xref: /linux/mm/z3fold.c (revision ccb01374a835ae4ee8c71f801ca20fc669cba6b8)
1 /*
2  * z3fold.c
3  *
4  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
5  * Copyright (C) 2016, Sony Mobile Communications Inc.
6  *
7  * This implementation is based on zbud written by Seth Jennings.
8  *
9  * z3fold is an special purpose allocator for storing compressed pages. It
10  * can store up to three compressed pages per page which improves the
11  * compression ratio of zbud while retaining its main concepts (e. g. always
12  * storing an integral number of objects per page) and simplicity.
13  * It still has simple and deterministic reclaim properties that make it
14  * preferable to a higher density approach (with no requirement on integral
15  * number of object per page) when reclaim is used.
16  *
17  * As in zbud, pages are divided into "chunks".  The size of the chunks is
18  * fixed at compile time and is determined by NCHUNKS_ORDER below.
19  *
20  * z3fold doesn't export any API and is meant to be used via zpool API.
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/atomic.h>
26 #include <linux/sched.h>
27 #include <linux/list.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/percpu.h>
31 #include <linux/preempt.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/spinlock.h>
35 #include <linux/zpool.h>
36 
37 /*****************
38  * Structures
39 *****************/
40 struct z3fold_pool;
41 struct z3fold_ops {
42 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
43 };
44 
45 enum buddy {
46 	HEADLESS = 0,
47 	FIRST,
48 	MIDDLE,
49 	LAST,
50 	BUDDIES_MAX
51 };
52 
53 /*
54  * struct z3fold_header - z3fold page metadata occupying first chunks of each
55  *			z3fold page, except for HEADLESS pages
56  * @buddy:		links the z3fold page into the relevant list in the
57  *			pool
58  * @page_lock:		per-page lock
59  * @refcount:		reference count for the z3fold page
60  * @work:		work_struct for page layout optimization
61  * @pool:		pointer to the pool which this page belongs to
62  * @cpu:		CPU which this page "belongs" to
63  * @first_chunks:	the size of the first buddy in chunks, 0 if free
64  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
65  * @last_chunks:	the size of the last buddy in chunks, 0 if free
66  * @first_num:		the starting number (for the first handle)
67  */
68 struct z3fold_header {
69 	struct list_head buddy;
70 	spinlock_t page_lock;
71 	struct kref refcount;
72 	struct work_struct work;
73 	struct z3fold_pool *pool;
74 	short cpu;
75 	unsigned short first_chunks;
76 	unsigned short middle_chunks;
77 	unsigned short last_chunks;
78 	unsigned short start_middle;
79 	unsigned short first_num:2;
80 };
81 
82 /*
83  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
84  * adjusting internal fragmentation.  It also determines the number of
85  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
86  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
87  * in the beginning of an allocated page are occupied by z3fold header, so
88  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
89  * which shows the max number of free chunks in z3fold page, also there will
90  * be 63, or 62, respectively, freelists per pool.
91  */
92 #define NCHUNKS_ORDER	6
93 
94 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
95 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
96 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
97 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
98 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
99 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
100 
101 #define BUDDY_MASK	(0x3)
102 #define BUDDY_SHIFT	2
103 
104 /**
105  * struct z3fold_pool - stores metadata for each z3fold pool
106  * @name:	pool name
107  * @lock:	protects pool unbuddied/lru lists
108  * @stale_lock:	protects pool stale page list
109  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
110  *		buddies; the list each z3fold page is added to depends on
111  *		the size of its free region.
112  * @lru:	list tracking the z3fold pages in LRU order by most recently
113  *		added buddy.
114  * @stale:	list of pages marked for freeing
115  * @pages_nr:	number of z3fold pages in the pool.
116  * @ops:	pointer to a structure of user defined operations specified at
117  *		pool creation time.
118  * @compact_wq:	workqueue for page layout background optimization
119  * @release_wq:	workqueue for safe page release
120  * @work:	work_struct for safe page release
121  *
122  * This structure is allocated at pool creation time and maintains metadata
123  * pertaining to a particular z3fold pool.
124  */
125 struct z3fold_pool {
126 	const char *name;
127 	spinlock_t lock;
128 	spinlock_t stale_lock;
129 	struct list_head *unbuddied;
130 	struct list_head lru;
131 	struct list_head stale;
132 	atomic64_t pages_nr;
133 	const struct z3fold_ops *ops;
134 	struct zpool *zpool;
135 	const struct zpool_ops *zpool_ops;
136 	struct workqueue_struct *compact_wq;
137 	struct workqueue_struct *release_wq;
138 	struct work_struct work;
139 };
140 
141 /*
142  * Internal z3fold page flags
143  */
144 enum z3fold_page_flags {
145 	PAGE_HEADLESS = 0,
146 	MIDDLE_CHUNK_MAPPED,
147 	NEEDS_COMPACTING,
148 	PAGE_STALE,
149 	PAGE_CLAIMED, /* by either reclaim or free */
150 };
151 
152 /*****************
153  * Helpers
154 *****************/
155 
156 /* Converts an allocation size in bytes to size in z3fold chunks */
157 static int size_to_chunks(size_t size)
158 {
159 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
160 }
161 
162 #define for_each_unbuddied_list(_iter, _begin) \
163 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
164 
165 static void compact_page_work(struct work_struct *w);
166 
167 /* Initializes the z3fold header of a newly allocated z3fold page */
168 static struct z3fold_header *init_z3fold_page(struct page *page,
169 					struct z3fold_pool *pool)
170 {
171 	struct z3fold_header *zhdr = page_address(page);
172 
173 	INIT_LIST_HEAD(&page->lru);
174 	clear_bit(PAGE_HEADLESS, &page->private);
175 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
176 	clear_bit(NEEDS_COMPACTING, &page->private);
177 	clear_bit(PAGE_STALE, &page->private);
178 	clear_bit(PAGE_CLAIMED, &page->private);
179 
180 	spin_lock_init(&zhdr->page_lock);
181 	kref_init(&zhdr->refcount);
182 	zhdr->first_chunks = 0;
183 	zhdr->middle_chunks = 0;
184 	zhdr->last_chunks = 0;
185 	zhdr->first_num = 0;
186 	zhdr->start_middle = 0;
187 	zhdr->cpu = -1;
188 	zhdr->pool = pool;
189 	INIT_LIST_HEAD(&zhdr->buddy);
190 	INIT_WORK(&zhdr->work, compact_page_work);
191 	return zhdr;
192 }
193 
194 /* Resets the struct page fields and frees the page */
195 static void free_z3fold_page(struct page *page)
196 {
197 	__free_page(page);
198 }
199 
200 /* Lock a z3fold page */
201 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
202 {
203 	spin_lock(&zhdr->page_lock);
204 }
205 
206 /* Try to lock a z3fold page */
207 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
208 {
209 	return spin_trylock(&zhdr->page_lock);
210 }
211 
212 /* Unlock a z3fold page */
213 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
214 {
215 	spin_unlock(&zhdr->page_lock);
216 }
217 
218 /*
219  * Encodes the handle of a particular buddy within a z3fold page
220  * Pool lock should be held as this function accesses first_num
221  */
222 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
223 {
224 	unsigned long handle;
225 
226 	handle = (unsigned long)zhdr;
227 	if (bud != HEADLESS) {
228 		handle |= (bud + zhdr->first_num) & BUDDY_MASK;
229 		if (bud == LAST)
230 			handle |= (zhdr->last_chunks << BUDDY_SHIFT);
231 	}
232 	return handle;
233 }
234 
235 /* Returns the z3fold page where a given handle is stored */
236 static struct z3fold_header *handle_to_z3fold_header(unsigned long handle)
237 {
238 	return (struct z3fold_header *)(handle & PAGE_MASK);
239 }
240 
241 /* only for LAST bud, returns zero otherwise */
242 static unsigned short handle_to_chunks(unsigned long handle)
243 {
244 	return (handle & ~PAGE_MASK) >> BUDDY_SHIFT;
245 }
246 
247 /*
248  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
249  *  but that doesn't matter. because the masking will result in the
250  *  correct buddy number.
251  */
252 static enum buddy handle_to_buddy(unsigned long handle)
253 {
254 	struct z3fold_header *zhdr = handle_to_z3fold_header(handle);
255 	return (handle - zhdr->first_num) & BUDDY_MASK;
256 }
257 
258 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
259 {
260 	struct page *page = virt_to_page(zhdr);
261 	struct z3fold_pool *pool = zhdr->pool;
262 
263 	WARN_ON(!list_empty(&zhdr->buddy));
264 	set_bit(PAGE_STALE, &page->private);
265 	clear_bit(NEEDS_COMPACTING, &page->private);
266 	spin_lock(&pool->lock);
267 	if (!list_empty(&page->lru))
268 		list_del(&page->lru);
269 	spin_unlock(&pool->lock);
270 	if (locked)
271 		z3fold_page_unlock(zhdr);
272 	spin_lock(&pool->stale_lock);
273 	list_add(&zhdr->buddy, &pool->stale);
274 	queue_work(pool->release_wq, &pool->work);
275 	spin_unlock(&pool->stale_lock);
276 }
277 
278 static void __attribute__((__unused__))
279 			release_z3fold_page(struct kref *ref)
280 {
281 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
282 						refcount);
283 	__release_z3fold_page(zhdr, false);
284 }
285 
286 static void release_z3fold_page_locked(struct kref *ref)
287 {
288 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
289 						refcount);
290 	WARN_ON(z3fold_page_trylock(zhdr));
291 	__release_z3fold_page(zhdr, true);
292 }
293 
294 static void release_z3fold_page_locked_list(struct kref *ref)
295 {
296 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
297 					       refcount);
298 	spin_lock(&zhdr->pool->lock);
299 	list_del_init(&zhdr->buddy);
300 	spin_unlock(&zhdr->pool->lock);
301 
302 	WARN_ON(z3fold_page_trylock(zhdr));
303 	__release_z3fold_page(zhdr, true);
304 }
305 
306 static void free_pages_work(struct work_struct *w)
307 {
308 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
309 
310 	spin_lock(&pool->stale_lock);
311 	while (!list_empty(&pool->stale)) {
312 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
313 						struct z3fold_header, buddy);
314 		struct page *page = virt_to_page(zhdr);
315 
316 		list_del(&zhdr->buddy);
317 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
318 			continue;
319 		spin_unlock(&pool->stale_lock);
320 		cancel_work_sync(&zhdr->work);
321 		free_z3fold_page(page);
322 		cond_resched();
323 		spin_lock(&pool->stale_lock);
324 	}
325 	spin_unlock(&pool->stale_lock);
326 }
327 
328 /*
329  * Returns the number of free chunks in a z3fold page.
330  * NB: can't be used with HEADLESS pages.
331  */
332 static int num_free_chunks(struct z3fold_header *zhdr)
333 {
334 	int nfree;
335 	/*
336 	 * If there is a middle object, pick up the bigger free space
337 	 * either before or after it. Otherwise just subtract the number
338 	 * of chunks occupied by the first and the last objects.
339 	 */
340 	if (zhdr->middle_chunks != 0) {
341 		int nfree_before = zhdr->first_chunks ?
342 			0 : zhdr->start_middle - ZHDR_CHUNKS;
343 		int nfree_after = zhdr->last_chunks ?
344 			0 : TOTAL_CHUNKS -
345 				(zhdr->start_middle + zhdr->middle_chunks);
346 		nfree = max(nfree_before, nfree_after);
347 	} else
348 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
349 	return nfree;
350 }
351 
352 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
353 				unsigned short dst_chunk)
354 {
355 	void *beg = zhdr;
356 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
357 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
358 		       zhdr->middle_chunks << CHUNK_SHIFT);
359 }
360 
361 #define BIG_CHUNK_GAP	3
362 /* Has to be called with lock held */
363 static int z3fold_compact_page(struct z3fold_header *zhdr)
364 {
365 	struct page *page = virt_to_page(zhdr);
366 
367 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
368 		return 0; /* can't move middle chunk, it's used */
369 
370 	if (zhdr->middle_chunks == 0)
371 		return 0; /* nothing to compact */
372 
373 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
374 		/* move to the beginning */
375 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
376 		zhdr->first_chunks = zhdr->middle_chunks;
377 		zhdr->middle_chunks = 0;
378 		zhdr->start_middle = 0;
379 		zhdr->first_num++;
380 		return 1;
381 	}
382 
383 	/*
384 	 * moving data is expensive, so let's only do that if
385 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
386 	 */
387 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
388 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
389 			BIG_CHUNK_GAP) {
390 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
391 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
392 		return 1;
393 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
394 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
395 					+ zhdr->middle_chunks) >=
396 			BIG_CHUNK_GAP) {
397 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
398 			zhdr->middle_chunks;
399 		mchunk_memmove(zhdr, new_start);
400 		zhdr->start_middle = new_start;
401 		return 1;
402 	}
403 
404 	return 0;
405 }
406 
407 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
408 {
409 	struct z3fold_pool *pool = zhdr->pool;
410 	struct page *page;
411 	struct list_head *unbuddied;
412 	int fchunks;
413 
414 	page = virt_to_page(zhdr);
415 	if (locked)
416 		WARN_ON(z3fold_page_trylock(zhdr));
417 	else
418 		z3fold_page_lock(zhdr);
419 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
420 		z3fold_page_unlock(zhdr);
421 		return;
422 	}
423 	spin_lock(&pool->lock);
424 	list_del_init(&zhdr->buddy);
425 	spin_unlock(&pool->lock);
426 
427 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
428 		atomic64_dec(&pool->pages_nr);
429 		return;
430 	}
431 
432 	z3fold_compact_page(zhdr);
433 	unbuddied = get_cpu_ptr(pool->unbuddied);
434 	fchunks = num_free_chunks(zhdr);
435 	if (fchunks < NCHUNKS &&
436 	    (!zhdr->first_chunks || !zhdr->middle_chunks ||
437 			!zhdr->last_chunks)) {
438 		/* the page's not completely free and it's unbuddied */
439 		spin_lock(&pool->lock);
440 		list_add(&zhdr->buddy, &unbuddied[fchunks]);
441 		spin_unlock(&pool->lock);
442 		zhdr->cpu = smp_processor_id();
443 	}
444 	put_cpu_ptr(pool->unbuddied);
445 	z3fold_page_unlock(zhdr);
446 }
447 
448 static void compact_page_work(struct work_struct *w)
449 {
450 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
451 						work);
452 
453 	do_compact_page(zhdr, false);
454 }
455 
456 
457 /*
458  * API Functions
459  */
460 
461 /**
462  * z3fold_create_pool() - create a new z3fold pool
463  * @name:	pool name
464  * @gfp:	gfp flags when allocating the z3fold pool structure
465  * @ops:	user-defined operations for the z3fold pool
466  *
467  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
468  * failed.
469  */
470 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
471 		const struct z3fold_ops *ops)
472 {
473 	struct z3fold_pool *pool = NULL;
474 	int i, cpu;
475 
476 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
477 	if (!pool)
478 		goto out;
479 	spin_lock_init(&pool->lock);
480 	spin_lock_init(&pool->stale_lock);
481 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
482 	if (!pool->unbuddied)
483 		goto out_pool;
484 	for_each_possible_cpu(cpu) {
485 		struct list_head *unbuddied =
486 				per_cpu_ptr(pool->unbuddied, cpu);
487 		for_each_unbuddied_list(i, 0)
488 			INIT_LIST_HEAD(&unbuddied[i]);
489 	}
490 	INIT_LIST_HEAD(&pool->lru);
491 	INIT_LIST_HEAD(&pool->stale);
492 	atomic64_set(&pool->pages_nr, 0);
493 	pool->name = name;
494 	pool->compact_wq = create_singlethread_workqueue(pool->name);
495 	if (!pool->compact_wq)
496 		goto out_unbuddied;
497 	pool->release_wq = create_singlethread_workqueue(pool->name);
498 	if (!pool->release_wq)
499 		goto out_wq;
500 	INIT_WORK(&pool->work, free_pages_work);
501 	pool->ops = ops;
502 	return pool;
503 
504 out_wq:
505 	destroy_workqueue(pool->compact_wq);
506 out_unbuddied:
507 	free_percpu(pool->unbuddied);
508 out_pool:
509 	kfree(pool);
510 out:
511 	return NULL;
512 }
513 
514 /**
515  * z3fold_destroy_pool() - destroys an existing z3fold pool
516  * @pool:	the z3fold pool to be destroyed
517  *
518  * The pool should be emptied before this function is called.
519  */
520 static void z3fold_destroy_pool(struct z3fold_pool *pool)
521 {
522 	destroy_workqueue(pool->release_wq);
523 	destroy_workqueue(pool->compact_wq);
524 	kfree(pool);
525 }
526 
527 /**
528  * z3fold_alloc() - allocates a region of a given size
529  * @pool:	z3fold pool from which to allocate
530  * @size:	size in bytes of the desired allocation
531  * @gfp:	gfp flags used if the pool needs to grow
532  * @handle:	handle of the new allocation
533  *
534  * This function will attempt to find a free region in the pool large enough to
535  * satisfy the allocation request.  A search of the unbuddied lists is
536  * performed first. If no suitable free region is found, then a new page is
537  * allocated and added to the pool to satisfy the request.
538  *
539  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
540  * as z3fold pool pages.
541  *
542  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
543  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
544  * a new page.
545  */
546 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
547 			unsigned long *handle)
548 {
549 	int chunks = 0, i, freechunks;
550 	struct z3fold_header *zhdr = NULL;
551 	struct page *page = NULL;
552 	enum buddy bud;
553 	bool can_sleep = gfpflags_allow_blocking(gfp);
554 
555 	if (!size || (gfp & __GFP_HIGHMEM))
556 		return -EINVAL;
557 
558 	if (size > PAGE_SIZE)
559 		return -ENOSPC;
560 
561 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
562 		bud = HEADLESS;
563 	else {
564 		struct list_head *unbuddied;
565 		chunks = size_to_chunks(size);
566 
567 lookup:
568 		/* First, try to find an unbuddied z3fold page. */
569 		unbuddied = get_cpu_ptr(pool->unbuddied);
570 		for_each_unbuddied_list(i, chunks) {
571 			struct list_head *l = &unbuddied[i];
572 
573 			zhdr = list_first_entry_or_null(READ_ONCE(l),
574 						struct z3fold_header, buddy);
575 
576 			if (!zhdr)
577 				continue;
578 
579 			/* Re-check under lock. */
580 			spin_lock(&pool->lock);
581 			l = &unbuddied[i];
582 			if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
583 					struct z3fold_header, buddy)) ||
584 			    !z3fold_page_trylock(zhdr)) {
585 				spin_unlock(&pool->lock);
586 				put_cpu_ptr(pool->unbuddied);
587 				goto lookup;
588 			}
589 			list_del_init(&zhdr->buddy);
590 			zhdr->cpu = -1;
591 			spin_unlock(&pool->lock);
592 
593 			page = virt_to_page(zhdr);
594 			if (test_bit(NEEDS_COMPACTING, &page->private)) {
595 				z3fold_page_unlock(zhdr);
596 				zhdr = NULL;
597 				put_cpu_ptr(pool->unbuddied);
598 				if (can_sleep)
599 					cond_resched();
600 				goto lookup;
601 			}
602 
603 			/*
604 			 * this page could not be removed from its unbuddied
605 			 * list while pool lock was held, and then we've taken
606 			 * page lock so kref_put could not be called before
607 			 * we got here, so it's safe to just call kref_get()
608 			 */
609 			kref_get(&zhdr->refcount);
610 			break;
611 		}
612 		put_cpu_ptr(pool->unbuddied);
613 
614 		if (zhdr) {
615 			if (zhdr->first_chunks == 0) {
616 				if (zhdr->middle_chunks != 0 &&
617 				    chunks >= zhdr->start_middle)
618 					bud = LAST;
619 				else
620 					bud = FIRST;
621 			} else if (zhdr->last_chunks == 0)
622 				bud = LAST;
623 			else if (zhdr->middle_chunks == 0)
624 				bud = MIDDLE;
625 			else {
626 				if (kref_put(&zhdr->refcount,
627 					     release_z3fold_page_locked))
628 					atomic64_dec(&pool->pages_nr);
629 				else
630 					z3fold_page_unlock(zhdr);
631 				pr_err("No free chunks in unbuddied\n");
632 				WARN_ON(1);
633 				goto lookup;
634 			}
635 			goto found;
636 		}
637 		bud = FIRST;
638 	}
639 
640 	page = NULL;
641 	if (can_sleep) {
642 		spin_lock(&pool->stale_lock);
643 		zhdr = list_first_entry_or_null(&pool->stale,
644 						struct z3fold_header, buddy);
645 		/*
646 		 * Before allocating a page, let's see if we can take one from
647 		 * the stale pages list. cancel_work_sync() can sleep so we
648 		 * limit this case to the contexts where we can sleep
649 		 */
650 		if (zhdr) {
651 			list_del(&zhdr->buddy);
652 			spin_unlock(&pool->stale_lock);
653 			cancel_work_sync(&zhdr->work);
654 			page = virt_to_page(zhdr);
655 		} else {
656 			spin_unlock(&pool->stale_lock);
657 		}
658 	}
659 	if (!page)
660 		page = alloc_page(gfp);
661 
662 	if (!page)
663 		return -ENOMEM;
664 
665 	atomic64_inc(&pool->pages_nr);
666 	zhdr = init_z3fold_page(page, pool);
667 
668 	if (bud == HEADLESS) {
669 		set_bit(PAGE_HEADLESS, &page->private);
670 		goto headless;
671 	}
672 	z3fold_page_lock(zhdr);
673 
674 found:
675 	if (bud == FIRST)
676 		zhdr->first_chunks = chunks;
677 	else if (bud == LAST)
678 		zhdr->last_chunks = chunks;
679 	else {
680 		zhdr->middle_chunks = chunks;
681 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
682 	}
683 
684 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
685 			zhdr->middle_chunks == 0) {
686 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
687 
688 		/* Add to unbuddied list */
689 		freechunks = num_free_chunks(zhdr);
690 		spin_lock(&pool->lock);
691 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
692 		spin_unlock(&pool->lock);
693 		zhdr->cpu = smp_processor_id();
694 		put_cpu_ptr(pool->unbuddied);
695 	}
696 
697 headless:
698 	spin_lock(&pool->lock);
699 	/* Add/move z3fold page to beginning of LRU */
700 	if (!list_empty(&page->lru))
701 		list_del(&page->lru);
702 
703 	list_add(&page->lru, &pool->lru);
704 
705 	*handle = encode_handle(zhdr, bud);
706 	spin_unlock(&pool->lock);
707 	if (bud != HEADLESS)
708 		z3fold_page_unlock(zhdr);
709 
710 	return 0;
711 }
712 
713 /**
714  * z3fold_free() - frees the allocation associated with the given handle
715  * @pool:	pool in which the allocation resided
716  * @handle:	handle associated with the allocation returned by z3fold_alloc()
717  *
718  * In the case that the z3fold page in which the allocation resides is under
719  * reclaim, as indicated by the PG_reclaim flag being set, this function
720  * only sets the first|last_chunks to 0.  The page is actually freed
721  * once both buddies are evicted (see z3fold_reclaim_page() below).
722  */
723 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
724 {
725 	struct z3fold_header *zhdr;
726 	struct page *page;
727 	enum buddy bud;
728 
729 	zhdr = handle_to_z3fold_header(handle);
730 	page = virt_to_page(zhdr);
731 
732 	if (test_bit(PAGE_HEADLESS, &page->private)) {
733 		/* if a headless page is under reclaim, just leave.
734 		 * NB: we use test_and_set_bit for a reason: if the bit
735 		 * has not been set before, we release this page
736 		 * immediately so we don't care about its value any more.
737 		 */
738 		if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
739 			spin_lock(&pool->lock);
740 			list_del(&page->lru);
741 			spin_unlock(&pool->lock);
742 			free_z3fold_page(page);
743 			atomic64_dec(&pool->pages_nr);
744 		}
745 		return;
746 	}
747 
748 	/* Non-headless case */
749 	z3fold_page_lock(zhdr);
750 	bud = handle_to_buddy(handle);
751 
752 	switch (bud) {
753 	case FIRST:
754 		zhdr->first_chunks = 0;
755 		break;
756 	case MIDDLE:
757 		zhdr->middle_chunks = 0;
758 		break;
759 	case LAST:
760 		zhdr->last_chunks = 0;
761 		break;
762 	default:
763 		pr_err("%s: unknown bud %d\n", __func__, bud);
764 		WARN_ON(1);
765 		z3fold_page_unlock(zhdr);
766 		return;
767 	}
768 
769 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
770 		atomic64_dec(&pool->pages_nr);
771 		return;
772 	}
773 	if (test_bit(PAGE_CLAIMED, &page->private)) {
774 		z3fold_page_unlock(zhdr);
775 		return;
776 	}
777 	if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
778 		z3fold_page_unlock(zhdr);
779 		return;
780 	}
781 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
782 		spin_lock(&pool->lock);
783 		list_del_init(&zhdr->buddy);
784 		spin_unlock(&pool->lock);
785 		zhdr->cpu = -1;
786 		kref_get(&zhdr->refcount);
787 		do_compact_page(zhdr, true);
788 		return;
789 	}
790 	kref_get(&zhdr->refcount);
791 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
792 	z3fold_page_unlock(zhdr);
793 }
794 
795 /**
796  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
797  * @pool:	pool from which a page will attempt to be evicted
798  * @retries:	number of pages on the LRU list for which eviction will
799  *		be attempted before failing
800  *
801  * z3fold reclaim is different from normal system reclaim in that it is done
802  * from the bottom, up. This is because only the bottom layer, z3fold, has
803  * information on how the allocations are organized within each z3fold page.
804  * This has the potential to create interesting locking situations between
805  * z3fold and the user, however.
806  *
807  * To avoid these, this is how z3fold_reclaim_page() should be called:
808  *
809  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
810  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
811  * call the user-defined eviction handler with the pool and handle as
812  * arguments.
813  *
814  * If the handle can not be evicted, the eviction handler should return
815  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
816  * appropriate list and try the next z3fold page on the LRU up to
817  * a user defined number of retries.
818  *
819  * If the handle is successfully evicted, the eviction handler should
820  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
821  * contains logic to delay freeing the page if the page is under reclaim,
822  * as indicated by the setting of the PG_reclaim flag on the underlying page.
823  *
824  * If all buddies in the z3fold page are successfully evicted, then the
825  * z3fold page can be freed.
826  *
827  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
828  * no pages to evict or an eviction handler is not registered, -EAGAIN if
829  * the retry limit was hit.
830  */
831 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
832 {
833 	int i, ret = 0;
834 	struct z3fold_header *zhdr = NULL;
835 	struct page *page = NULL;
836 	struct list_head *pos;
837 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
838 
839 	spin_lock(&pool->lock);
840 	if (!pool->ops || !pool->ops->evict || retries == 0) {
841 		spin_unlock(&pool->lock);
842 		return -EINVAL;
843 	}
844 	for (i = 0; i < retries; i++) {
845 		if (list_empty(&pool->lru)) {
846 			spin_unlock(&pool->lock);
847 			return -EINVAL;
848 		}
849 		list_for_each_prev(pos, &pool->lru) {
850 			page = list_entry(pos, struct page, lru);
851 
852 			/* this bit could have been set by free, in which case
853 			 * we pass over to the next page in the pool.
854 			 */
855 			if (test_and_set_bit(PAGE_CLAIMED, &page->private))
856 				continue;
857 
858 			zhdr = page_address(page);
859 			if (test_bit(PAGE_HEADLESS, &page->private))
860 				break;
861 
862 			if (!z3fold_page_trylock(zhdr)) {
863 				zhdr = NULL;
864 				continue; /* can't evict at this point */
865 			}
866 			kref_get(&zhdr->refcount);
867 			list_del_init(&zhdr->buddy);
868 			zhdr->cpu = -1;
869 			break;
870 		}
871 
872 		if (!zhdr)
873 			break;
874 
875 		list_del_init(&page->lru);
876 		spin_unlock(&pool->lock);
877 
878 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
879 			/*
880 			 * We need encode the handles before unlocking, since
881 			 * we can race with free that will set
882 			 * (first|last)_chunks to 0
883 			 */
884 			first_handle = 0;
885 			last_handle = 0;
886 			middle_handle = 0;
887 			if (zhdr->first_chunks)
888 				first_handle = encode_handle(zhdr, FIRST);
889 			if (zhdr->middle_chunks)
890 				middle_handle = encode_handle(zhdr, MIDDLE);
891 			if (zhdr->last_chunks)
892 				last_handle = encode_handle(zhdr, LAST);
893 			/*
894 			 * it's safe to unlock here because we hold a
895 			 * reference to this page
896 			 */
897 			z3fold_page_unlock(zhdr);
898 		} else {
899 			first_handle = encode_handle(zhdr, HEADLESS);
900 			last_handle = middle_handle = 0;
901 		}
902 
903 		/* Issue the eviction callback(s) */
904 		if (middle_handle) {
905 			ret = pool->ops->evict(pool, middle_handle);
906 			if (ret)
907 				goto next;
908 		}
909 		if (first_handle) {
910 			ret = pool->ops->evict(pool, first_handle);
911 			if (ret)
912 				goto next;
913 		}
914 		if (last_handle) {
915 			ret = pool->ops->evict(pool, last_handle);
916 			if (ret)
917 				goto next;
918 		}
919 next:
920 		if (test_bit(PAGE_HEADLESS, &page->private)) {
921 			if (ret == 0) {
922 				free_z3fold_page(page);
923 				atomic64_dec(&pool->pages_nr);
924 				return 0;
925 			}
926 			spin_lock(&pool->lock);
927 			list_add(&page->lru, &pool->lru);
928 			spin_unlock(&pool->lock);
929 		} else {
930 			z3fold_page_lock(zhdr);
931 			clear_bit(PAGE_CLAIMED, &page->private);
932 			if (kref_put(&zhdr->refcount,
933 					release_z3fold_page_locked)) {
934 				atomic64_dec(&pool->pages_nr);
935 				return 0;
936 			}
937 			/*
938 			 * if we are here, the page is still not completely
939 			 * free. Take the global pool lock then to be able
940 			 * to add it back to the lru list
941 			 */
942 			spin_lock(&pool->lock);
943 			list_add(&page->lru, &pool->lru);
944 			spin_unlock(&pool->lock);
945 			z3fold_page_unlock(zhdr);
946 		}
947 
948 		/* We started off locked to we need to lock the pool back */
949 		spin_lock(&pool->lock);
950 	}
951 	spin_unlock(&pool->lock);
952 	return -EAGAIN;
953 }
954 
955 /**
956  * z3fold_map() - maps the allocation associated with the given handle
957  * @pool:	pool in which the allocation resides
958  * @handle:	handle associated with the allocation to be mapped
959  *
960  * Extracts the buddy number from handle and constructs the pointer to the
961  * correct starting chunk within the page.
962  *
963  * Returns: a pointer to the mapped allocation
964  */
965 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
966 {
967 	struct z3fold_header *zhdr;
968 	struct page *page;
969 	void *addr;
970 	enum buddy buddy;
971 
972 	zhdr = handle_to_z3fold_header(handle);
973 	addr = zhdr;
974 	page = virt_to_page(zhdr);
975 
976 	if (test_bit(PAGE_HEADLESS, &page->private))
977 		goto out;
978 
979 	z3fold_page_lock(zhdr);
980 	buddy = handle_to_buddy(handle);
981 	switch (buddy) {
982 	case FIRST:
983 		addr += ZHDR_SIZE_ALIGNED;
984 		break;
985 	case MIDDLE:
986 		addr += zhdr->start_middle << CHUNK_SHIFT;
987 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
988 		break;
989 	case LAST:
990 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
991 		break;
992 	default:
993 		pr_err("unknown buddy id %d\n", buddy);
994 		WARN_ON(1);
995 		addr = NULL;
996 		break;
997 	}
998 
999 	z3fold_page_unlock(zhdr);
1000 out:
1001 	return addr;
1002 }
1003 
1004 /**
1005  * z3fold_unmap() - unmaps the allocation associated with the given handle
1006  * @pool:	pool in which the allocation resides
1007  * @handle:	handle associated with the allocation to be unmapped
1008  */
1009 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1010 {
1011 	struct z3fold_header *zhdr;
1012 	struct page *page;
1013 	enum buddy buddy;
1014 
1015 	zhdr = handle_to_z3fold_header(handle);
1016 	page = virt_to_page(zhdr);
1017 
1018 	if (test_bit(PAGE_HEADLESS, &page->private))
1019 		return;
1020 
1021 	z3fold_page_lock(zhdr);
1022 	buddy = handle_to_buddy(handle);
1023 	if (buddy == MIDDLE)
1024 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1025 	z3fold_page_unlock(zhdr);
1026 }
1027 
1028 /**
1029  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1030  * @pool:	pool whose size is being queried
1031  *
1032  * Returns: size in pages of the given pool.
1033  */
1034 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1035 {
1036 	return atomic64_read(&pool->pages_nr);
1037 }
1038 
1039 /*****************
1040  * zpool
1041  ****************/
1042 
1043 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1044 {
1045 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1046 		return pool->zpool_ops->evict(pool->zpool, handle);
1047 	else
1048 		return -ENOENT;
1049 }
1050 
1051 static const struct z3fold_ops z3fold_zpool_ops = {
1052 	.evict =	z3fold_zpool_evict
1053 };
1054 
1055 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1056 			       const struct zpool_ops *zpool_ops,
1057 			       struct zpool *zpool)
1058 {
1059 	struct z3fold_pool *pool;
1060 
1061 	pool = z3fold_create_pool(name, gfp,
1062 				zpool_ops ? &z3fold_zpool_ops : NULL);
1063 	if (pool) {
1064 		pool->zpool = zpool;
1065 		pool->zpool_ops = zpool_ops;
1066 	}
1067 	return pool;
1068 }
1069 
1070 static void z3fold_zpool_destroy(void *pool)
1071 {
1072 	z3fold_destroy_pool(pool);
1073 }
1074 
1075 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1076 			unsigned long *handle)
1077 {
1078 	return z3fold_alloc(pool, size, gfp, handle);
1079 }
1080 static void z3fold_zpool_free(void *pool, unsigned long handle)
1081 {
1082 	z3fold_free(pool, handle);
1083 }
1084 
1085 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1086 			unsigned int *reclaimed)
1087 {
1088 	unsigned int total = 0;
1089 	int ret = -EINVAL;
1090 
1091 	while (total < pages) {
1092 		ret = z3fold_reclaim_page(pool, 8);
1093 		if (ret < 0)
1094 			break;
1095 		total++;
1096 	}
1097 
1098 	if (reclaimed)
1099 		*reclaimed = total;
1100 
1101 	return ret;
1102 }
1103 
1104 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1105 			enum zpool_mapmode mm)
1106 {
1107 	return z3fold_map(pool, handle);
1108 }
1109 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1110 {
1111 	z3fold_unmap(pool, handle);
1112 }
1113 
1114 static u64 z3fold_zpool_total_size(void *pool)
1115 {
1116 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1117 }
1118 
1119 static struct zpool_driver z3fold_zpool_driver = {
1120 	.type =		"z3fold",
1121 	.owner =	THIS_MODULE,
1122 	.create =	z3fold_zpool_create,
1123 	.destroy =	z3fold_zpool_destroy,
1124 	.malloc =	z3fold_zpool_malloc,
1125 	.free =		z3fold_zpool_free,
1126 	.shrink =	z3fold_zpool_shrink,
1127 	.map =		z3fold_zpool_map,
1128 	.unmap =	z3fold_zpool_unmap,
1129 	.total_size =	z3fold_zpool_total_size,
1130 };
1131 
1132 MODULE_ALIAS("zpool-z3fold");
1133 
1134 static int __init init_z3fold(void)
1135 {
1136 	/* Make sure the z3fold header is not larger than the page size */
1137 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1138 	zpool_register_driver(&z3fold_zpool_driver);
1139 
1140 	return 0;
1141 }
1142 
1143 static void __exit exit_z3fold(void)
1144 {
1145 	zpool_unregister_driver(&z3fold_zpool_driver);
1146 }
1147 
1148 module_init(init_z3fold);
1149 module_exit(exit_z3fold);
1150 
1151 MODULE_LICENSE("GPL");
1152 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1153 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1154