xref: /linux/mm/z3fold.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47 
48 /*
49  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50  * adjusting internal fragmentation.  It also determines the number of
51  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53  * in the beginning of an allocated page are occupied by z3fold header, so
54  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55  * which shows the max number of free chunks in z3fold page, also there will
56  * be 63, or 62, respectively, freelists per pool.
57  */
58 #define NCHUNKS_ORDER	6
59 
60 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS		(TOTAL_CHUNKS - ZHDR_CHUNKS)
66 
67 #define BUDDY_MASK	(0x3)
68 #define BUDDY_SHIFT	2
69 #define SLOTS_ALIGN	(0x40)
70 
71 /*****************
72  * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78 
79 enum buddy {
80 	HEADLESS = 0,
81 	FIRST,
82 	MIDDLE,
83 	LAST,
84 	BUDDIES_MAX = LAST
85 };
86 
87 struct z3fold_buddy_slots {
88 	/*
89 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 	 * be enough slots to hold all possible variants
91 	 */
92 	unsigned long slot[BUDDY_MASK + 1];
93 	unsigned long pool; /* back link */
94 	rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK	(0x03)
97 
98 /*
99  * struct z3fold_header - z3fold page metadata occupying first chunks of each
100  *			z3fold page, except for HEADLESS pages
101  * @buddy:		links the z3fold page into the relevant list in the
102  *			pool
103  * @page_lock:		per-page lock
104  * @refcount:		reference count for the z3fold page
105  * @work:		work_struct for page layout optimization
106  * @slots:		pointer to the structure holding buddy slots
107  * @pool:		pointer to the containing pool
108  * @cpu:		CPU which this page "belongs" to
109  * @first_chunks:	the size of the first buddy in chunks, 0 if free
110  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
111  * @last_chunks:	the size of the last buddy in chunks, 0 if free
112  * @first_num:		the starting number (for the first handle)
113  * @mapped_count:	the number of objects currently mapped
114  */
115 struct z3fold_header {
116 	struct list_head buddy;
117 	spinlock_t page_lock;
118 	struct kref refcount;
119 	struct work_struct work;
120 	struct z3fold_buddy_slots *slots;
121 	struct z3fold_pool *pool;
122 	short cpu;
123 	unsigned short first_chunks;
124 	unsigned short middle_chunks;
125 	unsigned short last_chunks;
126 	unsigned short start_middle;
127 	unsigned short first_num:2;
128 	unsigned short mapped_count:2;
129 	unsigned short foreign_handles:2;
130 };
131 
132 /**
133  * struct z3fold_pool - stores metadata for each z3fold pool
134  * @name:	pool name
135  * @lock:	protects pool unbuddied/lru lists
136  * @stale_lock:	protects pool stale page list
137  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
138  *		buddies; the list each z3fold page is added to depends on
139  *		the size of its free region.
140  * @lru:	list tracking the z3fold pages in LRU order by most recently
141  *		added buddy.
142  * @stale:	list of pages marked for freeing
143  * @pages_nr:	number of z3fold pages in the pool.
144  * @c_handle:	cache for z3fold_buddy_slots allocation
145  * @ops:	pointer to a structure of user defined operations specified at
146  *		pool creation time.
147  * @zpool:	zpool driver
148  * @zpool_ops:	zpool operations structure with an evict callback
149  * @compact_wq:	workqueue for page layout background optimization
150  * @release_wq:	workqueue for safe page release
151  * @work:	work_struct for safe page release
152  * @inode:	inode for z3fold pseudo filesystem
153  *
154  * This structure is allocated at pool creation time and maintains metadata
155  * pertaining to a particular z3fold pool.
156  */
157 struct z3fold_pool {
158 	const char *name;
159 	spinlock_t lock;
160 	spinlock_t stale_lock;
161 	struct list_head *unbuddied;
162 	struct list_head lru;
163 	struct list_head stale;
164 	atomic64_t pages_nr;
165 	struct kmem_cache *c_handle;
166 	const struct z3fold_ops *ops;
167 	struct zpool *zpool;
168 	const struct zpool_ops *zpool_ops;
169 	struct workqueue_struct *compact_wq;
170 	struct workqueue_struct *release_wq;
171 	struct work_struct work;
172 	struct inode *inode;
173 };
174 
175 /*
176  * Internal z3fold page flags
177  */
178 enum z3fold_page_flags {
179 	PAGE_HEADLESS = 0,
180 	MIDDLE_CHUNK_MAPPED,
181 	NEEDS_COMPACTING,
182 	PAGE_STALE,
183 	PAGE_CLAIMED, /* by either reclaim or free */
184 	PAGE_MIGRATED, /* page is migrated and soon to be released */
185 };
186 
187 /*
188  * handle flags, go under HANDLE_FLAG_MASK
189  */
190 enum z3fold_handle_flags {
191 	HANDLES_NOFREE = 0,
192 };
193 
194 /*
195  * Forward declarations
196  */
197 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
198 static void compact_page_work(struct work_struct *w);
199 
200 /*****************
201  * Helpers
202 *****************/
203 
204 /* Converts an allocation size in bytes to size in z3fold chunks */
205 static int size_to_chunks(size_t size)
206 {
207 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
208 }
209 
210 #define for_each_unbuddied_list(_iter, _begin) \
211 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
212 
213 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
214 							gfp_t gfp)
215 {
216 	struct z3fold_buddy_slots *slots = kmem_cache_zalloc(pool->c_handle,
217 							     gfp);
218 
219 	if (slots) {
220 		/* It will be freed separately in free_handle(). */
221 		kmemleak_not_leak(slots);
222 		slots->pool = (unsigned long)pool;
223 		rwlock_init(&slots->lock);
224 	}
225 
226 	return slots;
227 }
228 
229 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
230 {
231 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
232 }
233 
234 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
235 {
236 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
237 }
238 
239 /* Lock a z3fold page */
240 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
241 {
242 	spin_lock(&zhdr->page_lock);
243 }
244 
245 /* Try to lock a z3fold page */
246 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
247 {
248 	return spin_trylock(&zhdr->page_lock);
249 }
250 
251 /* Unlock a z3fold page */
252 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
253 {
254 	spin_unlock(&zhdr->page_lock);
255 }
256 
257 /* return locked z3fold page if it's not headless */
258 static inline struct z3fold_header *get_z3fold_header(unsigned long handle)
259 {
260 	struct z3fold_buddy_slots *slots;
261 	struct z3fold_header *zhdr;
262 	int locked = 0;
263 
264 	if (!(handle & (1 << PAGE_HEADLESS))) {
265 		slots = handle_to_slots(handle);
266 		do {
267 			unsigned long addr;
268 
269 			read_lock(&slots->lock);
270 			addr = *(unsigned long *)handle;
271 			zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
272 			locked = z3fold_page_trylock(zhdr);
273 			read_unlock(&slots->lock);
274 			if (locked) {
275 				struct page *page = virt_to_page(zhdr);
276 
277 				if (!test_bit(PAGE_MIGRATED, &page->private))
278 					break;
279 				z3fold_page_unlock(zhdr);
280 			}
281 			cpu_relax();
282 		} while (true);
283 	} else {
284 		zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
285 	}
286 
287 	return zhdr;
288 }
289 
290 static inline void put_z3fold_header(struct z3fold_header *zhdr)
291 {
292 	struct page *page = virt_to_page(zhdr);
293 
294 	if (!test_bit(PAGE_HEADLESS, &page->private))
295 		z3fold_page_unlock(zhdr);
296 }
297 
298 static inline void free_handle(unsigned long handle, struct z3fold_header *zhdr)
299 {
300 	struct z3fold_buddy_slots *slots;
301 	int i;
302 	bool is_free;
303 
304 	if (WARN_ON(*(unsigned long *)handle == 0))
305 		return;
306 
307 	slots = handle_to_slots(handle);
308 	write_lock(&slots->lock);
309 	*(unsigned long *)handle = 0;
310 
311 	if (test_bit(HANDLES_NOFREE, &slots->pool)) {
312 		write_unlock(&slots->lock);
313 		return; /* simple case, nothing else to do */
314 	}
315 
316 	if (zhdr->slots != slots)
317 		zhdr->foreign_handles--;
318 
319 	is_free = true;
320 	for (i = 0; i <= BUDDY_MASK; i++) {
321 		if (slots->slot[i]) {
322 			is_free = false;
323 			break;
324 		}
325 	}
326 	write_unlock(&slots->lock);
327 
328 	if (is_free) {
329 		struct z3fold_pool *pool = slots_to_pool(slots);
330 
331 		if (zhdr->slots == slots)
332 			zhdr->slots = NULL;
333 		kmem_cache_free(pool->c_handle, slots);
334 	}
335 }
336 
337 static int z3fold_init_fs_context(struct fs_context *fc)
338 {
339 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
340 }
341 
342 static struct file_system_type z3fold_fs = {
343 	.name		= "z3fold",
344 	.init_fs_context = z3fold_init_fs_context,
345 	.kill_sb	= kill_anon_super,
346 };
347 
348 static struct vfsmount *z3fold_mnt;
349 static int __init z3fold_mount(void)
350 {
351 	int ret = 0;
352 
353 	z3fold_mnt = kern_mount(&z3fold_fs);
354 	if (IS_ERR(z3fold_mnt))
355 		ret = PTR_ERR(z3fold_mnt);
356 
357 	return ret;
358 }
359 
360 static void z3fold_unmount(void)
361 {
362 	kern_unmount(z3fold_mnt);
363 }
364 
365 static const struct address_space_operations z3fold_aops;
366 static int z3fold_register_migration(struct z3fold_pool *pool)
367 {
368 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
369 	if (IS_ERR(pool->inode)) {
370 		pool->inode = NULL;
371 		return 1;
372 	}
373 
374 	pool->inode->i_mapping->private_data = pool;
375 	pool->inode->i_mapping->a_ops = &z3fold_aops;
376 	return 0;
377 }
378 
379 static void z3fold_unregister_migration(struct z3fold_pool *pool)
380 {
381 	if (pool->inode)
382 		iput(pool->inode);
383 }
384 
385 /* Initializes the z3fold header of a newly allocated z3fold page */
386 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
387 					struct z3fold_pool *pool, gfp_t gfp)
388 {
389 	struct z3fold_header *zhdr = page_address(page);
390 	struct z3fold_buddy_slots *slots;
391 
392 	INIT_LIST_HEAD(&page->lru);
393 	clear_bit(PAGE_HEADLESS, &page->private);
394 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
395 	clear_bit(NEEDS_COMPACTING, &page->private);
396 	clear_bit(PAGE_STALE, &page->private);
397 	clear_bit(PAGE_CLAIMED, &page->private);
398 	clear_bit(PAGE_MIGRATED, &page->private);
399 	if (headless)
400 		return zhdr;
401 
402 	slots = alloc_slots(pool, gfp);
403 	if (!slots)
404 		return NULL;
405 
406 	memset(zhdr, 0, sizeof(*zhdr));
407 	spin_lock_init(&zhdr->page_lock);
408 	kref_init(&zhdr->refcount);
409 	zhdr->cpu = -1;
410 	zhdr->slots = slots;
411 	zhdr->pool = pool;
412 	INIT_LIST_HEAD(&zhdr->buddy);
413 	INIT_WORK(&zhdr->work, compact_page_work);
414 	return zhdr;
415 }
416 
417 /* Resets the struct page fields and frees the page */
418 static void free_z3fold_page(struct page *page, bool headless)
419 {
420 	if (!headless) {
421 		lock_page(page);
422 		__ClearPageMovable(page);
423 		unlock_page(page);
424 	}
425 	__free_page(page);
426 }
427 
428 /* Helper function to build the index */
429 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
430 {
431 	return (bud + zhdr->first_num) & BUDDY_MASK;
432 }
433 
434 /*
435  * Encodes the handle of a particular buddy within a z3fold page
436  * Pool lock should be held as this function accesses first_num
437  */
438 static unsigned long __encode_handle(struct z3fold_header *zhdr,
439 				struct z3fold_buddy_slots *slots,
440 				enum buddy bud)
441 {
442 	unsigned long h = (unsigned long)zhdr;
443 	int idx = 0;
444 
445 	/*
446 	 * For a headless page, its handle is its pointer with the extra
447 	 * PAGE_HEADLESS bit set
448 	 */
449 	if (bud == HEADLESS)
450 		return h | (1 << PAGE_HEADLESS);
451 
452 	/* otherwise, return pointer to encoded handle */
453 	idx = __idx(zhdr, bud);
454 	h += idx;
455 	if (bud == LAST)
456 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
457 
458 	write_lock(&slots->lock);
459 	slots->slot[idx] = h;
460 	write_unlock(&slots->lock);
461 	return (unsigned long)&slots->slot[idx];
462 }
463 
464 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
465 {
466 	return __encode_handle(zhdr, zhdr->slots, bud);
467 }
468 
469 /* only for LAST bud, returns zero otherwise */
470 static unsigned short handle_to_chunks(unsigned long handle)
471 {
472 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
473 	unsigned long addr;
474 
475 	read_lock(&slots->lock);
476 	addr = *(unsigned long *)handle;
477 	read_unlock(&slots->lock);
478 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
479 }
480 
481 /*
482  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
483  *  but that doesn't matter. because the masking will result in the
484  *  correct buddy number.
485  */
486 static enum buddy handle_to_buddy(unsigned long handle)
487 {
488 	struct z3fold_header *zhdr;
489 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
490 	unsigned long addr;
491 
492 	read_lock(&slots->lock);
493 	WARN_ON(handle & (1 << PAGE_HEADLESS));
494 	addr = *(unsigned long *)handle;
495 	read_unlock(&slots->lock);
496 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
497 	return (addr - zhdr->first_num) & BUDDY_MASK;
498 }
499 
500 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
501 {
502 	return zhdr->pool;
503 }
504 
505 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
506 {
507 	struct page *page = virt_to_page(zhdr);
508 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
509 
510 	WARN_ON(!list_empty(&zhdr->buddy));
511 	set_bit(PAGE_STALE, &page->private);
512 	clear_bit(NEEDS_COMPACTING, &page->private);
513 	spin_lock(&pool->lock);
514 	if (!list_empty(&page->lru))
515 		list_del_init(&page->lru);
516 	spin_unlock(&pool->lock);
517 
518 	if (locked)
519 		z3fold_page_unlock(zhdr);
520 
521 	spin_lock(&pool->stale_lock);
522 	list_add(&zhdr->buddy, &pool->stale);
523 	queue_work(pool->release_wq, &pool->work);
524 	spin_unlock(&pool->stale_lock);
525 
526 	atomic64_dec(&pool->pages_nr);
527 }
528 
529 static void release_z3fold_page_locked(struct kref *ref)
530 {
531 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
532 						refcount);
533 	WARN_ON(z3fold_page_trylock(zhdr));
534 	__release_z3fold_page(zhdr, true);
535 }
536 
537 static void release_z3fold_page_locked_list(struct kref *ref)
538 {
539 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
540 					       refcount);
541 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
542 
543 	spin_lock(&pool->lock);
544 	list_del_init(&zhdr->buddy);
545 	spin_unlock(&pool->lock);
546 
547 	WARN_ON(z3fold_page_trylock(zhdr));
548 	__release_z3fold_page(zhdr, true);
549 }
550 
551 static void free_pages_work(struct work_struct *w)
552 {
553 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
554 
555 	spin_lock(&pool->stale_lock);
556 	while (!list_empty(&pool->stale)) {
557 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
558 						struct z3fold_header, buddy);
559 		struct page *page = virt_to_page(zhdr);
560 
561 		list_del(&zhdr->buddy);
562 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
563 			continue;
564 		spin_unlock(&pool->stale_lock);
565 		cancel_work_sync(&zhdr->work);
566 		free_z3fold_page(page, false);
567 		cond_resched();
568 		spin_lock(&pool->stale_lock);
569 	}
570 	spin_unlock(&pool->stale_lock);
571 }
572 
573 /*
574  * Returns the number of free chunks in a z3fold page.
575  * NB: can't be used with HEADLESS pages.
576  */
577 static int num_free_chunks(struct z3fold_header *zhdr)
578 {
579 	int nfree;
580 	/*
581 	 * If there is a middle object, pick up the bigger free space
582 	 * either before or after it. Otherwise just subtract the number
583 	 * of chunks occupied by the first and the last objects.
584 	 */
585 	if (zhdr->middle_chunks != 0) {
586 		int nfree_before = zhdr->first_chunks ?
587 			0 : zhdr->start_middle - ZHDR_CHUNKS;
588 		int nfree_after = zhdr->last_chunks ?
589 			0 : TOTAL_CHUNKS -
590 				(zhdr->start_middle + zhdr->middle_chunks);
591 		nfree = max(nfree_before, nfree_after);
592 	} else
593 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
594 	return nfree;
595 }
596 
597 /* Add to the appropriate unbuddied list */
598 static inline void add_to_unbuddied(struct z3fold_pool *pool,
599 				struct z3fold_header *zhdr)
600 {
601 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
602 			zhdr->middle_chunks == 0) {
603 		struct list_head *unbuddied;
604 		int freechunks = num_free_chunks(zhdr);
605 
606 		migrate_disable();
607 		unbuddied = this_cpu_ptr(pool->unbuddied);
608 		spin_lock(&pool->lock);
609 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
610 		spin_unlock(&pool->lock);
611 		zhdr->cpu = smp_processor_id();
612 		migrate_enable();
613 	}
614 }
615 
616 static inline enum buddy get_free_buddy(struct z3fold_header *zhdr, int chunks)
617 {
618 	enum buddy bud = HEADLESS;
619 
620 	if (zhdr->middle_chunks) {
621 		if (!zhdr->first_chunks &&
622 		    chunks <= zhdr->start_middle - ZHDR_CHUNKS)
623 			bud = FIRST;
624 		else if (!zhdr->last_chunks)
625 			bud = LAST;
626 	} else {
627 		if (!zhdr->first_chunks)
628 			bud = FIRST;
629 		else if (!zhdr->last_chunks)
630 			bud = LAST;
631 		else
632 			bud = MIDDLE;
633 	}
634 
635 	return bud;
636 }
637 
638 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
639 				unsigned short dst_chunk)
640 {
641 	void *beg = zhdr;
642 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
643 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
644 		       zhdr->middle_chunks << CHUNK_SHIFT);
645 }
646 
647 static inline bool buddy_single(struct z3fold_header *zhdr)
648 {
649 	return !((zhdr->first_chunks && zhdr->middle_chunks) ||
650 			(zhdr->first_chunks && zhdr->last_chunks) ||
651 			(zhdr->middle_chunks && zhdr->last_chunks));
652 }
653 
654 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
655 {
656 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
657 	void *p = zhdr;
658 	unsigned long old_handle = 0;
659 	size_t sz = 0;
660 	struct z3fold_header *new_zhdr = NULL;
661 	int first_idx = __idx(zhdr, FIRST);
662 	int middle_idx = __idx(zhdr, MIDDLE);
663 	int last_idx = __idx(zhdr, LAST);
664 	unsigned short *moved_chunks = NULL;
665 
666 	/*
667 	 * No need to protect slots here -- all the slots are "local" and
668 	 * the page lock is already taken
669 	 */
670 	if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
671 		p += ZHDR_SIZE_ALIGNED;
672 		sz = zhdr->first_chunks << CHUNK_SHIFT;
673 		old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
674 		moved_chunks = &zhdr->first_chunks;
675 	} else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
676 		p += zhdr->start_middle << CHUNK_SHIFT;
677 		sz = zhdr->middle_chunks << CHUNK_SHIFT;
678 		old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
679 		moved_chunks = &zhdr->middle_chunks;
680 	} else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
681 		p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
682 		sz = zhdr->last_chunks << CHUNK_SHIFT;
683 		old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
684 		moved_chunks = &zhdr->last_chunks;
685 	}
686 
687 	if (sz > 0) {
688 		enum buddy new_bud = HEADLESS;
689 		short chunks = size_to_chunks(sz);
690 		void *q;
691 
692 		new_zhdr = __z3fold_alloc(pool, sz, false);
693 		if (!new_zhdr)
694 			return NULL;
695 
696 		if (WARN_ON(new_zhdr == zhdr))
697 			goto out_fail;
698 
699 		new_bud = get_free_buddy(new_zhdr, chunks);
700 		q = new_zhdr;
701 		switch (new_bud) {
702 		case FIRST:
703 			new_zhdr->first_chunks = chunks;
704 			q += ZHDR_SIZE_ALIGNED;
705 			break;
706 		case MIDDLE:
707 			new_zhdr->middle_chunks = chunks;
708 			new_zhdr->start_middle =
709 				new_zhdr->first_chunks + ZHDR_CHUNKS;
710 			q += new_zhdr->start_middle << CHUNK_SHIFT;
711 			break;
712 		case LAST:
713 			new_zhdr->last_chunks = chunks;
714 			q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
715 			break;
716 		default:
717 			goto out_fail;
718 		}
719 		new_zhdr->foreign_handles++;
720 		memcpy(q, p, sz);
721 		write_lock(&zhdr->slots->lock);
722 		*(unsigned long *)old_handle = (unsigned long)new_zhdr +
723 			__idx(new_zhdr, new_bud);
724 		if (new_bud == LAST)
725 			*(unsigned long *)old_handle |=
726 					(new_zhdr->last_chunks << BUDDY_SHIFT);
727 		write_unlock(&zhdr->slots->lock);
728 		add_to_unbuddied(pool, new_zhdr);
729 		z3fold_page_unlock(new_zhdr);
730 
731 		*moved_chunks = 0;
732 	}
733 
734 	return new_zhdr;
735 
736 out_fail:
737 	if (new_zhdr && !kref_put(&new_zhdr->refcount, release_z3fold_page_locked)) {
738 		add_to_unbuddied(pool, new_zhdr);
739 		z3fold_page_unlock(new_zhdr);
740 	}
741 	return NULL;
742 
743 }
744 
745 #define BIG_CHUNK_GAP	3
746 /* Has to be called with lock held */
747 static int z3fold_compact_page(struct z3fold_header *zhdr)
748 {
749 	struct page *page = virt_to_page(zhdr);
750 
751 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
752 		return 0; /* can't move middle chunk, it's used */
753 
754 	if (unlikely(PageIsolated(page)))
755 		return 0;
756 
757 	if (zhdr->middle_chunks == 0)
758 		return 0; /* nothing to compact */
759 
760 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
761 		/* move to the beginning */
762 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
763 		zhdr->first_chunks = zhdr->middle_chunks;
764 		zhdr->middle_chunks = 0;
765 		zhdr->start_middle = 0;
766 		zhdr->first_num++;
767 		return 1;
768 	}
769 
770 	/*
771 	 * moving data is expensive, so let's only do that if
772 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
773 	 */
774 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
775 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
776 			BIG_CHUNK_GAP) {
777 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
778 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
779 		return 1;
780 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
781 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
782 					+ zhdr->middle_chunks) >=
783 			BIG_CHUNK_GAP) {
784 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
785 			zhdr->middle_chunks;
786 		mchunk_memmove(zhdr, new_start);
787 		zhdr->start_middle = new_start;
788 		return 1;
789 	}
790 
791 	return 0;
792 }
793 
794 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
795 {
796 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
797 	struct page *page;
798 
799 	page = virt_to_page(zhdr);
800 	if (locked)
801 		WARN_ON(z3fold_page_trylock(zhdr));
802 	else
803 		z3fold_page_lock(zhdr);
804 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
805 		z3fold_page_unlock(zhdr);
806 		return;
807 	}
808 	spin_lock(&pool->lock);
809 	list_del_init(&zhdr->buddy);
810 	spin_unlock(&pool->lock);
811 
812 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
813 		return;
814 
815 	if (test_bit(PAGE_STALE, &page->private) ||
816 	    test_and_set_bit(PAGE_CLAIMED, &page->private)) {
817 		z3fold_page_unlock(zhdr);
818 		return;
819 	}
820 
821 	if (!zhdr->foreign_handles && buddy_single(zhdr) &&
822 	    zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
823 		if (!kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
824 			clear_bit(PAGE_CLAIMED, &page->private);
825 			z3fold_page_unlock(zhdr);
826 		}
827 		return;
828 	}
829 
830 	z3fold_compact_page(zhdr);
831 	add_to_unbuddied(pool, zhdr);
832 	clear_bit(PAGE_CLAIMED, &page->private);
833 	z3fold_page_unlock(zhdr);
834 }
835 
836 static void compact_page_work(struct work_struct *w)
837 {
838 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
839 						work);
840 
841 	do_compact_page(zhdr, false);
842 }
843 
844 /* returns _locked_ z3fold page header or NULL */
845 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
846 						size_t size, bool can_sleep)
847 {
848 	struct z3fold_header *zhdr = NULL;
849 	struct page *page;
850 	struct list_head *unbuddied;
851 	int chunks = size_to_chunks(size), i;
852 
853 lookup:
854 	migrate_disable();
855 	/* First, try to find an unbuddied z3fold page. */
856 	unbuddied = this_cpu_ptr(pool->unbuddied);
857 	for_each_unbuddied_list(i, chunks) {
858 		struct list_head *l = &unbuddied[i];
859 
860 		zhdr = list_first_entry_or_null(READ_ONCE(l),
861 					struct z3fold_header, buddy);
862 
863 		if (!zhdr)
864 			continue;
865 
866 		/* Re-check under lock. */
867 		spin_lock(&pool->lock);
868 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
869 						struct z3fold_header, buddy)) ||
870 		    !z3fold_page_trylock(zhdr)) {
871 			spin_unlock(&pool->lock);
872 			zhdr = NULL;
873 			migrate_enable();
874 			if (can_sleep)
875 				cond_resched();
876 			goto lookup;
877 		}
878 		list_del_init(&zhdr->buddy);
879 		zhdr->cpu = -1;
880 		spin_unlock(&pool->lock);
881 
882 		page = virt_to_page(zhdr);
883 		if (test_bit(NEEDS_COMPACTING, &page->private) ||
884 		    test_bit(PAGE_CLAIMED, &page->private)) {
885 			z3fold_page_unlock(zhdr);
886 			zhdr = NULL;
887 			migrate_enable();
888 			if (can_sleep)
889 				cond_resched();
890 			goto lookup;
891 		}
892 
893 		/*
894 		 * this page could not be removed from its unbuddied
895 		 * list while pool lock was held, and then we've taken
896 		 * page lock so kref_put could not be called before
897 		 * we got here, so it's safe to just call kref_get()
898 		 */
899 		kref_get(&zhdr->refcount);
900 		break;
901 	}
902 	migrate_enable();
903 
904 	if (!zhdr) {
905 		int cpu;
906 
907 		/* look for _exact_ match on other cpus' lists */
908 		for_each_online_cpu(cpu) {
909 			struct list_head *l;
910 
911 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
912 			spin_lock(&pool->lock);
913 			l = &unbuddied[chunks];
914 
915 			zhdr = list_first_entry_or_null(READ_ONCE(l),
916 						struct z3fold_header, buddy);
917 
918 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
919 				spin_unlock(&pool->lock);
920 				zhdr = NULL;
921 				continue;
922 			}
923 			list_del_init(&zhdr->buddy);
924 			zhdr->cpu = -1;
925 			spin_unlock(&pool->lock);
926 
927 			page = virt_to_page(zhdr);
928 			if (test_bit(NEEDS_COMPACTING, &page->private) ||
929 			    test_bit(PAGE_CLAIMED, &page->private)) {
930 				z3fold_page_unlock(zhdr);
931 				zhdr = NULL;
932 				if (can_sleep)
933 					cond_resched();
934 				continue;
935 			}
936 			kref_get(&zhdr->refcount);
937 			break;
938 		}
939 	}
940 
941 	if (zhdr && !zhdr->slots) {
942 		zhdr->slots = alloc_slots(pool, GFP_ATOMIC);
943 		if (!zhdr->slots)
944 			goto out_fail;
945 	}
946 	return zhdr;
947 
948 out_fail:
949 	if (!kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
950 		add_to_unbuddied(pool, zhdr);
951 		z3fold_page_unlock(zhdr);
952 	}
953 	return NULL;
954 }
955 
956 /*
957  * API Functions
958  */
959 
960 /**
961  * z3fold_create_pool() - create a new z3fold pool
962  * @name:	pool name
963  * @gfp:	gfp flags when allocating the z3fold pool structure
964  * @ops:	user-defined operations for the z3fold pool
965  *
966  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
967  * failed.
968  */
969 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
970 		const struct z3fold_ops *ops)
971 {
972 	struct z3fold_pool *pool = NULL;
973 	int i, cpu;
974 
975 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
976 	if (!pool)
977 		goto out;
978 	pool->c_handle = kmem_cache_create("z3fold_handle",
979 				sizeof(struct z3fold_buddy_slots),
980 				SLOTS_ALIGN, 0, NULL);
981 	if (!pool->c_handle)
982 		goto out_c;
983 	spin_lock_init(&pool->lock);
984 	spin_lock_init(&pool->stale_lock);
985 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head) * NCHUNKS,
986 					 __alignof__(struct list_head));
987 	if (!pool->unbuddied)
988 		goto out_pool;
989 	for_each_possible_cpu(cpu) {
990 		struct list_head *unbuddied =
991 				per_cpu_ptr(pool->unbuddied, cpu);
992 		for_each_unbuddied_list(i, 0)
993 			INIT_LIST_HEAD(&unbuddied[i]);
994 	}
995 	INIT_LIST_HEAD(&pool->lru);
996 	INIT_LIST_HEAD(&pool->stale);
997 	atomic64_set(&pool->pages_nr, 0);
998 	pool->name = name;
999 	pool->compact_wq = create_singlethread_workqueue(pool->name);
1000 	if (!pool->compact_wq)
1001 		goto out_unbuddied;
1002 	pool->release_wq = create_singlethread_workqueue(pool->name);
1003 	if (!pool->release_wq)
1004 		goto out_wq;
1005 	if (z3fold_register_migration(pool))
1006 		goto out_rwq;
1007 	INIT_WORK(&pool->work, free_pages_work);
1008 	pool->ops = ops;
1009 	return pool;
1010 
1011 out_rwq:
1012 	destroy_workqueue(pool->release_wq);
1013 out_wq:
1014 	destroy_workqueue(pool->compact_wq);
1015 out_unbuddied:
1016 	free_percpu(pool->unbuddied);
1017 out_pool:
1018 	kmem_cache_destroy(pool->c_handle);
1019 out_c:
1020 	kfree(pool);
1021 out:
1022 	return NULL;
1023 }
1024 
1025 /**
1026  * z3fold_destroy_pool() - destroys an existing z3fold pool
1027  * @pool:	the z3fold pool to be destroyed
1028  *
1029  * The pool should be emptied before this function is called.
1030  */
1031 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1032 {
1033 	kmem_cache_destroy(pool->c_handle);
1034 
1035 	/*
1036 	 * We need to destroy pool->compact_wq before pool->release_wq,
1037 	 * as any pending work on pool->compact_wq will call
1038 	 * queue_work(pool->release_wq, &pool->work).
1039 	 *
1040 	 * There are still outstanding pages until both workqueues are drained,
1041 	 * so we cannot unregister migration until then.
1042 	 */
1043 
1044 	destroy_workqueue(pool->compact_wq);
1045 	destroy_workqueue(pool->release_wq);
1046 	z3fold_unregister_migration(pool);
1047 	free_percpu(pool->unbuddied);
1048 	kfree(pool);
1049 }
1050 
1051 /**
1052  * z3fold_alloc() - allocates a region of a given size
1053  * @pool:	z3fold pool from which to allocate
1054  * @size:	size in bytes of the desired allocation
1055  * @gfp:	gfp flags used if the pool needs to grow
1056  * @handle:	handle of the new allocation
1057  *
1058  * This function will attempt to find a free region in the pool large enough to
1059  * satisfy the allocation request.  A search of the unbuddied lists is
1060  * performed first. If no suitable free region is found, then a new page is
1061  * allocated and added to the pool to satisfy the request.
1062  *
1063  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1064  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1065  * a new page.
1066  */
1067 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1068 			unsigned long *handle)
1069 {
1070 	int chunks = size_to_chunks(size);
1071 	struct z3fold_header *zhdr = NULL;
1072 	struct page *page = NULL;
1073 	enum buddy bud;
1074 	bool can_sleep = gfpflags_allow_blocking(gfp);
1075 
1076 	if (!size || (gfp & __GFP_HIGHMEM))
1077 		return -EINVAL;
1078 
1079 	if (size > PAGE_SIZE)
1080 		return -ENOSPC;
1081 
1082 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1083 		bud = HEADLESS;
1084 	else {
1085 retry:
1086 		zhdr = __z3fold_alloc(pool, size, can_sleep);
1087 		if (zhdr) {
1088 			bud = get_free_buddy(zhdr, chunks);
1089 			if (bud == HEADLESS) {
1090 				if (!kref_put(&zhdr->refcount,
1091 					     release_z3fold_page_locked))
1092 					z3fold_page_unlock(zhdr);
1093 				pr_err("No free chunks in unbuddied\n");
1094 				WARN_ON(1);
1095 				goto retry;
1096 			}
1097 			page = virt_to_page(zhdr);
1098 			goto found;
1099 		}
1100 		bud = FIRST;
1101 	}
1102 
1103 	page = alloc_page(gfp);
1104 	if (!page)
1105 		return -ENOMEM;
1106 
1107 	zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1108 	if (!zhdr) {
1109 		__free_page(page);
1110 		return -ENOMEM;
1111 	}
1112 	atomic64_inc(&pool->pages_nr);
1113 
1114 	if (bud == HEADLESS) {
1115 		set_bit(PAGE_HEADLESS, &page->private);
1116 		goto headless;
1117 	}
1118 	if (can_sleep) {
1119 		lock_page(page);
1120 		__SetPageMovable(page, pool->inode->i_mapping);
1121 		unlock_page(page);
1122 	} else {
1123 		WARN_ON(!trylock_page(page));
1124 		__SetPageMovable(page, pool->inode->i_mapping);
1125 		unlock_page(page);
1126 	}
1127 	z3fold_page_lock(zhdr);
1128 
1129 found:
1130 	if (bud == FIRST)
1131 		zhdr->first_chunks = chunks;
1132 	else if (bud == LAST)
1133 		zhdr->last_chunks = chunks;
1134 	else {
1135 		zhdr->middle_chunks = chunks;
1136 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1137 	}
1138 	add_to_unbuddied(pool, zhdr);
1139 
1140 headless:
1141 	spin_lock(&pool->lock);
1142 	/* Add/move z3fold page to beginning of LRU */
1143 	if (!list_empty(&page->lru))
1144 		list_del(&page->lru);
1145 
1146 	list_add(&page->lru, &pool->lru);
1147 
1148 	*handle = encode_handle(zhdr, bud);
1149 	spin_unlock(&pool->lock);
1150 	if (bud != HEADLESS)
1151 		z3fold_page_unlock(zhdr);
1152 
1153 	return 0;
1154 }
1155 
1156 /**
1157  * z3fold_free() - frees the allocation associated with the given handle
1158  * @pool:	pool in which the allocation resided
1159  * @handle:	handle associated with the allocation returned by z3fold_alloc()
1160  *
1161  * In the case that the z3fold page in which the allocation resides is under
1162  * reclaim, as indicated by the PAGE_CLAIMED flag being set, this function
1163  * only sets the first|middle|last_chunks to 0.  The page is actually freed
1164  * once all buddies are evicted (see z3fold_reclaim_page() below).
1165  */
1166 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1167 {
1168 	struct z3fold_header *zhdr;
1169 	struct page *page;
1170 	enum buddy bud;
1171 	bool page_claimed;
1172 
1173 	zhdr = get_z3fold_header(handle);
1174 	page = virt_to_page(zhdr);
1175 	page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1176 
1177 	if (test_bit(PAGE_HEADLESS, &page->private)) {
1178 		/* if a headless page is under reclaim, just leave.
1179 		 * NB: we use test_and_set_bit for a reason: if the bit
1180 		 * has not been set before, we release this page
1181 		 * immediately so we don't care about its value any more.
1182 		 */
1183 		if (!page_claimed) {
1184 			spin_lock(&pool->lock);
1185 			list_del(&page->lru);
1186 			spin_unlock(&pool->lock);
1187 			put_z3fold_header(zhdr);
1188 			free_z3fold_page(page, true);
1189 			atomic64_dec(&pool->pages_nr);
1190 		}
1191 		return;
1192 	}
1193 
1194 	/* Non-headless case */
1195 	bud = handle_to_buddy(handle);
1196 
1197 	switch (bud) {
1198 	case FIRST:
1199 		zhdr->first_chunks = 0;
1200 		break;
1201 	case MIDDLE:
1202 		zhdr->middle_chunks = 0;
1203 		break;
1204 	case LAST:
1205 		zhdr->last_chunks = 0;
1206 		break;
1207 	default:
1208 		pr_err("%s: unknown bud %d\n", __func__, bud);
1209 		WARN_ON(1);
1210 		put_z3fold_header(zhdr);
1211 		return;
1212 	}
1213 
1214 	if (!page_claimed)
1215 		free_handle(handle, zhdr);
1216 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list))
1217 		return;
1218 	if (page_claimed) {
1219 		/* the page has not been claimed by us */
1220 		put_z3fold_header(zhdr);
1221 		return;
1222 	}
1223 	if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1224 		clear_bit(PAGE_CLAIMED, &page->private);
1225 		put_z3fold_header(zhdr);
1226 		return;
1227 	}
1228 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1229 		zhdr->cpu = -1;
1230 		kref_get(&zhdr->refcount);
1231 		clear_bit(PAGE_CLAIMED, &page->private);
1232 		do_compact_page(zhdr, true);
1233 		return;
1234 	}
1235 	kref_get(&zhdr->refcount);
1236 	clear_bit(PAGE_CLAIMED, &page->private);
1237 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1238 	put_z3fold_header(zhdr);
1239 }
1240 
1241 /**
1242  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1243  * @pool:	pool from which a page will attempt to be evicted
1244  * @retries:	number of pages on the LRU list for which eviction will
1245  *		be attempted before failing
1246  *
1247  * z3fold reclaim is different from normal system reclaim in that it is done
1248  * from the bottom, up. This is because only the bottom layer, z3fold, has
1249  * information on how the allocations are organized within each z3fold page.
1250  * This has the potential to create interesting locking situations between
1251  * z3fold and the user, however.
1252  *
1253  * To avoid these, this is how z3fold_reclaim_page() should be called:
1254  *
1255  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1256  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1257  * call the user-defined eviction handler with the pool and handle as
1258  * arguments.
1259  *
1260  * If the handle can not be evicted, the eviction handler should return
1261  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1262  * appropriate list and try the next z3fold page on the LRU up to
1263  * a user defined number of retries.
1264  *
1265  * If the handle is successfully evicted, the eviction handler should
1266  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1267  * contains logic to delay freeing the page if the page is under reclaim,
1268  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1269  *
1270  * If all buddies in the z3fold page are successfully evicted, then the
1271  * z3fold page can be freed.
1272  *
1273  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1274  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1275  * the retry limit was hit.
1276  */
1277 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1278 {
1279 	int i, ret = -1;
1280 	struct z3fold_header *zhdr = NULL;
1281 	struct page *page = NULL;
1282 	struct list_head *pos;
1283 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1284 	struct z3fold_buddy_slots slots __attribute__((aligned(SLOTS_ALIGN)));
1285 
1286 	rwlock_init(&slots.lock);
1287 	slots.pool = (unsigned long)pool | (1 << HANDLES_NOFREE);
1288 
1289 	spin_lock(&pool->lock);
1290 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1291 		spin_unlock(&pool->lock);
1292 		return -EINVAL;
1293 	}
1294 	for (i = 0; i < retries; i++) {
1295 		if (list_empty(&pool->lru)) {
1296 			spin_unlock(&pool->lock);
1297 			return -EINVAL;
1298 		}
1299 		list_for_each_prev(pos, &pool->lru) {
1300 			page = list_entry(pos, struct page, lru);
1301 
1302 			zhdr = page_address(page);
1303 			if (test_bit(PAGE_HEADLESS, &page->private)) {
1304 				/*
1305 				 * For non-headless pages, we wait to do this
1306 				 * until we have the page lock to avoid racing
1307 				 * with __z3fold_alloc(). Headless pages don't
1308 				 * have a lock (and __z3fold_alloc() will never
1309 				 * see them), but we still need to test and set
1310 				 * PAGE_CLAIMED to avoid racing with
1311 				 * z3fold_free(), so just do it now before
1312 				 * leaving the loop.
1313 				 */
1314 				if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1315 					continue;
1316 
1317 				break;
1318 			}
1319 
1320 			if (!z3fold_page_trylock(zhdr)) {
1321 				zhdr = NULL;
1322 				continue; /* can't evict at this point */
1323 			}
1324 
1325 			/* test_and_set_bit is of course atomic, but we still
1326 			 * need to do it under page lock, otherwise checking
1327 			 * that bit in __z3fold_alloc wouldn't make sense
1328 			 */
1329 			if (zhdr->foreign_handles ||
1330 			    test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1331 				z3fold_page_unlock(zhdr);
1332 				zhdr = NULL;
1333 				continue; /* can't evict such page */
1334 			}
1335 			list_del_init(&zhdr->buddy);
1336 			zhdr->cpu = -1;
1337 			/* See comment in __z3fold_alloc. */
1338 			kref_get(&zhdr->refcount);
1339 			break;
1340 		}
1341 
1342 		if (!zhdr)
1343 			break;
1344 
1345 		list_del_init(&page->lru);
1346 		spin_unlock(&pool->lock);
1347 
1348 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1349 			/*
1350 			 * We need encode the handles before unlocking, and
1351 			 * use our local slots structure because z3fold_free
1352 			 * can zero out zhdr->slots and we can't do much
1353 			 * about that
1354 			 */
1355 			first_handle = 0;
1356 			last_handle = 0;
1357 			middle_handle = 0;
1358 			memset(slots.slot, 0, sizeof(slots.slot));
1359 			if (zhdr->first_chunks)
1360 				first_handle = __encode_handle(zhdr, &slots,
1361 								FIRST);
1362 			if (zhdr->middle_chunks)
1363 				middle_handle = __encode_handle(zhdr, &slots,
1364 								MIDDLE);
1365 			if (zhdr->last_chunks)
1366 				last_handle = __encode_handle(zhdr, &slots,
1367 								LAST);
1368 			/*
1369 			 * it's safe to unlock here because we hold a
1370 			 * reference to this page
1371 			 */
1372 			z3fold_page_unlock(zhdr);
1373 		} else {
1374 			first_handle = encode_handle(zhdr, HEADLESS);
1375 			last_handle = middle_handle = 0;
1376 		}
1377 		/* Issue the eviction callback(s) */
1378 		if (middle_handle) {
1379 			ret = pool->ops->evict(pool, middle_handle);
1380 			if (ret)
1381 				goto next;
1382 		}
1383 		if (first_handle) {
1384 			ret = pool->ops->evict(pool, first_handle);
1385 			if (ret)
1386 				goto next;
1387 		}
1388 		if (last_handle) {
1389 			ret = pool->ops->evict(pool, last_handle);
1390 			if (ret)
1391 				goto next;
1392 		}
1393 next:
1394 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1395 			if (ret == 0) {
1396 				free_z3fold_page(page, true);
1397 				atomic64_dec(&pool->pages_nr);
1398 				return 0;
1399 			}
1400 			spin_lock(&pool->lock);
1401 			list_add(&page->lru, &pool->lru);
1402 			spin_unlock(&pool->lock);
1403 			clear_bit(PAGE_CLAIMED, &page->private);
1404 		} else {
1405 			struct z3fold_buddy_slots *slots = zhdr->slots;
1406 			z3fold_page_lock(zhdr);
1407 			if (kref_put(&zhdr->refcount,
1408 					release_z3fold_page_locked)) {
1409 				kmem_cache_free(pool->c_handle, slots);
1410 				return 0;
1411 			}
1412 			/*
1413 			 * if we are here, the page is still not completely
1414 			 * free. Take the global pool lock then to be able
1415 			 * to add it back to the lru list
1416 			 */
1417 			spin_lock(&pool->lock);
1418 			list_add(&page->lru, &pool->lru);
1419 			spin_unlock(&pool->lock);
1420 			if (list_empty(&zhdr->buddy))
1421 				add_to_unbuddied(pool, zhdr);
1422 			clear_bit(PAGE_CLAIMED, &page->private);
1423 			z3fold_page_unlock(zhdr);
1424 		}
1425 
1426 		/* We started off locked to we need to lock the pool back */
1427 		spin_lock(&pool->lock);
1428 	}
1429 	spin_unlock(&pool->lock);
1430 	return -EAGAIN;
1431 }
1432 
1433 /**
1434  * z3fold_map() - maps the allocation associated with the given handle
1435  * @pool:	pool in which the allocation resides
1436  * @handle:	handle associated with the allocation to be mapped
1437  *
1438  * Extracts the buddy number from handle and constructs the pointer to the
1439  * correct starting chunk within the page.
1440  *
1441  * Returns: a pointer to the mapped allocation
1442  */
1443 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1444 {
1445 	struct z3fold_header *zhdr;
1446 	struct page *page;
1447 	void *addr;
1448 	enum buddy buddy;
1449 
1450 	zhdr = get_z3fold_header(handle);
1451 	addr = zhdr;
1452 	page = virt_to_page(zhdr);
1453 
1454 	if (test_bit(PAGE_HEADLESS, &page->private))
1455 		goto out;
1456 
1457 	buddy = handle_to_buddy(handle);
1458 	switch (buddy) {
1459 	case FIRST:
1460 		addr += ZHDR_SIZE_ALIGNED;
1461 		break;
1462 	case MIDDLE:
1463 		addr += zhdr->start_middle << CHUNK_SHIFT;
1464 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1465 		break;
1466 	case LAST:
1467 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1468 		break;
1469 	default:
1470 		pr_err("unknown buddy id %d\n", buddy);
1471 		WARN_ON(1);
1472 		addr = NULL;
1473 		break;
1474 	}
1475 
1476 	if (addr)
1477 		zhdr->mapped_count++;
1478 out:
1479 	put_z3fold_header(zhdr);
1480 	return addr;
1481 }
1482 
1483 /**
1484  * z3fold_unmap() - unmaps the allocation associated with the given handle
1485  * @pool:	pool in which the allocation resides
1486  * @handle:	handle associated with the allocation to be unmapped
1487  */
1488 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1489 {
1490 	struct z3fold_header *zhdr;
1491 	struct page *page;
1492 	enum buddy buddy;
1493 
1494 	zhdr = get_z3fold_header(handle);
1495 	page = virt_to_page(zhdr);
1496 
1497 	if (test_bit(PAGE_HEADLESS, &page->private))
1498 		return;
1499 
1500 	buddy = handle_to_buddy(handle);
1501 	if (buddy == MIDDLE)
1502 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1503 	zhdr->mapped_count--;
1504 	put_z3fold_header(zhdr);
1505 }
1506 
1507 /**
1508  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1509  * @pool:	pool whose size is being queried
1510  *
1511  * Returns: size in pages of the given pool.
1512  */
1513 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1514 {
1515 	return atomic64_read(&pool->pages_nr);
1516 }
1517 
1518 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1519 {
1520 	struct z3fold_header *zhdr;
1521 	struct z3fold_pool *pool;
1522 
1523 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1524 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1525 
1526 	if (test_bit(PAGE_HEADLESS, &page->private))
1527 		return false;
1528 
1529 	zhdr = page_address(page);
1530 	z3fold_page_lock(zhdr);
1531 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1532 	    test_bit(PAGE_STALE, &page->private))
1533 		goto out;
1534 
1535 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1536 		goto out;
1537 
1538 	if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1539 		goto out;
1540 	pool = zhdr_to_pool(zhdr);
1541 	spin_lock(&pool->lock);
1542 	if (!list_empty(&zhdr->buddy))
1543 		list_del_init(&zhdr->buddy);
1544 	if (!list_empty(&page->lru))
1545 		list_del_init(&page->lru);
1546 	spin_unlock(&pool->lock);
1547 
1548 	kref_get(&zhdr->refcount);
1549 	z3fold_page_unlock(zhdr);
1550 	return true;
1551 
1552 out:
1553 	z3fold_page_unlock(zhdr);
1554 	return false;
1555 }
1556 
1557 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1558 			       struct page *page, enum migrate_mode mode)
1559 {
1560 	struct z3fold_header *zhdr, *new_zhdr;
1561 	struct z3fold_pool *pool;
1562 	struct address_space *new_mapping;
1563 
1564 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1565 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1566 	VM_BUG_ON_PAGE(!test_bit(PAGE_CLAIMED, &page->private), page);
1567 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1568 
1569 	zhdr = page_address(page);
1570 	pool = zhdr_to_pool(zhdr);
1571 
1572 	if (!z3fold_page_trylock(zhdr))
1573 		return -EAGAIN;
1574 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1575 		clear_bit(PAGE_CLAIMED, &page->private);
1576 		z3fold_page_unlock(zhdr);
1577 		return -EBUSY;
1578 	}
1579 	if (work_pending(&zhdr->work)) {
1580 		z3fold_page_unlock(zhdr);
1581 		return -EAGAIN;
1582 	}
1583 	new_zhdr = page_address(newpage);
1584 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1585 	newpage->private = page->private;
1586 	set_bit(PAGE_MIGRATED, &page->private);
1587 	z3fold_page_unlock(zhdr);
1588 	spin_lock_init(&new_zhdr->page_lock);
1589 	INIT_WORK(&new_zhdr->work, compact_page_work);
1590 	/*
1591 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1592 	 * so we only have to reinitialize it.
1593 	 */
1594 	INIT_LIST_HEAD(&new_zhdr->buddy);
1595 	new_mapping = page_mapping(page);
1596 	__ClearPageMovable(page);
1597 
1598 	get_page(newpage);
1599 	z3fold_page_lock(new_zhdr);
1600 	if (new_zhdr->first_chunks)
1601 		encode_handle(new_zhdr, FIRST);
1602 	if (new_zhdr->last_chunks)
1603 		encode_handle(new_zhdr, LAST);
1604 	if (new_zhdr->middle_chunks)
1605 		encode_handle(new_zhdr, MIDDLE);
1606 	set_bit(NEEDS_COMPACTING, &newpage->private);
1607 	new_zhdr->cpu = smp_processor_id();
1608 	spin_lock(&pool->lock);
1609 	list_add(&newpage->lru, &pool->lru);
1610 	spin_unlock(&pool->lock);
1611 	__SetPageMovable(newpage, new_mapping);
1612 	z3fold_page_unlock(new_zhdr);
1613 
1614 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1615 
1616 	/* PAGE_CLAIMED and PAGE_MIGRATED are cleared now. */
1617 	page->private = 0;
1618 	put_page(page);
1619 	return 0;
1620 }
1621 
1622 static void z3fold_page_putback(struct page *page)
1623 {
1624 	struct z3fold_header *zhdr;
1625 	struct z3fold_pool *pool;
1626 
1627 	zhdr = page_address(page);
1628 	pool = zhdr_to_pool(zhdr);
1629 
1630 	z3fold_page_lock(zhdr);
1631 	if (!list_empty(&zhdr->buddy))
1632 		list_del_init(&zhdr->buddy);
1633 	INIT_LIST_HEAD(&page->lru);
1634 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
1635 		return;
1636 	spin_lock(&pool->lock);
1637 	list_add(&page->lru, &pool->lru);
1638 	spin_unlock(&pool->lock);
1639 	if (list_empty(&zhdr->buddy))
1640 		add_to_unbuddied(pool, zhdr);
1641 	clear_bit(PAGE_CLAIMED, &page->private);
1642 	z3fold_page_unlock(zhdr);
1643 }
1644 
1645 static const struct address_space_operations z3fold_aops = {
1646 	.isolate_page = z3fold_page_isolate,
1647 	.migratepage = z3fold_page_migrate,
1648 	.putback_page = z3fold_page_putback,
1649 };
1650 
1651 /*****************
1652  * zpool
1653  ****************/
1654 
1655 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1656 {
1657 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1658 		return pool->zpool_ops->evict(pool->zpool, handle);
1659 	else
1660 		return -ENOENT;
1661 }
1662 
1663 static const struct z3fold_ops z3fold_zpool_ops = {
1664 	.evict =	z3fold_zpool_evict
1665 };
1666 
1667 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1668 			       const struct zpool_ops *zpool_ops,
1669 			       struct zpool *zpool)
1670 {
1671 	struct z3fold_pool *pool;
1672 
1673 	pool = z3fold_create_pool(name, gfp,
1674 				zpool_ops ? &z3fold_zpool_ops : NULL);
1675 	if (pool) {
1676 		pool->zpool = zpool;
1677 		pool->zpool_ops = zpool_ops;
1678 	}
1679 	return pool;
1680 }
1681 
1682 static void z3fold_zpool_destroy(void *pool)
1683 {
1684 	z3fold_destroy_pool(pool);
1685 }
1686 
1687 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1688 			unsigned long *handle)
1689 {
1690 	return z3fold_alloc(pool, size, gfp, handle);
1691 }
1692 static void z3fold_zpool_free(void *pool, unsigned long handle)
1693 {
1694 	z3fold_free(pool, handle);
1695 }
1696 
1697 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1698 			unsigned int *reclaimed)
1699 {
1700 	unsigned int total = 0;
1701 	int ret = -EINVAL;
1702 
1703 	while (total < pages) {
1704 		ret = z3fold_reclaim_page(pool, 8);
1705 		if (ret < 0)
1706 			break;
1707 		total++;
1708 	}
1709 
1710 	if (reclaimed)
1711 		*reclaimed = total;
1712 
1713 	return ret;
1714 }
1715 
1716 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1717 			enum zpool_mapmode mm)
1718 {
1719 	return z3fold_map(pool, handle);
1720 }
1721 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1722 {
1723 	z3fold_unmap(pool, handle);
1724 }
1725 
1726 static u64 z3fold_zpool_total_size(void *pool)
1727 {
1728 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1729 }
1730 
1731 static struct zpool_driver z3fold_zpool_driver = {
1732 	.type =		"z3fold",
1733 	.sleep_mapped = true,
1734 	.owner =	THIS_MODULE,
1735 	.create =	z3fold_zpool_create,
1736 	.destroy =	z3fold_zpool_destroy,
1737 	.malloc =	z3fold_zpool_malloc,
1738 	.free =		z3fold_zpool_free,
1739 	.shrink =	z3fold_zpool_shrink,
1740 	.map =		z3fold_zpool_map,
1741 	.unmap =	z3fold_zpool_unmap,
1742 	.total_size =	z3fold_zpool_total_size,
1743 };
1744 
1745 MODULE_ALIAS("zpool-z3fold");
1746 
1747 static int __init init_z3fold(void)
1748 {
1749 	int ret;
1750 
1751 	/*
1752 	 * Make sure the z3fold header is not larger than the page size and
1753 	 * there has remaining spaces for its buddy.
1754 	 */
1755 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE - CHUNK_SIZE);
1756 	ret = z3fold_mount();
1757 	if (ret)
1758 		return ret;
1759 
1760 	zpool_register_driver(&z3fold_zpool_driver);
1761 
1762 	return 0;
1763 }
1764 
1765 static void __exit exit_z3fold(void)
1766 {
1767 	z3fold_unmount();
1768 	zpool_unregister_driver(&z3fold_zpool_driver);
1769 }
1770 
1771 module_init(init_z3fold);
1772 module_exit(exit_z3fold);
1773 
1774 MODULE_LICENSE("GPL");
1775 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1776 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1777