xref: /linux/mm/zbud.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * zbud.c
4  *
5  * Copyright (C) 2013, Seth Jennings, IBM
6  *
7  * Concepts based on zcache internal zbud allocator by Dan Magenheimer.
8  *
9  * zbud is an special purpose allocator for storing compressed pages.  Contrary
10  * to what its name may suggest, zbud is not a buddy allocator, but rather an
11  * allocator that "buddies" two compressed pages together in a single memory
12  * page.
13  *
14  * While this design limits storage density, it has simple and deterministic
15  * reclaim properties that make it preferable to a higher density approach when
16  * reclaim will be used.
17  *
18  * zbud works by storing compressed pages, or "zpages", together in pairs in a
19  * single memory page called a "zbud page".  The first buddy is "left
20  * justified" at the beginning of the zbud page, and the last buddy is "right
21  * justified" at the end of the zbud page.  The benefit is that if either
22  * buddy is freed, the freed buddy space, coalesced with whatever slack space
23  * that existed between the buddies, results in the largest possible free region
24  * within the zbud page.
25  *
26  * zbud also provides an attractive lower bound on density. The ratio of zpages
27  * to zbud pages can not be less than 1.  This ensures that zbud can never "do
28  * harm" by using more pages to store zpages than the uncompressed zpages would
29  * have used on their own.
30  *
31  * zbud pages are divided into "chunks".  The size of the chunks is fixed at
32  * compile time and determined by NCHUNKS_ORDER below.  Dividing zbud pages
33  * into chunks allows organizing unbuddied zbud pages into a manageable number
34  * of unbuddied lists according to the number of free chunks available in the
35  * zbud page.
36  *
37  * The zbud API differs from that of conventional allocators in that the
38  * allocation function, zbud_alloc(), returns an opaque handle to the user,
39  * not a dereferenceable pointer.  The user must map the handle using
40  * zbud_map() in order to get a usable pointer by which to access the
41  * allocation data and unmap the handle with zbud_unmap() when operations
42  * on the allocation data are complete.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/atomic.h>
48 #include <linux/list.h>
49 #include <linux/mm.h>
50 #include <linux/module.h>
51 #include <linux/preempt.h>
52 #include <linux/slab.h>
53 #include <linux/spinlock.h>
54 #include <linux/zpool.h>
55 
56 /*****************
57  * Structures
58 *****************/
59 /*
60  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
61  * adjusting internal fragmentation.  It also determines the number of
62  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
63  * allocation granularity will be in chunks of size PAGE_SIZE/64. As one chunk
64  * in allocated page is occupied by zbud header, NCHUNKS will be calculated to
65  * 63 which shows the max number of free chunks in zbud page, also there will be
66  * 63 freelists per pool.
67  */
68 #define NCHUNKS_ORDER	6
69 
70 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
71 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
72 #define ZHDR_SIZE_ALIGNED CHUNK_SIZE
73 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
74 
75 struct zbud_pool;
76 
77 struct zbud_ops {
78 	int (*evict)(struct zbud_pool *pool, unsigned long handle);
79 };
80 
81 /**
82  * struct zbud_pool - stores metadata for each zbud pool
83  * @lock:	protects all pool fields and first|last_chunk fields of any
84  *		zbud page in the pool
85  * @unbuddied:	array of lists tracking zbud pages that only contain one buddy;
86  *		the lists each zbud page is added to depends on the size of
87  *		its free region.
88  * @buddied:	list tracking the zbud pages that contain two buddies;
89  *		these zbud pages are full
90  * @lru:	list tracking the zbud pages in LRU order by most recently
91  *		added buddy.
92  * @pages_nr:	number of zbud pages in the pool.
93  * @ops:	pointer to a structure of user defined operations specified at
94  *		pool creation time.
95  * @zpool:	zpool driver
96  * @zpool_ops:	zpool operations structure with an evict callback
97  *
98  * This structure is allocated at pool creation time and maintains metadata
99  * pertaining to a particular zbud pool.
100  */
101 struct zbud_pool {
102 	spinlock_t lock;
103 	union {
104 		/*
105 		 * Reuse unbuddied[0] as buddied on the ground that
106 		 * unbuddied[0] is unused.
107 		 */
108 		struct list_head buddied;
109 		struct list_head unbuddied[NCHUNKS];
110 	};
111 	struct list_head lru;
112 	u64 pages_nr;
113 	const struct zbud_ops *ops;
114 	struct zpool *zpool;
115 	const struct zpool_ops *zpool_ops;
116 };
117 
118 /*
119  * struct zbud_header - zbud page metadata occupying the first chunk of each
120  *			zbud page.
121  * @buddy:	links the zbud page into the unbuddied/buddied lists in the pool
122  * @lru:	links the zbud page into the lru list in the pool
123  * @first_chunks:	the size of the first buddy in chunks, 0 if free
124  * @last_chunks:	the size of the last buddy in chunks, 0 if free
125  */
126 struct zbud_header {
127 	struct list_head buddy;
128 	struct list_head lru;
129 	unsigned int first_chunks;
130 	unsigned int last_chunks;
131 	bool under_reclaim;
132 };
133 
134 /*****************
135  * Helpers
136 *****************/
137 /* Just to make the code easier to read */
138 enum buddy {
139 	FIRST,
140 	LAST
141 };
142 
143 /* Converts an allocation size in bytes to size in zbud chunks */
144 static int size_to_chunks(size_t size)
145 {
146 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
147 }
148 
149 #define for_each_unbuddied_list(_iter, _begin) \
150 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
151 
152 /* Initializes the zbud header of a newly allocated zbud page */
153 static struct zbud_header *init_zbud_page(struct page *page)
154 {
155 	struct zbud_header *zhdr = page_address(page);
156 	zhdr->first_chunks = 0;
157 	zhdr->last_chunks = 0;
158 	INIT_LIST_HEAD(&zhdr->buddy);
159 	INIT_LIST_HEAD(&zhdr->lru);
160 	zhdr->under_reclaim = false;
161 	return zhdr;
162 }
163 
164 /* Resets the struct page fields and frees the page */
165 static void free_zbud_page(struct zbud_header *zhdr)
166 {
167 	__free_page(virt_to_page(zhdr));
168 }
169 
170 /*
171  * Encodes the handle of a particular buddy within a zbud page
172  * Pool lock should be held as this function accesses first|last_chunks
173  */
174 static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud)
175 {
176 	unsigned long handle;
177 
178 	/*
179 	 * For now, the encoded handle is actually just the pointer to the data
180 	 * but this might not always be the case.  A little information hiding.
181 	 * Add CHUNK_SIZE to the handle if it is the first allocation to jump
182 	 * over the zbud header in the first chunk.
183 	 */
184 	handle = (unsigned long)zhdr;
185 	if (bud == FIRST)
186 		/* skip over zbud header */
187 		handle += ZHDR_SIZE_ALIGNED;
188 	else /* bud == LAST */
189 		handle += PAGE_SIZE - (zhdr->last_chunks  << CHUNK_SHIFT);
190 	return handle;
191 }
192 
193 /* Returns the zbud page where a given handle is stored */
194 static struct zbud_header *handle_to_zbud_header(unsigned long handle)
195 {
196 	return (struct zbud_header *)(handle & PAGE_MASK);
197 }
198 
199 /* Returns the number of free chunks in a zbud page */
200 static int num_free_chunks(struct zbud_header *zhdr)
201 {
202 	/*
203 	 * Rather than branch for different situations, just use the fact that
204 	 * free buddies have a length of zero to simplify everything.
205 	 */
206 	return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
207 }
208 
209 /*****************
210  * API Functions
211 *****************/
212 /**
213  * zbud_create_pool() - create a new zbud pool
214  * @gfp:	gfp flags when allocating the zbud pool structure
215  * @ops:	user-defined operations for the zbud pool
216  *
217  * Return: pointer to the new zbud pool or NULL if the metadata allocation
218  * failed.
219  */
220 static struct zbud_pool *zbud_create_pool(gfp_t gfp, const struct zbud_ops *ops)
221 {
222 	struct zbud_pool *pool;
223 	int i;
224 
225 	pool = kzalloc(sizeof(struct zbud_pool), gfp);
226 	if (!pool)
227 		return NULL;
228 	spin_lock_init(&pool->lock);
229 	for_each_unbuddied_list(i, 0)
230 		INIT_LIST_HEAD(&pool->unbuddied[i]);
231 	INIT_LIST_HEAD(&pool->buddied);
232 	INIT_LIST_HEAD(&pool->lru);
233 	pool->pages_nr = 0;
234 	pool->ops = ops;
235 	return pool;
236 }
237 
238 /**
239  * zbud_destroy_pool() - destroys an existing zbud pool
240  * @pool:	the zbud pool to be destroyed
241  *
242  * The pool should be emptied before this function is called.
243  */
244 static void zbud_destroy_pool(struct zbud_pool *pool)
245 {
246 	kfree(pool);
247 }
248 
249 /**
250  * zbud_alloc() - allocates a region of a given size
251  * @pool:	zbud pool from which to allocate
252  * @size:	size in bytes of the desired allocation
253  * @gfp:	gfp flags used if the pool needs to grow
254  * @handle:	handle of the new allocation
255  *
256  * This function will attempt to find a free region in the pool large enough to
257  * satisfy the allocation request.  A search of the unbuddied lists is
258  * performed first. If no suitable free region is found, then a new page is
259  * allocated and added to the pool to satisfy the request.
260  *
261  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
262  * as zbud pool pages.
263  *
264  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
265  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
266  * a new page.
267  */
268 static int zbud_alloc(struct zbud_pool *pool, size_t size, gfp_t gfp,
269 			unsigned long *handle)
270 {
271 	int chunks, i, freechunks;
272 	struct zbud_header *zhdr = NULL;
273 	enum buddy bud;
274 	struct page *page;
275 
276 	if (!size || (gfp & __GFP_HIGHMEM))
277 		return -EINVAL;
278 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
279 		return -ENOSPC;
280 	chunks = size_to_chunks(size);
281 	spin_lock(&pool->lock);
282 
283 	/* First, try to find an unbuddied zbud page. */
284 	for_each_unbuddied_list(i, chunks) {
285 		if (!list_empty(&pool->unbuddied[i])) {
286 			zhdr = list_first_entry(&pool->unbuddied[i],
287 					struct zbud_header, buddy);
288 			list_del(&zhdr->buddy);
289 			if (zhdr->first_chunks == 0)
290 				bud = FIRST;
291 			else
292 				bud = LAST;
293 			goto found;
294 		}
295 	}
296 
297 	/* Couldn't find unbuddied zbud page, create new one */
298 	spin_unlock(&pool->lock);
299 	page = alloc_page(gfp);
300 	if (!page)
301 		return -ENOMEM;
302 	spin_lock(&pool->lock);
303 	pool->pages_nr++;
304 	zhdr = init_zbud_page(page);
305 	bud = FIRST;
306 
307 found:
308 	if (bud == FIRST)
309 		zhdr->first_chunks = chunks;
310 	else
311 		zhdr->last_chunks = chunks;
312 
313 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) {
314 		/* Add to unbuddied list */
315 		freechunks = num_free_chunks(zhdr);
316 		list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
317 	} else {
318 		/* Add to buddied list */
319 		list_add(&zhdr->buddy, &pool->buddied);
320 	}
321 
322 	/* Add/move zbud page to beginning of LRU */
323 	if (!list_empty(&zhdr->lru))
324 		list_del(&zhdr->lru);
325 	list_add(&zhdr->lru, &pool->lru);
326 
327 	*handle = encode_handle(zhdr, bud);
328 	spin_unlock(&pool->lock);
329 
330 	return 0;
331 }
332 
333 /**
334  * zbud_free() - frees the allocation associated with the given handle
335  * @pool:	pool in which the allocation resided
336  * @handle:	handle associated with the allocation returned by zbud_alloc()
337  *
338  * In the case that the zbud page in which the allocation resides is under
339  * reclaim, as indicated by the PG_reclaim flag being set, this function
340  * only sets the first|last_chunks to 0.  The page is actually freed
341  * once both buddies are evicted (see zbud_reclaim_page() below).
342  */
343 static void zbud_free(struct zbud_pool *pool, unsigned long handle)
344 {
345 	struct zbud_header *zhdr;
346 	int freechunks;
347 
348 	spin_lock(&pool->lock);
349 	zhdr = handle_to_zbud_header(handle);
350 
351 	/* If first buddy, handle will be page aligned */
352 	if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK)
353 		zhdr->last_chunks = 0;
354 	else
355 		zhdr->first_chunks = 0;
356 
357 	if (zhdr->under_reclaim) {
358 		/* zbud page is under reclaim, reclaim will free */
359 		spin_unlock(&pool->lock);
360 		return;
361 	}
362 
363 	/* Remove from existing buddy list */
364 	list_del(&zhdr->buddy);
365 
366 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
367 		/* zbud page is empty, free */
368 		list_del(&zhdr->lru);
369 		free_zbud_page(zhdr);
370 		pool->pages_nr--;
371 	} else {
372 		/* Add to unbuddied list */
373 		freechunks = num_free_chunks(zhdr);
374 		list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
375 	}
376 
377 	spin_unlock(&pool->lock);
378 }
379 
380 /**
381  * zbud_reclaim_page() - evicts allocations from a pool page and frees it
382  * @pool:	pool from which a page will attempt to be evicted
383  * @retries:	number of pages on the LRU list for which eviction will
384  *		be attempted before failing
385  *
386  * zbud reclaim is different from normal system reclaim in that the reclaim is
387  * done from the bottom, up.  This is because only the bottom layer, zbud, has
388  * information on how the allocations are organized within each zbud page. This
389  * has the potential to create interesting locking situations between zbud and
390  * the user, however.
391  *
392  * To avoid these, this is how zbud_reclaim_page() should be called:
393  *
394  * The user detects a page should be reclaimed and calls zbud_reclaim_page().
395  * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call
396  * the user-defined eviction handler with the pool and handle as arguments.
397  *
398  * If the handle can not be evicted, the eviction handler should return
399  * non-zero. zbud_reclaim_page() will add the zbud page back to the
400  * appropriate list and try the next zbud page on the LRU up to
401  * a user defined number of retries.
402  *
403  * If the handle is successfully evicted, the eviction handler should
404  * return 0 _and_ should have called zbud_free() on the handle. zbud_free()
405  * contains logic to delay freeing the page if the page is under reclaim,
406  * as indicated by the setting of the PG_reclaim flag on the underlying page.
407  *
408  * If all buddies in the zbud page are successfully evicted, then the
409  * zbud page can be freed.
410  *
411  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
412  * no pages to evict or an eviction handler is not registered, -EAGAIN if
413  * the retry limit was hit.
414  */
415 static int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries)
416 {
417 	int i, ret, freechunks;
418 	struct zbud_header *zhdr;
419 	unsigned long first_handle = 0, last_handle = 0;
420 
421 	spin_lock(&pool->lock);
422 	if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) ||
423 			retries == 0) {
424 		spin_unlock(&pool->lock);
425 		return -EINVAL;
426 	}
427 	for (i = 0; i < retries; i++) {
428 		zhdr = list_last_entry(&pool->lru, struct zbud_header, lru);
429 		list_del(&zhdr->lru);
430 		list_del(&zhdr->buddy);
431 		/* Protect zbud page against free */
432 		zhdr->under_reclaim = true;
433 		/*
434 		 * We need encode the handles before unlocking, since we can
435 		 * race with free that will set (first|last)_chunks to 0
436 		 */
437 		first_handle = 0;
438 		last_handle = 0;
439 		if (zhdr->first_chunks)
440 			first_handle = encode_handle(zhdr, FIRST);
441 		if (zhdr->last_chunks)
442 			last_handle = encode_handle(zhdr, LAST);
443 		spin_unlock(&pool->lock);
444 
445 		/* Issue the eviction callback(s) */
446 		if (first_handle) {
447 			ret = pool->ops->evict(pool, first_handle);
448 			if (ret)
449 				goto next;
450 		}
451 		if (last_handle) {
452 			ret = pool->ops->evict(pool, last_handle);
453 			if (ret)
454 				goto next;
455 		}
456 next:
457 		spin_lock(&pool->lock);
458 		zhdr->under_reclaim = false;
459 		if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
460 			/*
461 			 * Both buddies are now free, free the zbud page and
462 			 * return success.
463 			 */
464 			free_zbud_page(zhdr);
465 			pool->pages_nr--;
466 			spin_unlock(&pool->lock);
467 			return 0;
468 		} else if (zhdr->first_chunks == 0 ||
469 				zhdr->last_chunks == 0) {
470 			/* add to unbuddied list */
471 			freechunks = num_free_chunks(zhdr);
472 			list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
473 		} else {
474 			/* add to buddied list */
475 			list_add(&zhdr->buddy, &pool->buddied);
476 		}
477 
478 		/* add to beginning of LRU */
479 		list_add(&zhdr->lru, &pool->lru);
480 	}
481 	spin_unlock(&pool->lock);
482 	return -EAGAIN;
483 }
484 
485 /**
486  * zbud_map() - maps the allocation associated with the given handle
487  * @pool:	pool in which the allocation resides
488  * @handle:	handle associated with the allocation to be mapped
489  *
490  * While trivial for zbud, the mapping functions for others allocators
491  * implementing this allocation API could have more complex information encoded
492  * in the handle and could create temporary mappings to make the data
493  * accessible to the user.
494  *
495  * Returns: a pointer to the mapped allocation
496  */
497 static void *zbud_map(struct zbud_pool *pool, unsigned long handle)
498 {
499 	return (void *)(handle);
500 }
501 
502 /**
503  * zbud_unmap() - maps the allocation associated with the given handle
504  * @pool:	pool in which the allocation resides
505  * @handle:	handle associated with the allocation to be unmapped
506  */
507 static void zbud_unmap(struct zbud_pool *pool, unsigned long handle)
508 {
509 }
510 
511 /**
512  * zbud_get_pool_size() - gets the zbud pool size in pages
513  * @pool:	pool whose size is being queried
514  *
515  * Returns: size in pages of the given pool.  The pool lock need not be
516  * taken to access pages_nr.
517  */
518 static u64 zbud_get_pool_size(struct zbud_pool *pool)
519 {
520 	return pool->pages_nr;
521 }
522 
523 /*****************
524  * zpool
525  ****************/
526 
527 static int zbud_zpool_evict(struct zbud_pool *pool, unsigned long handle)
528 {
529 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
530 		return pool->zpool_ops->evict(pool->zpool, handle);
531 	else
532 		return -ENOENT;
533 }
534 
535 static const struct zbud_ops zbud_zpool_ops = {
536 	.evict =	zbud_zpool_evict
537 };
538 
539 static void *zbud_zpool_create(const char *name, gfp_t gfp,
540 			       const struct zpool_ops *zpool_ops,
541 			       struct zpool *zpool)
542 {
543 	struct zbud_pool *pool;
544 
545 	pool = zbud_create_pool(gfp, zpool_ops ? &zbud_zpool_ops : NULL);
546 	if (pool) {
547 		pool->zpool = zpool;
548 		pool->zpool_ops = zpool_ops;
549 	}
550 	return pool;
551 }
552 
553 static void zbud_zpool_destroy(void *pool)
554 {
555 	zbud_destroy_pool(pool);
556 }
557 
558 static int zbud_zpool_malloc(void *pool, size_t size, gfp_t gfp,
559 			unsigned long *handle)
560 {
561 	return zbud_alloc(pool, size, gfp, handle);
562 }
563 static void zbud_zpool_free(void *pool, unsigned long handle)
564 {
565 	zbud_free(pool, handle);
566 }
567 
568 static int zbud_zpool_shrink(void *pool, unsigned int pages,
569 			unsigned int *reclaimed)
570 {
571 	unsigned int total = 0;
572 	int ret = -EINVAL;
573 
574 	while (total < pages) {
575 		ret = zbud_reclaim_page(pool, 8);
576 		if (ret < 0)
577 			break;
578 		total++;
579 	}
580 
581 	if (reclaimed)
582 		*reclaimed = total;
583 
584 	return ret;
585 }
586 
587 static void *zbud_zpool_map(void *pool, unsigned long handle,
588 			enum zpool_mapmode mm)
589 {
590 	return zbud_map(pool, handle);
591 }
592 static void zbud_zpool_unmap(void *pool, unsigned long handle)
593 {
594 	zbud_unmap(pool, handle);
595 }
596 
597 static u64 zbud_zpool_total_size(void *pool)
598 {
599 	return zbud_get_pool_size(pool) * PAGE_SIZE;
600 }
601 
602 static struct zpool_driver zbud_zpool_driver = {
603 	.type =		"zbud",
604 	.sleep_mapped = true,
605 	.owner =	THIS_MODULE,
606 	.create =	zbud_zpool_create,
607 	.destroy =	zbud_zpool_destroy,
608 	.malloc =	zbud_zpool_malloc,
609 	.free =		zbud_zpool_free,
610 	.shrink =	zbud_zpool_shrink,
611 	.map =		zbud_zpool_map,
612 	.unmap =	zbud_zpool_unmap,
613 	.total_size =	zbud_zpool_total_size,
614 };
615 
616 MODULE_ALIAS("zpool-zbud");
617 
618 static int __init init_zbud(void)
619 {
620 	/* Make sure the zbud header will fit in one chunk */
621 	BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED);
622 	pr_info("loaded\n");
623 
624 	zpool_register_driver(&zbud_zpool_driver);
625 
626 	return 0;
627 }
628 
629 static void __exit exit_zbud(void)
630 {
631 	zpool_unregister_driver(&zbud_zpool_driver);
632 	pr_info("unloaded\n");
633 }
634 
635 module_init(init_zbud);
636 module_exit(exit_zbud);
637 
638 MODULE_LICENSE("GPL");
639 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
640 MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages");
641