xref: /linux/mm/z3fold.c (revision a9cb09b7be84a7adc9e6f4aaf8d770933d65f953)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47 
48 /*
49  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50  * adjusting internal fragmentation.  It also determines the number of
51  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53  * in the beginning of an allocated page are occupied by z3fold header, so
54  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55  * which shows the max number of free chunks in z3fold page, also there will
56  * be 63, or 62, respectively, freelists per pool.
57  */
58 #define NCHUNKS_ORDER	6
59 
60 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS		(TOTAL_CHUNKS - ZHDR_CHUNKS)
66 
67 #define BUDDY_MASK	(0x3)
68 #define BUDDY_SHIFT	2
69 #define SLOTS_ALIGN	(0x40)
70 
71 /*****************
72  * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78 
79 enum buddy {
80 	HEADLESS = 0,
81 	FIRST,
82 	MIDDLE,
83 	LAST,
84 	BUDDIES_MAX = LAST
85 };
86 
87 struct z3fold_buddy_slots {
88 	/*
89 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 	 * be enough slots to hold all possible variants
91 	 */
92 	unsigned long slot[BUDDY_MASK + 1];
93 	unsigned long pool; /* back link */
94 	rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK	(0x03)
97 
98 /*
99  * struct z3fold_header - z3fold page metadata occupying first chunks of each
100  *			z3fold page, except for HEADLESS pages
101  * @buddy:		links the z3fold page into the relevant list in the
102  *			pool
103  * @page_lock:		per-page lock
104  * @refcount:		reference count for the z3fold page
105  * @work:		work_struct for page layout optimization
106  * @slots:		pointer to the structure holding buddy slots
107  * @pool:		pointer to the containing pool
108  * @cpu:		CPU which this page "belongs" to
109  * @first_chunks:	the size of the first buddy in chunks, 0 if free
110  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
111  * @last_chunks:	the size of the last buddy in chunks, 0 if free
112  * @first_num:		the starting number (for the first handle)
113  * @mapped_count:	the number of objects currently mapped
114  */
115 struct z3fold_header {
116 	struct list_head buddy;
117 	spinlock_t page_lock;
118 	struct kref refcount;
119 	struct work_struct work;
120 	struct z3fold_buddy_slots *slots;
121 	struct z3fold_pool *pool;
122 	short cpu;
123 	unsigned short first_chunks;
124 	unsigned short middle_chunks;
125 	unsigned short last_chunks;
126 	unsigned short start_middle;
127 	unsigned short first_num:2;
128 	unsigned short mapped_count:2;
129 	unsigned short foreign_handles:2;
130 };
131 
132 /**
133  * struct z3fold_pool - stores metadata for each z3fold pool
134  * @name:	pool name
135  * @lock:	protects pool unbuddied/lru lists
136  * @stale_lock:	protects pool stale page list
137  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
138  *		buddies; the list each z3fold page is added to depends on
139  *		the size of its free region.
140  * @lru:	list tracking the z3fold pages in LRU order by most recently
141  *		added buddy.
142  * @stale:	list of pages marked for freeing
143  * @pages_nr:	number of z3fold pages in the pool.
144  * @c_handle:	cache for z3fold_buddy_slots allocation
145  * @ops:	pointer to a structure of user defined operations specified at
146  *		pool creation time.
147  * @zpool:	zpool driver
148  * @zpool_ops:	zpool operations structure with an evict callback
149  * @compact_wq:	workqueue for page layout background optimization
150  * @release_wq:	workqueue for safe page release
151  * @work:	work_struct for safe page release
152  * @inode:	inode for z3fold pseudo filesystem
153  *
154  * This structure is allocated at pool creation time and maintains metadata
155  * pertaining to a particular z3fold pool.
156  */
157 struct z3fold_pool {
158 	const char *name;
159 	spinlock_t lock;
160 	spinlock_t stale_lock;
161 	struct list_head *unbuddied;
162 	struct list_head lru;
163 	struct list_head stale;
164 	atomic64_t pages_nr;
165 	struct kmem_cache *c_handle;
166 	const struct z3fold_ops *ops;
167 	struct zpool *zpool;
168 	const struct zpool_ops *zpool_ops;
169 	struct workqueue_struct *compact_wq;
170 	struct workqueue_struct *release_wq;
171 	struct work_struct work;
172 	struct inode *inode;
173 };
174 
175 /*
176  * Internal z3fold page flags
177  */
178 enum z3fold_page_flags {
179 	PAGE_HEADLESS = 0,
180 	MIDDLE_CHUNK_MAPPED,
181 	NEEDS_COMPACTING,
182 	PAGE_STALE,
183 	PAGE_CLAIMED, /* by either reclaim or free */
184 };
185 
186 /*
187  * handle flags, go under HANDLE_FLAG_MASK
188  */
189 enum z3fold_handle_flags {
190 	HANDLES_NOFREE = 0,
191 };
192 
193 /*
194  * Forward declarations
195  */
196 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
197 static void compact_page_work(struct work_struct *w);
198 
199 /*****************
200  * Helpers
201 *****************/
202 
203 /* Converts an allocation size in bytes to size in z3fold chunks */
204 static int size_to_chunks(size_t size)
205 {
206 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
207 }
208 
209 #define for_each_unbuddied_list(_iter, _begin) \
210 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
211 
212 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
213 							gfp_t gfp)
214 {
215 	struct z3fold_buddy_slots *slots;
216 
217 	slots = kmem_cache_zalloc(pool->c_handle,
218 				 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
219 
220 	if (slots) {
221 		/* It will be freed separately in free_handle(). */
222 		kmemleak_not_leak(slots);
223 		slots->pool = (unsigned long)pool;
224 		rwlock_init(&slots->lock);
225 	}
226 
227 	return slots;
228 }
229 
230 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
231 {
232 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
233 }
234 
235 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
236 {
237 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
238 }
239 
240 /* Lock a z3fold page */
241 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
242 {
243 	spin_lock(&zhdr->page_lock);
244 }
245 
246 /* Try to lock a z3fold page */
247 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
248 {
249 	return spin_trylock(&zhdr->page_lock);
250 }
251 
252 /* Unlock a z3fold page */
253 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
254 {
255 	spin_unlock(&zhdr->page_lock);
256 }
257 
258 /* return locked z3fold page if it's not headless */
259 static inline struct z3fold_header *get_z3fold_header(unsigned long handle)
260 {
261 	struct z3fold_buddy_slots *slots;
262 	struct z3fold_header *zhdr;
263 	int locked = 0;
264 
265 	if (!(handle & (1 << PAGE_HEADLESS))) {
266 		slots = handle_to_slots(handle);
267 		do {
268 			unsigned long addr;
269 
270 			read_lock(&slots->lock);
271 			addr = *(unsigned long *)handle;
272 			zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
273 			locked = z3fold_page_trylock(zhdr);
274 			read_unlock(&slots->lock);
275 			if (locked)
276 				break;
277 			cpu_relax();
278 		} while (true);
279 	} else {
280 		zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
281 	}
282 
283 	return zhdr;
284 }
285 
286 static inline void put_z3fold_header(struct z3fold_header *zhdr)
287 {
288 	struct page *page = virt_to_page(zhdr);
289 
290 	if (!test_bit(PAGE_HEADLESS, &page->private))
291 		z3fold_page_unlock(zhdr);
292 }
293 
294 static inline void free_handle(unsigned long handle, struct z3fold_header *zhdr)
295 {
296 	struct z3fold_buddy_slots *slots;
297 	int i;
298 	bool is_free;
299 
300 	if (handle & (1 << PAGE_HEADLESS))
301 		return;
302 
303 	if (WARN_ON(*(unsigned long *)handle == 0))
304 		return;
305 
306 	slots = handle_to_slots(handle);
307 	write_lock(&slots->lock);
308 	*(unsigned long *)handle = 0;
309 
310 	if (test_bit(HANDLES_NOFREE, &slots->pool)) {
311 		write_unlock(&slots->lock);
312 		return; /* simple case, nothing else to do */
313 	}
314 
315 	if (zhdr->slots != slots)
316 		zhdr->foreign_handles--;
317 
318 	is_free = true;
319 	for (i = 0; i <= BUDDY_MASK; i++) {
320 		if (slots->slot[i]) {
321 			is_free = false;
322 			break;
323 		}
324 	}
325 	write_unlock(&slots->lock);
326 
327 	if (is_free) {
328 		struct z3fold_pool *pool = slots_to_pool(slots);
329 
330 		if (zhdr->slots == slots)
331 			zhdr->slots = NULL;
332 		kmem_cache_free(pool->c_handle, slots);
333 	}
334 }
335 
336 static int z3fold_init_fs_context(struct fs_context *fc)
337 {
338 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
339 }
340 
341 static struct file_system_type z3fold_fs = {
342 	.name		= "z3fold",
343 	.init_fs_context = z3fold_init_fs_context,
344 	.kill_sb	= kill_anon_super,
345 };
346 
347 static struct vfsmount *z3fold_mnt;
348 static int z3fold_mount(void)
349 {
350 	int ret = 0;
351 
352 	z3fold_mnt = kern_mount(&z3fold_fs);
353 	if (IS_ERR(z3fold_mnt))
354 		ret = PTR_ERR(z3fold_mnt);
355 
356 	return ret;
357 }
358 
359 static void z3fold_unmount(void)
360 {
361 	kern_unmount(z3fold_mnt);
362 }
363 
364 static const struct address_space_operations z3fold_aops;
365 static int z3fold_register_migration(struct z3fold_pool *pool)
366 {
367 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
368 	if (IS_ERR(pool->inode)) {
369 		pool->inode = NULL;
370 		return 1;
371 	}
372 
373 	pool->inode->i_mapping->private_data = pool;
374 	pool->inode->i_mapping->a_ops = &z3fold_aops;
375 	return 0;
376 }
377 
378 static void z3fold_unregister_migration(struct z3fold_pool *pool)
379 {
380 	if (pool->inode)
381 		iput(pool->inode);
382 }
383 
384 /* Initializes the z3fold header of a newly allocated z3fold page */
385 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
386 					struct z3fold_pool *pool, gfp_t gfp)
387 {
388 	struct z3fold_header *zhdr = page_address(page);
389 	struct z3fold_buddy_slots *slots;
390 
391 	INIT_LIST_HEAD(&page->lru);
392 	clear_bit(PAGE_HEADLESS, &page->private);
393 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
394 	clear_bit(NEEDS_COMPACTING, &page->private);
395 	clear_bit(PAGE_STALE, &page->private);
396 	clear_bit(PAGE_CLAIMED, &page->private);
397 	if (headless)
398 		return zhdr;
399 
400 	slots = alloc_slots(pool, gfp);
401 	if (!slots)
402 		return NULL;
403 
404 	memset(zhdr, 0, sizeof(*zhdr));
405 	spin_lock_init(&zhdr->page_lock);
406 	kref_init(&zhdr->refcount);
407 	zhdr->cpu = -1;
408 	zhdr->slots = slots;
409 	zhdr->pool = pool;
410 	INIT_LIST_HEAD(&zhdr->buddy);
411 	INIT_WORK(&zhdr->work, compact_page_work);
412 	return zhdr;
413 }
414 
415 /* Resets the struct page fields and frees the page */
416 static void free_z3fold_page(struct page *page, bool headless)
417 {
418 	if (!headless) {
419 		lock_page(page);
420 		__ClearPageMovable(page);
421 		unlock_page(page);
422 	}
423 	ClearPagePrivate(page);
424 	__free_page(page);
425 }
426 
427 /* Helper function to build the index */
428 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
429 {
430 	return (bud + zhdr->first_num) & BUDDY_MASK;
431 }
432 
433 /*
434  * Encodes the handle of a particular buddy within a z3fold page
435  * Pool lock should be held as this function accesses first_num
436  */
437 static unsigned long __encode_handle(struct z3fold_header *zhdr,
438 				struct z3fold_buddy_slots *slots,
439 				enum buddy bud)
440 {
441 	unsigned long h = (unsigned long)zhdr;
442 	int idx = 0;
443 
444 	/*
445 	 * For a headless page, its handle is its pointer with the extra
446 	 * PAGE_HEADLESS bit set
447 	 */
448 	if (bud == HEADLESS)
449 		return h | (1 << PAGE_HEADLESS);
450 
451 	/* otherwise, return pointer to encoded handle */
452 	idx = __idx(zhdr, bud);
453 	h += idx;
454 	if (bud == LAST)
455 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
456 
457 	write_lock(&slots->lock);
458 	slots->slot[idx] = h;
459 	write_unlock(&slots->lock);
460 	return (unsigned long)&slots->slot[idx];
461 }
462 
463 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
464 {
465 	return __encode_handle(zhdr, zhdr->slots, bud);
466 }
467 
468 /* only for LAST bud, returns zero otherwise */
469 static unsigned short handle_to_chunks(unsigned long handle)
470 {
471 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
472 	unsigned long addr;
473 
474 	read_lock(&slots->lock);
475 	addr = *(unsigned long *)handle;
476 	read_unlock(&slots->lock);
477 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
478 }
479 
480 /*
481  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
482  *  but that doesn't matter. because the masking will result in the
483  *  correct buddy number.
484  */
485 static enum buddy handle_to_buddy(unsigned long handle)
486 {
487 	struct z3fold_header *zhdr;
488 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
489 	unsigned long addr;
490 
491 	read_lock(&slots->lock);
492 	WARN_ON(handle & (1 << PAGE_HEADLESS));
493 	addr = *(unsigned long *)handle;
494 	read_unlock(&slots->lock);
495 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
496 	return (addr - zhdr->first_num) & BUDDY_MASK;
497 }
498 
499 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
500 {
501 	return zhdr->pool;
502 }
503 
504 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
505 {
506 	struct page *page = virt_to_page(zhdr);
507 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
508 
509 	WARN_ON(!list_empty(&zhdr->buddy));
510 	set_bit(PAGE_STALE, &page->private);
511 	clear_bit(NEEDS_COMPACTING, &page->private);
512 	spin_lock(&pool->lock);
513 	if (!list_empty(&page->lru))
514 		list_del_init(&page->lru);
515 	spin_unlock(&pool->lock);
516 
517 	if (locked)
518 		z3fold_page_unlock(zhdr);
519 
520 	spin_lock(&pool->stale_lock);
521 	list_add(&zhdr->buddy, &pool->stale);
522 	queue_work(pool->release_wq, &pool->work);
523 	spin_unlock(&pool->stale_lock);
524 }
525 
526 static void release_z3fold_page(struct kref *ref)
527 {
528 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
529 						refcount);
530 	__release_z3fold_page(zhdr, false);
531 }
532 
533 static void release_z3fold_page_locked(struct kref *ref)
534 {
535 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
536 						refcount);
537 	WARN_ON(z3fold_page_trylock(zhdr));
538 	__release_z3fold_page(zhdr, true);
539 }
540 
541 static void release_z3fold_page_locked_list(struct kref *ref)
542 {
543 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
544 					       refcount);
545 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
546 
547 	spin_lock(&pool->lock);
548 	list_del_init(&zhdr->buddy);
549 	spin_unlock(&pool->lock);
550 
551 	WARN_ON(z3fold_page_trylock(zhdr));
552 	__release_z3fold_page(zhdr, true);
553 }
554 
555 static void free_pages_work(struct work_struct *w)
556 {
557 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
558 
559 	spin_lock(&pool->stale_lock);
560 	while (!list_empty(&pool->stale)) {
561 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
562 						struct z3fold_header, buddy);
563 		struct page *page = virt_to_page(zhdr);
564 
565 		list_del(&zhdr->buddy);
566 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
567 			continue;
568 		spin_unlock(&pool->stale_lock);
569 		cancel_work_sync(&zhdr->work);
570 		free_z3fold_page(page, false);
571 		cond_resched();
572 		spin_lock(&pool->stale_lock);
573 	}
574 	spin_unlock(&pool->stale_lock);
575 }
576 
577 /*
578  * Returns the number of free chunks in a z3fold page.
579  * NB: can't be used with HEADLESS pages.
580  */
581 static int num_free_chunks(struct z3fold_header *zhdr)
582 {
583 	int nfree;
584 	/*
585 	 * If there is a middle object, pick up the bigger free space
586 	 * either before or after it. Otherwise just subtract the number
587 	 * of chunks occupied by the first and the last objects.
588 	 */
589 	if (zhdr->middle_chunks != 0) {
590 		int nfree_before = zhdr->first_chunks ?
591 			0 : zhdr->start_middle - ZHDR_CHUNKS;
592 		int nfree_after = zhdr->last_chunks ?
593 			0 : TOTAL_CHUNKS -
594 				(zhdr->start_middle + zhdr->middle_chunks);
595 		nfree = max(nfree_before, nfree_after);
596 	} else
597 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
598 	return nfree;
599 }
600 
601 /* Add to the appropriate unbuddied list */
602 static inline void add_to_unbuddied(struct z3fold_pool *pool,
603 				struct z3fold_header *zhdr)
604 {
605 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
606 			zhdr->middle_chunks == 0) {
607 		struct list_head *unbuddied;
608 		int freechunks = num_free_chunks(zhdr);
609 
610 		migrate_disable();
611 		unbuddied = this_cpu_ptr(pool->unbuddied);
612 		spin_lock(&pool->lock);
613 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
614 		spin_unlock(&pool->lock);
615 		zhdr->cpu = smp_processor_id();
616 		migrate_enable();
617 	}
618 }
619 
620 static inline enum buddy get_free_buddy(struct z3fold_header *zhdr, int chunks)
621 {
622 	enum buddy bud = HEADLESS;
623 
624 	if (zhdr->middle_chunks) {
625 		if (!zhdr->first_chunks &&
626 		    chunks <= zhdr->start_middle - ZHDR_CHUNKS)
627 			bud = FIRST;
628 		else if (!zhdr->last_chunks)
629 			bud = LAST;
630 	} else {
631 		if (!zhdr->first_chunks)
632 			bud = FIRST;
633 		else if (!zhdr->last_chunks)
634 			bud = LAST;
635 		else
636 			bud = MIDDLE;
637 	}
638 
639 	return bud;
640 }
641 
642 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
643 				unsigned short dst_chunk)
644 {
645 	void *beg = zhdr;
646 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
647 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
648 		       zhdr->middle_chunks << CHUNK_SHIFT);
649 }
650 
651 static inline bool buddy_single(struct z3fold_header *zhdr)
652 {
653 	return !((zhdr->first_chunks && zhdr->middle_chunks) ||
654 			(zhdr->first_chunks && zhdr->last_chunks) ||
655 			(zhdr->middle_chunks && zhdr->last_chunks));
656 }
657 
658 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
659 {
660 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
661 	void *p = zhdr;
662 	unsigned long old_handle = 0;
663 	size_t sz = 0;
664 	struct z3fold_header *new_zhdr = NULL;
665 	int first_idx = __idx(zhdr, FIRST);
666 	int middle_idx = __idx(zhdr, MIDDLE);
667 	int last_idx = __idx(zhdr, LAST);
668 	unsigned short *moved_chunks = NULL;
669 
670 	/*
671 	 * No need to protect slots here -- all the slots are "local" and
672 	 * the page lock is already taken
673 	 */
674 	if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
675 		p += ZHDR_SIZE_ALIGNED;
676 		sz = zhdr->first_chunks << CHUNK_SHIFT;
677 		old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
678 		moved_chunks = &zhdr->first_chunks;
679 	} else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
680 		p += zhdr->start_middle << CHUNK_SHIFT;
681 		sz = zhdr->middle_chunks << CHUNK_SHIFT;
682 		old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
683 		moved_chunks = &zhdr->middle_chunks;
684 	} else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
685 		p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
686 		sz = zhdr->last_chunks << CHUNK_SHIFT;
687 		old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
688 		moved_chunks = &zhdr->last_chunks;
689 	}
690 
691 	if (sz > 0) {
692 		enum buddy new_bud = HEADLESS;
693 		short chunks = size_to_chunks(sz);
694 		void *q;
695 
696 		new_zhdr = __z3fold_alloc(pool, sz, false);
697 		if (!new_zhdr)
698 			return NULL;
699 
700 		if (WARN_ON(new_zhdr == zhdr))
701 			goto out_fail;
702 
703 		new_bud = get_free_buddy(new_zhdr, chunks);
704 		q = new_zhdr;
705 		switch (new_bud) {
706 		case FIRST:
707 			new_zhdr->first_chunks = chunks;
708 			q += ZHDR_SIZE_ALIGNED;
709 			break;
710 		case MIDDLE:
711 			new_zhdr->middle_chunks = chunks;
712 			new_zhdr->start_middle =
713 				new_zhdr->first_chunks + ZHDR_CHUNKS;
714 			q += new_zhdr->start_middle << CHUNK_SHIFT;
715 			break;
716 		case LAST:
717 			new_zhdr->last_chunks = chunks;
718 			q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
719 			break;
720 		default:
721 			goto out_fail;
722 		}
723 		new_zhdr->foreign_handles++;
724 		memcpy(q, p, sz);
725 		write_lock(&zhdr->slots->lock);
726 		*(unsigned long *)old_handle = (unsigned long)new_zhdr +
727 			__idx(new_zhdr, new_bud);
728 		if (new_bud == LAST)
729 			*(unsigned long *)old_handle |=
730 					(new_zhdr->last_chunks << BUDDY_SHIFT);
731 		write_unlock(&zhdr->slots->lock);
732 		add_to_unbuddied(pool, new_zhdr);
733 		z3fold_page_unlock(new_zhdr);
734 
735 		*moved_chunks = 0;
736 	}
737 
738 	return new_zhdr;
739 
740 out_fail:
741 	if (new_zhdr) {
742 		if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
743 			atomic64_dec(&pool->pages_nr);
744 		else {
745 			add_to_unbuddied(pool, new_zhdr);
746 			z3fold_page_unlock(new_zhdr);
747 		}
748 	}
749 	return NULL;
750 
751 }
752 
753 #define BIG_CHUNK_GAP	3
754 /* Has to be called with lock held */
755 static int z3fold_compact_page(struct z3fold_header *zhdr)
756 {
757 	struct page *page = virt_to_page(zhdr);
758 
759 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
760 		return 0; /* can't move middle chunk, it's used */
761 
762 	if (unlikely(PageIsolated(page)))
763 		return 0;
764 
765 	if (zhdr->middle_chunks == 0)
766 		return 0; /* nothing to compact */
767 
768 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
769 		/* move to the beginning */
770 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
771 		zhdr->first_chunks = zhdr->middle_chunks;
772 		zhdr->middle_chunks = 0;
773 		zhdr->start_middle = 0;
774 		zhdr->first_num++;
775 		return 1;
776 	}
777 
778 	/*
779 	 * moving data is expensive, so let's only do that if
780 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
781 	 */
782 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
783 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
784 			BIG_CHUNK_GAP) {
785 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
786 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
787 		return 1;
788 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
789 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
790 					+ zhdr->middle_chunks) >=
791 			BIG_CHUNK_GAP) {
792 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
793 			zhdr->middle_chunks;
794 		mchunk_memmove(zhdr, new_start);
795 		zhdr->start_middle = new_start;
796 		return 1;
797 	}
798 
799 	return 0;
800 }
801 
802 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
803 {
804 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
805 	struct page *page;
806 
807 	page = virt_to_page(zhdr);
808 	if (locked)
809 		WARN_ON(z3fold_page_trylock(zhdr));
810 	else
811 		z3fold_page_lock(zhdr);
812 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
813 		z3fold_page_unlock(zhdr);
814 		return;
815 	}
816 	spin_lock(&pool->lock);
817 	list_del_init(&zhdr->buddy);
818 	spin_unlock(&pool->lock);
819 
820 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
821 		atomic64_dec(&pool->pages_nr);
822 		return;
823 	}
824 
825 	if (test_bit(PAGE_STALE, &page->private) ||
826 	    test_and_set_bit(PAGE_CLAIMED, &page->private)) {
827 		z3fold_page_unlock(zhdr);
828 		return;
829 	}
830 
831 	if (!zhdr->foreign_handles && buddy_single(zhdr) &&
832 	    zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
833 		if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
834 			atomic64_dec(&pool->pages_nr);
835 		else {
836 			clear_bit(PAGE_CLAIMED, &page->private);
837 			z3fold_page_unlock(zhdr);
838 		}
839 		return;
840 	}
841 
842 	z3fold_compact_page(zhdr);
843 	add_to_unbuddied(pool, zhdr);
844 	clear_bit(PAGE_CLAIMED, &page->private);
845 	z3fold_page_unlock(zhdr);
846 }
847 
848 static void compact_page_work(struct work_struct *w)
849 {
850 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
851 						work);
852 
853 	do_compact_page(zhdr, false);
854 }
855 
856 /* returns _locked_ z3fold page header or NULL */
857 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
858 						size_t size, bool can_sleep)
859 {
860 	struct z3fold_header *zhdr = NULL;
861 	struct page *page;
862 	struct list_head *unbuddied;
863 	int chunks = size_to_chunks(size), i;
864 
865 lookup:
866 	migrate_disable();
867 	/* First, try to find an unbuddied z3fold page. */
868 	unbuddied = this_cpu_ptr(pool->unbuddied);
869 	for_each_unbuddied_list(i, chunks) {
870 		struct list_head *l = &unbuddied[i];
871 
872 		zhdr = list_first_entry_or_null(READ_ONCE(l),
873 					struct z3fold_header, buddy);
874 
875 		if (!zhdr)
876 			continue;
877 
878 		/* Re-check under lock. */
879 		spin_lock(&pool->lock);
880 		l = &unbuddied[i];
881 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
882 						struct z3fold_header, buddy)) ||
883 		    !z3fold_page_trylock(zhdr)) {
884 			spin_unlock(&pool->lock);
885 			zhdr = NULL;
886 			migrate_enable();
887 			if (can_sleep)
888 				cond_resched();
889 			goto lookup;
890 		}
891 		list_del_init(&zhdr->buddy);
892 		zhdr->cpu = -1;
893 		spin_unlock(&pool->lock);
894 
895 		page = virt_to_page(zhdr);
896 		if (test_bit(NEEDS_COMPACTING, &page->private) ||
897 		    test_bit(PAGE_CLAIMED, &page->private)) {
898 			z3fold_page_unlock(zhdr);
899 			zhdr = NULL;
900 			migrate_enable();
901 			if (can_sleep)
902 				cond_resched();
903 			goto lookup;
904 		}
905 
906 		/*
907 		 * this page could not be removed from its unbuddied
908 		 * list while pool lock was held, and then we've taken
909 		 * page lock so kref_put could not be called before
910 		 * we got here, so it's safe to just call kref_get()
911 		 */
912 		kref_get(&zhdr->refcount);
913 		break;
914 	}
915 	migrate_enable();
916 
917 	if (!zhdr) {
918 		int cpu;
919 
920 		/* look for _exact_ match on other cpus' lists */
921 		for_each_online_cpu(cpu) {
922 			struct list_head *l;
923 
924 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
925 			spin_lock(&pool->lock);
926 			l = &unbuddied[chunks];
927 
928 			zhdr = list_first_entry_or_null(READ_ONCE(l),
929 						struct z3fold_header, buddy);
930 
931 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
932 				spin_unlock(&pool->lock);
933 				zhdr = NULL;
934 				continue;
935 			}
936 			list_del_init(&zhdr->buddy);
937 			zhdr->cpu = -1;
938 			spin_unlock(&pool->lock);
939 
940 			page = virt_to_page(zhdr);
941 			if (test_bit(NEEDS_COMPACTING, &page->private) ||
942 			    test_bit(PAGE_CLAIMED, &page->private)) {
943 				z3fold_page_unlock(zhdr);
944 				zhdr = NULL;
945 				if (can_sleep)
946 					cond_resched();
947 				continue;
948 			}
949 			kref_get(&zhdr->refcount);
950 			break;
951 		}
952 	}
953 
954 	if (zhdr && !zhdr->slots)
955 		zhdr->slots = alloc_slots(pool,
956 					can_sleep ? GFP_NOIO : GFP_ATOMIC);
957 	return zhdr;
958 }
959 
960 /*
961  * API Functions
962  */
963 
964 /**
965  * z3fold_create_pool() - create a new z3fold pool
966  * @name:	pool name
967  * @gfp:	gfp flags when allocating the z3fold pool structure
968  * @ops:	user-defined operations for the z3fold pool
969  *
970  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
971  * failed.
972  */
973 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
974 		const struct z3fold_ops *ops)
975 {
976 	struct z3fold_pool *pool = NULL;
977 	int i, cpu;
978 
979 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
980 	if (!pool)
981 		goto out;
982 	pool->c_handle = kmem_cache_create("z3fold_handle",
983 				sizeof(struct z3fold_buddy_slots),
984 				SLOTS_ALIGN, 0, NULL);
985 	if (!pool->c_handle)
986 		goto out_c;
987 	spin_lock_init(&pool->lock);
988 	spin_lock_init(&pool->stale_lock);
989 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head) * NCHUNKS,
990 					 __alignof__(struct list_head));
991 	if (!pool->unbuddied)
992 		goto out_pool;
993 	for_each_possible_cpu(cpu) {
994 		struct list_head *unbuddied =
995 				per_cpu_ptr(pool->unbuddied, cpu);
996 		for_each_unbuddied_list(i, 0)
997 			INIT_LIST_HEAD(&unbuddied[i]);
998 	}
999 	INIT_LIST_HEAD(&pool->lru);
1000 	INIT_LIST_HEAD(&pool->stale);
1001 	atomic64_set(&pool->pages_nr, 0);
1002 	pool->name = name;
1003 	pool->compact_wq = create_singlethread_workqueue(pool->name);
1004 	if (!pool->compact_wq)
1005 		goto out_unbuddied;
1006 	pool->release_wq = create_singlethread_workqueue(pool->name);
1007 	if (!pool->release_wq)
1008 		goto out_wq;
1009 	if (z3fold_register_migration(pool))
1010 		goto out_rwq;
1011 	INIT_WORK(&pool->work, free_pages_work);
1012 	pool->ops = ops;
1013 	return pool;
1014 
1015 out_rwq:
1016 	destroy_workqueue(pool->release_wq);
1017 out_wq:
1018 	destroy_workqueue(pool->compact_wq);
1019 out_unbuddied:
1020 	free_percpu(pool->unbuddied);
1021 out_pool:
1022 	kmem_cache_destroy(pool->c_handle);
1023 out_c:
1024 	kfree(pool);
1025 out:
1026 	return NULL;
1027 }
1028 
1029 /**
1030  * z3fold_destroy_pool() - destroys an existing z3fold pool
1031  * @pool:	the z3fold pool to be destroyed
1032  *
1033  * The pool should be emptied before this function is called.
1034  */
1035 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1036 {
1037 	kmem_cache_destroy(pool->c_handle);
1038 
1039 	/*
1040 	 * We need to destroy pool->compact_wq before pool->release_wq,
1041 	 * as any pending work on pool->compact_wq will call
1042 	 * queue_work(pool->release_wq, &pool->work).
1043 	 *
1044 	 * There are still outstanding pages until both workqueues are drained,
1045 	 * so we cannot unregister migration until then.
1046 	 */
1047 
1048 	destroy_workqueue(pool->compact_wq);
1049 	destroy_workqueue(pool->release_wq);
1050 	z3fold_unregister_migration(pool);
1051 	free_percpu(pool->unbuddied);
1052 	kfree(pool);
1053 }
1054 
1055 /**
1056  * z3fold_alloc() - allocates a region of a given size
1057  * @pool:	z3fold pool from which to allocate
1058  * @size:	size in bytes of the desired allocation
1059  * @gfp:	gfp flags used if the pool needs to grow
1060  * @handle:	handle of the new allocation
1061  *
1062  * This function will attempt to find a free region in the pool large enough to
1063  * satisfy the allocation request.  A search of the unbuddied lists is
1064  * performed first. If no suitable free region is found, then a new page is
1065  * allocated and added to the pool to satisfy the request.
1066  *
1067  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1068  * as z3fold pool pages.
1069  *
1070  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1071  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1072  * a new page.
1073  */
1074 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1075 			unsigned long *handle)
1076 {
1077 	int chunks = size_to_chunks(size);
1078 	struct z3fold_header *zhdr = NULL;
1079 	struct page *page = NULL;
1080 	enum buddy bud;
1081 	bool can_sleep = gfpflags_allow_blocking(gfp);
1082 
1083 	if (!size)
1084 		return -EINVAL;
1085 
1086 	if (size > PAGE_SIZE)
1087 		return -ENOSPC;
1088 
1089 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1090 		bud = HEADLESS;
1091 	else {
1092 retry:
1093 		zhdr = __z3fold_alloc(pool, size, can_sleep);
1094 		if (zhdr) {
1095 			bud = get_free_buddy(zhdr, chunks);
1096 			if (bud == HEADLESS) {
1097 				if (kref_put(&zhdr->refcount,
1098 					     release_z3fold_page_locked))
1099 					atomic64_dec(&pool->pages_nr);
1100 				else
1101 					z3fold_page_unlock(zhdr);
1102 				pr_err("No free chunks in unbuddied\n");
1103 				WARN_ON(1);
1104 				goto retry;
1105 			}
1106 			page = virt_to_page(zhdr);
1107 			goto found;
1108 		}
1109 		bud = FIRST;
1110 	}
1111 
1112 	page = NULL;
1113 	if (can_sleep) {
1114 		spin_lock(&pool->stale_lock);
1115 		zhdr = list_first_entry_or_null(&pool->stale,
1116 						struct z3fold_header, buddy);
1117 		/*
1118 		 * Before allocating a page, let's see if we can take one from
1119 		 * the stale pages list. cancel_work_sync() can sleep so we
1120 		 * limit this case to the contexts where we can sleep
1121 		 */
1122 		if (zhdr) {
1123 			list_del(&zhdr->buddy);
1124 			spin_unlock(&pool->stale_lock);
1125 			cancel_work_sync(&zhdr->work);
1126 			page = virt_to_page(zhdr);
1127 		} else {
1128 			spin_unlock(&pool->stale_lock);
1129 		}
1130 	}
1131 	if (!page)
1132 		page = alloc_page(gfp);
1133 
1134 	if (!page)
1135 		return -ENOMEM;
1136 
1137 	zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1138 	if (!zhdr) {
1139 		__free_page(page);
1140 		return -ENOMEM;
1141 	}
1142 	atomic64_inc(&pool->pages_nr);
1143 
1144 	if (bud == HEADLESS) {
1145 		set_bit(PAGE_HEADLESS, &page->private);
1146 		goto headless;
1147 	}
1148 	if (can_sleep) {
1149 		lock_page(page);
1150 		__SetPageMovable(page, pool->inode->i_mapping);
1151 		unlock_page(page);
1152 	} else {
1153 		if (trylock_page(page)) {
1154 			__SetPageMovable(page, pool->inode->i_mapping);
1155 			unlock_page(page);
1156 		}
1157 	}
1158 	z3fold_page_lock(zhdr);
1159 
1160 found:
1161 	if (bud == FIRST)
1162 		zhdr->first_chunks = chunks;
1163 	else if (bud == LAST)
1164 		zhdr->last_chunks = chunks;
1165 	else {
1166 		zhdr->middle_chunks = chunks;
1167 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1168 	}
1169 	add_to_unbuddied(pool, zhdr);
1170 
1171 headless:
1172 	spin_lock(&pool->lock);
1173 	/* Add/move z3fold page to beginning of LRU */
1174 	if (!list_empty(&page->lru))
1175 		list_del(&page->lru);
1176 
1177 	list_add(&page->lru, &pool->lru);
1178 
1179 	*handle = encode_handle(zhdr, bud);
1180 	spin_unlock(&pool->lock);
1181 	if (bud != HEADLESS)
1182 		z3fold_page_unlock(zhdr);
1183 
1184 	return 0;
1185 }
1186 
1187 /**
1188  * z3fold_free() - frees the allocation associated with the given handle
1189  * @pool:	pool in which the allocation resided
1190  * @handle:	handle associated with the allocation returned by z3fold_alloc()
1191  *
1192  * In the case that the z3fold page in which the allocation resides is under
1193  * reclaim, as indicated by the PG_reclaim flag being set, this function
1194  * only sets the first|last_chunks to 0.  The page is actually freed
1195  * once both buddies are evicted (see z3fold_reclaim_page() below).
1196  */
1197 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1198 {
1199 	struct z3fold_header *zhdr;
1200 	struct page *page;
1201 	enum buddy bud;
1202 	bool page_claimed;
1203 
1204 	zhdr = get_z3fold_header(handle);
1205 	page = virt_to_page(zhdr);
1206 	page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1207 
1208 	if (test_bit(PAGE_HEADLESS, &page->private)) {
1209 		/* if a headless page is under reclaim, just leave.
1210 		 * NB: we use test_and_set_bit for a reason: if the bit
1211 		 * has not been set before, we release this page
1212 		 * immediately so we don't care about its value any more.
1213 		 */
1214 		if (!page_claimed) {
1215 			spin_lock(&pool->lock);
1216 			list_del(&page->lru);
1217 			spin_unlock(&pool->lock);
1218 			put_z3fold_header(zhdr);
1219 			free_z3fold_page(page, true);
1220 			atomic64_dec(&pool->pages_nr);
1221 		}
1222 		return;
1223 	}
1224 
1225 	/* Non-headless case */
1226 	bud = handle_to_buddy(handle);
1227 
1228 	switch (bud) {
1229 	case FIRST:
1230 		zhdr->first_chunks = 0;
1231 		break;
1232 	case MIDDLE:
1233 		zhdr->middle_chunks = 0;
1234 		break;
1235 	case LAST:
1236 		zhdr->last_chunks = 0;
1237 		break;
1238 	default:
1239 		pr_err("%s: unknown bud %d\n", __func__, bud);
1240 		WARN_ON(1);
1241 		put_z3fold_header(zhdr);
1242 		return;
1243 	}
1244 
1245 	if (!page_claimed)
1246 		free_handle(handle, zhdr);
1247 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1248 		atomic64_dec(&pool->pages_nr);
1249 		return;
1250 	}
1251 	if (page_claimed) {
1252 		/* the page has not been claimed by us */
1253 		z3fold_page_unlock(zhdr);
1254 		return;
1255 	}
1256 	if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1257 		put_z3fold_header(zhdr);
1258 		clear_bit(PAGE_CLAIMED, &page->private);
1259 		return;
1260 	}
1261 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1262 		spin_lock(&pool->lock);
1263 		list_del_init(&zhdr->buddy);
1264 		spin_unlock(&pool->lock);
1265 		zhdr->cpu = -1;
1266 		kref_get(&zhdr->refcount);
1267 		clear_bit(PAGE_CLAIMED, &page->private);
1268 		do_compact_page(zhdr, true);
1269 		return;
1270 	}
1271 	kref_get(&zhdr->refcount);
1272 	clear_bit(PAGE_CLAIMED, &page->private);
1273 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1274 	put_z3fold_header(zhdr);
1275 }
1276 
1277 /**
1278  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1279  * @pool:	pool from which a page will attempt to be evicted
1280  * @retries:	number of pages on the LRU list for which eviction will
1281  *		be attempted before failing
1282  *
1283  * z3fold reclaim is different from normal system reclaim in that it is done
1284  * from the bottom, up. This is because only the bottom layer, z3fold, has
1285  * information on how the allocations are organized within each z3fold page.
1286  * This has the potential to create interesting locking situations between
1287  * z3fold and the user, however.
1288  *
1289  * To avoid these, this is how z3fold_reclaim_page() should be called:
1290  *
1291  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1292  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1293  * call the user-defined eviction handler with the pool and handle as
1294  * arguments.
1295  *
1296  * If the handle can not be evicted, the eviction handler should return
1297  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1298  * appropriate list and try the next z3fold page on the LRU up to
1299  * a user defined number of retries.
1300  *
1301  * If the handle is successfully evicted, the eviction handler should
1302  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1303  * contains logic to delay freeing the page if the page is under reclaim,
1304  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1305  *
1306  * If all buddies in the z3fold page are successfully evicted, then the
1307  * z3fold page can be freed.
1308  *
1309  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1310  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1311  * the retry limit was hit.
1312  */
1313 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1314 {
1315 	int i, ret = -1;
1316 	struct z3fold_header *zhdr = NULL;
1317 	struct page *page = NULL;
1318 	struct list_head *pos;
1319 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1320 	struct z3fold_buddy_slots slots __attribute__((aligned(SLOTS_ALIGN)));
1321 
1322 	rwlock_init(&slots.lock);
1323 	slots.pool = (unsigned long)pool | (1 << HANDLES_NOFREE);
1324 
1325 	spin_lock(&pool->lock);
1326 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1327 		spin_unlock(&pool->lock);
1328 		return -EINVAL;
1329 	}
1330 	for (i = 0; i < retries; i++) {
1331 		if (list_empty(&pool->lru)) {
1332 			spin_unlock(&pool->lock);
1333 			return -EINVAL;
1334 		}
1335 		list_for_each_prev(pos, &pool->lru) {
1336 			page = list_entry(pos, struct page, lru);
1337 
1338 			zhdr = page_address(page);
1339 			if (test_bit(PAGE_HEADLESS, &page->private)) {
1340 				/*
1341 				 * For non-headless pages, we wait to do this
1342 				 * until we have the page lock to avoid racing
1343 				 * with __z3fold_alloc(). Headless pages don't
1344 				 * have a lock (and __z3fold_alloc() will never
1345 				 * see them), but we still need to test and set
1346 				 * PAGE_CLAIMED to avoid racing with
1347 				 * z3fold_free(), so just do it now before
1348 				 * leaving the loop.
1349 				 */
1350 				if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1351 					continue;
1352 
1353 				break;
1354 			}
1355 
1356 			if (kref_get_unless_zero(&zhdr->refcount) == 0) {
1357 				zhdr = NULL;
1358 				break;
1359 			}
1360 			if (!z3fold_page_trylock(zhdr)) {
1361 				if (kref_put(&zhdr->refcount,
1362 						release_z3fold_page))
1363 					atomic64_dec(&pool->pages_nr);
1364 				zhdr = NULL;
1365 				continue; /* can't evict at this point */
1366 			}
1367 
1368 			/* test_and_set_bit is of course atomic, but we still
1369 			 * need to do it under page lock, otherwise checking
1370 			 * that bit in __z3fold_alloc wouldn't make sense
1371 			 */
1372 			if (zhdr->foreign_handles ||
1373 			    test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1374 				if (kref_put(&zhdr->refcount,
1375 						release_z3fold_page_locked))
1376 					atomic64_dec(&pool->pages_nr);
1377 				else
1378 					z3fold_page_unlock(zhdr);
1379 				zhdr = NULL;
1380 				continue; /* can't evict such page */
1381 			}
1382 			list_del_init(&zhdr->buddy);
1383 			zhdr->cpu = -1;
1384 			break;
1385 		}
1386 
1387 		if (!zhdr)
1388 			break;
1389 
1390 		list_del_init(&page->lru);
1391 		spin_unlock(&pool->lock);
1392 
1393 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1394 			/*
1395 			 * We need encode the handles before unlocking, and
1396 			 * use our local slots structure because z3fold_free
1397 			 * can zero out zhdr->slots and we can't do much
1398 			 * about that
1399 			 */
1400 			first_handle = 0;
1401 			last_handle = 0;
1402 			middle_handle = 0;
1403 			memset(slots.slot, 0, sizeof(slots.slot));
1404 			if (zhdr->first_chunks)
1405 				first_handle = __encode_handle(zhdr, &slots,
1406 								FIRST);
1407 			if (zhdr->middle_chunks)
1408 				middle_handle = __encode_handle(zhdr, &slots,
1409 								MIDDLE);
1410 			if (zhdr->last_chunks)
1411 				last_handle = __encode_handle(zhdr, &slots,
1412 								LAST);
1413 			/*
1414 			 * it's safe to unlock here because we hold a
1415 			 * reference to this page
1416 			 */
1417 			z3fold_page_unlock(zhdr);
1418 		} else {
1419 			first_handle = encode_handle(zhdr, HEADLESS);
1420 			last_handle = middle_handle = 0;
1421 		}
1422 		/* Issue the eviction callback(s) */
1423 		if (middle_handle) {
1424 			ret = pool->ops->evict(pool, middle_handle);
1425 			if (ret)
1426 				goto next;
1427 		}
1428 		if (first_handle) {
1429 			ret = pool->ops->evict(pool, first_handle);
1430 			if (ret)
1431 				goto next;
1432 		}
1433 		if (last_handle) {
1434 			ret = pool->ops->evict(pool, last_handle);
1435 			if (ret)
1436 				goto next;
1437 		}
1438 next:
1439 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1440 			if (ret == 0) {
1441 				free_z3fold_page(page, true);
1442 				atomic64_dec(&pool->pages_nr);
1443 				return 0;
1444 			}
1445 			spin_lock(&pool->lock);
1446 			list_add(&page->lru, &pool->lru);
1447 			spin_unlock(&pool->lock);
1448 			clear_bit(PAGE_CLAIMED, &page->private);
1449 		} else {
1450 			struct z3fold_buddy_slots *slots = zhdr->slots;
1451 			z3fold_page_lock(zhdr);
1452 			if (kref_put(&zhdr->refcount,
1453 					release_z3fold_page_locked)) {
1454 				kmem_cache_free(pool->c_handle, slots);
1455 				atomic64_dec(&pool->pages_nr);
1456 				return 0;
1457 			}
1458 			/*
1459 			 * if we are here, the page is still not completely
1460 			 * free. Take the global pool lock then to be able
1461 			 * to add it back to the lru list
1462 			 */
1463 			spin_lock(&pool->lock);
1464 			list_add(&page->lru, &pool->lru);
1465 			spin_unlock(&pool->lock);
1466 			z3fold_page_unlock(zhdr);
1467 			clear_bit(PAGE_CLAIMED, &page->private);
1468 		}
1469 
1470 		/* We started off locked to we need to lock the pool back */
1471 		spin_lock(&pool->lock);
1472 	}
1473 	spin_unlock(&pool->lock);
1474 	return -EAGAIN;
1475 }
1476 
1477 /**
1478  * z3fold_map() - maps the allocation associated with the given handle
1479  * @pool:	pool in which the allocation resides
1480  * @handle:	handle associated with the allocation to be mapped
1481  *
1482  * Extracts the buddy number from handle and constructs the pointer to the
1483  * correct starting chunk within the page.
1484  *
1485  * Returns: a pointer to the mapped allocation
1486  */
1487 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1488 {
1489 	struct z3fold_header *zhdr;
1490 	struct page *page;
1491 	void *addr;
1492 	enum buddy buddy;
1493 
1494 	zhdr = get_z3fold_header(handle);
1495 	addr = zhdr;
1496 	page = virt_to_page(zhdr);
1497 
1498 	if (test_bit(PAGE_HEADLESS, &page->private))
1499 		goto out;
1500 
1501 	buddy = handle_to_buddy(handle);
1502 	switch (buddy) {
1503 	case FIRST:
1504 		addr += ZHDR_SIZE_ALIGNED;
1505 		break;
1506 	case MIDDLE:
1507 		addr += zhdr->start_middle << CHUNK_SHIFT;
1508 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1509 		break;
1510 	case LAST:
1511 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1512 		break;
1513 	default:
1514 		pr_err("unknown buddy id %d\n", buddy);
1515 		WARN_ON(1);
1516 		addr = NULL;
1517 		break;
1518 	}
1519 
1520 	if (addr)
1521 		zhdr->mapped_count++;
1522 out:
1523 	put_z3fold_header(zhdr);
1524 	return addr;
1525 }
1526 
1527 /**
1528  * z3fold_unmap() - unmaps the allocation associated with the given handle
1529  * @pool:	pool in which the allocation resides
1530  * @handle:	handle associated with the allocation to be unmapped
1531  */
1532 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1533 {
1534 	struct z3fold_header *zhdr;
1535 	struct page *page;
1536 	enum buddy buddy;
1537 
1538 	zhdr = get_z3fold_header(handle);
1539 	page = virt_to_page(zhdr);
1540 
1541 	if (test_bit(PAGE_HEADLESS, &page->private))
1542 		return;
1543 
1544 	buddy = handle_to_buddy(handle);
1545 	if (buddy == MIDDLE)
1546 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1547 	zhdr->mapped_count--;
1548 	put_z3fold_header(zhdr);
1549 }
1550 
1551 /**
1552  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1553  * @pool:	pool whose size is being queried
1554  *
1555  * Returns: size in pages of the given pool.
1556  */
1557 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1558 {
1559 	return atomic64_read(&pool->pages_nr);
1560 }
1561 
1562 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1563 {
1564 	struct z3fold_header *zhdr;
1565 	struct z3fold_pool *pool;
1566 
1567 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1568 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1569 
1570 	if (test_bit(PAGE_HEADLESS, &page->private))
1571 		return false;
1572 
1573 	zhdr = page_address(page);
1574 	z3fold_page_lock(zhdr);
1575 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1576 	    test_bit(PAGE_STALE, &page->private))
1577 		goto out;
1578 
1579 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1580 		goto out;
1581 
1582 	if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1583 		goto out;
1584 	pool = zhdr_to_pool(zhdr);
1585 	spin_lock(&pool->lock);
1586 	if (!list_empty(&zhdr->buddy))
1587 		list_del_init(&zhdr->buddy);
1588 	if (!list_empty(&page->lru))
1589 		list_del_init(&page->lru);
1590 	spin_unlock(&pool->lock);
1591 
1592 	kref_get(&zhdr->refcount);
1593 	z3fold_page_unlock(zhdr);
1594 	return true;
1595 
1596 out:
1597 	z3fold_page_unlock(zhdr);
1598 	return false;
1599 }
1600 
1601 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1602 			       struct page *page, enum migrate_mode mode)
1603 {
1604 	struct z3fold_header *zhdr, *new_zhdr;
1605 	struct z3fold_pool *pool;
1606 	struct address_space *new_mapping;
1607 
1608 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1609 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1610 	VM_BUG_ON_PAGE(!test_bit(PAGE_CLAIMED, &page->private), page);
1611 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1612 
1613 	zhdr = page_address(page);
1614 	pool = zhdr_to_pool(zhdr);
1615 
1616 	if (!z3fold_page_trylock(zhdr))
1617 		return -EAGAIN;
1618 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1619 		z3fold_page_unlock(zhdr);
1620 		clear_bit(PAGE_CLAIMED, &page->private);
1621 		return -EBUSY;
1622 	}
1623 	if (work_pending(&zhdr->work)) {
1624 		z3fold_page_unlock(zhdr);
1625 		return -EAGAIN;
1626 	}
1627 	new_zhdr = page_address(newpage);
1628 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1629 	newpage->private = page->private;
1630 	page->private = 0;
1631 	z3fold_page_unlock(zhdr);
1632 	spin_lock_init(&new_zhdr->page_lock);
1633 	INIT_WORK(&new_zhdr->work, compact_page_work);
1634 	/*
1635 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1636 	 * so we only have to reinitialize it.
1637 	 */
1638 	INIT_LIST_HEAD(&new_zhdr->buddy);
1639 	new_mapping = page_mapping(page);
1640 	__ClearPageMovable(page);
1641 	ClearPagePrivate(page);
1642 
1643 	get_page(newpage);
1644 	z3fold_page_lock(new_zhdr);
1645 	if (new_zhdr->first_chunks)
1646 		encode_handle(new_zhdr, FIRST);
1647 	if (new_zhdr->last_chunks)
1648 		encode_handle(new_zhdr, LAST);
1649 	if (new_zhdr->middle_chunks)
1650 		encode_handle(new_zhdr, MIDDLE);
1651 	set_bit(NEEDS_COMPACTING, &newpage->private);
1652 	new_zhdr->cpu = smp_processor_id();
1653 	spin_lock(&pool->lock);
1654 	list_add(&newpage->lru, &pool->lru);
1655 	spin_unlock(&pool->lock);
1656 	__SetPageMovable(newpage, new_mapping);
1657 	z3fold_page_unlock(new_zhdr);
1658 
1659 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1660 
1661 	page_mapcount_reset(page);
1662 	clear_bit(PAGE_CLAIMED, &page->private);
1663 	put_page(page);
1664 	return 0;
1665 }
1666 
1667 static void z3fold_page_putback(struct page *page)
1668 {
1669 	struct z3fold_header *zhdr;
1670 	struct z3fold_pool *pool;
1671 
1672 	zhdr = page_address(page);
1673 	pool = zhdr_to_pool(zhdr);
1674 
1675 	z3fold_page_lock(zhdr);
1676 	if (!list_empty(&zhdr->buddy))
1677 		list_del_init(&zhdr->buddy);
1678 	INIT_LIST_HEAD(&page->lru);
1679 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1680 		atomic64_dec(&pool->pages_nr);
1681 		return;
1682 	}
1683 	spin_lock(&pool->lock);
1684 	list_add(&page->lru, &pool->lru);
1685 	spin_unlock(&pool->lock);
1686 	clear_bit(PAGE_CLAIMED, &page->private);
1687 	z3fold_page_unlock(zhdr);
1688 }
1689 
1690 static const struct address_space_operations z3fold_aops = {
1691 	.isolate_page = z3fold_page_isolate,
1692 	.migratepage = z3fold_page_migrate,
1693 	.putback_page = z3fold_page_putback,
1694 };
1695 
1696 /*****************
1697  * zpool
1698  ****************/
1699 
1700 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1701 {
1702 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1703 		return pool->zpool_ops->evict(pool->zpool, handle);
1704 	else
1705 		return -ENOENT;
1706 }
1707 
1708 static const struct z3fold_ops z3fold_zpool_ops = {
1709 	.evict =	z3fold_zpool_evict
1710 };
1711 
1712 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1713 			       const struct zpool_ops *zpool_ops,
1714 			       struct zpool *zpool)
1715 {
1716 	struct z3fold_pool *pool;
1717 
1718 	pool = z3fold_create_pool(name, gfp,
1719 				zpool_ops ? &z3fold_zpool_ops : NULL);
1720 	if (pool) {
1721 		pool->zpool = zpool;
1722 		pool->zpool_ops = zpool_ops;
1723 	}
1724 	return pool;
1725 }
1726 
1727 static void z3fold_zpool_destroy(void *pool)
1728 {
1729 	z3fold_destroy_pool(pool);
1730 }
1731 
1732 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1733 			unsigned long *handle)
1734 {
1735 	return z3fold_alloc(pool, size, gfp, handle);
1736 }
1737 static void z3fold_zpool_free(void *pool, unsigned long handle)
1738 {
1739 	z3fold_free(pool, handle);
1740 }
1741 
1742 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1743 			unsigned int *reclaimed)
1744 {
1745 	unsigned int total = 0;
1746 	int ret = -EINVAL;
1747 
1748 	while (total < pages) {
1749 		ret = z3fold_reclaim_page(pool, 8);
1750 		if (ret < 0)
1751 			break;
1752 		total++;
1753 	}
1754 
1755 	if (reclaimed)
1756 		*reclaimed = total;
1757 
1758 	return ret;
1759 }
1760 
1761 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1762 			enum zpool_mapmode mm)
1763 {
1764 	return z3fold_map(pool, handle);
1765 }
1766 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1767 {
1768 	z3fold_unmap(pool, handle);
1769 }
1770 
1771 static u64 z3fold_zpool_total_size(void *pool)
1772 {
1773 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1774 }
1775 
1776 static struct zpool_driver z3fold_zpool_driver = {
1777 	.type =		"z3fold",
1778 	.sleep_mapped = true,
1779 	.owner =	THIS_MODULE,
1780 	.create =	z3fold_zpool_create,
1781 	.destroy =	z3fold_zpool_destroy,
1782 	.malloc =	z3fold_zpool_malloc,
1783 	.free =		z3fold_zpool_free,
1784 	.shrink =	z3fold_zpool_shrink,
1785 	.map =		z3fold_zpool_map,
1786 	.unmap =	z3fold_zpool_unmap,
1787 	.total_size =	z3fold_zpool_total_size,
1788 };
1789 
1790 MODULE_ALIAS("zpool-z3fold");
1791 
1792 static int __init init_z3fold(void)
1793 {
1794 	int ret;
1795 
1796 	/*
1797 	 * Make sure the z3fold header is not larger than the page size and
1798 	 * there has remaining spaces for its buddy.
1799 	 */
1800 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE - CHUNK_SIZE);
1801 	ret = z3fold_mount();
1802 	if (ret)
1803 		return ret;
1804 
1805 	zpool_register_driver(&z3fold_zpool_driver);
1806 
1807 	return 0;
1808 }
1809 
1810 static void __exit exit_z3fold(void)
1811 {
1812 	z3fold_unmount();
1813 	zpool_unregister_driver(&z3fold_zpool_driver);
1814 }
1815 
1816 module_init(init_z3fold);
1817 module_exit(exit_z3fold);
1818 
1819 MODULE_LICENSE("GPL");
1820 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1821 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1822