1 /* 2 * zbud.c 3 * 4 * Copyright (C) 2013, Seth Jennings, IBM 5 * 6 * Concepts based on zcache internal zbud allocator by Dan Magenheimer. 7 * 8 * zbud is an special purpose allocator for storing compressed pages. Contrary 9 * to what its name may suggest, zbud is not a buddy allocator, but rather an 10 * allocator that "buddies" two compressed pages together in a single memory 11 * page. 12 * 13 * While this design limits storage density, it has simple and deterministic 14 * reclaim properties that make it preferable to a higher density approach when 15 * reclaim will be used. 16 * 17 * zbud works by storing compressed pages, or "zpages", together in pairs in a 18 * single memory page called a "zbud page". The first buddy is "left 19 * justified" at the beginning of the zbud page, and the last buddy is "right 20 * justified" at the end of the zbud page. The benefit is that if either 21 * buddy is freed, the freed buddy space, coalesced with whatever slack space 22 * that existed between the buddies, results in the largest possible free region 23 * within the zbud page. 24 * 25 * zbud also provides an attractive lower bound on density. The ratio of zpages 26 * to zbud pages can not be less than 1. This ensures that zbud can never "do 27 * harm" by using more pages to store zpages than the uncompressed zpages would 28 * have used on their own. 29 * 30 * zbud pages are divided into "chunks". The size of the chunks is fixed at 31 * compile time and determined by NCHUNKS_ORDER below. Dividing zbud pages 32 * into chunks allows organizing unbuddied zbud pages into a manageable number 33 * of unbuddied lists according to the number of free chunks available in the 34 * zbud page. 35 * 36 * The zbud API differs from that of conventional allocators in that the 37 * allocation function, zbud_alloc(), returns an opaque handle to the user, 38 * not a dereferenceable pointer. The user must map the handle using 39 * zbud_map() in order to get a usable pointer by which to access the 40 * allocation data and unmap the handle with zbud_unmap() when operations 41 * on the allocation data are complete. 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/atomic.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/module.h> 50 #include <linux/preempt.h> 51 #include <linux/slab.h> 52 #include <linux/spinlock.h> 53 #include <linux/zbud.h> 54 #include <linux/zpool.h> 55 56 /***************** 57 * Structures 58 *****************/ 59 /* 60 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 61 * adjusting internal fragmentation. It also determines the number of 62 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 63 * allocation granularity will be in chunks of size PAGE_SIZE/64. As one chunk 64 * in allocated page is occupied by zbud header, NCHUNKS will be calculated to 65 * 63 which shows the max number of free chunks in zbud page, also there will be 66 * 63 freelists per pool. 67 */ 68 #define NCHUNKS_ORDER 6 69 70 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 71 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 72 #define ZHDR_SIZE_ALIGNED CHUNK_SIZE 73 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 74 75 /** 76 * struct zbud_pool - stores metadata for each zbud pool 77 * @lock: protects all pool fields and first|last_chunk fields of any 78 * zbud page in the pool 79 * @unbuddied: array of lists tracking zbud pages that only contain one buddy; 80 * the lists each zbud page is added to depends on the size of 81 * its free region. 82 * @buddied: list tracking the zbud pages that contain two buddies; 83 * these zbud pages are full 84 * @lru: list tracking the zbud pages in LRU order by most recently 85 * added buddy. 86 * @pages_nr: number of zbud pages in the pool. 87 * @ops: pointer to a structure of user defined operations specified at 88 * pool creation time. 89 * 90 * This structure is allocated at pool creation time and maintains metadata 91 * pertaining to a particular zbud pool. 92 */ 93 struct zbud_pool { 94 spinlock_t lock; 95 struct list_head unbuddied[NCHUNKS]; 96 struct list_head buddied; 97 struct list_head lru; 98 u64 pages_nr; 99 struct zbud_ops *ops; 100 }; 101 102 /* 103 * struct zbud_header - zbud page metadata occupying the first chunk of each 104 * zbud page. 105 * @buddy: links the zbud page into the unbuddied/buddied lists in the pool 106 * @lru: links the zbud page into the lru list in the pool 107 * @first_chunks: the size of the first buddy in chunks, 0 if free 108 * @last_chunks: the size of the last buddy in chunks, 0 if free 109 */ 110 struct zbud_header { 111 struct list_head buddy; 112 struct list_head lru; 113 unsigned int first_chunks; 114 unsigned int last_chunks; 115 bool under_reclaim; 116 }; 117 118 /***************** 119 * zpool 120 ****************/ 121 122 #ifdef CONFIG_ZPOOL 123 124 static int zbud_zpool_evict(struct zbud_pool *pool, unsigned long handle) 125 { 126 return zpool_evict(pool, handle); 127 } 128 129 static struct zbud_ops zbud_zpool_ops = { 130 .evict = zbud_zpool_evict 131 }; 132 133 static void *zbud_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops) 134 { 135 return zbud_create_pool(gfp, zpool_ops ? &zbud_zpool_ops : NULL); 136 } 137 138 static void zbud_zpool_destroy(void *pool) 139 { 140 zbud_destroy_pool(pool); 141 } 142 143 static int zbud_zpool_malloc(void *pool, size_t size, gfp_t gfp, 144 unsigned long *handle) 145 { 146 return zbud_alloc(pool, size, gfp, handle); 147 } 148 static void zbud_zpool_free(void *pool, unsigned long handle) 149 { 150 zbud_free(pool, handle); 151 } 152 153 static int zbud_zpool_shrink(void *pool, unsigned int pages, 154 unsigned int *reclaimed) 155 { 156 unsigned int total = 0; 157 int ret = -EINVAL; 158 159 while (total < pages) { 160 ret = zbud_reclaim_page(pool, 8); 161 if (ret < 0) 162 break; 163 total++; 164 } 165 166 if (reclaimed) 167 *reclaimed = total; 168 169 return ret; 170 } 171 172 static void *zbud_zpool_map(void *pool, unsigned long handle, 173 enum zpool_mapmode mm) 174 { 175 return zbud_map(pool, handle); 176 } 177 static void zbud_zpool_unmap(void *pool, unsigned long handle) 178 { 179 zbud_unmap(pool, handle); 180 } 181 182 static u64 zbud_zpool_total_size(void *pool) 183 { 184 return zbud_get_pool_size(pool) * PAGE_SIZE; 185 } 186 187 static struct zpool_driver zbud_zpool_driver = { 188 .type = "zbud", 189 .owner = THIS_MODULE, 190 .create = zbud_zpool_create, 191 .destroy = zbud_zpool_destroy, 192 .malloc = zbud_zpool_malloc, 193 .free = zbud_zpool_free, 194 .shrink = zbud_zpool_shrink, 195 .map = zbud_zpool_map, 196 .unmap = zbud_zpool_unmap, 197 .total_size = zbud_zpool_total_size, 198 }; 199 200 MODULE_ALIAS("zpool-zbud"); 201 #endif /* CONFIG_ZPOOL */ 202 203 /***************** 204 * Helpers 205 *****************/ 206 /* Just to make the code easier to read */ 207 enum buddy { 208 FIRST, 209 LAST 210 }; 211 212 /* Converts an allocation size in bytes to size in zbud chunks */ 213 static int size_to_chunks(size_t size) 214 { 215 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 216 } 217 218 #define for_each_unbuddied_list(_iter, _begin) \ 219 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 220 221 /* Initializes the zbud header of a newly allocated zbud page */ 222 static struct zbud_header *init_zbud_page(struct page *page) 223 { 224 struct zbud_header *zhdr = page_address(page); 225 zhdr->first_chunks = 0; 226 zhdr->last_chunks = 0; 227 INIT_LIST_HEAD(&zhdr->buddy); 228 INIT_LIST_HEAD(&zhdr->lru); 229 zhdr->under_reclaim = 0; 230 return zhdr; 231 } 232 233 /* Resets the struct page fields and frees the page */ 234 static void free_zbud_page(struct zbud_header *zhdr) 235 { 236 __free_page(virt_to_page(zhdr)); 237 } 238 239 /* 240 * Encodes the handle of a particular buddy within a zbud page 241 * Pool lock should be held as this function accesses first|last_chunks 242 */ 243 static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud) 244 { 245 unsigned long handle; 246 247 /* 248 * For now, the encoded handle is actually just the pointer to the data 249 * but this might not always be the case. A little information hiding. 250 * Add CHUNK_SIZE to the handle if it is the first allocation to jump 251 * over the zbud header in the first chunk. 252 */ 253 handle = (unsigned long)zhdr; 254 if (bud == FIRST) 255 /* skip over zbud header */ 256 handle += ZHDR_SIZE_ALIGNED; 257 else /* bud == LAST */ 258 handle += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT); 259 return handle; 260 } 261 262 /* Returns the zbud page where a given handle is stored */ 263 static struct zbud_header *handle_to_zbud_header(unsigned long handle) 264 { 265 return (struct zbud_header *)(handle & PAGE_MASK); 266 } 267 268 /* Returns the number of free chunks in a zbud page */ 269 static int num_free_chunks(struct zbud_header *zhdr) 270 { 271 /* 272 * Rather than branch for different situations, just use the fact that 273 * free buddies have a length of zero to simplify everything. 274 */ 275 return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 276 } 277 278 /***************** 279 * API Functions 280 *****************/ 281 /** 282 * zbud_create_pool() - create a new zbud pool 283 * @gfp: gfp flags when allocating the zbud pool structure 284 * @ops: user-defined operations for the zbud pool 285 * 286 * Return: pointer to the new zbud pool or NULL if the metadata allocation 287 * failed. 288 */ 289 struct zbud_pool *zbud_create_pool(gfp_t gfp, struct zbud_ops *ops) 290 { 291 struct zbud_pool *pool; 292 int i; 293 294 pool = kmalloc(sizeof(struct zbud_pool), gfp); 295 if (!pool) 296 return NULL; 297 spin_lock_init(&pool->lock); 298 for_each_unbuddied_list(i, 0) 299 INIT_LIST_HEAD(&pool->unbuddied[i]); 300 INIT_LIST_HEAD(&pool->buddied); 301 INIT_LIST_HEAD(&pool->lru); 302 pool->pages_nr = 0; 303 pool->ops = ops; 304 return pool; 305 } 306 307 /** 308 * zbud_destroy_pool() - destroys an existing zbud pool 309 * @pool: the zbud pool to be destroyed 310 * 311 * The pool should be emptied before this function is called. 312 */ 313 void zbud_destroy_pool(struct zbud_pool *pool) 314 { 315 kfree(pool); 316 } 317 318 /** 319 * zbud_alloc() - allocates a region of a given size 320 * @pool: zbud pool from which to allocate 321 * @size: size in bytes of the desired allocation 322 * @gfp: gfp flags used if the pool needs to grow 323 * @handle: handle of the new allocation 324 * 325 * This function will attempt to find a free region in the pool large enough to 326 * satisfy the allocation request. A search of the unbuddied lists is 327 * performed first. If no suitable free region is found, then a new page is 328 * allocated and added to the pool to satisfy the request. 329 * 330 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 331 * as zbud pool pages. 332 * 333 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 334 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 335 * a new page. 336 */ 337 int zbud_alloc(struct zbud_pool *pool, size_t size, gfp_t gfp, 338 unsigned long *handle) 339 { 340 int chunks, i, freechunks; 341 struct zbud_header *zhdr = NULL; 342 enum buddy bud; 343 struct page *page; 344 345 if (!size || (gfp & __GFP_HIGHMEM)) 346 return -EINVAL; 347 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 348 return -ENOSPC; 349 chunks = size_to_chunks(size); 350 spin_lock(&pool->lock); 351 352 /* First, try to find an unbuddied zbud page. */ 353 zhdr = NULL; 354 for_each_unbuddied_list(i, chunks) { 355 if (!list_empty(&pool->unbuddied[i])) { 356 zhdr = list_first_entry(&pool->unbuddied[i], 357 struct zbud_header, buddy); 358 list_del(&zhdr->buddy); 359 if (zhdr->first_chunks == 0) 360 bud = FIRST; 361 else 362 bud = LAST; 363 goto found; 364 } 365 } 366 367 /* Couldn't find unbuddied zbud page, create new one */ 368 spin_unlock(&pool->lock); 369 page = alloc_page(gfp); 370 if (!page) 371 return -ENOMEM; 372 spin_lock(&pool->lock); 373 pool->pages_nr++; 374 zhdr = init_zbud_page(page); 375 bud = FIRST; 376 377 found: 378 if (bud == FIRST) 379 zhdr->first_chunks = chunks; 380 else 381 zhdr->last_chunks = chunks; 382 383 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) { 384 /* Add to unbuddied list */ 385 freechunks = num_free_chunks(zhdr); 386 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 387 } else { 388 /* Add to buddied list */ 389 list_add(&zhdr->buddy, &pool->buddied); 390 } 391 392 /* Add/move zbud page to beginning of LRU */ 393 if (!list_empty(&zhdr->lru)) 394 list_del(&zhdr->lru); 395 list_add(&zhdr->lru, &pool->lru); 396 397 *handle = encode_handle(zhdr, bud); 398 spin_unlock(&pool->lock); 399 400 return 0; 401 } 402 403 /** 404 * zbud_free() - frees the allocation associated with the given handle 405 * @pool: pool in which the allocation resided 406 * @handle: handle associated with the allocation returned by zbud_alloc() 407 * 408 * In the case that the zbud page in which the allocation resides is under 409 * reclaim, as indicated by the PG_reclaim flag being set, this function 410 * only sets the first|last_chunks to 0. The page is actually freed 411 * once both buddies are evicted (see zbud_reclaim_page() below). 412 */ 413 void zbud_free(struct zbud_pool *pool, unsigned long handle) 414 { 415 struct zbud_header *zhdr; 416 int freechunks; 417 418 spin_lock(&pool->lock); 419 zhdr = handle_to_zbud_header(handle); 420 421 /* If first buddy, handle will be page aligned */ 422 if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK) 423 zhdr->last_chunks = 0; 424 else 425 zhdr->first_chunks = 0; 426 427 if (zhdr->under_reclaim) { 428 /* zbud page is under reclaim, reclaim will free */ 429 spin_unlock(&pool->lock); 430 return; 431 } 432 433 /* Remove from existing buddy list */ 434 list_del(&zhdr->buddy); 435 436 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 437 /* zbud page is empty, free */ 438 list_del(&zhdr->lru); 439 free_zbud_page(zhdr); 440 pool->pages_nr--; 441 } else { 442 /* Add to unbuddied list */ 443 freechunks = num_free_chunks(zhdr); 444 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 445 } 446 447 spin_unlock(&pool->lock); 448 } 449 450 #define list_tail_entry(ptr, type, member) \ 451 list_entry((ptr)->prev, type, member) 452 453 /** 454 * zbud_reclaim_page() - evicts allocations from a pool page and frees it 455 * @pool: pool from which a page will attempt to be evicted 456 * @retires: number of pages on the LRU list for which eviction will 457 * be attempted before failing 458 * 459 * zbud reclaim is different from normal system reclaim in that the reclaim is 460 * done from the bottom, up. This is because only the bottom layer, zbud, has 461 * information on how the allocations are organized within each zbud page. This 462 * has the potential to create interesting locking situations between zbud and 463 * the user, however. 464 * 465 * To avoid these, this is how zbud_reclaim_page() should be called: 466 467 * The user detects a page should be reclaimed and calls zbud_reclaim_page(). 468 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call 469 * the user-defined eviction handler with the pool and handle as arguments. 470 * 471 * If the handle can not be evicted, the eviction handler should return 472 * non-zero. zbud_reclaim_page() will add the zbud page back to the 473 * appropriate list and try the next zbud page on the LRU up to 474 * a user defined number of retries. 475 * 476 * If the handle is successfully evicted, the eviction handler should 477 * return 0 _and_ should have called zbud_free() on the handle. zbud_free() 478 * contains logic to delay freeing the page if the page is under reclaim, 479 * as indicated by the setting of the PG_reclaim flag on the underlying page. 480 * 481 * If all buddies in the zbud page are successfully evicted, then the 482 * zbud page can be freed. 483 * 484 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 485 * no pages to evict or an eviction handler is not registered, -EAGAIN if 486 * the retry limit was hit. 487 */ 488 int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries) 489 { 490 int i, ret, freechunks; 491 struct zbud_header *zhdr; 492 unsigned long first_handle = 0, last_handle = 0; 493 494 spin_lock(&pool->lock); 495 if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) || 496 retries == 0) { 497 spin_unlock(&pool->lock); 498 return -EINVAL; 499 } 500 for (i = 0; i < retries; i++) { 501 zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru); 502 list_del(&zhdr->lru); 503 list_del(&zhdr->buddy); 504 /* Protect zbud page against free */ 505 zhdr->under_reclaim = true; 506 /* 507 * We need encode the handles before unlocking, since we can 508 * race with free that will set (first|last)_chunks to 0 509 */ 510 first_handle = 0; 511 last_handle = 0; 512 if (zhdr->first_chunks) 513 first_handle = encode_handle(zhdr, FIRST); 514 if (zhdr->last_chunks) 515 last_handle = encode_handle(zhdr, LAST); 516 spin_unlock(&pool->lock); 517 518 /* Issue the eviction callback(s) */ 519 if (first_handle) { 520 ret = pool->ops->evict(pool, first_handle); 521 if (ret) 522 goto next; 523 } 524 if (last_handle) { 525 ret = pool->ops->evict(pool, last_handle); 526 if (ret) 527 goto next; 528 } 529 next: 530 spin_lock(&pool->lock); 531 zhdr->under_reclaim = false; 532 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 533 /* 534 * Both buddies are now free, free the zbud page and 535 * return success. 536 */ 537 free_zbud_page(zhdr); 538 pool->pages_nr--; 539 spin_unlock(&pool->lock); 540 return 0; 541 } else if (zhdr->first_chunks == 0 || 542 zhdr->last_chunks == 0) { 543 /* add to unbuddied list */ 544 freechunks = num_free_chunks(zhdr); 545 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 546 } else { 547 /* add to buddied list */ 548 list_add(&zhdr->buddy, &pool->buddied); 549 } 550 551 /* add to beginning of LRU */ 552 list_add(&zhdr->lru, &pool->lru); 553 } 554 spin_unlock(&pool->lock); 555 return -EAGAIN; 556 } 557 558 /** 559 * zbud_map() - maps the allocation associated with the given handle 560 * @pool: pool in which the allocation resides 561 * @handle: handle associated with the allocation to be mapped 562 * 563 * While trivial for zbud, the mapping functions for others allocators 564 * implementing this allocation API could have more complex information encoded 565 * in the handle and could create temporary mappings to make the data 566 * accessible to the user. 567 * 568 * Returns: a pointer to the mapped allocation 569 */ 570 void *zbud_map(struct zbud_pool *pool, unsigned long handle) 571 { 572 return (void *)(handle); 573 } 574 575 /** 576 * zbud_unmap() - maps the allocation associated with the given handle 577 * @pool: pool in which the allocation resides 578 * @handle: handle associated with the allocation to be unmapped 579 */ 580 void zbud_unmap(struct zbud_pool *pool, unsigned long handle) 581 { 582 } 583 584 /** 585 * zbud_get_pool_size() - gets the zbud pool size in pages 586 * @pool: pool whose size is being queried 587 * 588 * Returns: size in pages of the given pool. The pool lock need not be 589 * taken to access pages_nr. 590 */ 591 u64 zbud_get_pool_size(struct zbud_pool *pool) 592 { 593 return pool->pages_nr; 594 } 595 596 static int __init init_zbud(void) 597 { 598 /* Make sure the zbud header will fit in one chunk */ 599 BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED); 600 pr_info("loaded\n"); 601 602 #ifdef CONFIG_ZPOOL 603 zpool_register_driver(&zbud_zpool_driver); 604 #endif 605 606 return 0; 607 } 608 609 static void __exit exit_zbud(void) 610 { 611 #ifdef CONFIG_ZPOOL 612 zpool_unregister_driver(&zbud_zpool_driver); 613 #endif 614 615 pr_info("unloaded\n"); 616 } 617 618 module_init(init_zbud); 619 module_exit(exit_zbud); 620 621 MODULE_LICENSE("GPL"); 622 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 623 MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages"); 624