size_class *class,
725 						struct page *first_page)
726 {
727 	int class_idx;
728 	enum fullness_group currfg, newfg;
729 
730 	get_zspage_mapping(first_page, &class_idx, &currfg);
731 	newfg = get_fullness_group(first_page);
732 	if (newfg == currfg)
733 		goto out;
734 
735 	remove_zspage(class, currfg, first_page);
736 	insert_zspage(class, newfg, first_page);
737 	set_zspage_mapping(first_page, class_idx, newfg);
738 
739 out:
740 	return newfg;
741 }
742 
743 /*
744  * We have to decide on how many pages to link together
745  * to form a zspage for each size class. This is important
746  * to reduce wastage due to unusable space left at end of
747  * each zspage which is given as:
748  *     wastage = Zp % class_size
749  *     usage = Zp - wastage
750  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
751  *
752  * For example, for size class of 3/8 * PAGE_SIZE, we should
753  * link together 3 PAGE_SIZE sized pages to form a zspage
754  * since then we can perfectly fit in 8 such objects.
755  */
756 static int get_pages_per_zspage(int class_size)
757 {
758 	int i, max_usedpc = 0;
759 	/* zspage order which gives maximum used size per KB */
760 	int max_usedpc_order = 1;
761 
762 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
763 		int zspage_size;
764 		int waste, usedpc;
765 
766 		zspage_size = i * PAGE_SIZE;
767 		waste = zspage_size % class_size;
768 		usedpc = (zspage_size - waste) * 100 / zspage_size;
769 
770 		if (usedpc > max_usedpc) {
771 			max_usedpc = usedpc;
772 			max_usedpc_order = i;
773 		}
774 	}
775 
776 	return max_usedpc_order;
777 }
778 
779 /*
780  * A single 'zspage' is composed of many system pages which are
781  * linked together using fields in struct page. This function finds
782  * the first/head page, given any component page of a zspage.
783  */
784 static struct page *get_first_page(struct page *page)
785 {
786 	if (is_first_page(page))
787 		return page;
788 	else
789 		return (struct page *)page_private(page);
790 }
791 
792 static struct page *get_next_page(struct page *page)
793 {
794 	struct page *next;
795 
796 	if (is_last_page(page))
797 		next = NULL;
798 	else if (is_first_page(page))
799 		next = (struct page *)page_private(page);
800 	else
801 		next = list_entry(page->lru.next, struct page, lru);
802 
803 	return next;
804 }
805 
806 /*
807  * Encode <page, obj_idx> as a single handle value.
808  * We use the least bit of handle for tagging.
809  */
810 static void *location_to_obj(struct page *page, unsigned long obj_idx)
811 {
812 	unsigned long obj;
813 
814 	if (!page) {
815 		VM_BUG_ON(obj_idx);
816 		return NULL;
817 	}
818 
819 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
820 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
821 	obj <<= OBJ_TAG_BITS;
822 
823 	return (void *)obj;
824 }
825 
826 /*
827  * Decode <page, obj_idx> pair from the given object handle. We adjust the
828  * decoded obj_idx back to its original value since it was adjusted in
829  * location_to_obj().
830  */
831 static void obj_to_location(unsigned long obj, struct page **page,
832 				unsigned long *obj_idx)
833 {
834 	obj >>= OBJ_TAG_BITS;
835 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
836 	*obj_idx = (obj & OBJ_INDEX_MASK);
837 }
838 
839 static unsigned long handle_to_obj(unsigned long handle)
840 {
841 	return *(unsigned long *)handle;
842 }
843 
844 static unsigned long obj_to_head(struct size_class *class, struct page *page,
845 			void *obj)
846 {
847 	if (class->huge) {
848 		VM_BUG_ON_PAGE(!is_first_page(page), page);
849 		return page_private(page);
850 	} else
851 		return *(unsigned long *)obj;
852 }
853 
854 static unsigned long obj_idx_to_offset(struct page *page,
855 				unsigned long obj_idx, int class_size)
856 {
857 	unsigned long off = 0;
858 
859 	if (!is_first_page(page))
860 		off = page->index;
861 
862 	return off + obj_idx * class_size;
863 }
864 
865 static inline int trypin_tag(unsigned long handle)
866 {
867 	unsigned long *ptr = (unsigned long *)handle;
868 
869 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
870 }
871 
872 static void pin_tag(unsigned long handle)
873 {
874 	while (!trypin_tag(handle));
875 }
876 
877 static void unpin_tag(unsigned long handle)
878 {
879 	unsigned long *ptr = (unsigned long *)handle;
880 
881 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
882 }
883 
884 static void reset_page(struct page *page)
885 {
886 	clear_bit(PG_private, &page->flags);
887 	clear_bit(PG_private_2, &page->flags);
888 	set_page_private(page, 0);
889 	page->mapping = NULL;
890 	page->freelist = NULL;
891 	page_mapcount_reset(page);
892 }
893 
894 static void free_zspage(struct page *first_page)
895 {
896 	struct page *nextp, *tmp, *head_extra;
897 
898 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
899 	VM_BUG_ON_PAGE(first_page->inuse, first_page);
900 
901 	head_extra = (struct page *)page_private(first_page);
902 
903 	reset_page(first_page);
904 	__free_page(first_page);
905 
906 	/* zspage with only 1 system page */
907 	if (!head_extra)
908 		return;
909 
910 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
911 		list_del(&nextp->lru);
912 		reset_page(nextp);
913 		__free_page(nextp);
914 	}
915 	reset_page(head_extra);
916 	__free_page(head_extra);
917 }
918 
919 /* Initialize a newly allocated zspage */
920 static void init_zspage(struct size_class *class, struct page *first_page)
921 {
922 	unsigned long off = 0;
923 	struct page *page = first_page;
924 
925 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
926 
927 	while (page) {
928 		struct page *next_page;
929 		struct link_free *link;
930 		unsigned int i = 1;
931 		void *vaddr;
932 
933 		/*
934 		 * page->index stores offset of first object starting
935 		 * in the page. For the first page, this is always 0,
936 		 * so we use first_page->index (aka ->freelist) to store
937 		 * head of corresponding zspage's freelist.
938 		 */
939 		if (page != first_page)
940 			page->index = off;
941 
942 		vaddr = kmap_atomic(page);
943 		link = (struct link_free *)vaddr + off / sizeof(*link);
944 
945 		while ((off += class->size) < PAGE_SIZE) {
946 			link->next = location_to_obj(page, i++);
947 			link += class->size / sizeof(*link);
948 		}
949 
950 		/*
951 		 * We now come to the last (full or partial) object on this
952 		 * page, which must point to the first object on the next
953 		 * page (if present)
954 		 */
955 		next_page = get_next_page(page);
956 		link->next = location_to_obj(next_page, 0);
957 		kunmap_atomic(vaddr);
958 		page = next_page;
959 		off %= PAGE_SIZE;
960 	}
961 }
962 
963 /*
964  * Allocate a zspage for the given size class
965  */
966 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
967 {
968 	int i, error;
969 	struct page *first_page = NULL, *uninitialized_var(prev_page);
970 
971 	/*
972 	 * Allocate individual pages and link them together as:
973 	 * 1. first page->private = first sub-page
974 	 * 2. all sub-pages are linked together using page->lru
975 	 * 3. each sub-page is linked to the first page using page->private
976 	 *
977 	 * For each size class, First/Head pages are linked together using
978 	 * page->lru. Also, we set PG_private to identify the first page
979 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
980 	 * identify the last page.
981 	 */
982 	error = -ENOMEM;
983 	for (i = 0; i < class->pages_per_zspage; i++) {
984 		struct page *page;
985 
986 		page = alloc_page(flags);
987 		if (!page)
988 			goto cleanup;
989 
990 		INIT_LIST_HEAD(&page->lru);
991 		if (i == 0) {	/* first page */
992 			SetPagePrivate(page);
993 			set_page_private(page, 0);
994 			first_page = page;
995 			first_page->inuse = 0;
996 		}
997 		if (i == 1)
998 			set_page_private(first_page, (unsigned long)page);
999 		if (i >= 1)
1000 			set_page_private(page, (unsigned long)first_page);
1001 		if (i >= 2)
1002 			list_add(&page->lru, &prev_page->lru);
1003 		if (i == class->pages_per_zspage - 1)	/* last page */
1004 			SetPagePrivate2(page);
1005 		prev_page = page;
1006 	}
1007 
1008 	init_zspage(class, first_page);
1009 
1010 	first_page->freelist = location_to_obj(first_page, 0);
1011 	/* Maximum number of objects we can store in this zspage */
1012 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1013 
1014 	error = 0; /* Success */
1015 
1016 cleanup:
1017 	if (unlikely(error) && first_page) {
1018 		free_zspage(first_page);
1019 		first_page = NULL;
1020 	}
1021 
1022 	return first_page;
1023 }
1024 
1025 static struct page *find_get_zspage(struct size_class *class)
1026 {
1027 	int i;
1028 	struct page *page;
1029 
1030 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1031 		page = class->fullness_list[i];
1032 		if (page)
1033 			break;
1034 	}
1035 
1036 	return page;
1037 }
1038 
1039 #ifdef CONFIG_PGTABLE_MAPPING
1040 static inline int __zs_cpu_up(struct mapping_area *area)
1041 {
1042 	/*
1043 	 * Make sure we don't leak memory if a cpu UP notification
1044 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1045 	 */
1046 	if (area->vm)
1047 		return 0;
1048 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1049 	if (!area->vm)
1050 		return -ENOMEM;
1051 	return 0;
1052 }
1053 
1054 static inline void __zs_cpu_down(struct mapping_area *area)
1055 {
1056 	if (area->vm)
1057 		free_vm_area(area->vm);
1058 	area->vm = NULL;
1059 }
1060 
1061 static inline void *__zs_map_object(struct mapping_area *area,
1062 				struct page *pages[2], int off, int size)
1063 {
1064 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1065 	area->vm_addr = area->vm->addr;
1066 	return area->vm_addr + off;
1067 }
1068 
1069 static inline void __zs_unmap_object(struct mapping_area *area,
1070 				struct page *pages[2], int off, int size)
1071 {
1072 	unsigned long addr = (unsigned long)area->vm_addr;
1073 
1074 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1075 }
1076 
1077 #else /* CONFIG_PGTABLE_MAPPING */
1078 
1079 static inline int __zs_cpu_up(struct mapping_area *area)
1080 {
1081 	/*
1082 	 * Make sure we don't leak memory if a cpu UP notification
1083 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1084 	 */
1085 	if (area->vm_buf)
1086 		return 0;
1087 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1088 	if (!area->vm_buf)
1089 		return -ENOMEM;
1090 	return 0;
1091 }
1092 
1093 static inline void __zs_cpu_down(struct mapping_area *area)
1094 {
1095 	kfree(area->vm_buf);
1096 	area->vm_buf = NULL;
1097 }
1098 
1099 static void *__zs_map_object(struct mapping_area *area,
1100 			struct page *pages[2], int off, int size)
1101 {
1102 	int sizes[2];
1103 	void *addr;
1104 	char *buf = area->vm_buf;
1105 
1106 	/* disable page faults to match kmap_atomic() return conditions */
1107 	pagefault_disable();
1108 
1109 	/* no read fastpath */
1110 	if (area->vm_mm == ZS_MM_WO)
1111 		goto out;
1112 
1113 	sizes[0] = PAGE_SIZE - off;
1114 	sizes[1] = size - sizes[0];
1115 
1116 	/* copy object to per-cpu buffer */
1117 	addr = kmap_atomic(pages[0]);
1118 	memcpy(buf, addr + off, sizes[0]);
1119 	kunmap_atomic(addr);
1120 	addr = kmap_atomic(pages[1]);
1121 	memcpy(buf + sizes[0], addr, sizes[1]);
1122 	kunmap_atomic(addr);
1123 out:
1124 	return area->vm_buf;
1125 }
1126 
1127 static void __zs_unmap_object(struct mapping_area *area,
1128 			struct page *pages[2], int off, int size)
1129 {
1130 	int sizes[2];
1131 	void *addr;
1132 	char *buf;
1133 
1134 	/* no write fastpath */
1135 	if (area->vm_mm == ZS_MM_RO)
1136 		goto out;
1137 
1138 	buf = area->vm_buf;
1139 	buf = buf + ZS_HANDLE_SIZE;
1140 	size -= ZS_HANDLE_SIZE;
1141 	off += ZS_HANDLE_SIZE;
1142 
1143 	sizes[0] = PAGE_SIZE - off;
1144 	sizes[1] = size - sizes[0];
1145 
1146 	/* copy per-cpu buffer to object */
1147 	addr = kmap_atomic(pages[0]);
1148 	memcpy(addr + off, buf, sizes[0]);
1149 	kunmap_atomic(addr);
1150 	addr = kmap_atomic(pages[1]);
1151 	memcpy(addr, buf + sizes[0], sizes[1]);
1152 	kunmap_atomic(addr);
1153 
1154 out:
1155 	/* enable page faults to match kunmap_atomic() return conditions */
1156 	pagefault_enable();
1157 }
1158 
1159 #endif /* CONFIG_PGTABLE_MAPPING */
1160 
1161 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1162 				void *pcpu)
1163 {
1164 	int ret, cpu = (long)pcpu;
1165 	struct mapping_area *area;
1166 
1167 	switch (action) {
1168 	case CPU_UP_PREPARE:
1169 		area = &per_cpu(zs_map_area, cpu);
1170 		ret = __zs_cpu_up(area);
1171 		if (ret)
1172 			return notifier_from_errno(ret);
1173 		break;
1174 	case CPU_DEAD:
1175 	case CPU_UP_CANCELED:
1176 		area = &per_cpu(zs_map_area, cpu);
1177 		__zs_cpu_down(area);
1178 		break;
1179 	}
1180 
1181 	return NOTIFY_OK;
1182 }
1183 
1184 static struct notifier_block zs_cpu_nb = {
1185 	.notifier_call = zs_cpu_notifier
1186 };
1187 
1188 static int zs_register_cpu_notifier(void)
1189 {
1190 	int cpu, uninitialized_var(ret);
1191 
1192 	cpu_notifier_register_begin();
1193 
1194 	__register_cpu_notifier(&zs_cpu_nb);
1195 	for_each_online_cpu(cpu) {
1196 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1197 		if (notifier_to_errno(ret))
1198 			break;
1199 	}
1200 
1201 	cpu_notifier_register_done();
1202 	return notifier_to_errno(ret);
1203 }
1204 
1205 static void zs_unregister_cpu_notifier(void)
1206 {
1207 	int cpu;
1208 
1209 	cpu_notifier_register_begin();
1210 
1211 	for_each_online_cpu(cpu)
1212 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1213 	__unregister_cpu_notifier(&zs_cpu_nb);
1214 
1215 	cpu_notifier_register_done();
1216 }
1217 
1218 static void init_zs_size_classes(void)
1219 {
1220 	int nr;
1221 
1222 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1223 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1224 		nr += 1;
1225 
1226 	zs_size_classes = nr;
1227 }
1228 
1229 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1230 {
1231 	if (prev->pages_per_zspage != pages_per_zspage)
1232 		return false;
1233 
1234 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1235 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1236 		return false;
1237 
1238 	return true;
1239 }
1240 
1241 static bool zspage_full(struct page *first_page)
1242 {
1243 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
1244 
1245 	return first_page->inuse == first_page->objects;
1246 }
1247 
1248 unsigned long zs_get_total_pages(struct zs_pool *pool)
1249 {
1250 	return atomic_long_read(&pool->pages_allocated);
1251 }
1252 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1253 
1254 /**
1255  * zs_map_object - get address of allocated object from handle.
1256  * @pool: pool from which the object was allocated
1257  * @handle: handle returned from zs_malloc
1258  *
1259  * Before using an object allocated from zs_malloc, it must be mapped using
1260  * this function. When done with the object, it must be unmapped using
1261  * zs_unmap_object.
1262  *
1263  * Only one object can be mapped per cpu at a time. There is no protection
1264  * against nested mappings.
1265  *
1266  * This function returns with preemption and page faults disabled.
1267  */
1268 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1269 			enum zs_mapmode mm)
1270 {
1271 	struct page *page;
1272 	unsigned long obj, obj_idx, off;
1273 
1274 	unsigned int class_idx;
1275 	enum fullness_group fg;
1276 	struct size_class *class;
1277 	struct mapping_area *area;
1278 	struct page *pages[2];
1279 	void *ret;
1280 
1281 	/*
1282 	 * Because we use per-cpu mapping areas shared among the
1283 	 * pools/users, we can't allow mapping in interrupt context
1284 	 * because it can corrupt another users mappings.
1285 	 */
1286 	WARN_ON_ONCE(in_interrupt());
1287 
1288 	/* From now on, migration cannot move the object */
1289 	pin_tag(handle);
1290 
1291 	obj = handle_to_obj(handle);
1292 	obj_to_location(obj, &page, &obj_idx);
1293 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1294 	class = pool->size_class[class_idx];
1295 	off = obj_idx_to_offset(page, obj_idx, class->size);
1296 
1297 	area = &get_cpu_var(zs_map_area);
1298 	area->vm_mm = mm;
1299 	if (off + class->size <= PAGE_SIZE) {
1300 		/* this object is contained entirely within a page */
1301 		area->vm_addr = kmap_atomic(page);
1302 		ret = area->vm_addr + off;
1303 		goto out;
1304 	}
1305 
1306 	/* this object spans two pages */
1307 	pages[0] = page;
1308 	pages[1] = get_next_page(page);
1309 	BUG_ON(!pages[1]);
1310 
1311 	ret = __zs_map_object(area, pages, off, class->size);
1312 out:
1313 	if (!class->huge)
1314 		ret += ZS_HANDLE_SIZE;
1315 
1316 	return ret;
1317 }
1318 EXPORT_SYMBOL_GPL(zs_map_object);
1319 
1320 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1321 {
1322 	struct page *page;
1323 	unsigned long obj, obj_idx, off;
1324 
1325 	unsigned int class_idx;
1326 	enum fullness_group fg;
1327 	struct size_class *class;
1328 	struct mapping_area *area;
1329 
1330 	obj = handle_to_obj(handle);
1331 	obj_to_location(obj, &page, &obj_idx);
1332 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333 	class = pool->size_class[class_idx];
1334 	off = obj_idx_to_offset(page, obj_idx, class->size);
1335 
1336 	area = this_cpu_ptr(&zs_map_area);
1337 	if (off + class->size <= PAGE_SIZE)
1338 		kunmap_atomic(area->vm_addr);
1339 	else {
1340 		struct page *pages[2];
1341 
1342 		pages[0] = page;
1343 		pages[1] = get_next_page(page);
1344 		BUG_ON(!pages[1]);
1345 
1346 		__zs_unmap_object(area, pages, off, class->size);
1347 	}
1348 	put_cpu_var(zs_map_area);
1349 	unpin_tag(handle);
1350 }
1351 EXPORT_SYMBOL_GPL(zs_unmap_object);
1352 
1353 static unsigned long obj_malloc(struct size_class *class,
1354 				struct page *first_page, unsigned long handle)
1355 {
1356 	unsigned long obj;
1357 	struct link_free *link;
1358 
1359 	struct page *m_page;
1360 	unsigned long m_objidx, m_offset;
1361 	void *vaddr;
1362 
1363 	handle |= OBJ_ALLOCATED_TAG;
1364 	obj = (unsigned long)first_page->freelist;
1365 	obj_to_location(obj, &m_page, &m_objidx);
1366 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367 
1368 	vaddr = kmap_atomic(m_page);
1369 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 	first_page->freelist = link->next;
1371 	if (!class->huge)
1372 		/* record handle in the header of allocated chunk */
1373 		link->handle = handle;
1374 	else
1375 		/* record handle in first_page->private */
1376 		set_page_private(first_page, handle);
1377 	kunmap_atomic(vaddr);
1378 	first_page->inuse++;
1379 	zs_stat_inc(class, OBJ_USED, 1);
1380 
1381 	return obj;
1382 }
1383 
1384 
1385 /**
1386  * zs_malloc - Allocate block of given size from pool.
1387  * @pool: pool to allocate from
1388  * @size: size of block to allocate
1389  *
1390  * On success, handle to the allocated object is returned,
1391  * otherwise 0.
1392  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393  */
1394 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1395 {
1396 	unsigned long handle, obj;
1397 	struct size_class *class;
1398 	struct page *first_page;
1399 
1400 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401 		return 0;
1402 
1403 	handle = alloc_handle(pool, gfp);
1404 	if (!handle)
1405 		return 0;
1406 
1407 	/* extra space in chunk to keep the handle */
1408 	size += ZS_HANDLE_SIZE;
1409 	class = pool->size_class[get_size_class_index(size)];
1410 
1411 	spin_lock(&class->lock);
1412 	first_page = find_get_zspage(class);
1413 
1414 	if (!first_page) {
1415 		spin_unlock(&class->lock);
1416 		first_page = alloc_zspage(class, gfp);
1417 		if (unlikely(!first_page)) {
1418 			free_handle(pool, handle);
1419 			return 0;
1420 		}
1421 
1422 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423 		atomic_long_add(class->pages_per_zspage,
1424 					&pool->pages_allocated);
1425 
1426 		spin_lock(&class->lock);
1427 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428 				class->size, class->pages_per_zspage));
1429 	}
1430 
1431 	obj = obj_malloc(class, first_page, handle);
1432 	/* Now move the zspage to another fullness group, if required */
1433 	fix_fullness_group(class, first_page);
1434 	record_obj(handle, obj);
1435 	spin_unlock(&class->lock);
1436 
1437 	return handle;
1438 }
1439 EXPORT_SYMBOL_GPL(zs_malloc);
1440 
1441 static void obj_free(struct size_class *class, unsigned long obj)
1442 {
1443 	struct link_free *link;
1444 	struct page *first_page, *f_page;
1445 	unsigned long f_objidx, f_offset;
1446 	void *vaddr;
1447 
1448 	obj &= ~OBJ_ALLOCATED_TAG;
1449 	obj_to_location(obj, &f_page, &f_objidx);
1450 	first_page = get_first_page(f_page);
1451 
1452 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1453 
1454 	vaddr = kmap_atomic(f_page);
1455 
1456 	/* Insert this object in containing zspage's freelist */
1457 	link = (struct link_free *)(vaddr + f_offset);
1458 	link->next = first_page->freelist;
1459 	if (class->huge)
1460 		set_page_private(first_page, 0);
1461 	kunmap_atomic(vaddr);
1462 	first_page->freelist = (void *)obj;
1463 	first_page->inuse--;
1464 	zs_stat_dec(class, OBJ_USED, 1);
1465 }
1466 
1467 void zs_free(struct zs_pool *pool, unsigned long handle)
1468 {
1469 	struct page *first_page, *f_page;
1470 	unsigned long obj, f_objidx;
1471 	int class_idx;
1472 	struct size_class *class;
1473 	enum fullness_group fullness;
1474 
1475 	if (unlikely(!handle))
1476 		return;
1477 
1478 	pin_tag(handle);
1479 	obj = handle_to_obj(handle);
1480 	obj_to_location(obj, &f_page, &f_objidx);
1481 	first_page = get_first_page(f_page);
1482 
1483 	get_zspage_mapping(first_page, &class_idx, &fullness);
1484 	class = pool->size_class[class_idx];
1485 
1486 	spin_lock(&class->lock);
1487 	obj_free(class, obj);
1488 	fullness = fix_fullness_group(class, first_page);
1489 	if (fullness == ZS_EMPTY) {
1490 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1491 				class->size, class->pages_per_zspage));
1492 		atomic_long_sub(class->pages_per_zspage,
1493 				&pool->pages_allocated);
1494 		free_zspage(first_page);
1495 	}
1496 	spin_unlock(&class->lock);
1497 	unpin_tag(handle);
1498 
1499 	free_handle(pool, handle);
1500 }
1501 EXPORT_SYMBOL_GPL(zs_free);
1502 
1503 static void zs_object_copy(struct size_class *class, unsigned long dst,
1504 				unsigned long src)
1505 {
1506 	struct page *s_page, *d_page;
1507 	unsigned long s_objidx, d_objidx;
1508 	unsigned long s_off, d_off;
1509 	void *s_addr, *d_addr;
1510 	int s_size, d_size, size;
1511 	int written = 0;
1512 
1513 	s_size = d_size = class->size;
1514 
1515 	obj_to_location(src, &s_page, &s_objidx);
1516 	obj_to_location(dst, &d_page, &d_objidx);
1517 
1518 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1519 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1520 
1521 	if (s_off + class->size > PAGE_SIZE)
1522 		s_size = PAGE_SIZE - s_off;
1523 
1524 	if (d_off + class->size > PAGE_SIZE)
1525 		d_size = PAGE_SIZE - d_off;
1526 
1527 	s_addr = kmap_atomic(s_page);
1528 	d_addr = kmap_atomic(d_page);
1529 
1530 	while (1) {
1531 		size = min(s_size, d_size);
1532 		memcpy(d_addr + d_off, s_addr + s_off, size);
1533 		written += size;
1534 
1535 		if (written == class->size)
1536 			break;
1537 
1538 		s_off += size;
1539 		s_size -= size;
1540 		d_off += size;
1541 		d_size -= size;
1542 
1543 		if (s_off >= PAGE_SIZE) {
1544 			kunmap_atomic(d_addr);
1545 			kunmap_atomic(s_addr);
1546 			s_page = get_next_page(s_page);
1547 			s_addr = kmap_atomic(s_page);
1548 			d_addr = kmap_atomic(d_page);
1549 			s_size = class->size - written;
1550 			s_off = 0;
1551 		}
1552 
1553 		if (d_off >= PAGE_SIZE) {
1554 			kunmap_atomic(d_addr);
1555 			d_page = get_next_page(d_page);
1556 			d_addr = kmap_atomic(d_page);
1557 			d_size = class->size - written;
1558 			d_off = 0;
1559 		}
1560 	}
1561 
1562 	kunmap_atomic(d_addr);
1563 	kunmap_atomic(s_addr);
1564 }
1565 
1566 /*
1567  * Find alloced object in zspage from index object and
1568  * return handle.
1569  */
1570 static unsigned long find_alloced_obj(struct size_class *class,
1571 					struct page *page, int index)
1572 {
1573 	unsigned long head;
1574 	int offset = 0;
1575 	unsigned long handle = 0;
1576 	void *addr = kmap_atomic(page);
1577 
1578 	if (!is_first_page(page))
1579 		offset = page->index;
1580 	offset += class->size * index;
1581 
1582 	while (offset < PAGE_SIZE) {
1583 		head = obj_to_head(class, page, addr + offset);
1584 		if (head & OBJ_ALLOCATED_TAG) {
1585 			handle = head & ~OBJ_ALLOCATED_TAG;
1586 			if (trypin_tag(handle))
1587 				break;
1588 			handle = 0;
1589 		}
1590 
1591 		offset += class->size;
1592 		index++;
1593 	}
1594 
1595 	kunmap_atomic(addr);
1596 	return handle;
1597 }
1598 
1599 struct zs_compact_control {
1600 	/* Source page for migration which could be a subpage of zspage. */
1601 	struct page *s_page;
1602 	/* Destination page for migration which should be a first page
1603 	 * of zspage. */
1604 	struct page *d_page;
1605 	 /* Starting object index within @s_page which used for live object
1606 	  * in the subpage. */
1607 	int index;
1608 };
1609 
1610 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1611 				struct zs_compact_control *cc)
1612 {
1613 	unsigned long used_obj, free_obj;
1614 	unsigned long handle;
1615 	struct page *s_page = cc->s_page;
1616 	struct page *d_page = cc->d_page;
1617 	unsigned long index = cc->index;
1618 	int ret = 0;
1619 
1620 	while (1) {
1621 		handle = find_alloced_obj(class, s_page, index);
1622 		if (!handle) {
1623 			s_page = get_next_page(s_page);
1624 			if (!s_page)
1625 				break;
1626 			index = 0;
1627 			continue;
1628 		}
1629 
1630 		/* Stop if there is no more space */
1631 		if (zspage_full(d_page)) {
1632 			unpin_tag(handle);
1633 			ret = -ENOMEM;
1634 			break;
1635 		}
1636 
1637 		used_obj = handle_to_obj(handle);
1638 		free_obj = obj_malloc(class, d_page, handle);
1639 		zs_object_copy(class, free_obj, used_obj);
1640 		index++;
1641 		/*
1642 		 * record_obj updates handle's value to free_obj and it will
1643 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1644 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1645 		 * let's keep the lock bit.
1646 		 */
1647 		free_obj |= BIT(HANDLE_PIN_BIT);
1648 		record_obj(handle, free_obj);
1649 		unpin_tag(handle);
1650 		obj_free(class, used_obj);
1651 	}
1652 
1653 	/* Remember last position in this iteration */
1654 	cc->s_page = s_page;
1655 	cc->index = index;
1656 
1657 	return ret;
1658 }
1659 
1660 static struct page *isolate_target_page(struct size_class *class)
1661 {
1662 	int i;
1663 	struct page *page;
1664 
1665 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1666 		page = class->fullness_list[i];
1667 		if (page) {
1668 			remove_zspage(class, i, page);
1669 			break;
1670 		}
1671 	}
1672 
1673 	return page;
1674 }
1675 
1676 /*
1677  * putback_zspage - add @first_page into right class's fullness list
1678  * @pool: target pool
1679  * @class: destination class
1680  * @first_page: target page
1681  *
1682  * Return @fist_page's fullness_group
1683  */
1684 static enum fullness_group putback_zspage(struct zs_pool *pool,
1685 			struct size_class *class,
1686 			struct page *first_page)
1687 {
1688 	enum fullness_group fullness;
1689 
1690 	fullness = get_fullness_group(first_page);
1691 	insert_zspage(class, fullness, first_page);
1692 	set_zspage_mapping(first_page, class->index, fullness);
1693 
1694 	if (fullness == ZS_EMPTY) {
1695 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1696 			class->size, class->pages_per_zspage));
1697 		atomic_long_sub(class->pages_per_zspage,
1698 				&pool->pages_allocated);
1699 
1700 		free_zspage(first_page);
1701 	}
1702 
1703 	return fullness;
1704 }
1705 
1706 static struct page *isolate_source_page(struct size_class *class)
1707 {
1708 	int i;
1709 	struct page *page = NULL;
1710 
1711 	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1712 		page = class->fullness_list[i];
1713 		if (!page)
1714 			continue;
1715 
1716 		remove_zspage(class, i, page);
1717 		break;
1718 	}
1719 
1720 	return page;
1721 }
1722 
1723 /*
1724  *
1725  * Based on the number of unused allocated objects calculate
1726  * and return the number of pages that we can free.
1727  */
1728 static unsigned long zs_can_compact(struct size_class *class)
1729 {
1730 	unsigned long obj_wasted;
1731 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1732 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1733 
1734 	if (obj_allocated <= obj_used)
1735 		return 0;
1736 
1737 	obj_wasted = obj_allocated - obj_used;
1738 	obj_wasted /= get_maxobj_per_zspage(class->size,
1739 			class->pages_per_zspage);
1740 
1741 	return obj_wasted * class->pages_per_zspage;
1742 }
1743 
1744 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1745 {
1746 	struct zs_compact_control cc;
1747 	struct page *src_page;
1748 	struct page *dst_page = NULL;
1749 
1750 	spin_lock(&class->lock);
1751 	while ((src_page = isolate_source_page(class))) {
1752 
1753 		if (!zs_can_compact(class))
1754 			break;
1755 
1756 		cc.index = 0;
1757 		cc.s_page = src_page;
1758 
1759 		while ((dst_page = isolate_target_page(class))) {
1760 			cc.d_page = dst_page;
1761 			/*
1762 			 * If there is no more space in dst_page, resched
1763 			 * and see if anyone had allocated another zspage.
1764 			 */
1765 			if (!migrate_zspage(pool, class, &cc))
1766 				break;
1767 
1768 			putback_zspage(pool, class, dst_page);
1769 		}
1770 
1771 		/* Stop if we couldn't find slot */
1772 		if (dst_page == NULL)
1773 			break;
1774 
1775 		putback_zspage(pool, class, dst_page);
1776 		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1777 			pool->stats.pages_compacted += class->pages_per_zspage;
1778 		spin_unlock(&class->lock);
1779 		cond_resched();
1780 		spin_lock(&class->lock);
1781 	}
1782 
1783 	if (src_page)
1784 		putback_zspage(pool, class, src_page);
1785 
1786 	spin_unlock(&class->lock);
1787 }
1788 
1789 unsigned long zs_compact(struct zs_pool *pool)
1790 {
1791 	int i;
1792 	struct size_class *class;
1793 
1794 	for (i = zs_size_classes - 1; i >= 0; i--) {
1795 		class = pool->size_class[i];
1796 		if (!class)
1797 			continue;
1798 		if (class->index != i)
1799 			continue;
1800 		__zs_compact(pool, class);
1801 	}
1802 
1803 	return pool->stats.pages_compacted;
1804 }
1805 EXPORT_SYMBOL_GPL(zs_compact);
1806 
1807 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1808 {
1809 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1810 }
1811 EXPORT_SYMBOL_GPL(zs_pool_stats);
1812 
1813 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1814 		struct shrink_control *sc)
1815 {
1816 	unsigned long pages_freed;
1817 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1818 			shrinker);
1819 
1820 	pages_freed = pool->stats.pages_compacted;
1821 	/*
1822 	 * Compact classes and calculate compaction delta.
1823 	 * Can run concurrently with a manually triggered
1824 	 * (by user) compaction.
1825 	 */
1826 	pages_freed = zs_compact(pool) - pages_freed;
1827 
1828 	return pages_freed ? pages_freed : SHRINK_STOP;
1829 }
1830 
1831 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1832 		struct shrink_control *sc)
1833 {
1834 	int i;
1835 	struct size_class *class;
1836 	unsigned long pages_to_free = 0;
1837 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1838 			shrinker);
1839 
1840 	for (i = zs_size_classes - 1; i >= 0; i--) {
1841 		class = pool->size_class[i];
1842 		if (!class)
1843 			continue;
1844 		if (class->index != i)
1845 			continue;
1846 
1847 		pages_to_free += zs_can_compact(class);
1848 	}
1849 
1850 	return pages_to_free;
1851 }
1852 
1853 static void zs_unregister_shrinker(struct zs_pool *pool)
1854 {
1855 	if (pool->shrinker_enabled) {
1856 		unregister_shrinker(&pool->shrinker);
1857 		pool->shrinker_enabled = false;
1858 	}
1859 }
1860 
1861 static int zs_register_shrinker(struct zs_pool *pool)
1862 {
1863 	pool->shrinker.scan_objects = zs_shrinker_scan;
1864 	pool->shrinker.count_objects = zs_shrinker_count;
1865 	pool->shrinker.batch = 0;
1866 	pool->shrinker.seeks = DEFAULT_SEEKS;
1867 
1868 	return register_shrinker(&pool->shrinker);
1869 }
1870 
1871 /**
1872  * zs_create_pool - Creates an allocation pool to work from.
1873  * @flags: allocation flags used to allocate pool metadata
1874  *
1875  * This function must be called before anything when using
1876  * the zsmalloc allocator.
1877  *
1878  * On success, a pointer to the newly created pool is returned,
1879  * otherwise NULL.
1880  */
1881 struct zs_pool *zs_create_pool(const char *name)
1882 {
1883 	int i;
1884 	struct zs_pool *pool;
1885 	struct size_class *prev_class = NULL;
1886 
1887 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1888 	if (!pool)
1889 		return NULL;
1890 
1891 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1892 			GFP_KERNEL);
1893 	if (!pool->size_class) {
1894 		kfree(pool);
1895 		return NULL;
1896 	}
1897 
1898 	pool->name = kstrdup(name, GFP_KERNEL);
1899 	if (!pool->name)
1900 		goto err;
1901 
1902 	if (create_handle_cache(pool))
1903 		goto err;
1904 
1905 	/*
1906 	 * Iterate reversly, because, size of size_class that we want to use
1907 	 * for merging should be larger or equal to current size.
1908 	 */
1909 	for (i = zs_size_classes - 1; i >= 0; i--) {
1910 		int size;
1911 		int pages_per_zspage;
1912 		struct size_class *class;
1913 
1914 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1915 		if (size > ZS_MAX_ALLOC_SIZE)
1916 			size = ZS_MAX_ALLOC_SIZE;
1917 		pages_per_zspage = get_pages_per_zspage(size);
1918 
1919 		/*
1920 		 * size_class is used for normal zsmalloc operation such
1921 		 * as alloc/free for that size. Although it is natural that we
1922 		 * have one size_class for each size, there is a chance that we
1923 		 * can get more memory utilization if we use one size_class for
1924 		 * many different sizes whose size_class have same
1925 		 * characteristics. So, we makes size_class point to
1926 		 * previous size_class if possible.
1927 		 */
1928 		if (prev_class) {
1929 			if (can_merge(prev_class, size, pages_per_zspage)) {
1930 				pool->size_class[i] = prev_class;
1931 				continue;
1932 			}
1933 		}
1934 
1935 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1936 		if (!class)
1937 			goto err;
1938 
1939 		class->size = size;
1940 		class->index = i;
1941 		class->pages_per_zspage = pages_per_zspage;
1942 		if (pages_per_zspage == 1 &&
1943 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1944 			class->huge = true;
1945 		spin_lock_init(&class->lock);
1946 		pool->size_class[i] = class;
1947 
1948 		prev_class = class;
1949 	}
1950 
1951 	/* debug only, don't abort if it fails */
1952 	zs_pool_stat_create(pool, name);
1953 
1954 	/*
1955 	 * Not critical, we still can use the pool
1956 	 * and user can trigger compaction manually.
1957 	 */
1958 	if (zs_register_shrinker(pool) == 0)
1959 		pool->shrinker_enabled = true;
1960 	return pool;
1961 
1962 err:
1963 	zs_destroy_pool(pool);
1964 	return NULL;
1965 }
1966 EXPORT_SYMBOL_GPL(zs_create_pool);
1967 
1968 void zs_destroy_pool(struct zs_pool *pool)
1969 {
1970 	int i;
1971 
1972 	zs_unregister_shrinker(pool);
1973 	zs_pool_stat_destroy(pool);
1974 
1975 	for (i = 0; i < zs_size_classes; i++) {
1976 		int fg;
1977 		struct size_class *class = pool->size_class[i];
1978 
1979 		if (!class)
1980 			continue;
1981 
1982 		if (class->index != i)
1983 			continue;
1984 
1985 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1986 			if (class->fullness_list[fg]) {
1987 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1988 					class->size, fg);
1989 			}
1990 		}
1991 		kfree(class);
1992 	}
1993 
1994 	destroy_handle_cache(pool);
1995 	kfree(pool->size_class);
1996 	kfree(pool->name);
1997 	kfree(pool);
1998 }
1999 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2000 
2001 static int __init zs_init(void)
2002 {
2003 	int ret = zs_register_cpu_notifier();
2004 
2005 	if (ret)
2006 		goto notifier_fail;
2007 
2008 	init_zs_size_classes();
2009 
2010 #ifdef CONFIG_ZPOOL
2011 	zpool_register_driver(&zs_zpool_driver);
2012 #endif
2013 
2014 	ret = zs_stat_init();
2015 	if (ret) {
2016 		pr_err("zs stat initialization failed\n");
2017 		goto stat_fail;
2018 	}
2019 	return 0;
2020 
2021 stat_fail:
2022 #ifdef CONFIG_ZPOOL
2023 	zpool_unregister_driver(&zs_zpool_driver);
2024 #endif
2025 notifier_fail:
2026 	zs_unregister_cpu_notifier();
2027 
2028 	return ret;
2029 }
2030 
2031 static void __exit zs_exit(void)
2032 {
2033 #ifdef CONFIG_ZPOOL
2034 	zpool_unregister_driver(&zs_zpool_driver);
2035 #endif
2036 	zs_unregister_cpu_notifier();
2037 
2038 	zs_stat_exit();
2039 }
2040 
2041 module_init(zs_init);
2042 module_exit(zs_exit);
2043 
2044 MODULE_LICENSE("Dual BSD/GPL");
2045 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2046