1 /* 2 * zbud.c 3 * 4 * Copyright (C) 2013, Seth Jennings, IBM 5 * 6 * Concepts based on zcache internal zbud allocator by Dan Magenheimer. 7 * 8 * zbud is an special purpose allocator for storing compressed pages. Contrary 9 * to what its name may suggest, zbud is not a buddy allocator, but rather an 10 * allocator that "buddies" two compressed pages together in a single memory 11 * page. 12 * 13 * While this design limits storage density, it has simple and deterministic 14 * reclaim properties that make it preferable to a higher density approach when 15 * reclaim will be used. 16 * 17 * zbud works by storing compressed pages, or "zpages", together in pairs in a 18 * single memory page called a "zbud page". The first buddy is "left 19 * justified" at the beginning of the zbud page, and the last buddy is "right 20 * justified" at the end of the zbud page. The benefit is that if either 21 * buddy is freed, the freed buddy space, coalesced with whatever slack space 22 * that existed between the buddies, results in the largest possible free region 23 * within the zbud page. 24 * 25 * zbud also provides an attractive lower bound on density. The ratio of zpages 26 * to zbud pages can not be less than 1. This ensures that zbud can never "do 27 * harm" by using more pages to store zpages than the uncompressed zpages would 28 * have used on their own. 29 * 30 * zbud pages are divided into "chunks". The size of the chunks is fixed at 31 * compile time and determined by NCHUNKS_ORDER below. Dividing zbud pages 32 * into chunks allows organizing unbuddied zbud pages into a manageable number 33 * of unbuddied lists according to the number of free chunks available in the 34 * zbud page. 35 * 36 * The zbud API differs from that of conventional allocators in that the 37 * allocation function, zbud_alloc(), returns an opaque handle to the user, 38 * not a dereferenceable pointer. The user must map the handle using 39 * zbud_map() in order to get a usable pointer by which to access the 40 * allocation data and unmap the handle with zbud_unmap() when operations 41 * on the allocation data are complete. 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/atomic.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/module.h> 50 #include <linux/preempt.h> 51 #include <linux/slab.h> 52 #include <linux/spinlock.h> 53 #include <linux/zbud.h> 54 #include <linux/zpool.h> 55 56 /***************** 57 * Structures 58 *****************/ 59 /* 60 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 61 * adjusting internal fragmentation. It also determines the number of 62 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 63 * allocation granularity will be in chunks of size PAGE_SIZE/64. As one chunk 64 * in allocated page is occupied by zbud header, NCHUNKS will be calculated to 65 * 63 which shows the max number of free chunks in zbud page, also there will be 66 * 63 freelists per pool. 67 */ 68 #define NCHUNKS_ORDER 6 69 70 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 71 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 72 #define ZHDR_SIZE_ALIGNED CHUNK_SIZE 73 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 74 75 /** 76 * struct zbud_pool - stores metadata for each zbud pool 77 * @lock: protects all pool fields and first|last_chunk fields of any 78 * zbud page in the pool 79 * @unbuddied: array of lists tracking zbud pages that only contain one buddy; 80 * the lists each zbud page is added to depends on the size of 81 * its free region. 82 * @buddied: list tracking the zbud pages that contain two buddies; 83 * these zbud pages are full 84 * @lru: list tracking the zbud pages in LRU order by most recently 85 * added buddy. 86 * @pages_nr: number of zbud pages in the pool. 87 * @ops: pointer to a structure of user defined operations specified at 88 * pool creation time. 89 * 90 * This structure is allocated at pool creation time and maintains metadata 91 * pertaining to a particular zbud pool. 92 */ 93 struct zbud_pool { 94 spinlock_t lock; 95 struct list_head unbuddied[NCHUNKS]; 96 struct list_head buddied; 97 struct list_head lru; 98 u64 pages_nr; 99 const struct zbud_ops *ops; 100 #ifdef CONFIG_ZPOOL 101 struct zpool *zpool; 102 const struct zpool_ops *zpool_ops; 103 #endif 104 }; 105 106 /* 107 * struct zbud_header - zbud page metadata occupying the first chunk of each 108 * zbud page. 109 * @buddy: links the zbud page into the unbuddied/buddied lists in the pool 110 * @lru: links the zbud page into the lru list in the pool 111 * @first_chunks: the size of the first buddy in chunks, 0 if free 112 * @last_chunks: the size of the last buddy in chunks, 0 if free 113 */ 114 struct zbud_header { 115 struct list_head buddy; 116 struct list_head lru; 117 unsigned int first_chunks; 118 unsigned int last_chunks; 119 bool under_reclaim; 120 }; 121 122 /***************** 123 * zpool 124 ****************/ 125 126 #ifdef CONFIG_ZPOOL 127 128 static int zbud_zpool_evict(struct zbud_pool *pool, unsigned long handle) 129 { 130 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 131 return pool->zpool_ops->evict(pool->zpool, handle); 132 else 133 return -ENOENT; 134 } 135 136 static const struct zbud_ops zbud_zpool_ops = { 137 .evict = zbud_zpool_evict 138 }; 139 140 static void *zbud_zpool_create(const char *name, gfp_t gfp, 141 const struct zpool_ops *zpool_ops, 142 struct zpool *zpool) 143 { 144 struct zbud_pool *pool; 145 146 pool = zbud_create_pool(gfp, zpool_ops ? &zbud_zpool_ops : NULL); 147 if (pool) { 148 pool->zpool = zpool; 149 pool->zpool_ops = zpool_ops; 150 } 151 return pool; 152 } 153 154 static void zbud_zpool_destroy(void *pool) 155 { 156 zbud_destroy_pool(pool); 157 } 158 159 static int zbud_zpool_malloc(void *pool, size_t size, gfp_t gfp, 160 unsigned long *handle) 161 { 162 return zbud_alloc(pool, size, gfp, handle); 163 } 164 static void zbud_zpool_free(void *pool, unsigned long handle) 165 { 166 zbud_free(pool, handle); 167 } 168 169 static int zbud_zpool_shrink(void *pool, unsigned int pages, 170 unsigned int *reclaimed) 171 { 172 unsigned int total = 0; 173 int ret = -EINVAL; 174 175 while (total < pages) { 176 ret = zbud_reclaim_page(pool, 8); 177 if (ret < 0) 178 break; 179 total++; 180 } 181 182 if (reclaimed) 183 *reclaimed = total; 184 185 return ret; 186 } 187 188 static void *zbud_zpool_map(void *pool, unsigned long handle, 189 enum zpool_mapmode mm) 190 { 191 return zbud_map(pool, handle); 192 } 193 static void zbud_zpool_unmap(void *pool, unsigned long handle) 194 { 195 zbud_unmap(pool, handle); 196 } 197 198 static u64 zbud_zpool_total_size(void *pool) 199 { 200 return zbud_get_pool_size(pool) * PAGE_SIZE; 201 } 202 203 static struct zpool_driver zbud_zpool_driver = { 204 .type = "zbud", 205 .owner = THIS_MODULE, 206 .create = zbud_zpool_create, 207 .destroy = zbud_zpool_destroy, 208 .malloc = zbud_zpool_malloc, 209 .free = zbud_zpool_free, 210 .shrink = zbud_zpool_shrink, 211 .map = zbud_zpool_map, 212 .unmap = zbud_zpool_unmap, 213 .total_size = zbud_zpool_total_size, 214 }; 215 216 MODULE_ALIAS("zpool-zbud"); 217 #endif /* CONFIG_ZPOOL */ 218 219 /***************** 220 * Helpers 221 *****************/ 222 /* Just to make the code easier to read */ 223 enum buddy { 224 FIRST, 225 LAST 226 }; 227 228 /* Converts an allocation size in bytes to size in zbud chunks */ 229 static int size_to_chunks(size_t size) 230 { 231 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 232 } 233 234 #define for_each_unbuddied_list(_iter, _begin) \ 235 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 236 237 /* Initializes the zbud header of a newly allocated zbud page */ 238 static struct zbud_header *init_zbud_page(struct page *page) 239 { 240 struct zbud_header *zhdr = page_address(page); 241 zhdr->first_chunks = 0; 242 zhdr->last_chunks = 0; 243 INIT_LIST_HEAD(&zhdr->buddy); 244 INIT_LIST_HEAD(&zhdr->lru); 245 zhdr->under_reclaim = 0; 246 return zhdr; 247 } 248 249 /* Resets the struct page fields and frees the page */ 250 static void free_zbud_page(struct zbud_header *zhdr) 251 { 252 __free_page(virt_to_page(zhdr)); 253 } 254 255 /* 256 * Encodes the handle of a particular buddy within a zbud page 257 * Pool lock should be held as this function accesses first|last_chunks 258 */ 259 static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud) 260 { 261 unsigned long handle; 262 263 /* 264 * For now, the encoded handle is actually just the pointer to the data 265 * but this might not always be the case. A little information hiding. 266 * Add CHUNK_SIZE to the handle if it is the first allocation to jump 267 * over the zbud header in the first chunk. 268 */ 269 handle = (unsigned long)zhdr; 270 if (bud == FIRST) 271 /* skip over zbud header */ 272 handle += ZHDR_SIZE_ALIGNED; 273 else /* bud == LAST */ 274 handle += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT); 275 return handle; 276 } 277 278 /* Returns the zbud page where a given handle is stored */ 279 static struct zbud_header *handle_to_zbud_header(unsigned long handle) 280 { 281 return (struct zbud_header *)(handle & PAGE_MASK); 282 } 283 284 /* Returns the number of free chunks in a zbud page */ 285 static int num_free_chunks(struct zbud_header *zhdr) 286 { 287 /* 288 * Rather than branch for different situations, just use the fact that 289 * free buddies have a length of zero to simplify everything. 290 */ 291 return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 292 } 293 294 /***************** 295 * API Functions 296 *****************/ 297 /** 298 * zbud_create_pool() - create a new zbud pool 299 * @gfp: gfp flags when allocating the zbud pool structure 300 * @ops: user-defined operations for the zbud pool 301 * 302 * Return: pointer to the new zbud pool or NULL if the metadata allocation 303 * failed. 304 */ 305 struct zbud_pool *zbud_create_pool(gfp_t gfp, const struct zbud_ops *ops) 306 { 307 struct zbud_pool *pool; 308 int i; 309 310 pool = kzalloc(sizeof(struct zbud_pool), gfp); 311 if (!pool) 312 return NULL; 313 spin_lock_init(&pool->lock); 314 for_each_unbuddied_list(i, 0) 315 INIT_LIST_HEAD(&pool->unbuddied[i]); 316 INIT_LIST_HEAD(&pool->buddied); 317 INIT_LIST_HEAD(&pool->lru); 318 pool->pages_nr = 0; 319 pool->ops = ops; 320 return pool; 321 } 322 323 /** 324 * zbud_destroy_pool() - destroys an existing zbud pool 325 * @pool: the zbud pool to be destroyed 326 * 327 * The pool should be emptied before this function is called. 328 */ 329 void zbud_destroy_pool(struct zbud_pool *pool) 330 { 331 kfree(pool); 332 } 333 334 /** 335 * zbud_alloc() - allocates a region of a given size 336 * @pool: zbud pool from which to allocate 337 * @size: size in bytes of the desired allocation 338 * @gfp: gfp flags used if the pool needs to grow 339 * @handle: handle of the new allocation 340 * 341 * This function will attempt to find a free region in the pool large enough to 342 * satisfy the allocation request. A search of the unbuddied lists is 343 * performed first. If no suitable free region is found, then a new page is 344 * allocated and added to the pool to satisfy the request. 345 * 346 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 347 * as zbud pool pages. 348 * 349 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 350 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 351 * a new page. 352 */ 353 int zbud_alloc(struct zbud_pool *pool, size_t size, gfp_t gfp, 354 unsigned long *handle) 355 { 356 int chunks, i, freechunks; 357 struct zbud_header *zhdr = NULL; 358 enum buddy bud; 359 struct page *page; 360 361 if (!size || (gfp & __GFP_HIGHMEM)) 362 return -EINVAL; 363 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 364 return -ENOSPC; 365 chunks = size_to_chunks(size); 366 spin_lock(&pool->lock); 367 368 /* First, try to find an unbuddied zbud page. */ 369 zhdr = NULL; 370 for_each_unbuddied_list(i, chunks) { 371 if (!list_empty(&pool->unbuddied[i])) { 372 zhdr = list_first_entry(&pool->unbuddied[i], 373 struct zbud_header, buddy); 374 list_del(&zhdr->buddy); 375 if (zhdr->first_chunks == 0) 376 bud = FIRST; 377 else 378 bud = LAST; 379 goto found; 380 } 381 } 382 383 /* Couldn't find unbuddied zbud page, create new one */ 384 spin_unlock(&pool->lock); 385 page = alloc_page(gfp); 386 if (!page) 387 return -ENOMEM; 388 spin_lock(&pool->lock); 389 pool->pages_nr++; 390 zhdr = init_zbud_page(page); 391 bud = FIRST; 392 393 found: 394 if (bud == FIRST) 395 zhdr->first_chunks = chunks; 396 else 397 zhdr->last_chunks = chunks; 398 399 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) { 400 /* Add to unbuddied list */ 401 freechunks = num_free_chunks(zhdr); 402 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 403 } else { 404 /* Add to buddied list */ 405 list_add(&zhdr->buddy, &pool->buddied); 406 } 407 408 /* Add/move zbud page to beginning of LRU */ 409 if (!list_empty(&zhdr->lru)) 410 list_del(&zhdr->lru); 411 list_add(&zhdr->lru, &pool->lru); 412 413 *handle = encode_handle(zhdr, bud); 414 spin_unlock(&pool->lock); 415 416 return 0; 417 } 418 419 /** 420 * zbud_free() - frees the allocation associated with the given handle 421 * @pool: pool in which the allocation resided 422 * @handle: handle associated with the allocation returned by zbud_alloc() 423 * 424 * In the case that the zbud page in which the allocation resides is under 425 * reclaim, as indicated by the PG_reclaim flag being set, this function 426 * only sets the first|last_chunks to 0. The page is actually freed 427 * once both buddies are evicted (see zbud_reclaim_page() below). 428 */ 429 void zbud_free(struct zbud_pool *pool, unsigned long handle) 430 { 431 struct zbud_header *zhdr; 432 int freechunks; 433 434 spin_lock(&pool->lock); 435 zhdr = handle_to_zbud_header(handle); 436 437 /* If first buddy, handle will be page aligned */ 438 if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK) 439 zhdr->last_chunks = 0; 440 else 441 zhdr->first_chunks = 0; 442 443 if (zhdr->under_reclaim) { 444 /* zbud page is under reclaim, reclaim will free */ 445 spin_unlock(&pool->lock); 446 return; 447 } 448 449 /* Remove from existing buddy list */ 450 list_del(&zhdr->buddy); 451 452 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 453 /* zbud page is empty, free */ 454 list_del(&zhdr->lru); 455 free_zbud_page(zhdr); 456 pool->pages_nr--; 457 } else { 458 /* Add to unbuddied list */ 459 freechunks = num_free_chunks(zhdr); 460 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 461 } 462 463 spin_unlock(&pool->lock); 464 } 465 466 #define list_tail_entry(ptr, type, member) \ 467 list_entry((ptr)->prev, type, member) 468 469 /** 470 * zbud_reclaim_page() - evicts allocations from a pool page and frees it 471 * @pool: pool from which a page will attempt to be evicted 472 * @retires: number of pages on the LRU list for which eviction will 473 * be attempted before failing 474 * 475 * zbud reclaim is different from normal system reclaim in that the reclaim is 476 * done from the bottom, up. This is because only the bottom layer, zbud, has 477 * information on how the allocations are organized within each zbud page. This 478 * has the potential to create interesting locking situations between zbud and 479 * the user, however. 480 * 481 * To avoid these, this is how zbud_reclaim_page() should be called: 482 483 * The user detects a page should be reclaimed and calls zbud_reclaim_page(). 484 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call 485 * the user-defined eviction handler with the pool and handle as arguments. 486 * 487 * If the handle can not be evicted, the eviction handler should return 488 * non-zero. zbud_reclaim_page() will add the zbud page back to the 489 * appropriate list and try the next zbud page on the LRU up to 490 * a user defined number of retries. 491 * 492 * If the handle is successfully evicted, the eviction handler should 493 * return 0 _and_ should have called zbud_free() on the handle. zbud_free() 494 * contains logic to delay freeing the page if the page is under reclaim, 495 * as indicated by the setting of the PG_reclaim flag on the underlying page. 496 * 497 * If all buddies in the zbud page are successfully evicted, then the 498 * zbud page can be freed. 499 * 500 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 501 * no pages to evict or an eviction handler is not registered, -EAGAIN if 502 * the retry limit was hit. 503 */ 504 int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries) 505 { 506 int i, ret, freechunks; 507 struct zbud_header *zhdr; 508 unsigned long first_handle = 0, last_handle = 0; 509 510 spin_lock(&pool->lock); 511 if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) || 512 retries == 0) { 513 spin_unlock(&pool->lock); 514 return -EINVAL; 515 } 516 for (i = 0; i < retries; i++) { 517 zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru); 518 list_del(&zhdr->lru); 519 list_del(&zhdr->buddy); 520 /* Protect zbud page against free */ 521 zhdr->under_reclaim = true; 522 /* 523 * We need encode the handles before unlocking, since we can 524 * race with free that will set (first|last)_chunks to 0 525 */ 526 first_handle = 0; 527 last_handle = 0; 528 if (zhdr->first_chunks) 529 first_handle = encode_handle(zhdr, FIRST); 530 if (zhdr->last_chunks) 531 last_handle = encode_handle(zhdr, LAST); 532 spin_unlock(&pool->lock); 533 534 /* Issue the eviction callback(s) */ 535 if (first_handle) { 536 ret = pool->ops->evict(pool, first_handle); 537 if (ret) 538 goto next; 539 } 540 if (last_handle) { 541 ret = pool->ops->evict(pool, last_handle); 542 if (ret) 543 goto next; 544 } 545 next: 546 spin_lock(&pool->lock); 547 zhdr->under_reclaim = false; 548 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 549 /* 550 * Both buddies are now free, free the zbud page and 551 * return success. 552 */ 553 free_zbud_page(zhdr); 554 pool->pages_nr--; 555 spin_unlock(&pool->lock); 556 return 0; 557 } else if (zhdr->first_chunks == 0 || 558 zhdr->last_chunks == 0) { 559 /* add to unbuddied list */ 560 freechunks = num_free_chunks(zhdr); 561 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 562 } else { 563 /* add to buddied list */ 564 list_add(&zhdr->buddy, &pool->buddied); 565 } 566 567 /* add to beginning of LRU */ 568 list_add(&zhdr->lru, &pool->lru); 569 } 570 spin_unlock(&pool->lock); 571 return -EAGAIN; 572 } 573 574 /** 575 * zbud_map() - maps the allocation associated with the given handle 576 * @pool: pool in which the allocation resides 577 * @handle: handle associated with the allocation to be mapped 578 * 579 * While trivial for zbud, the mapping functions for others allocators 580 * implementing this allocation API could have more complex information encoded 581 * in the handle and could create temporary mappings to make the data 582 * accessible to the user. 583 * 584 * Returns: a pointer to the mapped allocation 585 */ 586 void *zbud_map(struct zbud_pool *pool, unsigned long handle) 587 { 588 return (void *)(handle); 589 } 590 591 /** 592 * zbud_unmap() - maps the allocation associated with the given handle 593 * @pool: pool in which the allocation resides 594 * @handle: handle associated with the allocation to be unmapped 595 */ 596 void zbud_unmap(struct zbud_pool *pool, unsigned long handle) 597 { 598 } 599 600 /** 601 * zbud_get_pool_size() - gets the zbud pool size in pages 602 * @pool: pool whose size is being queried 603 * 604 * Returns: size in pages of the given pool. The pool lock need not be 605 * taken to access pages_nr. 606 */ 607 u64 zbud_get_pool_size(struct zbud_pool *pool) 608 { 609 return pool->pages_nr; 610 } 611 612 static int __init init_zbud(void) 613 { 614 /* Make sure the zbud header will fit in one chunk */ 615 BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED); 616 pr_info("loaded\n"); 617 618 #ifdef CONFIG_ZPOOL 619 zpool_register_driver(&zbud_zpool_driver); 620 #endif 621 622 return 0; 623 } 624 625 static void __exit exit_zbud(void) 626 { 627 #ifdef CONFIG_ZPOOL 628 zpool_unregister_driver(&zbud_zpool_driver); 629 #endif 630 631 pr_info("unloaded\n"); 632 } 633 634 module_init(init_zbud); 635 module_exit(exit_zbud); 636 637 MODULE_LICENSE("GPL"); 638 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 639 MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages"); 640