xref: /linux/mm/zsmalloc.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private: refers to the component page after the first page
30  *		If the page is first_page for huge object, it stores handle.
31  *		Look at size_class->huge.
32  *	page->freelist: points to the first free object in zspage.
33  *		Free objects are linked together using in-place
34  *		metadata.
35  *	page->objects: maximum number of objects we can store in this
36  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
37  *	page->lru: links together first pages of various zspages.
38  *		Basically forming list of zspages in a fullness group.
39  *	page->mapping: class index and fullness group of the zspage
40  *	page->inuse: the number of objects that are used in this zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/module.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/bitops.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60 #include <linux/cpumask.h>
61 #include <linux/cpu.h>
62 #include <linux/vmalloc.h>
63 #include <linux/preempt.h>
64 #include <linux/spinlock.h>
65 #include <linux/types.h>
66 #include <linux/debugfs.h>
67 #include <linux/zsmalloc.h>
68 #include <linux/zpool.h>
69 
70 /*
71  * This must be power of 2 and greater than of equal to sizeof(link_free).
72  * These two conditions ensure that any 'struct link_free' itself doesn't
73  * span more than 1 page which avoids complex case of mapping 2 pages simply
74  * to restore link_free pointer values.
75  */
76 #define ZS_ALIGN		8
77 
78 /*
79  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
80  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
81  */
82 #define ZS_MAX_ZSPAGE_ORDER 2
83 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
84 
85 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
86 
87 /*
88  * Object location (<PFN>, <obj_idx>) is encoded as
89  * as single (unsigned long) handle value.
90  *
91  * Note that object index <obj_idx> is relative to system
92  * page <PFN> it is stored in, so for each sub-page belonging
93  * to a zspage, obj_idx starts with 0.
94  *
95  * This is made more complicated by various memory models and PAE.
96  */
97 
98 #ifndef MAX_PHYSMEM_BITS
99 #ifdef CONFIG_HIGHMEM64G
100 #define MAX_PHYSMEM_BITS 36
101 #else /* !CONFIG_HIGHMEM64G */
102 /*
103  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
104  * be PAGE_SHIFT
105  */
106 #define MAX_PHYSMEM_BITS BITS_PER_LONG
107 #endif
108 #endif
109 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
110 
111 /*
112  * Memory for allocating for handle keeps object position by
113  * encoding <page, obj_idx> and the encoded value has a room
114  * in least bit(ie, look at obj_to_location).
115  * We use the bit to synchronize between object access by
116  * user and migration.
117  */
118 #define HANDLE_PIN_BIT	0
119 
120 /*
121  * Head in allocated object should have OBJ_ALLOCATED_TAG
122  * to identify the object was allocated or not.
123  * It's okay to add the status bit in the least bit because
124  * header keeps handle which is 4byte-aligned address so we
125  * have room for two bit at least.
126  */
127 #define OBJ_ALLOCATED_TAG 1
128 #define OBJ_TAG_BITS 1
129 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
130 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
131 
132 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
133 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
134 #define ZS_MIN_ALLOC_SIZE \
135 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
136 /* each chunk includes extra space to keep handle */
137 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
138 
139 /*
140  * On systems with 4K page size, this gives 255 size classes! There is a
141  * trader-off here:
142  *  - Large number of size classes is potentially wasteful as free page are
143  *    spread across these classes
144  *  - Small number of size classes causes large internal fragmentation
145  *  - Probably its better to use specific size classes (empirically
146  *    determined). NOTE: all those class sizes must be set as multiple of
147  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
148  *
149  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
150  *  (reason above)
151  */
152 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
153 
154 /*
155  * We do not maintain any list for completely empty or full pages
156  */
157 enum fullness_group {
158 	ZS_ALMOST_FULL,
159 	ZS_ALMOST_EMPTY,
160 	_ZS_NR_FULLNESS_GROUPS,
161 
162 	ZS_EMPTY,
163 	ZS_FULL
164 };
165 
166 enum zs_stat_type {
167 	OBJ_ALLOCATED,
168 	OBJ_USED,
169 	CLASS_ALMOST_FULL,
170 	CLASS_ALMOST_EMPTY,
171 };
172 
173 #ifdef CONFIG_ZSMALLOC_STAT
174 #define NR_ZS_STAT_TYPE	(CLASS_ALMOST_EMPTY + 1)
175 #else
176 #define NR_ZS_STAT_TYPE	(OBJ_USED + 1)
177 #endif
178 
179 struct zs_size_stat {
180 	unsigned long objs[NR_ZS_STAT_TYPE];
181 };
182 
183 #ifdef CONFIG_ZSMALLOC_STAT
184 static struct dentry *zs_stat_root;
185 #endif
186 
187 /*
188  * number of size_classes
189  */
190 static int zs_size_classes;
191 
192 /*
193  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
194  *	n <= N / f, where
195  * n = number of allocated objects
196  * N = total number of objects zspage can store
197  * f = fullness_threshold_frac
198  *
199  * Similarly, we assign zspage to:
200  *	ZS_ALMOST_FULL	when n > N / f
201  *	ZS_EMPTY	when n == 0
202  *	ZS_FULL		when n == N
203  *
204  * (see: fix_fullness_group())
205  */
206 static const int fullness_threshold_frac = 4;
207 
208 struct size_class {
209 	spinlock_t lock;
210 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
211 	/*
212 	 * Size of objects stored in this class. Must be multiple
213 	 * of ZS_ALIGN.
214 	 */
215 	int size;
216 	unsigned int index;
217 
218 	struct zs_size_stat stats;
219 
220 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
221 	int pages_per_zspage;
222 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
223 	bool huge;
224 };
225 
226 /*
227  * Placed within free objects to form a singly linked list.
228  * For every zspage, first_page->freelist gives head of this list.
229  *
230  * This must be power of 2 and less than or equal to ZS_ALIGN
231  */
232 struct link_free {
233 	union {
234 		/*
235 		 * Position of next free chunk (encodes <PFN, obj_idx>)
236 		 * It's valid for non-allocated object
237 		 */
238 		void *next;
239 		/*
240 		 * Handle of allocated object.
241 		 */
242 		unsigned long handle;
243 	};
244 };
245 
246 struct zs_pool {
247 	const char *name;
248 
249 	struct size_class **size_class;
250 	struct kmem_cache *handle_cachep;
251 
252 	atomic_long_t pages_allocated;
253 
254 	struct zs_pool_stats stats;
255 
256 	/* Compact classes */
257 	struct shrinker shrinker;
258 	/*
259 	 * To signify that register_shrinker() was successful
260 	 * and unregister_shrinker() will not Oops.
261 	 */
262 	bool shrinker_enabled;
263 #ifdef CONFIG_ZSMALLOC_STAT
264 	struct dentry *stat_dentry;
265 #endif
266 };
267 
268 /*
269  * A zspage's class index and fullness group
270  * are encoded in its (first)page->mapping
271  */
272 #define CLASS_IDX_BITS	28
273 #define FULLNESS_BITS	4
274 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
275 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
276 
277 struct mapping_area {
278 #ifdef CONFIG_PGTABLE_MAPPING
279 	struct vm_struct *vm; /* vm area for mapping object that span pages */
280 #else
281 	char *vm_buf; /* copy buffer for objects that span pages */
282 #endif
283 	char *vm_addr; /* address of kmap_atomic()'ed pages */
284 	enum zs_mapmode vm_mm; /* mapping mode */
285 };
286 
287 static int create_handle_cache(struct zs_pool *pool)
288 {
289 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
290 					0, 0, NULL);
291 	return pool->handle_cachep ? 0 : 1;
292 }
293 
294 static void destroy_handle_cache(struct zs_pool *pool)
295 {
296 	kmem_cache_destroy(pool->handle_cachep);
297 }
298 
299 static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
300 {
301 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
302 			gfp & ~__GFP_HIGHMEM);
303 }
304 
305 static void free_handle(struct zs_pool *pool, unsigned long handle)
306 {
307 	kmem_cache_free(pool->handle_cachep, (void *)handle);
308 }
309 
310 static void record_obj(unsigned long handle, unsigned long obj)
311 {
312 	/*
313 	 * lsb of @obj represents handle lock while other bits
314 	 * represent object value the handle is pointing so
315 	 * updating shouldn't do store tearing.
316 	 */
317 	WRITE_ONCE(*(unsigned long *)handle, obj);
318 }
319 
320 /* zpool driver */
321 
322 #ifdef CONFIG_ZPOOL
323 
324 static void *zs_zpool_create(const char *name, gfp_t gfp,
325 			     const struct zpool_ops *zpool_ops,
326 			     struct zpool *zpool)
327 {
328 	/*
329 	 * Ignore global gfp flags: zs_malloc() may be invoked from
330 	 * different contexts and its caller must provide a valid
331 	 * gfp mask.
332 	 */
333 	return zs_create_pool(name);
334 }
335 
336 static void zs_zpool_destroy(void *pool)
337 {
338 	zs_destroy_pool(pool);
339 }
340 
341 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
342 			unsigned long *handle)
343 {
344 	*handle = zs_malloc(pool, size, gfp);
345 	return *handle ? 0 : -1;
346 }
347 static void zs_zpool_free(void *pool, unsigned long handle)
348 {
349 	zs_free(pool, handle);
350 }
351 
352 static int zs_zpool_shrink(void *pool, unsigned int pages,
353 			unsigned int *reclaimed)
354 {
355 	return -EINVAL;
356 }
357 
358 static void *zs_zpool_map(void *pool, unsigned long handle,
359 			enum zpool_mapmode mm)
360 {
361 	enum zs_mapmode zs_mm;
362 
363 	switch (mm) {
364 	case ZPOOL_MM_RO:
365 		zs_mm = ZS_MM_RO;
366 		break;
367 	case ZPOOL_MM_WO:
368 		zs_mm = ZS_MM_WO;
369 		break;
370 	case ZPOOL_MM_RW: /* fallthru */
371 	default:
372 		zs_mm = ZS_MM_RW;
373 		break;
374 	}
375 
376 	return zs_map_object(pool, handle, zs_mm);
377 }
378 static void zs_zpool_unmap(void *pool, unsigned long handle)
379 {
380 	zs_unmap_object(pool, handle);
381 }
382 
383 static u64 zs_zpool_total_size(void *pool)
384 {
385 	return zs_get_total_pages(pool) << PAGE_SHIFT;
386 }
387 
388 static struct zpool_driver zs_zpool_driver = {
389 	.type =		"zsmalloc",
390 	.owner =	THIS_MODULE,
391 	.create =	zs_zpool_create,
392 	.destroy =	zs_zpool_destroy,
393 	.malloc =	zs_zpool_malloc,
394 	.free =		zs_zpool_free,
395 	.shrink =	zs_zpool_shrink,
396 	.map =		zs_zpool_map,
397 	.unmap =	zs_zpool_unmap,
398 	.total_size =	zs_zpool_total_size,
399 };
400 
401 MODULE_ALIAS("zpool-zsmalloc");
402 #endif /* CONFIG_ZPOOL */
403 
404 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
405 {
406 	return pages_per_zspage * PAGE_SIZE / size;
407 }
408 
409 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
410 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
411 
412 static int is_first_page(struct page *page)
413 {
414 	return PagePrivate(page);
415 }
416 
417 static int is_last_page(struct page *page)
418 {
419 	return PagePrivate2(page);
420 }
421 
422 static void get_zspage_mapping(struct page *first_page,
423 				unsigned int *class_idx,
424 				enum fullness_group *fullness)
425 {
426 	unsigned long m;
427 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
428 
429 	m = (unsigned long)first_page->mapping;
430 	*fullness = m & FULLNESS_MASK;
431 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
432 }
433 
434 static void set_zspage_mapping(struct page *first_page,
435 				unsigned int class_idx,
436 				enum fullness_group fullness)
437 {
438 	unsigned long m;
439 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
440 
441 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
442 			(fullness & FULLNESS_MASK);
443 	first_page->mapping = (struct address_space *)m;
444 }
445 
446 /*
447  * zsmalloc divides the pool into various size classes where each
448  * class maintains a list of zspages where each zspage is divided
449  * into equal sized chunks. Each allocation falls into one of these
450  * classes depending on its size. This function returns index of the
451  * size class which has chunk size big enough to hold the give size.
452  */
453 static int get_size_class_index(int size)
454 {
455 	int idx = 0;
456 
457 	if (likely(size > ZS_MIN_ALLOC_SIZE))
458 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
459 				ZS_SIZE_CLASS_DELTA);
460 
461 	return min(zs_size_classes - 1, idx);
462 }
463 
464 static inline void zs_stat_inc(struct size_class *class,
465 				enum zs_stat_type type, unsigned long cnt)
466 {
467 	if (type < NR_ZS_STAT_TYPE)
468 		class->stats.objs[type] += cnt;
469 }
470 
471 static inline void zs_stat_dec(struct size_class *class,
472 				enum zs_stat_type type, unsigned long cnt)
473 {
474 	if (type < NR_ZS_STAT_TYPE)
475 		class->stats.objs[type] -= cnt;
476 }
477 
478 static inline unsigned long zs_stat_get(struct size_class *class,
479 				enum zs_stat_type type)
480 {
481 	if (type < NR_ZS_STAT_TYPE)
482 		return class->stats.objs[type];
483 	return 0;
484 }
485 
486 #ifdef CONFIG_ZSMALLOC_STAT
487 
488 static void __init zs_stat_init(void)
489 {
490 	if (!debugfs_initialized()) {
491 		pr_warn("debugfs not available, stat dir not created\n");
492 		return;
493 	}
494 
495 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
496 	if (!zs_stat_root)
497 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
498 }
499 
500 static void __exit zs_stat_exit(void)
501 {
502 	debugfs_remove_recursive(zs_stat_root);
503 }
504 
505 static unsigned long zs_can_compact(struct size_class *class);
506 
507 static int zs_stats_size_show(struct seq_file *s, void *v)
508 {
509 	int i;
510 	struct zs_pool *pool = s->private;
511 	struct size_class *class;
512 	int objs_per_zspage;
513 	unsigned long class_almost_full, class_almost_empty;
514 	unsigned long obj_allocated, obj_used, pages_used, freeable;
515 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
516 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
517 	unsigned long total_freeable = 0;
518 
519 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
520 			"class", "size", "almost_full", "almost_empty",
521 			"obj_allocated", "obj_used", "pages_used",
522 			"pages_per_zspage", "freeable");
523 
524 	for (i = 0; i < zs_size_classes; i++) {
525 		class = pool->size_class[i];
526 
527 		if (class->index != i)
528 			continue;
529 
530 		spin_lock(&class->lock);
531 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
532 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
533 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
534 		obj_used = zs_stat_get(class, OBJ_USED);
535 		freeable = zs_can_compact(class);
536 		spin_unlock(&class->lock);
537 
538 		objs_per_zspage = get_maxobj_per_zspage(class->size,
539 				class->pages_per_zspage);
540 		pages_used = obj_allocated / objs_per_zspage *
541 				class->pages_per_zspage;
542 
543 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
544 				" %10lu %10lu %16d %8lu\n",
545 			i, class->size, class_almost_full, class_almost_empty,
546 			obj_allocated, obj_used, pages_used,
547 			class->pages_per_zspage, freeable);
548 
549 		total_class_almost_full += class_almost_full;
550 		total_class_almost_empty += class_almost_empty;
551 		total_objs += obj_allocated;
552 		total_used_objs += obj_used;
553 		total_pages += pages_used;
554 		total_freeable += freeable;
555 	}
556 
557 	seq_puts(s, "\n");
558 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
559 			"Total", "", total_class_almost_full,
560 			total_class_almost_empty, total_objs,
561 			total_used_objs, total_pages, "", total_freeable);
562 
563 	return 0;
564 }
565 
566 static int zs_stats_size_open(struct inode *inode, struct file *file)
567 {
568 	return single_open(file, zs_stats_size_show, inode->i_private);
569 }
570 
571 static const struct file_operations zs_stat_size_ops = {
572 	.open           = zs_stats_size_open,
573 	.read           = seq_read,
574 	.llseek         = seq_lseek,
575 	.release        = single_release,
576 };
577 
578 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
579 {
580 	struct dentry *entry;
581 
582 	if (!zs_stat_root) {
583 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
584 		return;
585 	}
586 
587 	entry = debugfs_create_dir(name, zs_stat_root);
588 	if (!entry) {
589 		pr_warn("debugfs dir <%s> creation failed\n", name);
590 		return;
591 	}
592 	pool->stat_dentry = entry;
593 
594 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
595 			pool->stat_dentry, pool, &zs_stat_size_ops);
596 	if (!entry) {
597 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
598 				name, "classes");
599 		debugfs_remove_recursive(pool->stat_dentry);
600 		pool->stat_dentry = NULL;
601 	}
602 }
603 
604 static void zs_pool_stat_destroy(struct zs_pool *pool)
605 {
606 	debugfs_remove_recursive(pool->stat_dentry);
607 }
608 
609 #else /* CONFIG_ZSMALLOC_STAT */
610 static void __init zs_stat_init(void)
611 {
612 }
613 
614 static void __exit zs_stat_exit(void)
615 {
616 }
617 
618 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
619 {
620 }
621 
622 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
623 {
624 }
625 #endif
626 
627 /*
628  * For each size class, zspages are divided into different groups
629  * depending on how "full" they are. This was done so that we could
630  * easily find empty or nearly empty zspages when we try to shrink
631  * the pool (not yet implemented). This function returns fullness
632  * status of the given page.
633  */
634 static enum fullness_group get_fullness_group(struct page *first_page)
635 {
636 	int inuse, max_objects;
637 	enum fullness_group fg;
638 
639 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
640 
641 	inuse = first_page->inuse;
642 	max_objects = first_page->objects;
643 
644 	if (inuse == 0)
645 		fg = ZS_EMPTY;
646 	else if (inuse == max_objects)
647 		fg = ZS_FULL;
648 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
649 		fg = ZS_ALMOST_EMPTY;
650 	else
651 		fg = ZS_ALMOST_FULL;
652 
653 	return fg;
654 }
655 
656 /*
657  * Each size class maintains various freelists and zspages are assigned
658  * to one of these freelists based on the number of live objects they
659  * have. This functions inserts the given zspage into the freelist
660  * identified by <class, fullness_group>.
661  */
662 static void insert_zspage(struct size_class *class,
663 				enum fullness_group fullness,
664 				struct page *first_page)
665 {
666 	struct page **head;
667 
668 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
669 
670 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
671 		return;
672 
673 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
674 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
675 
676 	head = &class->fullness_list[fullness];
677 	if (!*head) {
678 		*head = first_page;
679 		return;
680 	}
681 
682 	/*
683 	 * We want to see more ZS_FULL pages and less almost
684 	 * empty/full. Put pages with higher ->inuse first.
685 	 */
686 	list_add_tail(&first_page->lru, &(*head)->lru);
687 	if (first_page->inuse >= (*head)->inuse)
688 		*head = first_page;
689 }
690 
691 /*
692  * This function removes the given zspage from the freelist identified
693  * by <class, fullness_group>.
694  */
695 static void remove_zspage(struct size_class *class,
696 				enum fullness_group fullness,
697 				struct page *first_page)
698 {
699 	struct page **head;
700 
701 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
702 
703 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
704 		return;
705 
706 	head = &class->fullness_list[fullness];
707 	VM_BUG_ON_PAGE(!*head, first_page);
708 	if (list_empty(&(*head)->lru))
709 		*head = NULL;
710 	else if (*head == first_page)
711 		*head = (struct page *)list_entry((*head)->lru.next,
712 					struct page, lru);
713 
714 	list_del_init(&first_page->lru);
715 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
716 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
717 }
718 
719 /*
720  * Each size class maintains zspages in different fullness groups depending
721  * on the number of live objects they contain. When allocating or freeing
722  * objects, the fullness status of the page can change, say, from ALMOST_FULL
723  * to ALMOST_EMPTY when freeing an object. This function checks if such
724  * a status change has occurred for the given page and accordingly moves the
725  * page from the freelist of the old fullness group to that of the new
726  * fullness group.
727  */
728 static enum fullness_group fix_fullness_group(struct size_class *class,
729 						struct page *first_page)
730 {
731 	int class_idx;
732 	enum fullness_group currfg, newfg;
733 
734 	get_zspage_mapping(first_page, &class_idx, &currfg);
735 	newfg = get_fullness_group(first_page);
736 	if (newfg == currfg)
737 		goto out;
738 
739 	remove_zspage(class, currfg, first_page);
740 	insert_zspage(class, newfg, first_page);
741 	set_zspage_mapping(first_page, class_idx, newfg);
742 
743 out:
744 	return newfg;
745 }
746 
747 /*
748  * We have to decide on how many pages to link together
749  * to form a zspage for each size class. This is important
750  * to reduce wastage due to unusable space left at end of
751  * each zspage which is given as:
752  *     wastage = Zp % class_size
753  *     usage = Zp - wastage
754  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
755  *
756  * For example, for size class of 3/8 * PAGE_SIZE, we should
757  * link together 3 PAGE_SIZE sized pages to form a zspage
758  * since then we can perfectly fit in 8 such objects.
759  */
760 static int get_pages_per_zspage(int class_size)
761 {
762 	int i, max_usedpc = 0;
763 	/* zspage order which gives maximum used size per KB */
764 	int max_usedpc_order = 1;
765 
766 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
767 		int zspage_size;
768 		int waste, usedpc;
769 
770 		zspage_size = i * PAGE_SIZE;
771 		waste = zspage_size % class_size;
772 		usedpc = (zspage_size - waste) * 100 / zspage_size;
773 
774 		if (usedpc > max_usedpc) {
775 			max_usedpc = usedpc;
776 			max_usedpc_order = i;
777 		}
778 	}
779 
780 	return max_usedpc_order;
781 }
782 
783 /*
784  * A single 'zspage' is composed of many system pages which are
785  * linked together using fields in struct page. This function finds
786  * the first/head page, given any component page of a zspage.
787  */
788 static struct page *get_first_page(struct page *page)
789 {
790 	if (is_first_page(page))
791 		return page;
792 	else
793 		return (struct page *)page_private(page);
794 }
795 
796 static struct page *get_next_page(struct page *page)
797 {
798 	struct page *next;
799 
800 	if (is_last_page(page))
801 		next = NULL;
802 	else if (is_first_page(page))
803 		next = (struct page *)page_private(page);
804 	else
805 		next = list_entry(page->lru.next, struct page, lru);
806 
807 	return next;
808 }
809 
810 /*
811  * Encode <page, obj_idx> as a single handle value.
812  * We use the least bit of handle for tagging.
813  */
814 static void *location_to_obj(struct page *page, unsigned long obj_idx)
815 {
816 	unsigned long obj;
817 
818 	if (!page) {
819 		VM_BUG_ON(obj_idx);
820 		return NULL;
821 	}
822 
823 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
824 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
825 	obj <<= OBJ_TAG_BITS;
826 
827 	return (void *)obj;
828 }
829 
830 /*
831  * Decode <page, obj_idx> pair from the given object handle. We adjust the
832  * decoded obj_idx back to its original value since it was adjusted in
833  * location_to_obj().
834  */
835 static void obj_to_location(unsigned long obj, struct page **page,
836 				unsigned long *obj_idx)
837 {
838 	obj >>= OBJ_TAG_BITS;
839 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
840 	*obj_idx = (obj & OBJ_INDEX_MASK);
841 }
842 
843 static unsigned long handle_to_obj(unsigned long handle)
844 {
845 	return *(unsigned long *)handle;
846 }
847 
848 static unsigned long obj_to_head(struct size_class *class, struct page *page,
849 			void *obj)
850 {
851 	if (class->huge) {
852 		VM_BUG_ON_PAGE(!is_first_page(page), page);
853 		return page_private(page);
854 	} else
855 		return *(unsigned long *)obj;
856 }
857 
858 static unsigned long obj_idx_to_offset(struct page *page,
859 				unsigned long obj_idx, int class_size)
860 {
861 	unsigned long off = 0;
862 
863 	if (!is_first_page(page))
864 		off = page->index;
865 
866 	return off + obj_idx * class_size;
867 }
868 
869 static inline int trypin_tag(unsigned long handle)
870 {
871 	unsigned long *ptr = (unsigned long *)handle;
872 
873 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
874 }
875 
876 static void pin_tag(unsigned long handle)
877 {
878 	while (!trypin_tag(handle));
879 }
880 
881 static void unpin_tag(unsigned long handle)
882 {
883 	unsigned long *ptr = (unsigned long *)handle;
884 
885 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
886 }
887 
888 static void reset_page(struct page *page)
889 {
890 	clear_bit(PG_private, &page->flags);
891 	clear_bit(PG_private_2, &page->flags);
892 	set_page_private(page, 0);
893 	page->mapping = NULL;
894 	page->freelist = NULL;
895 	page_mapcount_reset(page);
896 }
897 
898 static void free_zspage(struct page *first_page)
899 {
900 	struct page *nextp, *tmp, *head_extra;
901 
902 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
903 	VM_BUG_ON_PAGE(first_page->inuse, first_page);
904 
905 	head_extra = (struct page *)page_private(first_page);
906 
907 	reset_page(first_page);
908 	__free_page(first_page);
909 
910 	/* zspage with only 1 system page */
911 	if (!head_extra)
912 		return;
913 
914 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
915 		list_del(&nextp->lru);
916 		reset_page(nextp);
917 		__free_page(nextp);
918 	}
919 	reset_page(head_extra);
920 	__free_page(head_extra);
921 }
922 
923 /* Initialize a newly allocated zspage */
924 static void init_zspage(struct size_class *class, struct page *first_page)
925 {
926 	unsigned long off = 0;
927 	struct page *page = first_page;
928 
929 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
930 
931 	while (page) {
932 		struct page *next_page;
933 		struct link_free *link;
934 		unsigned int i = 1;
935 		void *vaddr;
936 
937 		/*
938 		 * page->index stores offset of first object starting
939 		 * in the page. For the first page, this is always 0,
940 		 * so we use first_page->index (aka ->freelist) to store
941 		 * head of corresponding zspage's freelist.
942 		 */
943 		if (page != first_page)
944 			page->index = off;
945 
946 		vaddr = kmap_atomic(page);
947 		link = (struct link_free *)vaddr + off / sizeof(*link);
948 
949 		while ((off += class->size) < PAGE_SIZE) {
950 			link->next = location_to_obj(page, i++);
951 			link += class->size / sizeof(*link);
952 		}
953 
954 		/*
955 		 * We now come to the last (full or partial) object on this
956 		 * page, which must point to the first object on the next
957 		 * page (if present)
958 		 */
959 		next_page = get_next_page(page);
960 		link->next = location_to_obj(next_page, 0);
961 		kunmap_atomic(vaddr);
962 		page = next_page;
963 		off %= PAGE_SIZE;
964 	}
965 }
966 
967 /*
968  * Allocate a zspage for the given size class
969  */
970 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
971 {
972 	int i, error;
973 	struct page *first_page = NULL, *uninitialized_var(prev_page);
974 
975 	/*
976 	 * Allocate individual pages and link them together as:
977 	 * 1. first page->private = first sub-page
978 	 * 2. all sub-pages are linked together using page->lru
979 	 * 3. each sub-page is linked to the first page using page->private
980 	 *
981 	 * For each size class, First/Head pages are linked together using
982 	 * page->lru. Also, we set PG_private to identify the first page
983 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
984 	 * identify the last page.
985 	 */
986 	error = -ENOMEM;
987 	for (i = 0; i < class->pages_per_zspage; i++) {
988 		struct page *page;
989 
990 		page = alloc_page(flags);
991 		if (!page)
992 			goto cleanup;
993 
994 		INIT_LIST_HEAD(&page->lru);
995 		if (i == 0) {	/* first page */
996 			SetPagePrivate(page);
997 			set_page_private(page, 0);
998 			first_page = page;
999 			first_page->inuse = 0;
1000 		}
1001 		if (i == 1)
1002 			set_page_private(first_page, (unsigned long)page);
1003 		if (i >= 1)
1004 			set_page_private(page, (unsigned long)first_page);
1005 		if (i >= 2)
1006 			list_add(&page->lru, &prev_page->lru);
1007 		if (i == class->pages_per_zspage - 1)	/* last page */
1008 			SetPagePrivate2(page);
1009 		prev_page = page;
1010 	}
1011 
1012 	init_zspage(class, first_page);
1013 
1014 	first_page->freelist = location_to_obj(first_page, 0);
1015 	/* Maximum number of objects we can store in this zspage */
1016 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1017 
1018 	error = 0; /* Success */
1019 
1020 cleanup:
1021 	if (unlikely(error) && first_page) {
1022 		free_zspage(first_page);
1023 		first_page = NULL;
1024 	}
1025 
1026 	return first_page;
1027 }
1028 
1029 static struct page *find_get_zspage(struct size_class *class)
1030 {
1031 	int i;
1032 	struct page *page;
1033 
1034 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1035 		page = class->fullness_list[i];
1036 		if (page)
1037 			break;
1038 	}
1039 
1040 	return page;
1041 }
1042 
1043 #ifdef CONFIG_PGTABLE_MAPPING
1044 static inline int __zs_cpu_up(struct mapping_area *area)
1045 {
1046 	/*
1047 	 * Make sure we don't leak memory if a cpu UP notification
1048 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1049 	 */
1050 	if (area->vm)
1051 		return 0;
1052 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1053 	if (!area->vm)
1054 		return -ENOMEM;
1055 	return 0;
1056 }
1057 
1058 static inline void __zs_cpu_down(struct mapping_area *area)
1059 {
1060 	if (area->vm)
1061 		free_vm_area(area->vm);
1062 	area->vm = NULL;
1063 }
1064 
1065 static inline void *__zs_map_object(struct mapping_area *area,
1066 				struct page *pages[2], int off, int size)
1067 {
1068 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1069 	area->vm_addr = area->vm->addr;
1070 	return area->vm_addr + off;
1071 }
1072 
1073 static inline void __zs_unmap_object(struct mapping_area *area,
1074 				struct page *pages[2], int off, int size)
1075 {
1076 	unsigned long addr = (unsigned long)area->vm_addr;
1077 
1078 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1079 }
1080 
1081 #else /* CONFIG_PGTABLE_MAPPING */
1082 
1083 static inline int __zs_cpu_up(struct mapping_area *area)
1084 {
1085 	/*
1086 	 * Make sure we don't leak memory if a cpu UP notification
1087 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1088 	 */
1089 	if (area->vm_buf)
1090 		return 0;
1091 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1092 	if (!area->vm_buf)
1093 		return -ENOMEM;
1094 	return 0;
1095 }
1096 
1097 static inline void __zs_cpu_down(struct mapping_area *area)
1098 {
1099 	kfree(area->vm_buf);
1100 	area->vm_buf = NULL;
1101 }
1102 
1103 static void *__zs_map_object(struct mapping_area *area,
1104 			struct page *pages[2], int off, int size)
1105 {
1106 	int sizes[2];
1107 	void *addr;
1108 	char *buf = area->vm_buf;
1109 
1110 	/* disable page faults to match kmap_atomic() return conditions */
1111 	pagefault_disable();
1112 
1113 	/* no read fastpath */
1114 	if (area->vm_mm == ZS_MM_WO)
1115 		goto out;
1116 
1117 	sizes[0] = PAGE_SIZE - off;
1118 	sizes[1] = size - sizes[0];
1119 
1120 	/* copy object to per-cpu buffer */
1121 	addr = kmap_atomic(pages[0]);
1122 	memcpy(buf, addr + off, sizes[0]);
1123 	kunmap_atomic(addr);
1124 	addr = kmap_atomic(pages[1]);
1125 	memcpy(buf + sizes[0], addr, sizes[1]);
1126 	kunmap_atomic(addr);
1127 out:
1128 	return area->vm_buf;
1129 }
1130 
1131 static void __zs_unmap_object(struct mapping_area *area,
1132 			struct page *pages[2], int off, int size)
1133 {
1134 	int sizes[2];
1135 	void *addr;
1136 	char *buf;
1137 
1138 	/* no write fastpath */
1139 	if (area->vm_mm == ZS_MM_RO)
1140 		goto out;
1141 
1142 	buf = area->vm_buf;
1143 	buf = buf + ZS_HANDLE_SIZE;
1144 	size -= ZS_HANDLE_SIZE;
1145 	off += ZS_HANDLE_SIZE;
1146 
1147 	sizes[0] = PAGE_SIZE - off;
1148 	sizes[1] = size - sizes[0];
1149 
1150 	/* copy per-cpu buffer to object */
1151 	addr = kmap_atomic(pages[0]);
1152 	memcpy(addr + off, buf, sizes[0]);
1153 	kunmap_atomic(addr);
1154 	addr = kmap_atomic(pages[1]);
1155 	memcpy(addr, buf + sizes[0], sizes[1]);
1156 	kunmap_atomic(addr);
1157 
1158 out:
1159 	/* enable page faults to match kunmap_atomic() return conditions */
1160 	pagefault_enable();
1161 }
1162 
1163 #endif /* CONFIG_PGTABLE_MAPPING */
1164 
1165 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1166 				void *pcpu)
1167 {
1168 	int ret, cpu = (long)pcpu;
1169 	struct mapping_area *area;
1170 
1171 	switch (action) {
1172 	case CPU_UP_PREPARE:
1173 		area = &per_cpu(zs_map_area, cpu);
1174 		ret = __zs_cpu_up(area);
1175 		if (ret)
1176 			return notifier_from_errno(ret);
1177 		break;
1178 	case CPU_DEAD:
1179 	case CPU_UP_CANCELED:
1180 		area = &per_cpu(zs_map_area, cpu);
1181 		__zs_cpu_down(area);
1182 		break;
1183 	}
1184 
1185 	return NOTIFY_OK;
1186 }
1187 
1188 static struct notifier_block zs_cpu_nb = {
1189 	.notifier_call = zs_cpu_notifier
1190 };
1191 
1192 static int zs_register_cpu_notifier(void)
1193 {
1194 	int cpu, uninitialized_var(ret);
1195 
1196 	cpu_notifier_register_begin();
1197 
1198 	__register_cpu_notifier(&zs_cpu_nb);
1199 	for_each_online_cpu(cpu) {
1200 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1201 		if (notifier_to_errno(ret))
1202 			break;
1203 	}
1204 
1205 	cpu_notifier_register_done();
1206 	return notifier_to_errno(ret);
1207 }
1208 
1209 static void zs_unregister_cpu_notifier(void)
1210 {
1211 	int cpu;
1212 
1213 	cpu_notifier_register_begin();
1214 
1215 	for_each_online_cpu(cpu)
1216 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1217 	__unregister_cpu_notifier(&zs_cpu_nb);
1218 
1219 	cpu_notifier_register_done();
1220 }
1221 
1222 static void init_zs_size_classes(void)
1223 {
1224 	int nr;
1225 
1226 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1227 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1228 		nr += 1;
1229 
1230 	zs_size_classes = nr;
1231 }
1232 
1233 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1234 {
1235 	if (prev->pages_per_zspage != pages_per_zspage)
1236 		return false;
1237 
1238 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1239 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1240 		return false;
1241 
1242 	return true;
1243 }
1244 
1245 static bool zspage_full(struct page *first_page)
1246 {
1247 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
1248 
1249 	return first_page->inuse == first_page->objects;
1250 }
1251 
1252 unsigned long zs_get_total_pages(struct zs_pool *pool)
1253 {
1254 	return atomic_long_read(&pool->pages_allocated);
1255 }
1256 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1257 
1258 /**
1259  * zs_map_object - get address of allocated object from handle.
1260  * @pool: pool from which the object was allocated
1261  * @handle: handle returned from zs_malloc
1262  *
1263  * Before using an object allocated from zs_malloc, it must be mapped using
1264  * this function. When done with the object, it must be unmapped using
1265  * zs_unmap_object.
1266  *
1267  * Only one object can be mapped per cpu at a time. There is no protection
1268  * against nested mappings.
1269  *
1270  * This function returns with preemption and page faults disabled.
1271  */
1272 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1273 			enum zs_mapmode mm)
1274 {
1275 	struct page *page;
1276 	unsigned long obj, obj_idx, off;
1277 
1278 	unsigned int class_idx;
1279 	enum fullness_group fg;
1280 	struct size_class *class;
1281 	struct mapping_area *area;
1282 	struct page *pages[2];
1283 	void *ret;
1284 
1285 	/*
1286 	 * Because we use per-cpu mapping areas shared among the
1287 	 * pools/users, we can't allow mapping in interrupt context
1288 	 * because it can corrupt another users mappings.
1289 	 */
1290 	WARN_ON_ONCE(in_interrupt());
1291 
1292 	/* From now on, migration cannot move the object */
1293 	pin_tag(handle);
1294 
1295 	obj = handle_to_obj(handle);
1296 	obj_to_location(obj, &page, &obj_idx);
1297 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1298 	class = pool->size_class[class_idx];
1299 	off = obj_idx_to_offset(page, obj_idx, class->size);
1300 
1301 	area = &get_cpu_var(zs_map_area);
1302 	area->vm_mm = mm;
1303 	if (off + class->size <= PAGE_SIZE) {
1304 		/* this object is contained entirely within a page */
1305 		area->vm_addr = kmap_atomic(page);
1306 		ret = area->vm_addr + off;
1307 		goto out;
1308 	}
1309 
1310 	/* this object spans two pages */
1311 	pages[0] = page;
1312 	pages[1] = get_next_page(page);
1313 	BUG_ON(!pages[1]);
1314 
1315 	ret = __zs_map_object(area, pages, off, class->size);
1316 out:
1317 	if (!class->huge)
1318 		ret += ZS_HANDLE_SIZE;
1319 
1320 	return ret;
1321 }
1322 EXPORT_SYMBOL_GPL(zs_map_object);
1323 
1324 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1325 {
1326 	struct page *page;
1327 	unsigned long obj, obj_idx, off;
1328 
1329 	unsigned int class_idx;
1330 	enum fullness_group fg;
1331 	struct size_class *class;
1332 	struct mapping_area *area;
1333 
1334 	obj = handle_to_obj(handle);
1335 	obj_to_location(obj, &page, &obj_idx);
1336 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1337 	class = pool->size_class[class_idx];
1338 	off = obj_idx_to_offset(page, obj_idx, class->size);
1339 
1340 	area = this_cpu_ptr(&zs_map_area);
1341 	if (off + class->size <= PAGE_SIZE)
1342 		kunmap_atomic(area->vm_addr);
1343 	else {
1344 		struct page *pages[2];
1345 
1346 		pages[0] = page;
1347 		pages[1] = get_next_page(page);
1348 		BUG_ON(!pages[1]);
1349 
1350 		__zs_unmap_object(area, pages, off, class->size);
1351 	}
1352 	put_cpu_var(zs_map_area);
1353 	unpin_tag(handle);
1354 }
1355 EXPORT_SYMBOL_GPL(zs_unmap_object);
1356 
1357 static unsigned long obj_malloc(struct size_class *class,
1358 				struct page *first_page, unsigned long handle)
1359 {
1360 	unsigned long obj;
1361 	struct link_free *link;
1362 
1363 	struct page *m_page;
1364 	unsigned long m_objidx, m_offset;
1365 	void *vaddr;
1366 
1367 	handle |= OBJ_ALLOCATED_TAG;
1368 	obj = (unsigned long)first_page->freelist;
1369 	obj_to_location(obj, &m_page, &m_objidx);
1370 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1371 
1372 	vaddr = kmap_atomic(m_page);
1373 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1374 	first_page->freelist = link->next;
1375 	if (!class->huge)
1376 		/* record handle in the header of allocated chunk */
1377 		link->handle = handle;
1378 	else
1379 		/* record handle in first_page->private */
1380 		set_page_private(first_page, handle);
1381 	kunmap_atomic(vaddr);
1382 	first_page->inuse++;
1383 	zs_stat_inc(class, OBJ_USED, 1);
1384 
1385 	return obj;
1386 }
1387 
1388 
1389 /**
1390  * zs_malloc - Allocate block of given size from pool.
1391  * @pool: pool to allocate from
1392  * @size: size of block to allocate
1393  *
1394  * On success, handle to the allocated object is returned,
1395  * otherwise 0.
1396  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1397  */
1398 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1399 {
1400 	unsigned long handle, obj;
1401 	struct size_class *class;
1402 	struct page *first_page;
1403 
1404 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1405 		return 0;
1406 
1407 	handle = alloc_handle(pool, gfp);
1408 	if (!handle)
1409 		return 0;
1410 
1411 	/* extra space in chunk to keep the handle */
1412 	size += ZS_HANDLE_SIZE;
1413 	class = pool->size_class[get_size_class_index(size)];
1414 
1415 	spin_lock(&class->lock);
1416 	first_page = find_get_zspage(class);
1417 
1418 	if (!first_page) {
1419 		spin_unlock(&class->lock);
1420 		first_page = alloc_zspage(class, gfp);
1421 		if (unlikely(!first_page)) {
1422 			free_handle(pool, handle);
1423 			return 0;
1424 		}
1425 
1426 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1427 		atomic_long_add(class->pages_per_zspage,
1428 					&pool->pages_allocated);
1429 
1430 		spin_lock(&class->lock);
1431 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1432 				class->size, class->pages_per_zspage));
1433 	}
1434 
1435 	obj = obj_malloc(class, first_page, handle);
1436 	/* Now move the zspage to another fullness group, if required */
1437 	fix_fullness_group(class, first_page);
1438 	record_obj(handle, obj);
1439 	spin_unlock(&class->lock);
1440 
1441 	return handle;
1442 }
1443 EXPORT_SYMBOL_GPL(zs_malloc);
1444 
1445 static void obj_free(struct size_class *class, unsigned long obj)
1446 {
1447 	struct link_free *link;
1448 	struct page *first_page, *f_page;
1449 	unsigned long f_objidx, f_offset;
1450 	void *vaddr;
1451 
1452 	obj &= ~OBJ_ALLOCATED_TAG;
1453 	obj_to_location(obj, &f_page, &f_objidx);
1454 	first_page = get_first_page(f_page);
1455 
1456 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1457 
1458 	vaddr = kmap_atomic(f_page);
1459 
1460 	/* Insert this object in containing zspage's freelist */
1461 	link = (struct link_free *)(vaddr + f_offset);
1462 	link->next = first_page->freelist;
1463 	if (class->huge)
1464 		set_page_private(first_page, 0);
1465 	kunmap_atomic(vaddr);
1466 	first_page->freelist = (void *)obj;
1467 	first_page->inuse--;
1468 	zs_stat_dec(class, OBJ_USED, 1);
1469 }
1470 
1471 void zs_free(struct zs_pool *pool, unsigned long handle)
1472 {
1473 	struct page *first_page, *f_page;
1474 	unsigned long obj, f_objidx;
1475 	int class_idx;
1476 	struct size_class *class;
1477 	enum fullness_group fullness;
1478 
1479 	if (unlikely(!handle))
1480 		return;
1481 
1482 	pin_tag(handle);
1483 	obj = handle_to_obj(handle);
1484 	obj_to_location(obj, &f_page, &f_objidx);
1485 	first_page = get_first_page(f_page);
1486 
1487 	get_zspage_mapping(first_page, &class_idx, &fullness);
1488 	class = pool->size_class[class_idx];
1489 
1490 	spin_lock(&class->lock);
1491 	obj_free(class, obj);
1492 	fullness = fix_fullness_group(class, first_page);
1493 	if (fullness == ZS_EMPTY) {
1494 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1495 				class->size, class->pages_per_zspage));
1496 		atomic_long_sub(class->pages_per_zspage,
1497 				&pool->pages_allocated);
1498 		free_zspage(first_page);
1499 	}
1500 	spin_unlock(&class->lock);
1501 	unpin_tag(handle);
1502 
1503 	free_handle(pool, handle);
1504 }
1505 EXPORT_SYMBOL_GPL(zs_free);
1506 
1507 static void zs_object_copy(struct size_class *class, unsigned long dst,
1508 				unsigned long src)
1509 {
1510 	struct page *s_page, *d_page;
1511 	unsigned long s_objidx, d_objidx;
1512 	unsigned long s_off, d_off;
1513 	void *s_addr, *d_addr;
1514 	int s_size, d_size, size;
1515 	int written = 0;
1516 
1517 	s_size = d_size = class->size;
1518 
1519 	obj_to_location(src, &s_page, &s_objidx);
1520 	obj_to_location(dst, &d_page, &d_objidx);
1521 
1522 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1523 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1524 
1525 	if (s_off + class->size > PAGE_SIZE)
1526 		s_size = PAGE_SIZE - s_off;
1527 
1528 	if (d_off + class->size > PAGE_SIZE)
1529 		d_size = PAGE_SIZE - d_off;
1530 
1531 	s_addr = kmap_atomic(s_page);
1532 	d_addr = kmap_atomic(d_page);
1533 
1534 	while (1) {
1535 		size = min(s_size, d_size);
1536 		memcpy(d_addr + d_off, s_addr + s_off, size);
1537 		written += size;
1538 
1539 		if (written == class->size)
1540 			break;
1541 
1542 		s_off += size;
1543 		s_size -= size;
1544 		d_off += size;
1545 		d_size -= size;
1546 
1547 		if (s_off >= PAGE_SIZE) {
1548 			kunmap_atomic(d_addr);
1549 			kunmap_atomic(s_addr);
1550 			s_page = get_next_page(s_page);
1551 			s_addr = kmap_atomic(s_page);
1552 			d_addr = kmap_atomic(d_page);
1553 			s_size = class->size - written;
1554 			s_off = 0;
1555 		}
1556 
1557 		if (d_off >= PAGE_SIZE) {
1558 			kunmap_atomic(d_addr);
1559 			d_page = get_next_page(d_page);
1560 			d_addr = kmap_atomic(d_page);
1561 			d_size = class->size - written;
1562 			d_off = 0;
1563 		}
1564 	}
1565 
1566 	kunmap_atomic(d_addr);
1567 	kunmap_atomic(s_addr);
1568 }
1569 
1570 /*
1571  * Find alloced object in zspage from index object and
1572  * return handle.
1573  */
1574 static unsigned long find_alloced_obj(struct size_class *class,
1575 					struct page *page, int index)
1576 {
1577 	unsigned long head;
1578 	int offset = 0;
1579 	unsigned long handle = 0;
1580 	void *addr = kmap_atomic(page);
1581 
1582 	if (!is_first_page(page))
1583 		offset = page->index;
1584 	offset += class->size * index;
1585 
1586 	while (offset < PAGE_SIZE) {
1587 		head = obj_to_head(class, page, addr + offset);
1588 		if (head & OBJ_ALLOCATED_TAG) {
1589 			handle = head & ~OBJ_ALLOCATED_TAG;
1590 			if (trypin_tag(handle))
1591 				break;
1592 			handle = 0;
1593 		}
1594 
1595 		offset += class->size;
1596 		index++;
1597 	}
1598 
1599 	kunmap_atomic(addr);
1600 	return handle;
1601 }
1602 
1603 struct zs_compact_control {
1604 	/* Source page for migration which could be a subpage of zspage. */
1605 	struct page *s_page;
1606 	/* Destination page for migration which should be a first page
1607 	 * of zspage. */
1608 	struct page *d_page;
1609 	 /* Starting object index within @s_page which used for live object
1610 	  * in the subpage. */
1611 	int index;
1612 };
1613 
1614 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1615 				struct zs_compact_control *cc)
1616 {
1617 	unsigned long used_obj, free_obj;
1618 	unsigned long handle;
1619 	struct page *s_page = cc->s_page;
1620 	struct page *d_page = cc->d_page;
1621 	unsigned long index = cc->index;
1622 	int ret = 0;
1623 
1624 	while (1) {
1625 		handle = find_alloced_obj(class, s_page, index);
1626 		if (!handle) {
1627 			s_page = get_next_page(s_page);
1628 			if (!s_page)
1629 				break;
1630 			index = 0;
1631 			continue;
1632 		}
1633 
1634 		/* Stop if there is no more space */
1635 		if (zspage_full(d_page)) {
1636 			unpin_tag(handle);
1637 			ret = -ENOMEM;
1638 			break;
1639 		}
1640 
1641 		used_obj = handle_to_obj(handle);
1642 		free_obj = obj_malloc(class, d_page, handle);
1643 		zs_object_copy(class, free_obj, used_obj);
1644 		index++;
1645 		/*
1646 		 * record_obj updates handle's value to free_obj and it will
1647 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1648 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1649 		 * let's keep the lock bit.
1650 		 */
1651 		free_obj |= BIT(HANDLE_PIN_BIT);
1652 		record_obj(handle, free_obj);
1653 		unpin_tag(handle);
1654 		obj_free(class, used_obj);
1655 	}
1656 
1657 	/* Remember last position in this iteration */
1658 	cc->s_page = s_page;
1659 	cc->index = index;
1660 
1661 	return ret;
1662 }
1663 
1664 static struct page *isolate_target_page(struct size_class *class)
1665 {
1666 	int i;
1667 	struct page *page;
1668 
1669 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1670 		page = class->fullness_list[i];
1671 		if (page) {
1672 			remove_zspage(class, i, page);
1673 			break;
1674 		}
1675 	}
1676 
1677 	return page;
1678 }
1679 
1680 /*
1681  * putback_zspage - add @first_page into right class's fullness list
1682  * @pool: target pool
1683  * @class: destination class
1684  * @first_page: target page
1685  *
1686  * Return @fist_page's fullness_group
1687  */
1688 static enum fullness_group putback_zspage(struct zs_pool *pool,
1689 			struct size_class *class,
1690 			struct page *first_page)
1691 {
1692 	enum fullness_group fullness;
1693 
1694 	fullness = get_fullness_group(first_page);
1695 	insert_zspage(class, fullness, first_page);
1696 	set_zspage_mapping(first_page, class->index, fullness);
1697 
1698 	if (fullness == ZS_EMPTY) {
1699 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1700 			class->size, class->pages_per_zspage));
1701 		atomic_long_sub(class->pages_per_zspage,
1702 				&pool->pages_allocated);
1703 
1704 		free_zspage(first_page);
1705 	}
1706 
1707 	return fullness;
1708 }
1709 
1710 static struct page *isolate_source_page(struct size_class *class)
1711 {
1712 	int i;
1713 	struct page *page = NULL;
1714 
1715 	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1716 		page = class->fullness_list[i];
1717 		if (!page)
1718 			continue;
1719 
1720 		remove_zspage(class, i, page);
1721 		break;
1722 	}
1723 
1724 	return page;
1725 }
1726 
1727 /*
1728  *
1729  * Based on the number of unused allocated objects calculate
1730  * and return the number of pages that we can free.
1731  */
1732 static unsigned long zs_can_compact(struct size_class *class)
1733 {
1734 	unsigned long obj_wasted;
1735 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1736 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1737 
1738 	if (obj_allocated <= obj_used)
1739 		return 0;
1740 
1741 	obj_wasted = obj_allocated - obj_used;
1742 	obj_wasted /= get_maxobj_per_zspage(class->size,
1743 			class->pages_per_zspage);
1744 
1745 	return obj_wasted * class->pages_per_zspage;
1746 }
1747 
1748 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1749 {
1750 	struct zs_compact_control cc;
1751 	struct page *src_page;
1752 	struct page *dst_page = NULL;
1753 
1754 	spin_lock(&class->lock);
1755 	while ((src_page = isolate_source_page(class))) {
1756 
1757 		if (!zs_can_compact(class))
1758 			break;
1759 
1760 		cc.index = 0;
1761 		cc.s_page = src_page;
1762 
1763 		while ((dst_page = isolate_target_page(class))) {
1764 			cc.d_page = dst_page;
1765 			/*
1766 			 * If there is no more space in dst_page, resched
1767 			 * and see if anyone had allocated another zspage.
1768 			 */
1769 			if (!migrate_zspage(pool, class, &cc))
1770 				break;
1771 
1772 			putback_zspage(pool, class, dst_page);
1773 		}
1774 
1775 		/* Stop if we couldn't find slot */
1776 		if (dst_page == NULL)
1777 			break;
1778 
1779 		putback_zspage(pool, class, dst_page);
1780 		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1781 			pool->stats.pages_compacted += class->pages_per_zspage;
1782 		spin_unlock(&class->lock);
1783 		cond_resched();
1784 		spin_lock(&class->lock);
1785 	}
1786 
1787 	if (src_page)
1788 		putback_zspage(pool, class, src_page);
1789 
1790 	spin_unlock(&class->lock);
1791 }
1792 
1793 unsigned long zs_compact(struct zs_pool *pool)
1794 {
1795 	int i;
1796 	struct size_class *class;
1797 
1798 	for (i = zs_size_classes - 1; i >= 0; i--) {
1799 		class = pool->size_class[i];
1800 		if (!class)
1801 			continue;
1802 		if (class->index != i)
1803 			continue;
1804 		__zs_compact(pool, class);
1805 	}
1806 
1807 	return pool->stats.pages_compacted;
1808 }
1809 EXPORT_SYMBOL_GPL(zs_compact);
1810 
1811 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1812 {
1813 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1814 }
1815 EXPORT_SYMBOL_GPL(zs_pool_stats);
1816 
1817 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1818 		struct shrink_control *sc)
1819 {
1820 	unsigned long pages_freed;
1821 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1822 			shrinker);
1823 
1824 	pages_freed = pool->stats.pages_compacted;
1825 	/*
1826 	 * Compact classes and calculate compaction delta.
1827 	 * Can run concurrently with a manually triggered
1828 	 * (by user) compaction.
1829 	 */
1830 	pages_freed = zs_compact(pool) - pages_freed;
1831 
1832 	return pages_freed ? pages_freed : SHRINK_STOP;
1833 }
1834 
1835 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1836 		struct shrink_control *sc)
1837 {
1838 	int i;
1839 	struct size_class *class;
1840 	unsigned long pages_to_free = 0;
1841 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1842 			shrinker);
1843 
1844 	for (i = zs_size_classes - 1; i >= 0; i--) {
1845 		class = pool->size_class[i];
1846 		if (!class)
1847 			continue;
1848 		if (class->index != i)
1849 			continue;
1850 
1851 		pages_to_free += zs_can_compact(class);
1852 	}
1853 
1854 	return pages_to_free;
1855 }
1856 
1857 static void zs_unregister_shrinker(struct zs_pool *pool)
1858 {
1859 	if (pool->shrinker_enabled) {
1860 		unregister_shrinker(&pool->shrinker);
1861 		pool->shrinker_enabled = false;
1862 	}
1863 }
1864 
1865 static int zs_register_shrinker(struct zs_pool *pool)
1866 {
1867 	pool->shrinker.scan_objects = zs_shrinker_scan;
1868 	pool->shrinker.count_objects = zs_shrinker_count;
1869 	pool->shrinker.batch = 0;
1870 	pool->shrinker.seeks = DEFAULT_SEEKS;
1871 
1872 	return register_shrinker(&pool->shrinker);
1873 }
1874 
1875 /**
1876  * zs_create_pool - Creates an allocation pool to work from.
1877  * @flags: allocation flags used to allocate pool metadata
1878  *
1879  * This function must be called before anything when using
1880  * the zsmalloc allocator.
1881  *
1882  * On success, a pointer to the newly created pool is returned,
1883  * otherwise NULL.
1884  */
1885 struct zs_pool *zs_create_pool(const char *name)
1886 {
1887 	int i;
1888 	struct zs_pool *pool;
1889 	struct size_class *prev_class = NULL;
1890 
1891 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1892 	if (!pool)
1893 		return NULL;
1894 
1895 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1896 			GFP_KERNEL);
1897 	if (!pool->size_class) {
1898 		kfree(pool);
1899 		return NULL;
1900 	}
1901 
1902 	pool->name = kstrdup(name, GFP_KERNEL);
1903 	if (!pool->name)
1904 		goto err;
1905 
1906 	if (create_handle_cache(pool))
1907 		goto err;
1908 
1909 	/*
1910 	 * Iterate reversly, because, size of size_class that we want to use
1911 	 * for merging should be larger or equal to current size.
1912 	 */
1913 	for (i = zs_size_classes - 1; i >= 0; i--) {
1914 		int size;
1915 		int pages_per_zspage;
1916 		struct size_class *class;
1917 
1918 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1919 		if (size > ZS_MAX_ALLOC_SIZE)
1920 			size = ZS_MAX_ALLOC_SIZE;
1921 		pages_per_zspage = get_pages_per_zspage(size);
1922 
1923 		/*
1924 		 * size_class is used for normal zsmalloc operation such
1925 		 * as alloc/free for that size. Although it is natural that we
1926 		 * have one size_class for each size, there is a chance that we
1927 		 * can get more memory utilization if we use one size_class for
1928 		 * many different sizes whose size_class have same
1929 		 * characteristics. So, we makes size_class point to
1930 		 * previous size_class if possible.
1931 		 */
1932 		if (prev_class) {
1933 			if (can_merge(prev_class, size, pages_per_zspage)) {
1934 				pool->size_class[i] = prev_class;
1935 				continue;
1936 			}
1937 		}
1938 
1939 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1940 		if (!class)
1941 			goto err;
1942 
1943 		class->size = size;
1944 		class->index = i;
1945 		class->pages_per_zspage = pages_per_zspage;
1946 		if (pages_per_zspage == 1 &&
1947 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1948 			class->huge = true;
1949 		spin_lock_init(&class->lock);
1950 		pool->size_class[i] = class;
1951 
1952 		prev_class = class;
1953 	}
1954 
1955 	/* debug only, don't abort if it fails */
1956 	zs_pool_stat_create(pool, name);
1957 
1958 	/*
1959 	 * Not critical, we still can use the pool
1960 	 * and user can trigger compaction manually.
1961 	 */
1962 	if (zs_register_shrinker(pool) == 0)
1963 		pool->shrinker_enabled = true;
1964 	return pool;
1965 
1966 err:
1967 	zs_destroy_pool(pool);
1968 	return NULL;
1969 }
1970 EXPORT_SYMBOL_GPL(zs_create_pool);
1971 
1972 void zs_destroy_pool(struct zs_pool *pool)
1973 {
1974 	int i;
1975 
1976 	zs_unregister_shrinker(pool);
1977 	zs_pool_stat_destroy(pool);
1978 
1979 	for (i = 0; i < zs_size_classes; i++) {
1980 		int fg;
1981 		struct size_class *class = pool->size_class[i];
1982 
1983 		if (!class)
1984 			continue;
1985 
1986 		if (class->index != i)
1987 			continue;
1988 
1989 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1990 			if (class->fullness_list[fg]) {
1991 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1992 					class->size, fg);
1993 			}
1994 		}
1995 		kfree(class);
1996 	}
1997 
1998 	destroy_handle_cache(pool);
1999 	kfree(pool->size_class);
2000 	kfree(pool->name);
2001 	kfree(pool);
2002 }
2003 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2004 
2005 static int __init zs_init(void)
2006 {
2007 	int ret = zs_register_cpu_notifier();
2008 
2009 	if (ret)
2010 		goto notifier_fail;
2011 
2012 	init_zs_size_classes();
2013 
2014 #ifdef CONFIG_ZPOOL
2015 	zpool_register_driver(&zs_zpool_driver);
2016 #endif
2017 
2018 	zs_stat_init();
2019 
2020 	return 0;
2021 
2022 notifier_fail:
2023 	zs_unregister_cpu_notifier();
2024 
2025 	return ret;
2026 }
2027 
2028 static void __exit zs_exit(void)
2029 {
2030 #ifdef CONFIG_ZPOOL
2031 	zpool_unregister_driver(&zs_zpool_driver);
2032 #endif
2033 	zs_unregister_cpu_notifier();
2034 
2035 	zs_stat_exit();
2036 }
2037 
2038 module_init(zs_init);
2039 module_exit(zs_exit);
2040 
2041 MODULE_LICENSE("Dual BSD/GPL");
2042 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2043