xref: /linux/mm/z3fold.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47 
48 /*
49  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50  * adjusting internal fragmentation.  It also determines the number of
51  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53  * in the beginning of an allocated page are occupied by z3fold header, so
54  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55  * which shows the max number of free chunks in z3fold page, also there will
56  * be 63, or 62, respectively, freelists per pool.
57  */
58 #define NCHUNKS_ORDER	6
59 
60 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66 
67 #define BUDDY_MASK	(0x3)
68 #define BUDDY_SHIFT	2
69 #define SLOTS_ALIGN	(0x40)
70 
71 /*****************
72  * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78 
79 enum buddy {
80 	HEADLESS = 0,
81 	FIRST,
82 	MIDDLE,
83 	LAST,
84 	BUDDIES_MAX = LAST
85 };
86 
87 struct z3fold_buddy_slots {
88 	/*
89 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 	 * be enough slots to hold all possible variants
91 	 */
92 	unsigned long slot[BUDDY_MASK + 1];
93 	unsigned long pool; /* back link */
94 	rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK	(0x03)
97 
98 /*
99  * struct z3fold_header - z3fold page metadata occupying first chunks of each
100  *			z3fold page, except for HEADLESS pages
101  * @buddy:		links the z3fold page into the relevant list in the
102  *			pool
103  * @page_lock:		per-page lock
104  * @refcount:		reference count for the z3fold page
105  * @work:		work_struct for page layout optimization
106  * @slots:		pointer to the structure holding buddy slots
107  * @pool:		pointer to the containing pool
108  * @cpu:		CPU which this page "belongs" to
109  * @first_chunks:	the size of the first buddy in chunks, 0 if free
110  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
111  * @last_chunks:	the size of the last buddy in chunks, 0 if free
112  * @first_num:		the starting number (for the first handle)
113  * @mapped_count:	the number of objects currently mapped
114  */
115 struct z3fold_header {
116 	struct list_head buddy;
117 	spinlock_t page_lock;
118 	struct kref refcount;
119 	struct work_struct work;
120 	struct z3fold_buddy_slots *slots;
121 	struct z3fold_pool *pool;
122 	short cpu;
123 	unsigned short first_chunks;
124 	unsigned short middle_chunks;
125 	unsigned short last_chunks;
126 	unsigned short start_middle;
127 	unsigned short first_num:2;
128 	unsigned short mapped_count:2;
129 	unsigned short foreign_handles:2;
130 };
131 
132 /**
133  * struct z3fold_pool - stores metadata for each z3fold pool
134  * @name:	pool name
135  * @lock:	protects pool unbuddied/lru lists
136  * @stale_lock:	protects pool stale page list
137  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
138  *		buddies; the list each z3fold page is added to depends on
139  *		the size of its free region.
140  * @lru:	list tracking the z3fold pages in LRU order by most recently
141  *		added buddy.
142  * @stale:	list of pages marked for freeing
143  * @pages_nr:	number of z3fold pages in the pool.
144  * @c_handle:	cache for z3fold_buddy_slots allocation
145  * @ops:	pointer to a structure of user defined operations specified at
146  *		pool creation time.
147  * @compact_wq:	workqueue for page layout background optimization
148  * @release_wq:	workqueue for safe page release
149  * @work:	work_struct for safe page release
150  * @inode:	inode for z3fold pseudo filesystem
151  *
152  * This structure is allocated at pool creation time and maintains metadata
153  * pertaining to a particular z3fold pool.
154  */
155 struct z3fold_pool {
156 	const char *name;
157 	spinlock_t lock;
158 	spinlock_t stale_lock;
159 	struct list_head *unbuddied;
160 	struct list_head lru;
161 	struct list_head stale;
162 	atomic64_t pages_nr;
163 	struct kmem_cache *c_handle;
164 	const struct z3fold_ops *ops;
165 	struct zpool *zpool;
166 	const struct zpool_ops *zpool_ops;
167 	struct workqueue_struct *compact_wq;
168 	struct workqueue_struct *release_wq;
169 	struct work_struct work;
170 	struct inode *inode;
171 };
172 
173 /*
174  * Internal z3fold page flags
175  */
176 enum z3fold_page_flags {
177 	PAGE_HEADLESS = 0,
178 	MIDDLE_CHUNK_MAPPED,
179 	NEEDS_COMPACTING,
180 	PAGE_STALE,
181 	PAGE_CLAIMED, /* by either reclaim or free */
182 };
183 
184 /*
185  * handle flags, go under HANDLE_FLAG_MASK
186  */
187 enum z3fold_handle_flags {
188 	HANDLES_NOFREE = 0,
189 };
190 
191 /*
192  * Forward declarations
193  */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196 
197 /*****************
198  * Helpers
199 *****************/
200 
201 /* Converts an allocation size in bytes to size in z3fold chunks */
202 static int size_to_chunks(size_t size)
203 {
204 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206 
207 #define for_each_unbuddied_list(_iter, _begin) \
208 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209 
210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 							gfp_t gfp)
212 {
213 	struct z3fold_buddy_slots *slots;
214 
215 	slots = kmem_cache_zalloc(pool->c_handle,
216 				 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217 
218 	if (slots) {
219 		/* It will be freed separately in free_handle(). */
220 		kmemleak_not_leak(slots);
221 		slots->pool = (unsigned long)pool;
222 		rwlock_init(&slots->lock);
223 	}
224 
225 	return slots;
226 }
227 
228 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
229 {
230 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
231 }
232 
233 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
234 {
235 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
236 }
237 
238 /* Lock a z3fold page */
239 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
240 {
241 	spin_lock(&zhdr->page_lock);
242 }
243 
244 /* Try to lock a z3fold page */
245 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
246 {
247 	return spin_trylock(&zhdr->page_lock);
248 }
249 
250 /* Unlock a z3fold page */
251 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
252 {
253 	spin_unlock(&zhdr->page_lock);
254 }
255 
256 
257 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
258 							bool lock)
259 {
260 	struct z3fold_buddy_slots *slots;
261 	struct z3fold_header *zhdr;
262 	int locked = 0;
263 
264 	if (!(handle & (1 << PAGE_HEADLESS))) {
265 		slots = handle_to_slots(handle);
266 		do {
267 			unsigned long addr;
268 
269 			read_lock(&slots->lock);
270 			addr = *(unsigned long *)handle;
271 			zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
272 			if (lock)
273 				locked = z3fold_page_trylock(zhdr);
274 			read_unlock(&slots->lock);
275 			if (locked)
276 				break;
277 			cpu_relax();
278 		} while (lock);
279 	} else {
280 		zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
281 	}
282 
283 	return zhdr;
284 }
285 
286 /* Returns the z3fold page where a given handle is stored */
287 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
288 {
289 	return __get_z3fold_header(h, false);
290 }
291 
292 /* return locked z3fold page if it's not headless */
293 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
294 {
295 	return __get_z3fold_header(h, true);
296 }
297 
298 static inline void put_z3fold_header(struct z3fold_header *zhdr)
299 {
300 	struct page *page = virt_to_page(zhdr);
301 
302 	if (!test_bit(PAGE_HEADLESS, &page->private))
303 		z3fold_page_unlock(zhdr);
304 }
305 
306 static inline void free_handle(unsigned long handle, struct z3fold_header *zhdr)
307 {
308 	struct z3fold_buddy_slots *slots;
309 	int i;
310 	bool is_free;
311 
312 	if (handle & (1 << PAGE_HEADLESS))
313 		return;
314 
315 	if (WARN_ON(*(unsigned long *)handle == 0))
316 		return;
317 
318 	slots = handle_to_slots(handle);
319 	write_lock(&slots->lock);
320 	*(unsigned long *)handle = 0;
321 
322 	if (test_bit(HANDLES_NOFREE, &slots->pool)) {
323 		write_unlock(&slots->lock);
324 		return; /* simple case, nothing else to do */
325 	}
326 
327 	if (zhdr->slots != slots)
328 		zhdr->foreign_handles--;
329 
330 	is_free = true;
331 	for (i = 0; i <= BUDDY_MASK; i++) {
332 		if (slots->slot[i]) {
333 			is_free = false;
334 			break;
335 		}
336 	}
337 	write_unlock(&slots->lock);
338 
339 	if (is_free) {
340 		struct z3fold_pool *pool = slots_to_pool(slots);
341 
342 		if (zhdr->slots == slots)
343 			zhdr->slots = NULL;
344 		kmem_cache_free(pool->c_handle, slots);
345 	}
346 }
347 
348 static int z3fold_init_fs_context(struct fs_context *fc)
349 {
350 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
351 }
352 
353 static struct file_system_type z3fold_fs = {
354 	.name		= "z3fold",
355 	.init_fs_context = z3fold_init_fs_context,
356 	.kill_sb	= kill_anon_super,
357 };
358 
359 static struct vfsmount *z3fold_mnt;
360 static int z3fold_mount(void)
361 {
362 	int ret = 0;
363 
364 	z3fold_mnt = kern_mount(&z3fold_fs);
365 	if (IS_ERR(z3fold_mnt))
366 		ret = PTR_ERR(z3fold_mnt);
367 
368 	return ret;
369 }
370 
371 static void z3fold_unmount(void)
372 {
373 	kern_unmount(z3fold_mnt);
374 }
375 
376 static const struct address_space_operations z3fold_aops;
377 static int z3fold_register_migration(struct z3fold_pool *pool)
378 {
379 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
380 	if (IS_ERR(pool->inode)) {
381 		pool->inode = NULL;
382 		return 1;
383 	}
384 
385 	pool->inode->i_mapping->private_data = pool;
386 	pool->inode->i_mapping->a_ops = &z3fold_aops;
387 	return 0;
388 }
389 
390 static void z3fold_unregister_migration(struct z3fold_pool *pool)
391 {
392 	if (pool->inode)
393 		iput(pool->inode);
394  }
395 
396 /* Initializes the z3fold header of a newly allocated z3fold page */
397 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
398 					struct z3fold_pool *pool, gfp_t gfp)
399 {
400 	struct z3fold_header *zhdr = page_address(page);
401 	struct z3fold_buddy_slots *slots;
402 
403 	INIT_LIST_HEAD(&page->lru);
404 	clear_bit(PAGE_HEADLESS, &page->private);
405 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
406 	clear_bit(NEEDS_COMPACTING, &page->private);
407 	clear_bit(PAGE_STALE, &page->private);
408 	clear_bit(PAGE_CLAIMED, &page->private);
409 	if (headless)
410 		return zhdr;
411 
412 	slots = alloc_slots(pool, gfp);
413 	if (!slots)
414 		return NULL;
415 
416 	spin_lock_init(&zhdr->page_lock);
417 	kref_init(&zhdr->refcount);
418 	zhdr->first_chunks = 0;
419 	zhdr->middle_chunks = 0;
420 	zhdr->last_chunks = 0;
421 	zhdr->first_num = 0;
422 	zhdr->start_middle = 0;
423 	zhdr->cpu = -1;
424 	zhdr->foreign_handles = 0;
425 	zhdr->mapped_count = 0;
426 	zhdr->slots = slots;
427 	zhdr->pool = pool;
428 	INIT_LIST_HEAD(&zhdr->buddy);
429 	INIT_WORK(&zhdr->work, compact_page_work);
430 	return zhdr;
431 }
432 
433 /* Resets the struct page fields and frees the page */
434 static void free_z3fold_page(struct page *page, bool headless)
435 {
436 	if (!headless) {
437 		lock_page(page);
438 		__ClearPageMovable(page);
439 		unlock_page(page);
440 	}
441 	ClearPagePrivate(page);
442 	__free_page(page);
443 }
444 
445 /* Helper function to build the index */
446 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
447 {
448 	return (bud + zhdr->first_num) & BUDDY_MASK;
449 }
450 
451 /*
452  * Encodes the handle of a particular buddy within a z3fold page
453  * Pool lock should be held as this function accesses first_num
454  */
455 static unsigned long __encode_handle(struct z3fold_header *zhdr,
456 				struct z3fold_buddy_slots *slots,
457 				enum buddy bud)
458 {
459 	unsigned long h = (unsigned long)zhdr;
460 	int idx = 0;
461 
462 	/*
463 	 * For a headless page, its handle is its pointer with the extra
464 	 * PAGE_HEADLESS bit set
465 	 */
466 	if (bud == HEADLESS)
467 		return h | (1 << PAGE_HEADLESS);
468 
469 	/* otherwise, return pointer to encoded handle */
470 	idx = __idx(zhdr, bud);
471 	h += idx;
472 	if (bud == LAST)
473 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
474 
475 	write_lock(&slots->lock);
476 	slots->slot[idx] = h;
477 	write_unlock(&slots->lock);
478 	return (unsigned long)&slots->slot[idx];
479 }
480 
481 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
482 {
483 	return __encode_handle(zhdr, zhdr->slots, bud);
484 }
485 
486 /* only for LAST bud, returns zero otherwise */
487 static unsigned short handle_to_chunks(unsigned long handle)
488 {
489 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
490 	unsigned long addr;
491 
492 	read_lock(&slots->lock);
493 	addr = *(unsigned long *)handle;
494 	read_unlock(&slots->lock);
495 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
496 }
497 
498 /*
499  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
500  *  but that doesn't matter. because the masking will result in the
501  *  correct buddy number.
502  */
503 static enum buddy handle_to_buddy(unsigned long handle)
504 {
505 	struct z3fold_header *zhdr;
506 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
507 	unsigned long addr;
508 
509 	read_lock(&slots->lock);
510 	WARN_ON(handle & (1 << PAGE_HEADLESS));
511 	addr = *(unsigned long *)handle;
512 	read_unlock(&slots->lock);
513 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
514 	return (addr - zhdr->first_num) & BUDDY_MASK;
515 }
516 
517 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
518 {
519 	return zhdr->pool;
520 }
521 
522 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
523 {
524 	struct page *page = virt_to_page(zhdr);
525 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
526 
527 	WARN_ON(!list_empty(&zhdr->buddy));
528 	set_bit(PAGE_STALE, &page->private);
529 	clear_bit(NEEDS_COMPACTING, &page->private);
530 	spin_lock(&pool->lock);
531 	if (!list_empty(&page->lru))
532 		list_del_init(&page->lru);
533 	spin_unlock(&pool->lock);
534 
535 	if (locked)
536 		z3fold_page_unlock(zhdr);
537 
538 	spin_lock(&pool->stale_lock);
539 	list_add(&zhdr->buddy, &pool->stale);
540 	queue_work(pool->release_wq, &pool->work);
541 	spin_unlock(&pool->stale_lock);
542 }
543 
544 static void __attribute__((__unused__))
545 			release_z3fold_page(struct kref *ref)
546 {
547 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
548 						refcount);
549 	__release_z3fold_page(zhdr, false);
550 }
551 
552 static void release_z3fold_page_locked(struct kref *ref)
553 {
554 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
555 						refcount);
556 	WARN_ON(z3fold_page_trylock(zhdr));
557 	__release_z3fold_page(zhdr, true);
558 }
559 
560 static void release_z3fold_page_locked_list(struct kref *ref)
561 {
562 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
563 					       refcount);
564 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
565 
566 	spin_lock(&pool->lock);
567 	list_del_init(&zhdr->buddy);
568 	spin_unlock(&pool->lock);
569 
570 	WARN_ON(z3fold_page_trylock(zhdr));
571 	__release_z3fold_page(zhdr, true);
572 }
573 
574 static void free_pages_work(struct work_struct *w)
575 {
576 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
577 
578 	spin_lock(&pool->stale_lock);
579 	while (!list_empty(&pool->stale)) {
580 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
581 						struct z3fold_header, buddy);
582 		struct page *page = virt_to_page(zhdr);
583 
584 		list_del(&zhdr->buddy);
585 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
586 			continue;
587 		spin_unlock(&pool->stale_lock);
588 		cancel_work_sync(&zhdr->work);
589 		free_z3fold_page(page, false);
590 		cond_resched();
591 		spin_lock(&pool->stale_lock);
592 	}
593 	spin_unlock(&pool->stale_lock);
594 }
595 
596 /*
597  * Returns the number of free chunks in a z3fold page.
598  * NB: can't be used with HEADLESS pages.
599  */
600 static int num_free_chunks(struct z3fold_header *zhdr)
601 {
602 	int nfree;
603 	/*
604 	 * If there is a middle object, pick up the bigger free space
605 	 * either before or after it. Otherwise just subtract the number
606 	 * of chunks occupied by the first and the last objects.
607 	 */
608 	if (zhdr->middle_chunks != 0) {
609 		int nfree_before = zhdr->first_chunks ?
610 			0 : zhdr->start_middle - ZHDR_CHUNKS;
611 		int nfree_after = zhdr->last_chunks ?
612 			0 : TOTAL_CHUNKS -
613 				(zhdr->start_middle + zhdr->middle_chunks);
614 		nfree = max(nfree_before, nfree_after);
615 	} else
616 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
617 	return nfree;
618 }
619 
620 /* Add to the appropriate unbuddied list */
621 static inline void add_to_unbuddied(struct z3fold_pool *pool,
622 				struct z3fold_header *zhdr)
623 {
624 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
625 			zhdr->middle_chunks == 0) {
626 		struct list_head *unbuddied;
627 		int freechunks = num_free_chunks(zhdr);
628 
629 		migrate_disable();
630 		unbuddied = this_cpu_ptr(pool->unbuddied);
631 		spin_lock(&pool->lock);
632 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
633 		spin_unlock(&pool->lock);
634 		zhdr->cpu = smp_processor_id();
635 		migrate_enable();
636 	}
637 }
638 
639 static inline enum buddy get_free_buddy(struct z3fold_header *zhdr, int chunks)
640 {
641 	enum buddy bud = HEADLESS;
642 
643 	if (zhdr->middle_chunks) {
644 		if (!zhdr->first_chunks &&
645 		    chunks <= zhdr->start_middle - ZHDR_CHUNKS)
646 			bud = FIRST;
647 		else if (!zhdr->last_chunks)
648 			bud = LAST;
649 	} else {
650 		if (!zhdr->first_chunks)
651 			bud = FIRST;
652 		else if (!zhdr->last_chunks)
653 			bud = LAST;
654 		else
655 			bud = MIDDLE;
656 	}
657 
658 	return bud;
659 }
660 
661 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
662 				unsigned short dst_chunk)
663 {
664 	void *beg = zhdr;
665 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
666 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
667 		       zhdr->middle_chunks << CHUNK_SHIFT);
668 }
669 
670 static inline bool buddy_single(struct z3fold_header *zhdr)
671 {
672 	return !((zhdr->first_chunks && zhdr->middle_chunks) ||
673 			(zhdr->first_chunks && zhdr->last_chunks) ||
674 			(zhdr->middle_chunks && zhdr->last_chunks));
675 }
676 
677 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
678 {
679 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
680 	void *p = zhdr;
681 	unsigned long old_handle = 0;
682 	size_t sz = 0;
683 	struct z3fold_header *new_zhdr = NULL;
684 	int first_idx = __idx(zhdr, FIRST);
685 	int middle_idx = __idx(zhdr, MIDDLE);
686 	int last_idx = __idx(zhdr, LAST);
687 	unsigned short *moved_chunks = NULL;
688 
689 	/*
690 	 * No need to protect slots here -- all the slots are "local" and
691 	 * the page lock is already taken
692 	 */
693 	if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
694 		p += ZHDR_SIZE_ALIGNED;
695 		sz = zhdr->first_chunks << CHUNK_SHIFT;
696 		old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
697 		moved_chunks = &zhdr->first_chunks;
698 	} else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
699 		p += zhdr->start_middle << CHUNK_SHIFT;
700 		sz = zhdr->middle_chunks << CHUNK_SHIFT;
701 		old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
702 		moved_chunks = &zhdr->middle_chunks;
703 	} else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
704 		p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
705 		sz = zhdr->last_chunks << CHUNK_SHIFT;
706 		old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
707 		moved_chunks = &zhdr->last_chunks;
708 	}
709 
710 	if (sz > 0) {
711 		enum buddy new_bud = HEADLESS;
712 		short chunks = size_to_chunks(sz);
713 		void *q;
714 
715 		new_zhdr = __z3fold_alloc(pool, sz, false);
716 		if (!new_zhdr)
717 			return NULL;
718 
719 		if (WARN_ON(new_zhdr == zhdr))
720 			goto out_fail;
721 
722 		new_bud = get_free_buddy(new_zhdr, chunks);
723 		q = new_zhdr;
724 		switch (new_bud) {
725 		case FIRST:
726 			new_zhdr->first_chunks = chunks;
727 			q += ZHDR_SIZE_ALIGNED;
728 			break;
729 		case MIDDLE:
730 			new_zhdr->middle_chunks = chunks;
731 			new_zhdr->start_middle =
732 				new_zhdr->first_chunks + ZHDR_CHUNKS;
733 			q += new_zhdr->start_middle << CHUNK_SHIFT;
734 			break;
735 		case LAST:
736 			new_zhdr->last_chunks = chunks;
737 			q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
738 			break;
739 		default:
740 			goto out_fail;
741 		}
742 		new_zhdr->foreign_handles++;
743 		memcpy(q, p, sz);
744 		write_lock(&zhdr->slots->lock);
745 		*(unsigned long *)old_handle = (unsigned long)new_zhdr +
746 			__idx(new_zhdr, new_bud);
747 		if (new_bud == LAST)
748 			*(unsigned long *)old_handle |=
749 					(new_zhdr->last_chunks << BUDDY_SHIFT);
750 		write_unlock(&zhdr->slots->lock);
751 		add_to_unbuddied(pool, new_zhdr);
752 		z3fold_page_unlock(new_zhdr);
753 
754 		*moved_chunks = 0;
755 	}
756 
757 	return new_zhdr;
758 
759 out_fail:
760 	if (new_zhdr) {
761 		if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
762 			atomic64_dec(&pool->pages_nr);
763 		else {
764 			add_to_unbuddied(pool, new_zhdr);
765 			z3fold_page_unlock(new_zhdr);
766 		}
767 	}
768 	return NULL;
769 
770 }
771 
772 #define BIG_CHUNK_GAP	3
773 /* Has to be called with lock held */
774 static int z3fold_compact_page(struct z3fold_header *zhdr)
775 {
776 	struct page *page = virt_to_page(zhdr);
777 
778 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
779 		return 0; /* can't move middle chunk, it's used */
780 
781 	if (unlikely(PageIsolated(page)))
782 		return 0;
783 
784 	if (zhdr->middle_chunks == 0)
785 		return 0; /* nothing to compact */
786 
787 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
788 		/* move to the beginning */
789 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
790 		zhdr->first_chunks = zhdr->middle_chunks;
791 		zhdr->middle_chunks = 0;
792 		zhdr->start_middle = 0;
793 		zhdr->first_num++;
794 		return 1;
795 	}
796 
797 	/*
798 	 * moving data is expensive, so let's only do that if
799 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
800 	 */
801 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
802 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
803 			BIG_CHUNK_GAP) {
804 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
805 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
806 		return 1;
807 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
808 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
809 					+ zhdr->middle_chunks) >=
810 			BIG_CHUNK_GAP) {
811 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
812 			zhdr->middle_chunks;
813 		mchunk_memmove(zhdr, new_start);
814 		zhdr->start_middle = new_start;
815 		return 1;
816 	}
817 
818 	return 0;
819 }
820 
821 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
822 {
823 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
824 	struct page *page;
825 
826 	page = virt_to_page(zhdr);
827 	if (locked)
828 		WARN_ON(z3fold_page_trylock(zhdr));
829 	else
830 		z3fold_page_lock(zhdr);
831 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
832 		z3fold_page_unlock(zhdr);
833 		return;
834 	}
835 	spin_lock(&pool->lock);
836 	list_del_init(&zhdr->buddy);
837 	spin_unlock(&pool->lock);
838 
839 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
840 		atomic64_dec(&pool->pages_nr);
841 		return;
842 	}
843 
844 	if (test_bit(PAGE_STALE, &page->private) ||
845 	    test_and_set_bit(PAGE_CLAIMED, &page->private)) {
846 		z3fold_page_unlock(zhdr);
847 		return;
848 	}
849 
850 	if (!zhdr->foreign_handles && buddy_single(zhdr) &&
851 	    zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
852 		if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
853 			atomic64_dec(&pool->pages_nr);
854 		else {
855 			clear_bit(PAGE_CLAIMED, &page->private);
856 			z3fold_page_unlock(zhdr);
857 		}
858 		return;
859 	}
860 
861 	z3fold_compact_page(zhdr);
862 	add_to_unbuddied(pool, zhdr);
863 	clear_bit(PAGE_CLAIMED, &page->private);
864 	z3fold_page_unlock(zhdr);
865 }
866 
867 static void compact_page_work(struct work_struct *w)
868 {
869 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
870 						work);
871 
872 	do_compact_page(zhdr, false);
873 }
874 
875 /* returns _locked_ z3fold page header or NULL */
876 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
877 						size_t size, bool can_sleep)
878 {
879 	struct z3fold_header *zhdr = NULL;
880 	struct page *page;
881 	struct list_head *unbuddied;
882 	int chunks = size_to_chunks(size), i;
883 
884 lookup:
885 	migrate_disable();
886 	/* First, try to find an unbuddied z3fold page. */
887 	unbuddied = this_cpu_ptr(pool->unbuddied);
888 	for_each_unbuddied_list(i, chunks) {
889 		struct list_head *l = &unbuddied[i];
890 
891 		zhdr = list_first_entry_or_null(READ_ONCE(l),
892 					struct z3fold_header, buddy);
893 
894 		if (!zhdr)
895 			continue;
896 
897 		/* Re-check under lock. */
898 		spin_lock(&pool->lock);
899 		l = &unbuddied[i];
900 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
901 						struct z3fold_header, buddy)) ||
902 		    !z3fold_page_trylock(zhdr)) {
903 			spin_unlock(&pool->lock);
904 			zhdr = NULL;
905 			migrate_enable();
906 			if (can_sleep)
907 				cond_resched();
908 			goto lookup;
909 		}
910 		list_del_init(&zhdr->buddy);
911 		zhdr->cpu = -1;
912 		spin_unlock(&pool->lock);
913 
914 		page = virt_to_page(zhdr);
915 		if (test_bit(NEEDS_COMPACTING, &page->private) ||
916 		    test_bit(PAGE_CLAIMED, &page->private)) {
917 			z3fold_page_unlock(zhdr);
918 			zhdr = NULL;
919 			migrate_enable();
920 			if (can_sleep)
921 				cond_resched();
922 			goto lookup;
923 		}
924 
925 		/*
926 		 * this page could not be removed from its unbuddied
927 		 * list while pool lock was held, and then we've taken
928 		 * page lock so kref_put could not be called before
929 		 * we got here, so it's safe to just call kref_get()
930 		 */
931 		kref_get(&zhdr->refcount);
932 		break;
933 	}
934 	migrate_enable();
935 
936 	if (!zhdr) {
937 		int cpu;
938 
939 		/* look for _exact_ match on other cpus' lists */
940 		for_each_online_cpu(cpu) {
941 			struct list_head *l;
942 
943 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
944 			spin_lock(&pool->lock);
945 			l = &unbuddied[chunks];
946 
947 			zhdr = list_first_entry_or_null(READ_ONCE(l),
948 						struct z3fold_header, buddy);
949 
950 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
951 				spin_unlock(&pool->lock);
952 				zhdr = NULL;
953 				continue;
954 			}
955 			list_del_init(&zhdr->buddy);
956 			zhdr->cpu = -1;
957 			spin_unlock(&pool->lock);
958 
959 			page = virt_to_page(zhdr);
960 			if (test_bit(NEEDS_COMPACTING, &page->private) ||
961 			    test_bit(PAGE_CLAIMED, &page->private)) {
962 				z3fold_page_unlock(zhdr);
963 				zhdr = NULL;
964 				if (can_sleep)
965 					cond_resched();
966 				continue;
967 			}
968 			kref_get(&zhdr->refcount);
969 			break;
970 		}
971 	}
972 
973 	if (zhdr && !zhdr->slots)
974 		zhdr->slots = alloc_slots(pool,
975 					can_sleep ? GFP_NOIO : GFP_ATOMIC);
976 	return zhdr;
977 }
978 
979 /*
980  * API Functions
981  */
982 
983 /**
984  * z3fold_create_pool() - create a new z3fold pool
985  * @name:	pool name
986  * @gfp:	gfp flags when allocating the z3fold pool structure
987  * @ops:	user-defined operations for the z3fold pool
988  *
989  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
990  * failed.
991  */
992 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
993 		const struct z3fold_ops *ops)
994 {
995 	struct z3fold_pool *pool = NULL;
996 	int i, cpu;
997 
998 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
999 	if (!pool)
1000 		goto out;
1001 	pool->c_handle = kmem_cache_create("z3fold_handle",
1002 				sizeof(struct z3fold_buddy_slots),
1003 				SLOTS_ALIGN, 0, NULL);
1004 	if (!pool->c_handle)
1005 		goto out_c;
1006 	spin_lock_init(&pool->lock);
1007 	spin_lock_init(&pool->stale_lock);
1008 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1009 	if (!pool->unbuddied)
1010 		goto out_pool;
1011 	for_each_possible_cpu(cpu) {
1012 		struct list_head *unbuddied =
1013 				per_cpu_ptr(pool->unbuddied, cpu);
1014 		for_each_unbuddied_list(i, 0)
1015 			INIT_LIST_HEAD(&unbuddied[i]);
1016 	}
1017 	INIT_LIST_HEAD(&pool->lru);
1018 	INIT_LIST_HEAD(&pool->stale);
1019 	atomic64_set(&pool->pages_nr, 0);
1020 	pool->name = name;
1021 	pool->compact_wq = create_singlethread_workqueue(pool->name);
1022 	if (!pool->compact_wq)
1023 		goto out_unbuddied;
1024 	pool->release_wq = create_singlethread_workqueue(pool->name);
1025 	if (!pool->release_wq)
1026 		goto out_wq;
1027 	if (z3fold_register_migration(pool))
1028 		goto out_rwq;
1029 	INIT_WORK(&pool->work, free_pages_work);
1030 	pool->ops = ops;
1031 	return pool;
1032 
1033 out_rwq:
1034 	destroy_workqueue(pool->release_wq);
1035 out_wq:
1036 	destroy_workqueue(pool->compact_wq);
1037 out_unbuddied:
1038 	free_percpu(pool->unbuddied);
1039 out_pool:
1040 	kmem_cache_destroy(pool->c_handle);
1041 out_c:
1042 	kfree(pool);
1043 out:
1044 	return NULL;
1045 }
1046 
1047 /**
1048  * z3fold_destroy_pool() - destroys an existing z3fold pool
1049  * @pool:	the z3fold pool to be destroyed
1050  *
1051  * The pool should be emptied before this function is called.
1052  */
1053 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1054 {
1055 	kmem_cache_destroy(pool->c_handle);
1056 
1057 	/*
1058 	 * We need to destroy pool->compact_wq before pool->release_wq,
1059 	 * as any pending work on pool->compact_wq will call
1060 	 * queue_work(pool->release_wq, &pool->work).
1061 	 *
1062 	 * There are still outstanding pages until both workqueues are drained,
1063 	 * so we cannot unregister migration until then.
1064 	 */
1065 
1066 	destroy_workqueue(pool->compact_wq);
1067 	destroy_workqueue(pool->release_wq);
1068 	z3fold_unregister_migration(pool);
1069 	kfree(pool);
1070 }
1071 
1072 /**
1073  * z3fold_alloc() - allocates a region of a given size
1074  * @pool:	z3fold pool from which to allocate
1075  * @size:	size in bytes of the desired allocation
1076  * @gfp:	gfp flags used if the pool needs to grow
1077  * @handle:	handle of the new allocation
1078  *
1079  * This function will attempt to find a free region in the pool large enough to
1080  * satisfy the allocation request.  A search of the unbuddied lists is
1081  * performed first. If no suitable free region is found, then a new page is
1082  * allocated and added to the pool to satisfy the request.
1083  *
1084  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1085  * as z3fold pool pages.
1086  *
1087  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1088  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1089  * a new page.
1090  */
1091 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1092 			unsigned long *handle)
1093 {
1094 	int chunks = size_to_chunks(size);
1095 	struct z3fold_header *zhdr = NULL;
1096 	struct page *page = NULL;
1097 	enum buddy bud;
1098 	bool can_sleep = gfpflags_allow_blocking(gfp);
1099 
1100 	if (!size)
1101 		return -EINVAL;
1102 
1103 	if (size > PAGE_SIZE)
1104 		return -ENOSPC;
1105 
1106 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1107 		bud = HEADLESS;
1108 	else {
1109 retry:
1110 		zhdr = __z3fold_alloc(pool, size, can_sleep);
1111 		if (zhdr) {
1112 			bud = get_free_buddy(zhdr, chunks);
1113 			if (bud == HEADLESS) {
1114 				if (kref_put(&zhdr->refcount,
1115 					     release_z3fold_page_locked))
1116 					atomic64_dec(&pool->pages_nr);
1117 				else
1118 					z3fold_page_unlock(zhdr);
1119 				pr_err("No free chunks in unbuddied\n");
1120 				WARN_ON(1);
1121 				goto retry;
1122 			}
1123 			page = virt_to_page(zhdr);
1124 			goto found;
1125 		}
1126 		bud = FIRST;
1127 	}
1128 
1129 	page = NULL;
1130 	if (can_sleep) {
1131 		spin_lock(&pool->stale_lock);
1132 		zhdr = list_first_entry_or_null(&pool->stale,
1133 						struct z3fold_header, buddy);
1134 		/*
1135 		 * Before allocating a page, let's see if we can take one from
1136 		 * the stale pages list. cancel_work_sync() can sleep so we
1137 		 * limit this case to the contexts where we can sleep
1138 		 */
1139 		if (zhdr) {
1140 			list_del(&zhdr->buddy);
1141 			spin_unlock(&pool->stale_lock);
1142 			cancel_work_sync(&zhdr->work);
1143 			page = virt_to_page(zhdr);
1144 		} else {
1145 			spin_unlock(&pool->stale_lock);
1146 		}
1147 	}
1148 	if (!page)
1149 		page = alloc_page(gfp);
1150 
1151 	if (!page)
1152 		return -ENOMEM;
1153 
1154 	zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1155 	if (!zhdr) {
1156 		__free_page(page);
1157 		return -ENOMEM;
1158 	}
1159 	atomic64_inc(&pool->pages_nr);
1160 
1161 	if (bud == HEADLESS) {
1162 		set_bit(PAGE_HEADLESS, &page->private);
1163 		goto headless;
1164 	}
1165 	if (can_sleep) {
1166 		lock_page(page);
1167 		__SetPageMovable(page, pool->inode->i_mapping);
1168 		unlock_page(page);
1169 	} else {
1170 		if (trylock_page(page)) {
1171 			__SetPageMovable(page, pool->inode->i_mapping);
1172 			unlock_page(page);
1173 		}
1174 	}
1175 	z3fold_page_lock(zhdr);
1176 
1177 found:
1178 	if (bud == FIRST)
1179 		zhdr->first_chunks = chunks;
1180 	else if (bud == LAST)
1181 		zhdr->last_chunks = chunks;
1182 	else {
1183 		zhdr->middle_chunks = chunks;
1184 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1185 	}
1186 	add_to_unbuddied(pool, zhdr);
1187 
1188 headless:
1189 	spin_lock(&pool->lock);
1190 	/* Add/move z3fold page to beginning of LRU */
1191 	if (!list_empty(&page->lru))
1192 		list_del(&page->lru);
1193 
1194 	list_add(&page->lru, &pool->lru);
1195 
1196 	*handle = encode_handle(zhdr, bud);
1197 	spin_unlock(&pool->lock);
1198 	if (bud != HEADLESS)
1199 		z3fold_page_unlock(zhdr);
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  * z3fold_free() - frees the allocation associated with the given handle
1206  * @pool:	pool in which the allocation resided
1207  * @handle:	handle associated with the allocation returned by z3fold_alloc()
1208  *
1209  * In the case that the z3fold page in which the allocation resides is under
1210  * reclaim, as indicated by the PG_reclaim flag being set, this function
1211  * only sets the first|last_chunks to 0.  The page is actually freed
1212  * once both buddies are evicted (see z3fold_reclaim_page() below).
1213  */
1214 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1215 {
1216 	struct z3fold_header *zhdr;
1217 	struct page *page;
1218 	enum buddy bud;
1219 	bool page_claimed;
1220 
1221 	zhdr = get_z3fold_header(handle);
1222 	page = virt_to_page(zhdr);
1223 	page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1224 
1225 	if (test_bit(PAGE_HEADLESS, &page->private)) {
1226 		/* if a headless page is under reclaim, just leave.
1227 		 * NB: we use test_and_set_bit for a reason: if the bit
1228 		 * has not been set before, we release this page
1229 		 * immediately so we don't care about its value any more.
1230 		 */
1231 		if (!page_claimed) {
1232 			spin_lock(&pool->lock);
1233 			list_del(&page->lru);
1234 			spin_unlock(&pool->lock);
1235 			put_z3fold_header(zhdr);
1236 			free_z3fold_page(page, true);
1237 			atomic64_dec(&pool->pages_nr);
1238 		}
1239 		return;
1240 	}
1241 
1242 	/* Non-headless case */
1243 	bud = handle_to_buddy(handle);
1244 
1245 	switch (bud) {
1246 	case FIRST:
1247 		zhdr->first_chunks = 0;
1248 		break;
1249 	case MIDDLE:
1250 		zhdr->middle_chunks = 0;
1251 		break;
1252 	case LAST:
1253 		zhdr->last_chunks = 0;
1254 		break;
1255 	default:
1256 		pr_err("%s: unknown bud %d\n", __func__, bud);
1257 		WARN_ON(1);
1258 		put_z3fold_header(zhdr);
1259 		return;
1260 	}
1261 
1262 	if (!page_claimed)
1263 		free_handle(handle, zhdr);
1264 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1265 		atomic64_dec(&pool->pages_nr);
1266 		return;
1267 	}
1268 	if (page_claimed) {
1269 		/* the page has not been claimed by us */
1270 		z3fold_page_unlock(zhdr);
1271 		return;
1272 	}
1273 	if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1274 		put_z3fold_header(zhdr);
1275 		clear_bit(PAGE_CLAIMED, &page->private);
1276 		return;
1277 	}
1278 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1279 		spin_lock(&pool->lock);
1280 		list_del_init(&zhdr->buddy);
1281 		spin_unlock(&pool->lock);
1282 		zhdr->cpu = -1;
1283 		kref_get(&zhdr->refcount);
1284 		clear_bit(PAGE_CLAIMED, &page->private);
1285 		do_compact_page(zhdr, true);
1286 		return;
1287 	}
1288 	kref_get(&zhdr->refcount);
1289 	clear_bit(PAGE_CLAIMED, &page->private);
1290 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1291 	put_z3fold_header(zhdr);
1292 }
1293 
1294 /**
1295  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1296  * @pool:	pool from which a page will attempt to be evicted
1297  * @retries:	number of pages on the LRU list for which eviction will
1298  *		be attempted before failing
1299  *
1300  * z3fold reclaim is different from normal system reclaim in that it is done
1301  * from the bottom, up. This is because only the bottom layer, z3fold, has
1302  * information on how the allocations are organized within each z3fold page.
1303  * This has the potential to create interesting locking situations between
1304  * z3fold and the user, however.
1305  *
1306  * To avoid these, this is how z3fold_reclaim_page() should be called:
1307  *
1308  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1309  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1310  * call the user-defined eviction handler with the pool and handle as
1311  * arguments.
1312  *
1313  * If the handle can not be evicted, the eviction handler should return
1314  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1315  * appropriate list and try the next z3fold page on the LRU up to
1316  * a user defined number of retries.
1317  *
1318  * If the handle is successfully evicted, the eviction handler should
1319  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1320  * contains logic to delay freeing the page if the page is under reclaim,
1321  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1322  *
1323  * If all buddies in the z3fold page are successfully evicted, then the
1324  * z3fold page can be freed.
1325  *
1326  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1327  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1328  * the retry limit was hit.
1329  */
1330 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1331 {
1332 	int i, ret = -1;
1333 	struct z3fold_header *zhdr = NULL;
1334 	struct page *page = NULL;
1335 	struct list_head *pos;
1336 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1337 	struct z3fold_buddy_slots slots __attribute__((aligned(SLOTS_ALIGN)));
1338 
1339 	rwlock_init(&slots.lock);
1340 	slots.pool = (unsigned long)pool | (1 << HANDLES_NOFREE);
1341 
1342 	spin_lock(&pool->lock);
1343 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1344 		spin_unlock(&pool->lock);
1345 		return -EINVAL;
1346 	}
1347 	for (i = 0; i < retries; i++) {
1348 		if (list_empty(&pool->lru)) {
1349 			spin_unlock(&pool->lock);
1350 			return -EINVAL;
1351 		}
1352 		list_for_each_prev(pos, &pool->lru) {
1353 			page = list_entry(pos, struct page, lru);
1354 
1355 			zhdr = page_address(page);
1356 			if (test_bit(PAGE_HEADLESS, &page->private))
1357 				break;
1358 
1359 			if (kref_get_unless_zero(&zhdr->refcount) == 0) {
1360 				zhdr = NULL;
1361 				break;
1362 			}
1363 			if (!z3fold_page_trylock(zhdr)) {
1364 				if (kref_put(&zhdr->refcount,
1365 						release_z3fold_page))
1366 					atomic64_dec(&pool->pages_nr);
1367 				zhdr = NULL;
1368 				continue; /* can't evict at this point */
1369 			}
1370 
1371 			/* test_and_set_bit is of course atomic, but we still
1372 			 * need to do it under page lock, otherwise checking
1373 			 * that bit in __z3fold_alloc wouldn't make sense
1374 			 */
1375 			if (zhdr->foreign_handles ||
1376 			    test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1377 				if (kref_put(&zhdr->refcount,
1378 						release_z3fold_page))
1379 					atomic64_dec(&pool->pages_nr);
1380 				else
1381 					z3fold_page_unlock(zhdr);
1382 				zhdr = NULL;
1383 				continue; /* can't evict such page */
1384 			}
1385 			list_del_init(&zhdr->buddy);
1386 			zhdr->cpu = -1;
1387 			break;
1388 		}
1389 
1390 		if (!zhdr)
1391 			break;
1392 
1393 		list_del_init(&page->lru);
1394 		spin_unlock(&pool->lock);
1395 
1396 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1397 			/*
1398 			 * We need encode the handles before unlocking, and
1399 			 * use our local slots structure because z3fold_free
1400 			 * can zero out zhdr->slots and we can't do much
1401 			 * about that
1402 			 */
1403 			first_handle = 0;
1404 			last_handle = 0;
1405 			middle_handle = 0;
1406 			memset(slots.slot, 0, sizeof(slots.slot));
1407 			if (zhdr->first_chunks)
1408 				first_handle = __encode_handle(zhdr, &slots,
1409 								FIRST);
1410 			if (zhdr->middle_chunks)
1411 				middle_handle = __encode_handle(zhdr, &slots,
1412 								MIDDLE);
1413 			if (zhdr->last_chunks)
1414 				last_handle = __encode_handle(zhdr, &slots,
1415 								LAST);
1416 			/*
1417 			 * it's safe to unlock here because we hold a
1418 			 * reference to this page
1419 			 */
1420 			z3fold_page_unlock(zhdr);
1421 		} else {
1422 			first_handle = encode_handle(zhdr, HEADLESS);
1423 			last_handle = middle_handle = 0;
1424 		}
1425 		/* Issue the eviction callback(s) */
1426 		if (middle_handle) {
1427 			ret = pool->ops->evict(pool, middle_handle);
1428 			if (ret)
1429 				goto next;
1430 		}
1431 		if (first_handle) {
1432 			ret = pool->ops->evict(pool, first_handle);
1433 			if (ret)
1434 				goto next;
1435 		}
1436 		if (last_handle) {
1437 			ret = pool->ops->evict(pool, last_handle);
1438 			if (ret)
1439 				goto next;
1440 		}
1441 next:
1442 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1443 			if (ret == 0) {
1444 				free_z3fold_page(page, true);
1445 				atomic64_dec(&pool->pages_nr);
1446 				return 0;
1447 			}
1448 			spin_lock(&pool->lock);
1449 			list_add(&page->lru, &pool->lru);
1450 			spin_unlock(&pool->lock);
1451 			clear_bit(PAGE_CLAIMED, &page->private);
1452 		} else {
1453 			struct z3fold_buddy_slots *slots = zhdr->slots;
1454 			z3fold_page_lock(zhdr);
1455 			if (kref_put(&zhdr->refcount,
1456 					release_z3fold_page_locked)) {
1457 				kmem_cache_free(pool->c_handle, slots);
1458 				atomic64_dec(&pool->pages_nr);
1459 				return 0;
1460 			}
1461 			/*
1462 			 * if we are here, the page is still not completely
1463 			 * free. Take the global pool lock then to be able
1464 			 * to add it back to the lru list
1465 			 */
1466 			spin_lock(&pool->lock);
1467 			list_add(&page->lru, &pool->lru);
1468 			spin_unlock(&pool->lock);
1469 			z3fold_page_unlock(zhdr);
1470 			clear_bit(PAGE_CLAIMED, &page->private);
1471 		}
1472 
1473 		/* We started off locked to we need to lock the pool back */
1474 		spin_lock(&pool->lock);
1475 	}
1476 	spin_unlock(&pool->lock);
1477 	return -EAGAIN;
1478 }
1479 
1480 /**
1481  * z3fold_map() - maps the allocation associated with the given handle
1482  * @pool:	pool in which the allocation resides
1483  * @handle:	handle associated with the allocation to be mapped
1484  *
1485  * Extracts the buddy number from handle and constructs the pointer to the
1486  * correct starting chunk within the page.
1487  *
1488  * Returns: a pointer to the mapped allocation
1489  */
1490 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1491 {
1492 	struct z3fold_header *zhdr;
1493 	struct page *page;
1494 	void *addr;
1495 	enum buddy buddy;
1496 
1497 	zhdr = get_z3fold_header(handle);
1498 	addr = zhdr;
1499 	page = virt_to_page(zhdr);
1500 
1501 	if (test_bit(PAGE_HEADLESS, &page->private))
1502 		goto out;
1503 
1504 	buddy = handle_to_buddy(handle);
1505 	switch (buddy) {
1506 	case FIRST:
1507 		addr += ZHDR_SIZE_ALIGNED;
1508 		break;
1509 	case MIDDLE:
1510 		addr += zhdr->start_middle << CHUNK_SHIFT;
1511 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1512 		break;
1513 	case LAST:
1514 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1515 		break;
1516 	default:
1517 		pr_err("unknown buddy id %d\n", buddy);
1518 		WARN_ON(1);
1519 		addr = NULL;
1520 		break;
1521 	}
1522 
1523 	if (addr)
1524 		zhdr->mapped_count++;
1525 out:
1526 	put_z3fold_header(zhdr);
1527 	return addr;
1528 }
1529 
1530 /**
1531  * z3fold_unmap() - unmaps the allocation associated with the given handle
1532  * @pool:	pool in which the allocation resides
1533  * @handle:	handle associated with the allocation to be unmapped
1534  */
1535 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1536 {
1537 	struct z3fold_header *zhdr;
1538 	struct page *page;
1539 	enum buddy buddy;
1540 
1541 	zhdr = get_z3fold_header(handle);
1542 	page = virt_to_page(zhdr);
1543 
1544 	if (test_bit(PAGE_HEADLESS, &page->private))
1545 		return;
1546 
1547 	buddy = handle_to_buddy(handle);
1548 	if (buddy == MIDDLE)
1549 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1550 	zhdr->mapped_count--;
1551 	put_z3fold_header(zhdr);
1552 }
1553 
1554 /**
1555  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1556  * @pool:	pool whose size is being queried
1557  *
1558  * Returns: size in pages of the given pool.
1559  */
1560 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1561 {
1562 	return atomic64_read(&pool->pages_nr);
1563 }
1564 
1565 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1566 {
1567 	struct z3fold_header *zhdr;
1568 	struct z3fold_pool *pool;
1569 
1570 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1571 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1572 
1573 	if (test_bit(PAGE_HEADLESS, &page->private))
1574 		return false;
1575 
1576 	zhdr = page_address(page);
1577 	z3fold_page_lock(zhdr);
1578 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1579 	    test_bit(PAGE_STALE, &page->private))
1580 		goto out;
1581 
1582 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1583 		goto out;
1584 
1585 	if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1586 		goto out;
1587 	pool = zhdr_to_pool(zhdr);
1588 	spin_lock(&pool->lock);
1589 	if (!list_empty(&zhdr->buddy))
1590 		list_del_init(&zhdr->buddy);
1591 	if (!list_empty(&page->lru))
1592 		list_del_init(&page->lru);
1593 	spin_unlock(&pool->lock);
1594 
1595 	kref_get(&zhdr->refcount);
1596 	z3fold_page_unlock(zhdr);
1597 	return true;
1598 
1599 out:
1600 	z3fold_page_unlock(zhdr);
1601 	return false;
1602 }
1603 
1604 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1605 			       struct page *page, enum migrate_mode mode)
1606 {
1607 	struct z3fold_header *zhdr, *new_zhdr;
1608 	struct z3fold_pool *pool;
1609 	struct address_space *new_mapping;
1610 
1611 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1612 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1613 	VM_BUG_ON_PAGE(!test_bit(PAGE_CLAIMED, &page->private), page);
1614 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1615 
1616 	zhdr = page_address(page);
1617 	pool = zhdr_to_pool(zhdr);
1618 
1619 	if (!z3fold_page_trylock(zhdr))
1620 		return -EAGAIN;
1621 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1622 		z3fold_page_unlock(zhdr);
1623 		clear_bit(PAGE_CLAIMED, &page->private);
1624 		return -EBUSY;
1625 	}
1626 	if (work_pending(&zhdr->work)) {
1627 		z3fold_page_unlock(zhdr);
1628 		return -EAGAIN;
1629 	}
1630 	new_zhdr = page_address(newpage);
1631 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1632 	newpage->private = page->private;
1633 	page->private = 0;
1634 	z3fold_page_unlock(zhdr);
1635 	spin_lock_init(&new_zhdr->page_lock);
1636 	INIT_WORK(&new_zhdr->work, compact_page_work);
1637 	/*
1638 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1639 	 * so we only have to reinitialize it.
1640 	 */
1641 	INIT_LIST_HEAD(&new_zhdr->buddy);
1642 	new_mapping = page_mapping(page);
1643 	__ClearPageMovable(page);
1644 	ClearPagePrivate(page);
1645 
1646 	get_page(newpage);
1647 	z3fold_page_lock(new_zhdr);
1648 	if (new_zhdr->first_chunks)
1649 		encode_handle(new_zhdr, FIRST);
1650 	if (new_zhdr->last_chunks)
1651 		encode_handle(new_zhdr, LAST);
1652 	if (new_zhdr->middle_chunks)
1653 		encode_handle(new_zhdr, MIDDLE);
1654 	set_bit(NEEDS_COMPACTING, &newpage->private);
1655 	new_zhdr->cpu = smp_processor_id();
1656 	spin_lock(&pool->lock);
1657 	list_add(&newpage->lru, &pool->lru);
1658 	spin_unlock(&pool->lock);
1659 	__SetPageMovable(newpage, new_mapping);
1660 	z3fold_page_unlock(new_zhdr);
1661 
1662 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1663 
1664 	page_mapcount_reset(page);
1665 	clear_bit(PAGE_CLAIMED, &page->private);
1666 	put_page(page);
1667 	return 0;
1668 }
1669 
1670 static void z3fold_page_putback(struct page *page)
1671 {
1672 	struct z3fold_header *zhdr;
1673 	struct z3fold_pool *pool;
1674 
1675 	zhdr = page_address(page);
1676 	pool = zhdr_to_pool(zhdr);
1677 
1678 	z3fold_page_lock(zhdr);
1679 	if (!list_empty(&zhdr->buddy))
1680 		list_del_init(&zhdr->buddy);
1681 	INIT_LIST_HEAD(&page->lru);
1682 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1683 		atomic64_dec(&pool->pages_nr);
1684 		return;
1685 	}
1686 	spin_lock(&pool->lock);
1687 	list_add(&page->lru, &pool->lru);
1688 	spin_unlock(&pool->lock);
1689 	clear_bit(PAGE_CLAIMED, &page->private);
1690 	z3fold_page_unlock(zhdr);
1691 }
1692 
1693 static const struct address_space_operations z3fold_aops = {
1694 	.isolate_page = z3fold_page_isolate,
1695 	.migratepage = z3fold_page_migrate,
1696 	.putback_page = z3fold_page_putback,
1697 };
1698 
1699 /*****************
1700  * zpool
1701  ****************/
1702 
1703 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1704 {
1705 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1706 		return pool->zpool_ops->evict(pool->zpool, handle);
1707 	else
1708 		return -ENOENT;
1709 }
1710 
1711 static const struct z3fold_ops z3fold_zpool_ops = {
1712 	.evict =	z3fold_zpool_evict
1713 };
1714 
1715 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1716 			       const struct zpool_ops *zpool_ops,
1717 			       struct zpool *zpool)
1718 {
1719 	struct z3fold_pool *pool;
1720 
1721 	pool = z3fold_create_pool(name, gfp,
1722 				zpool_ops ? &z3fold_zpool_ops : NULL);
1723 	if (pool) {
1724 		pool->zpool = zpool;
1725 		pool->zpool_ops = zpool_ops;
1726 	}
1727 	return pool;
1728 }
1729 
1730 static void z3fold_zpool_destroy(void *pool)
1731 {
1732 	z3fold_destroy_pool(pool);
1733 }
1734 
1735 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1736 			unsigned long *handle)
1737 {
1738 	return z3fold_alloc(pool, size, gfp, handle);
1739 }
1740 static void z3fold_zpool_free(void *pool, unsigned long handle)
1741 {
1742 	z3fold_free(pool, handle);
1743 }
1744 
1745 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1746 			unsigned int *reclaimed)
1747 {
1748 	unsigned int total = 0;
1749 	int ret = -EINVAL;
1750 
1751 	while (total < pages) {
1752 		ret = z3fold_reclaim_page(pool, 8);
1753 		if (ret < 0)
1754 			break;
1755 		total++;
1756 	}
1757 
1758 	if (reclaimed)
1759 		*reclaimed = total;
1760 
1761 	return ret;
1762 }
1763 
1764 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1765 			enum zpool_mapmode mm)
1766 {
1767 	return z3fold_map(pool, handle);
1768 }
1769 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1770 {
1771 	z3fold_unmap(pool, handle);
1772 }
1773 
1774 static u64 z3fold_zpool_total_size(void *pool)
1775 {
1776 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1777 }
1778 
1779 static struct zpool_driver z3fold_zpool_driver = {
1780 	.type =		"z3fold",
1781 	.owner =	THIS_MODULE,
1782 	.create =	z3fold_zpool_create,
1783 	.destroy =	z3fold_zpool_destroy,
1784 	.malloc =	z3fold_zpool_malloc,
1785 	.free =		z3fold_zpool_free,
1786 	.shrink =	z3fold_zpool_shrink,
1787 	.map =		z3fold_zpool_map,
1788 	.unmap =	z3fold_zpool_unmap,
1789 	.total_size =	z3fold_zpool_total_size,
1790 };
1791 
1792 MODULE_ALIAS("zpool-z3fold");
1793 
1794 static int __init init_z3fold(void)
1795 {
1796 	int ret;
1797 
1798 	/* Make sure the z3fold header is not larger than the page size */
1799 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1800 	ret = z3fold_mount();
1801 	if (ret)
1802 		return ret;
1803 
1804 	zpool_register_driver(&z3fold_zpool_driver);
1805 
1806 	return 0;
1807 }
1808 
1809 static void __exit exit_z3fold(void)
1810 {
1811 	z3fold_unmount();
1812 	zpool_unregister_driver(&z3fold_zpool_driver);
1813 }
1814 
1815 module_init(init_z3fold);
1816 module_exit(exit_z3fold);
1817 
1818 MODULE_LICENSE("GPL");
1819 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1820 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1821