1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * z3fold.c 4 * 5 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 6 * Copyright (C) 2016, Sony Mobile Communications Inc. 7 * 8 * This implementation is based on zbud written by Seth Jennings. 9 * 10 * z3fold is an special purpose allocator for storing compressed pages. It 11 * can store up to three compressed pages per page which improves the 12 * compression ratio of zbud while retaining its main concepts (e. g. always 13 * storing an integral number of objects per page) and simplicity. 14 * It still has simple and deterministic reclaim properties that make it 15 * preferable to a higher density approach (with no requirement on integral 16 * number of object per page) when reclaim is used. 17 * 18 * As in zbud, pages are divided into "chunks". The size of the chunks is 19 * fixed at compile time and is determined by NCHUNKS_ORDER below. 20 * 21 * z3fold doesn't export any API and is meant to be used via zpool API. 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <linux/cpumask.h> 29 #include <linux/dcache.h> 30 #include <linux/list.h> 31 #include <linux/mm.h> 32 #include <linux/module.h> 33 #include <linux/page-flags.h> 34 #include <linux/migrate.h> 35 #include <linux/node.h> 36 #include <linux/compaction.h> 37 #include <linux/percpu.h> 38 #include <linux/mount.h> 39 #include <linux/fs.h> 40 #include <linux/preempt.h> 41 #include <linux/workqueue.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/zpool.h> 45 46 /* 47 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 48 * adjusting internal fragmentation. It also determines the number of 49 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 50 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 51 * in the beginning of an allocated page are occupied by z3fold header, so 52 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 53 * which shows the max number of free chunks in z3fold page, also there will 54 * be 63, or 62, respectively, freelists per pool. 55 */ 56 #define NCHUNKS_ORDER 6 57 58 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 59 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 60 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 61 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 62 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 63 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 64 65 #define BUDDY_MASK (0x3) 66 #define BUDDY_SHIFT 2 67 #define SLOTS_ALIGN (0x40) 68 69 /***************** 70 * Structures 71 *****************/ 72 struct z3fold_pool; 73 struct z3fold_ops { 74 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 75 }; 76 77 enum buddy { 78 HEADLESS = 0, 79 FIRST, 80 MIDDLE, 81 LAST, 82 BUDDIES_MAX = LAST 83 }; 84 85 struct z3fold_buddy_slots { 86 /* 87 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 88 * be enough slots to hold all possible variants 89 */ 90 unsigned long slot[BUDDY_MASK + 1]; 91 unsigned long pool; /* back link + flags */ 92 }; 93 #define HANDLE_FLAG_MASK (0x03) 94 95 /* 96 * struct z3fold_header - z3fold page metadata occupying first chunks of each 97 * z3fold page, except for HEADLESS pages 98 * @buddy: links the z3fold page into the relevant list in the 99 * pool 100 * @page_lock: per-page lock 101 * @refcount: reference count for the z3fold page 102 * @work: work_struct for page layout optimization 103 * @slots: pointer to the structure holding buddy slots 104 * @cpu: CPU which this page "belongs" to 105 * @first_chunks: the size of the first buddy in chunks, 0 if free 106 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 107 * @last_chunks: the size of the last buddy in chunks, 0 if free 108 * @first_num: the starting number (for the first handle) 109 * @mapped_count: the number of objects currently mapped 110 */ 111 struct z3fold_header { 112 struct list_head buddy; 113 spinlock_t page_lock; 114 struct kref refcount; 115 struct work_struct work; 116 struct z3fold_buddy_slots *slots; 117 short cpu; 118 unsigned short first_chunks; 119 unsigned short middle_chunks; 120 unsigned short last_chunks; 121 unsigned short start_middle; 122 unsigned short first_num:2; 123 unsigned short mapped_count:2; 124 }; 125 126 /** 127 * struct z3fold_pool - stores metadata for each z3fold pool 128 * @name: pool name 129 * @lock: protects pool unbuddied/lru lists 130 * @stale_lock: protects pool stale page list 131 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 132 * buddies; the list each z3fold page is added to depends on 133 * the size of its free region. 134 * @lru: list tracking the z3fold pages in LRU order by most recently 135 * added buddy. 136 * @stale: list of pages marked for freeing 137 * @pages_nr: number of z3fold pages in the pool. 138 * @c_handle: cache for z3fold_buddy_slots allocation 139 * @ops: pointer to a structure of user defined operations specified at 140 * pool creation time. 141 * @compact_wq: workqueue for page layout background optimization 142 * @release_wq: workqueue for safe page release 143 * @work: work_struct for safe page release 144 * @inode: inode for z3fold pseudo filesystem 145 * 146 * This structure is allocated at pool creation time and maintains metadata 147 * pertaining to a particular z3fold pool. 148 */ 149 struct z3fold_pool { 150 const char *name; 151 spinlock_t lock; 152 spinlock_t stale_lock; 153 struct list_head *unbuddied; 154 struct list_head lru; 155 struct list_head stale; 156 atomic64_t pages_nr; 157 struct kmem_cache *c_handle; 158 const struct z3fold_ops *ops; 159 struct zpool *zpool; 160 const struct zpool_ops *zpool_ops; 161 struct workqueue_struct *compact_wq; 162 struct workqueue_struct *release_wq; 163 struct work_struct work; 164 struct inode *inode; 165 }; 166 167 /* 168 * Internal z3fold page flags 169 */ 170 enum z3fold_page_flags { 171 PAGE_HEADLESS = 0, 172 MIDDLE_CHUNK_MAPPED, 173 NEEDS_COMPACTING, 174 PAGE_STALE, 175 PAGE_CLAIMED, /* by either reclaim or free */ 176 }; 177 178 /***************** 179 * Helpers 180 *****************/ 181 182 /* Converts an allocation size in bytes to size in z3fold chunks */ 183 static int size_to_chunks(size_t size) 184 { 185 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 186 } 187 188 #define for_each_unbuddied_list(_iter, _begin) \ 189 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 190 191 static void compact_page_work(struct work_struct *w); 192 193 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool, 194 gfp_t gfp) 195 { 196 struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle, 197 gfp); 198 199 if (slots) { 200 memset(slots->slot, 0, sizeof(slots->slot)); 201 slots->pool = (unsigned long)pool; 202 } 203 204 return slots; 205 } 206 207 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 208 { 209 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 210 } 211 212 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 213 { 214 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 215 } 216 217 static inline void free_handle(unsigned long handle) 218 { 219 struct z3fold_buddy_slots *slots; 220 int i; 221 bool is_free; 222 223 if (handle & (1 << PAGE_HEADLESS)) 224 return; 225 226 WARN_ON(*(unsigned long *)handle == 0); 227 *(unsigned long *)handle = 0; 228 slots = handle_to_slots(handle); 229 is_free = true; 230 for (i = 0; i <= BUDDY_MASK; i++) { 231 if (slots->slot[i]) { 232 is_free = false; 233 break; 234 } 235 } 236 237 if (is_free) { 238 struct z3fold_pool *pool = slots_to_pool(slots); 239 240 kmem_cache_free(pool->c_handle, slots); 241 } 242 } 243 244 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type, 245 int flags, const char *dev_name, void *data) 246 { 247 static const struct dentry_operations ops = { 248 .d_dname = simple_dname, 249 }; 250 251 return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33); 252 } 253 254 static struct file_system_type z3fold_fs = { 255 .name = "z3fold", 256 .mount = z3fold_do_mount, 257 .kill_sb = kill_anon_super, 258 }; 259 260 static struct vfsmount *z3fold_mnt; 261 static int z3fold_mount(void) 262 { 263 int ret = 0; 264 265 z3fold_mnt = kern_mount(&z3fold_fs); 266 if (IS_ERR(z3fold_mnt)) 267 ret = PTR_ERR(z3fold_mnt); 268 269 return ret; 270 } 271 272 static void z3fold_unmount(void) 273 { 274 kern_unmount(z3fold_mnt); 275 } 276 277 static const struct address_space_operations z3fold_aops; 278 static int z3fold_register_migration(struct z3fold_pool *pool) 279 { 280 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 281 if (IS_ERR(pool->inode)) { 282 pool->inode = NULL; 283 return 1; 284 } 285 286 pool->inode->i_mapping->private_data = pool; 287 pool->inode->i_mapping->a_ops = &z3fold_aops; 288 return 0; 289 } 290 291 static void z3fold_unregister_migration(struct z3fold_pool *pool) 292 { 293 if (pool->inode) 294 iput(pool->inode); 295 } 296 297 /* Initializes the z3fold header of a newly allocated z3fold page */ 298 static struct z3fold_header *init_z3fold_page(struct page *page, 299 struct z3fold_pool *pool, gfp_t gfp) 300 { 301 struct z3fold_header *zhdr = page_address(page); 302 struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp); 303 304 if (!slots) 305 return NULL; 306 307 INIT_LIST_HEAD(&page->lru); 308 clear_bit(PAGE_HEADLESS, &page->private); 309 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 310 clear_bit(NEEDS_COMPACTING, &page->private); 311 clear_bit(PAGE_STALE, &page->private); 312 clear_bit(PAGE_CLAIMED, &page->private); 313 314 spin_lock_init(&zhdr->page_lock); 315 kref_init(&zhdr->refcount); 316 zhdr->first_chunks = 0; 317 zhdr->middle_chunks = 0; 318 zhdr->last_chunks = 0; 319 zhdr->first_num = 0; 320 zhdr->start_middle = 0; 321 zhdr->cpu = -1; 322 zhdr->slots = slots; 323 INIT_LIST_HEAD(&zhdr->buddy); 324 INIT_WORK(&zhdr->work, compact_page_work); 325 return zhdr; 326 } 327 328 /* Resets the struct page fields and frees the page */ 329 static void free_z3fold_page(struct page *page, bool headless) 330 { 331 if (!headless) { 332 lock_page(page); 333 __ClearPageMovable(page); 334 unlock_page(page); 335 } 336 ClearPagePrivate(page); 337 __free_page(page); 338 } 339 340 /* Lock a z3fold page */ 341 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 342 { 343 spin_lock(&zhdr->page_lock); 344 } 345 346 /* Try to lock a z3fold page */ 347 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 348 { 349 return spin_trylock(&zhdr->page_lock); 350 } 351 352 /* Unlock a z3fold page */ 353 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 354 { 355 spin_unlock(&zhdr->page_lock); 356 } 357 358 /* Helper function to build the index */ 359 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 360 { 361 return (bud + zhdr->first_num) & BUDDY_MASK; 362 } 363 364 /* 365 * Encodes the handle of a particular buddy within a z3fold page 366 * Pool lock should be held as this function accesses first_num 367 */ 368 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 369 { 370 struct z3fold_buddy_slots *slots; 371 unsigned long h = (unsigned long)zhdr; 372 int idx = 0; 373 374 /* 375 * For a headless page, its handle is its pointer with the extra 376 * PAGE_HEADLESS bit set 377 */ 378 if (bud == HEADLESS) 379 return h | (1 << PAGE_HEADLESS); 380 381 /* otherwise, return pointer to encoded handle */ 382 idx = __idx(zhdr, bud); 383 h += idx; 384 if (bud == LAST) 385 h |= (zhdr->last_chunks << BUDDY_SHIFT); 386 387 slots = zhdr->slots; 388 slots->slot[idx] = h; 389 return (unsigned long)&slots->slot[idx]; 390 } 391 392 /* Returns the z3fold page where a given handle is stored */ 393 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h) 394 { 395 unsigned long addr = h; 396 397 if (!(addr & (1 << PAGE_HEADLESS))) 398 addr = *(unsigned long *)h; 399 400 return (struct z3fold_header *)(addr & PAGE_MASK); 401 } 402 403 /* only for LAST bud, returns zero otherwise */ 404 static unsigned short handle_to_chunks(unsigned long handle) 405 { 406 unsigned long addr = *(unsigned long *)handle; 407 408 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 409 } 410 411 /* 412 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 413 * but that doesn't matter. because the masking will result in the 414 * correct buddy number. 415 */ 416 static enum buddy handle_to_buddy(unsigned long handle) 417 { 418 struct z3fold_header *zhdr; 419 unsigned long addr; 420 421 WARN_ON(handle & (1 << PAGE_HEADLESS)); 422 addr = *(unsigned long *)handle; 423 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 424 return (addr - zhdr->first_num) & BUDDY_MASK; 425 } 426 427 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 428 { 429 return slots_to_pool(zhdr->slots); 430 } 431 432 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 433 { 434 struct page *page = virt_to_page(zhdr); 435 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 436 437 WARN_ON(!list_empty(&zhdr->buddy)); 438 set_bit(PAGE_STALE, &page->private); 439 clear_bit(NEEDS_COMPACTING, &page->private); 440 spin_lock(&pool->lock); 441 if (!list_empty(&page->lru)) 442 list_del_init(&page->lru); 443 spin_unlock(&pool->lock); 444 if (locked) 445 z3fold_page_unlock(zhdr); 446 spin_lock(&pool->stale_lock); 447 list_add(&zhdr->buddy, &pool->stale); 448 queue_work(pool->release_wq, &pool->work); 449 spin_unlock(&pool->stale_lock); 450 } 451 452 static void __attribute__((__unused__)) 453 release_z3fold_page(struct kref *ref) 454 { 455 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 456 refcount); 457 __release_z3fold_page(zhdr, false); 458 } 459 460 static void release_z3fold_page_locked(struct kref *ref) 461 { 462 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 463 refcount); 464 WARN_ON(z3fold_page_trylock(zhdr)); 465 __release_z3fold_page(zhdr, true); 466 } 467 468 static void release_z3fold_page_locked_list(struct kref *ref) 469 { 470 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 471 refcount); 472 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 473 spin_lock(&pool->lock); 474 list_del_init(&zhdr->buddy); 475 spin_unlock(&pool->lock); 476 477 WARN_ON(z3fold_page_trylock(zhdr)); 478 __release_z3fold_page(zhdr, true); 479 } 480 481 static void free_pages_work(struct work_struct *w) 482 { 483 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 484 485 spin_lock(&pool->stale_lock); 486 while (!list_empty(&pool->stale)) { 487 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 488 struct z3fold_header, buddy); 489 struct page *page = virt_to_page(zhdr); 490 491 list_del(&zhdr->buddy); 492 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 493 continue; 494 spin_unlock(&pool->stale_lock); 495 cancel_work_sync(&zhdr->work); 496 free_z3fold_page(page, false); 497 cond_resched(); 498 spin_lock(&pool->stale_lock); 499 } 500 spin_unlock(&pool->stale_lock); 501 } 502 503 /* 504 * Returns the number of free chunks in a z3fold page. 505 * NB: can't be used with HEADLESS pages. 506 */ 507 static int num_free_chunks(struct z3fold_header *zhdr) 508 { 509 int nfree; 510 /* 511 * If there is a middle object, pick up the bigger free space 512 * either before or after it. Otherwise just subtract the number 513 * of chunks occupied by the first and the last objects. 514 */ 515 if (zhdr->middle_chunks != 0) { 516 int nfree_before = zhdr->first_chunks ? 517 0 : zhdr->start_middle - ZHDR_CHUNKS; 518 int nfree_after = zhdr->last_chunks ? 519 0 : TOTAL_CHUNKS - 520 (zhdr->start_middle + zhdr->middle_chunks); 521 nfree = max(nfree_before, nfree_after); 522 } else 523 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 524 return nfree; 525 } 526 527 /* Add to the appropriate unbuddied list */ 528 static inline void add_to_unbuddied(struct z3fold_pool *pool, 529 struct z3fold_header *zhdr) 530 { 531 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 532 zhdr->middle_chunks == 0) { 533 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); 534 535 int freechunks = num_free_chunks(zhdr); 536 spin_lock(&pool->lock); 537 list_add(&zhdr->buddy, &unbuddied[freechunks]); 538 spin_unlock(&pool->lock); 539 zhdr->cpu = smp_processor_id(); 540 put_cpu_ptr(pool->unbuddied); 541 } 542 } 543 544 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 545 unsigned short dst_chunk) 546 { 547 void *beg = zhdr; 548 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 549 beg + (zhdr->start_middle << CHUNK_SHIFT), 550 zhdr->middle_chunks << CHUNK_SHIFT); 551 } 552 553 #define BIG_CHUNK_GAP 3 554 /* Has to be called with lock held */ 555 static int z3fold_compact_page(struct z3fold_header *zhdr) 556 { 557 struct page *page = virt_to_page(zhdr); 558 559 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 560 return 0; /* can't move middle chunk, it's used */ 561 562 if (unlikely(PageIsolated(page))) 563 return 0; 564 565 if (zhdr->middle_chunks == 0) 566 return 0; /* nothing to compact */ 567 568 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 569 /* move to the beginning */ 570 mchunk_memmove(zhdr, ZHDR_CHUNKS); 571 zhdr->first_chunks = zhdr->middle_chunks; 572 zhdr->middle_chunks = 0; 573 zhdr->start_middle = 0; 574 zhdr->first_num++; 575 return 1; 576 } 577 578 /* 579 * moving data is expensive, so let's only do that if 580 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 581 */ 582 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 583 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 584 BIG_CHUNK_GAP) { 585 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 586 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 587 return 1; 588 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 589 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 590 + zhdr->middle_chunks) >= 591 BIG_CHUNK_GAP) { 592 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 593 zhdr->middle_chunks; 594 mchunk_memmove(zhdr, new_start); 595 zhdr->start_middle = new_start; 596 return 1; 597 } 598 599 return 0; 600 } 601 602 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 603 { 604 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 605 struct page *page; 606 607 page = virt_to_page(zhdr); 608 if (locked) 609 WARN_ON(z3fold_page_trylock(zhdr)); 610 else 611 z3fold_page_lock(zhdr); 612 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 613 z3fold_page_unlock(zhdr); 614 return; 615 } 616 spin_lock(&pool->lock); 617 list_del_init(&zhdr->buddy); 618 spin_unlock(&pool->lock); 619 620 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 621 atomic64_dec(&pool->pages_nr); 622 return; 623 } 624 625 if (unlikely(PageIsolated(page) || 626 test_bit(PAGE_STALE, &page->private))) { 627 z3fold_page_unlock(zhdr); 628 return; 629 } 630 631 z3fold_compact_page(zhdr); 632 add_to_unbuddied(pool, zhdr); 633 z3fold_page_unlock(zhdr); 634 } 635 636 static void compact_page_work(struct work_struct *w) 637 { 638 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 639 work); 640 641 do_compact_page(zhdr, false); 642 } 643 644 /* returns _locked_ z3fold page header or NULL */ 645 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 646 size_t size, bool can_sleep) 647 { 648 struct z3fold_header *zhdr = NULL; 649 struct page *page; 650 struct list_head *unbuddied; 651 int chunks = size_to_chunks(size), i; 652 653 lookup: 654 /* First, try to find an unbuddied z3fold page. */ 655 unbuddied = get_cpu_ptr(pool->unbuddied); 656 for_each_unbuddied_list(i, chunks) { 657 struct list_head *l = &unbuddied[i]; 658 659 zhdr = list_first_entry_or_null(READ_ONCE(l), 660 struct z3fold_header, buddy); 661 662 if (!zhdr) 663 continue; 664 665 /* Re-check under lock. */ 666 spin_lock(&pool->lock); 667 l = &unbuddied[i]; 668 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 669 struct z3fold_header, buddy)) || 670 !z3fold_page_trylock(zhdr)) { 671 spin_unlock(&pool->lock); 672 zhdr = NULL; 673 put_cpu_ptr(pool->unbuddied); 674 if (can_sleep) 675 cond_resched(); 676 goto lookup; 677 } 678 list_del_init(&zhdr->buddy); 679 zhdr->cpu = -1; 680 spin_unlock(&pool->lock); 681 682 page = virt_to_page(zhdr); 683 if (test_bit(NEEDS_COMPACTING, &page->private)) { 684 z3fold_page_unlock(zhdr); 685 zhdr = NULL; 686 put_cpu_ptr(pool->unbuddied); 687 if (can_sleep) 688 cond_resched(); 689 goto lookup; 690 } 691 692 /* 693 * this page could not be removed from its unbuddied 694 * list while pool lock was held, and then we've taken 695 * page lock so kref_put could not be called before 696 * we got here, so it's safe to just call kref_get() 697 */ 698 kref_get(&zhdr->refcount); 699 break; 700 } 701 put_cpu_ptr(pool->unbuddied); 702 703 if (!zhdr) { 704 int cpu; 705 706 /* look for _exact_ match on other cpus' lists */ 707 for_each_online_cpu(cpu) { 708 struct list_head *l; 709 710 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 711 spin_lock(&pool->lock); 712 l = &unbuddied[chunks]; 713 714 zhdr = list_first_entry_or_null(READ_ONCE(l), 715 struct z3fold_header, buddy); 716 717 if (!zhdr || !z3fold_page_trylock(zhdr)) { 718 spin_unlock(&pool->lock); 719 zhdr = NULL; 720 continue; 721 } 722 list_del_init(&zhdr->buddy); 723 zhdr->cpu = -1; 724 spin_unlock(&pool->lock); 725 726 page = virt_to_page(zhdr); 727 if (test_bit(NEEDS_COMPACTING, &page->private)) { 728 z3fold_page_unlock(zhdr); 729 zhdr = NULL; 730 if (can_sleep) 731 cond_resched(); 732 continue; 733 } 734 kref_get(&zhdr->refcount); 735 break; 736 } 737 } 738 739 return zhdr; 740 } 741 742 /* 743 * API Functions 744 */ 745 746 /** 747 * z3fold_create_pool() - create a new z3fold pool 748 * @name: pool name 749 * @gfp: gfp flags when allocating the z3fold pool structure 750 * @ops: user-defined operations for the z3fold pool 751 * 752 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 753 * failed. 754 */ 755 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 756 const struct z3fold_ops *ops) 757 { 758 struct z3fold_pool *pool = NULL; 759 int i, cpu; 760 761 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 762 if (!pool) 763 goto out; 764 pool->c_handle = kmem_cache_create("z3fold_handle", 765 sizeof(struct z3fold_buddy_slots), 766 SLOTS_ALIGN, 0, NULL); 767 if (!pool->c_handle) 768 goto out_c; 769 spin_lock_init(&pool->lock); 770 spin_lock_init(&pool->stale_lock); 771 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2); 772 if (!pool->unbuddied) 773 goto out_pool; 774 for_each_possible_cpu(cpu) { 775 struct list_head *unbuddied = 776 per_cpu_ptr(pool->unbuddied, cpu); 777 for_each_unbuddied_list(i, 0) 778 INIT_LIST_HEAD(&unbuddied[i]); 779 } 780 INIT_LIST_HEAD(&pool->lru); 781 INIT_LIST_HEAD(&pool->stale); 782 atomic64_set(&pool->pages_nr, 0); 783 pool->name = name; 784 pool->compact_wq = create_singlethread_workqueue(pool->name); 785 if (!pool->compact_wq) 786 goto out_unbuddied; 787 pool->release_wq = create_singlethread_workqueue(pool->name); 788 if (!pool->release_wq) 789 goto out_wq; 790 if (z3fold_register_migration(pool)) 791 goto out_rwq; 792 INIT_WORK(&pool->work, free_pages_work); 793 pool->ops = ops; 794 return pool; 795 796 out_rwq: 797 destroy_workqueue(pool->release_wq); 798 out_wq: 799 destroy_workqueue(pool->compact_wq); 800 out_unbuddied: 801 free_percpu(pool->unbuddied); 802 out_pool: 803 kmem_cache_destroy(pool->c_handle); 804 out_c: 805 kfree(pool); 806 out: 807 return NULL; 808 } 809 810 /** 811 * z3fold_destroy_pool() - destroys an existing z3fold pool 812 * @pool: the z3fold pool to be destroyed 813 * 814 * The pool should be emptied before this function is called. 815 */ 816 static void z3fold_destroy_pool(struct z3fold_pool *pool) 817 { 818 kmem_cache_destroy(pool->c_handle); 819 z3fold_unregister_migration(pool); 820 destroy_workqueue(pool->release_wq); 821 destroy_workqueue(pool->compact_wq); 822 kfree(pool); 823 } 824 825 /** 826 * z3fold_alloc() - allocates a region of a given size 827 * @pool: z3fold pool from which to allocate 828 * @size: size in bytes of the desired allocation 829 * @gfp: gfp flags used if the pool needs to grow 830 * @handle: handle of the new allocation 831 * 832 * This function will attempt to find a free region in the pool large enough to 833 * satisfy the allocation request. A search of the unbuddied lists is 834 * performed first. If no suitable free region is found, then a new page is 835 * allocated and added to the pool to satisfy the request. 836 * 837 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 838 * as z3fold pool pages. 839 * 840 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 841 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 842 * a new page. 843 */ 844 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 845 unsigned long *handle) 846 { 847 int chunks = size_to_chunks(size); 848 struct z3fold_header *zhdr = NULL; 849 struct page *page = NULL; 850 enum buddy bud; 851 bool can_sleep = gfpflags_allow_blocking(gfp); 852 853 if (!size || (gfp & __GFP_HIGHMEM)) 854 return -EINVAL; 855 856 if (size > PAGE_SIZE) 857 return -ENOSPC; 858 859 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 860 bud = HEADLESS; 861 else { 862 retry: 863 zhdr = __z3fold_alloc(pool, size, can_sleep); 864 if (zhdr) { 865 if (zhdr->first_chunks == 0) { 866 if (zhdr->middle_chunks != 0 && 867 chunks >= zhdr->start_middle) 868 bud = LAST; 869 else 870 bud = FIRST; 871 } else if (zhdr->last_chunks == 0) 872 bud = LAST; 873 else if (zhdr->middle_chunks == 0) 874 bud = MIDDLE; 875 else { 876 if (kref_put(&zhdr->refcount, 877 release_z3fold_page_locked)) 878 atomic64_dec(&pool->pages_nr); 879 else 880 z3fold_page_unlock(zhdr); 881 pr_err("No free chunks in unbuddied\n"); 882 WARN_ON(1); 883 goto retry; 884 } 885 page = virt_to_page(zhdr); 886 goto found; 887 } 888 bud = FIRST; 889 } 890 891 page = NULL; 892 if (can_sleep) { 893 spin_lock(&pool->stale_lock); 894 zhdr = list_first_entry_or_null(&pool->stale, 895 struct z3fold_header, buddy); 896 /* 897 * Before allocating a page, let's see if we can take one from 898 * the stale pages list. cancel_work_sync() can sleep so we 899 * limit this case to the contexts where we can sleep 900 */ 901 if (zhdr) { 902 list_del(&zhdr->buddy); 903 spin_unlock(&pool->stale_lock); 904 cancel_work_sync(&zhdr->work); 905 page = virt_to_page(zhdr); 906 } else { 907 spin_unlock(&pool->stale_lock); 908 } 909 } 910 if (!page) 911 page = alloc_page(gfp); 912 913 if (!page) 914 return -ENOMEM; 915 916 zhdr = init_z3fold_page(page, pool, gfp); 917 if (!zhdr) { 918 __free_page(page); 919 return -ENOMEM; 920 } 921 atomic64_inc(&pool->pages_nr); 922 923 if (bud == HEADLESS) { 924 set_bit(PAGE_HEADLESS, &page->private); 925 goto headless; 926 } 927 __SetPageMovable(page, pool->inode->i_mapping); 928 z3fold_page_lock(zhdr); 929 930 found: 931 if (bud == FIRST) 932 zhdr->first_chunks = chunks; 933 else if (bud == LAST) 934 zhdr->last_chunks = chunks; 935 else { 936 zhdr->middle_chunks = chunks; 937 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 938 } 939 add_to_unbuddied(pool, zhdr); 940 941 headless: 942 spin_lock(&pool->lock); 943 /* Add/move z3fold page to beginning of LRU */ 944 if (!list_empty(&page->lru)) 945 list_del(&page->lru); 946 947 list_add(&page->lru, &pool->lru); 948 949 *handle = encode_handle(zhdr, bud); 950 spin_unlock(&pool->lock); 951 if (bud != HEADLESS) 952 z3fold_page_unlock(zhdr); 953 954 return 0; 955 } 956 957 /** 958 * z3fold_free() - frees the allocation associated with the given handle 959 * @pool: pool in which the allocation resided 960 * @handle: handle associated with the allocation returned by z3fold_alloc() 961 * 962 * In the case that the z3fold page in which the allocation resides is under 963 * reclaim, as indicated by the PG_reclaim flag being set, this function 964 * only sets the first|last_chunks to 0. The page is actually freed 965 * once both buddies are evicted (see z3fold_reclaim_page() below). 966 */ 967 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 968 { 969 struct z3fold_header *zhdr; 970 struct page *page; 971 enum buddy bud; 972 973 zhdr = handle_to_z3fold_header(handle); 974 page = virt_to_page(zhdr); 975 976 if (test_bit(PAGE_HEADLESS, &page->private)) { 977 /* if a headless page is under reclaim, just leave. 978 * NB: we use test_and_set_bit for a reason: if the bit 979 * has not been set before, we release this page 980 * immediately so we don't care about its value any more. 981 */ 982 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) { 983 spin_lock(&pool->lock); 984 list_del(&page->lru); 985 spin_unlock(&pool->lock); 986 free_z3fold_page(page, true); 987 atomic64_dec(&pool->pages_nr); 988 } 989 return; 990 } 991 992 /* Non-headless case */ 993 z3fold_page_lock(zhdr); 994 bud = handle_to_buddy(handle); 995 996 switch (bud) { 997 case FIRST: 998 zhdr->first_chunks = 0; 999 break; 1000 case MIDDLE: 1001 zhdr->middle_chunks = 0; 1002 break; 1003 case LAST: 1004 zhdr->last_chunks = 0; 1005 break; 1006 default: 1007 pr_err("%s: unknown bud %d\n", __func__, bud); 1008 WARN_ON(1); 1009 z3fold_page_unlock(zhdr); 1010 return; 1011 } 1012 1013 free_handle(handle); 1014 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) { 1015 atomic64_dec(&pool->pages_nr); 1016 return; 1017 } 1018 if (test_bit(PAGE_CLAIMED, &page->private)) { 1019 z3fold_page_unlock(zhdr); 1020 return; 1021 } 1022 if (unlikely(PageIsolated(page)) || 1023 test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1024 z3fold_page_unlock(zhdr); 1025 return; 1026 } 1027 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1028 spin_lock(&pool->lock); 1029 list_del_init(&zhdr->buddy); 1030 spin_unlock(&pool->lock); 1031 zhdr->cpu = -1; 1032 kref_get(&zhdr->refcount); 1033 do_compact_page(zhdr, true); 1034 return; 1035 } 1036 kref_get(&zhdr->refcount); 1037 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1038 z3fold_page_unlock(zhdr); 1039 } 1040 1041 /** 1042 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1043 * @pool: pool from which a page will attempt to be evicted 1044 * @retries: number of pages on the LRU list for which eviction will 1045 * be attempted before failing 1046 * 1047 * z3fold reclaim is different from normal system reclaim in that it is done 1048 * from the bottom, up. This is because only the bottom layer, z3fold, has 1049 * information on how the allocations are organized within each z3fold page. 1050 * This has the potential to create interesting locking situations between 1051 * z3fold and the user, however. 1052 * 1053 * To avoid these, this is how z3fold_reclaim_page() should be called: 1054 * 1055 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1056 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1057 * call the user-defined eviction handler with the pool and handle as 1058 * arguments. 1059 * 1060 * If the handle can not be evicted, the eviction handler should return 1061 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1062 * appropriate list and try the next z3fold page on the LRU up to 1063 * a user defined number of retries. 1064 * 1065 * If the handle is successfully evicted, the eviction handler should 1066 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1067 * contains logic to delay freeing the page if the page is under reclaim, 1068 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1069 * 1070 * If all buddies in the z3fold page are successfully evicted, then the 1071 * z3fold page can be freed. 1072 * 1073 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1074 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1075 * the retry limit was hit. 1076 */ 1077 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1078 { 1079 int i, ret = 0; 1080 struct z3fold_header *zhdr = NULL; 1081 struct page *page = NULL; 1082 struct list_head *pos; 1083 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1084 1085 spin_lock(&pool->lock); 1086 if (!pool->ops || !pool->ops->evict || retries == 0) { 1087 spin_unlock(&pool->lock); 1088 return -EINVAL; 1089 } 1090 for (i = 0; i < retries; i++) { 1091 if (list_empty(&pool->lru)) { 1092 spin_unlock(&pool->lock); 1093 return -EINVAL; 1094 } 1095 list_for_each_prev(pos, &pool->lru) { 1096 page = list_entry(pos, struct page, lru); 1097 1098 /* this bit could have been set by free, in which case 1099 * we pass over to the next page in the pool. 1100 */ 1101 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) 1102 continue; 1103 1104 if (unlikely(PageIsolated(page))) 1105 continue; 1106 if (test_bit(PAGE_HEADLESS, &page->private)) 1107 break; 1108 1109 zhdr = page_address(page); 1110 if (!z3fold_page_trylock(zhdr)) { 1111 zhdr = NULL; 1112 continue; /* can't evict at this point */ 1113 } 1114 kref_get(&zhdr->refcount); 1115 list_del_init(&zhdr->buddy); 1116 zhdr->cpu = -1; 1117 break; 1118 } 1119 1120 if (!zhdr) 1121 break; 1122 1123 list_del_init(&page->lru); 1124 spin_unlock(&pool->lock); 1125 1126 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1127 /* 1128 * We need encode the handles before unlocking, since 1129 * we can race with free that will set 1130 * (first|last)_chunks to 0 1131 */ 1132 first_handle = 0; 1133 last_handle = 0; 1134 middle_handle = 0; 1135 if (zhdr->first_chunks) 1136 first_handle = encode_handle(zhdr, FIRST); 1137 if (zhdr->middle_chunks) 1138 middle_handle = encode_handle(zhdr, MIDDLE); 1139 if (zhdr->last_chunks) 1140 last_handle = encode_handle(zhdr, LAST); 1141 /* 1142 * it's safe to unlock here because we hold a 1143 * reference to this page 1144 */ 1145 z3fold_page_unlock(zhdr); 1146 } else { 1147 first_handle = encode_handle(zhdr, HEADLESS); 1148 last_handle = middle_handle = 0; 1149 } 1150 1151 /* Issue the eviction callback(s) */ 1152 if (middle_handle) { 1153 ret = pool->ops->evict(pool, middle_handle); 1154 if (ret) 1155 goto next; 1156 } 1157 if (first_handle) { 1158 ret = pool->ops->evict(pool, first_handle); 1159 if (ret) 1160 goto next; 1161 } 1162 if (last_handle) { 1163 ret = pool->ops->evict(pool, last_handle); 1164 if (ret) 1165 goto next; 1166 } 1167 next: 1168 if (test_bit(PAGE_HEADLESS, &page->private)) { 1169 if (ret == 0) { 1170 free_z3fold_page(page, true); 1171 atomic64_dec(&pool->pages_nr); 1172 return 0; 1173 } 1174 spin_lock(&pool->lock); 1175 list_add(&page->lru, &pool->lru); 1176 spin_unlock(&pool->lock); 1177 } else { 1178 z3fold_page_lock(zhdr); 1179 clear_bit(PAGE_CLAIMED, &page->private); 1180 if (kref_put(&zhdr->refcount, 1181 release_z3fold_page_locked)) { 1182 atomic64_dec(&pool->pages_nr); 1183 return 0; 1184 } 1185 /* 1186 * if we are here, the page is still not completely 1187 * free. Take the global pool lock then to be able 1188 * to add it back to the lru list 1189 */ 1190 spin_lock(&pool->lock); 1191 list_add(&page->lru, &pool->lru); 1192 spin_unlock(&pool->lock); 1193 z3fold_page_unlock(zhdr); 1194 } 1195 1196 /* We started off locked to we need to lock the pool back */ 1197 spin_lock(&pool->lock); 1198 } 1199 spin_unlock(&pool->lock); 1200 return -EAGAIN; 1201 } 1202 1203 /** 1204 * z3fold_map() - maps the allocation associated with the given handle 1205 * @pool: pool in which the allocation resides 1206 * @handle: handle associated with the allocation to be mapped 1207 * 1208 * Extracts the buddy number from handle and constructs the pointer to the 1209 * correct starting chunk within the page. 1210 * 1211 * Returns: a pointer to the mapped allocation 1212 */ 1213 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1214 { 1215 struct z3fold_header *zhdr; 1216 struct page *page; 1217 void *addr; 1218 enum buddy buddy; 1219 1220 zhdr = handle_to_z3fold_header(handle); 1221 addr = zhdr; 1222 page = virt_to_page(zhdr); 1223 1224 if (test_bit(PAGE_HEADLESS, &page->private)) 1225 goto out; 1226 1227 z3fold_page_lock(zhdr); 1228 buddy = handle_to_buddy(handle); 1229 switch (buddy) { 1230 case FIRST: 1231 addr += ZHDR_SIZE_ALIGNED; 1232 break; 1233 case MIDDLE: 1234 addr += zhdr->start_middle << CHUNK_SHIFT; 1235 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1236 break; 1237 case LAST: 1238 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1239 break; 1240 default: 1241 pr_err("unknown buddy id %d\n", buddy); 1242 WARN_ON(1); 1243 addr = NULL; 1244 break; 1245 } 1246 1247 if (addr) 1248 zhdr->mapped_count++; 1249 z3fold_page_unlock(zhdr); 1250 out: 1251 return addr; 1252 } 1253 1254 /** 1255 * z3fold_unmap() - unmaps the allocation associated with the given handle 1256 * @pool: pool in which the allocation resides 1257 * @handle: handle associated with the allocation to be unmapped 1258 */ 1259 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1260 { 1261 struct z3fold_header *zhdr; 1262 struct page *page; 1263 enum buddy buddy; 1264 1265 zhdr = handle_to_z3fold_header(handle); 1266 page = virt_to_page(zhdr); 1267 1268 if (test_bit(PAGE_HEADLESS, &page->private)) 1269 return; 1270 1271 z3fold_page_lock(zhdr); 1272 buddy = handle_to_buddy(handle); 1273 if (buddy == MIDDLE) 1274 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1275 zhdr->mapped_count--; 1276 z3fold_page_unlock(zhdr); 1277 } 1278 1279 /** 1280 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1281 * @pool: pool whose size is being queried 1282 * 1283 * Returns: size in pages of the given pool. 1284 */ 1285 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1286 { 1287 return atomic64_read(&pool->pages_nr); 1288 } 1289 1290 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1291 { 1292 struct z3fold_header *zhdr; 1293 struct z3fold_pool *pool; 1294 1295 VM_BUG_ON_PAGE(!PageMovable(page), page); 1296 VM_BUG_ON_PAGE(PageIsolated(page), page); 1297 1298 if (test_bit(PAGE_HEADLESS, &page->private)) 1299 return false; 1300 1301 zhdr = page_address(page); 1302 z3fold_page_lock(zhdr); 1303 if (test_bit(NEEDS_COMPACTING, &page->private) || 1304 test_bit(PAGE_STALE, &page->private)) 1305 goto out; 1306 1307 pool = zhdr_to_pool(zhdr); 1308 1309 if (zhdr->mapped_count == 0) { 1310 kref_get(&zhdr->refcount); 1311 if (!list_empty(&zhdr->buddy)) 1312 list_del_init(&zhdr->buddy); 1313 spin_lock(&pool->lock); 1314 if (!list_empty(&page->lru)) 1315 list_del(&page->lru); 1316 spin_unlock(&pool->lock); 1317 z3fold_page_unlock(zhdr); 1318 return true; 1319 } 1320 out: 1321 z3fold_page_unlock(zhdr); 1322 return false; 1323 } 1324 1325 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1326 struct page *page, enum migrate_mode mode) 1327 { 1328 struct z3fold_header *zhdr, *new_zhdr; 1329 struct z3fold_pool *pool; 1330 struct address_space *new_mapping; 1331 1332 VM_BUG_ON_PAGE(!PageMovable(page), page); 1333 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1334 1335 zhdr = page_address(page); 1336 pool = zhdr_to_pool(zhdr); 1337 1338 if (!trylock_page(page)) 1339 return -EAGAIN; 1340 1341 if (!z3fold_page_trylock(zhdr)) { 1342 unlock_page(page); 1343 return -EAGAIN; 1344 } 1345 if (zhdr->mapped_count != 0) { 1346 z3fold_page_unlock(zhdr); 1347 unlock_page(page); 1348 return -EBUSY; 1349 } 1350 new_zhdr = page_address(newpage); 1351 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1352 newpage->private = page->private; 1353 page->private = 0; 1354 z3fold_page_unlock(zhdr); 1355 spin_lock_init(&new_zhdr->page_lock); 1356 new_mapping = page_mapping(page); 1357 __ClearPageMovable(page); 1358 ClearPagePrivate(page); 1359 1360 get_page(newpage); 1361 z3fold_page_lock(new_zhdr); 1362 if (new_zhdr->first_chunks) 1363 encode_handle(new_zhdr, FIRST); 1364 if (new_zhdr->last_chunks) 1365 encode_handle(new_zhdr, LAST); 1366 if (new_zhdr->middle_chunks) 1367 encode_handle(new_zhdr, MIDDLE); 1368 set_bit(NEEDS_COMPACTING, &newpage->private); 1369 new_zhdr->cpu = smp_processor_id(); 1370 spin_lock(&pool->lock); 1371 list_add(&newpage->lru, &pool->lru); 1372 spin_unlock(&pool->lock); 1373 __SetPageMovable(newpage, new_mapping); 1374 z3fold_page_unlock(new_zhdr); 1375 1376 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1377 1378 page_mapcount_reset(page); 1379 unlock_page(page); 1380 put_page(page); 1381 return 0; 1382 } 1383 1384 static void z3fold_page_putback(struct page *page) 1385 { 1386 struct z3fold_header *zhdr; 1387 struct z3fold_pool *pool; 1388 1389 zhdr = page_address(page); 1390 pool = zhdr_to_pool(zhdr); 1391 1392 z3fold_page_lock(zhdr); 1393 if (!list_empty(&zhdr->buddy)) 1394 list_del_init(&zhdr->buddy); 1395 INIT_LIST_HEAD(&page->lru); 1396 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 1397 atomic64_dec(&pool->pages_nr); 1398 return; 1399 } 1400 spin_lock(&pool->lock); 1401 list_add(&page->lru, &pool->lru); 1402 spin_unlock(&pool->lock); 1403 z3fold_page_unlock(zhdr); 1404 } 1405 1406 static const struct address_space_operations z3fold_aops = { 1407 .isolate_page = z3fold_page_isolate, 1408 .migratepage = z3fold_page_migrate, 1409 .putback_page = z3fold_page_putback, 1410 }; 1411 1412 /***************** 1413 * zpool 1414 ****************/ 1415 1416 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1417 { 1418 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1419 return pool->zpool_ops->evict(pool->zpool, handle); 1420 else 1421 return -ENOENT; 1422 } 1423 1424 static const struct z3fold_ops z3fold_zpool_ops = { 1425 .evict = z3fold_zpool_evict 1426 }; 1427 1428 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1429 const struct zpool_ops *zpool_ops, 1430 struct zpool *zpool) 1431 { 1432 struct z3fold_pool *pool; 1433 1434 pool = z3fold_create_pool(name, gfp, 1435 zpool_ops ? &z3fold_zpool_ops : NULL); 1436 if (pool) { 1437 pool->zpool = zpool; 1438 pool->zpool_ops = zpool_ops; 1439 } 1440 return pool; 1441 } 1442 1443 static void z3fold_zpool_destroy(void *pool) 1444 { 1445 z3fold_destroy_pool(pool); 1446 } 1447 1448 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1449 unsigned long *handle) 1450 { 1451 return z3fold_alloc(pool, size, gfp, handle); 1452 } 1453 static void z3fold_zpool_free(void *pool, unsigned long handle) 1454 { 1455 z3fold_free(pool, handle); 1456 } 1457 1458 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1459 unsigned int *reclaimed) 1460 { 1461 unsigned int total = 0; 1462 int ret = -EINVAL; 1463 1464 while (total < pages) { 1465 ret = z3fold_reclaim_page(pool, 8); 1466 if (ret < 0) 1467 break; 1468 total++; 1469 } 1470 1471 if (reclaimed) 1472 *reclaimed = total; 1473 1474 return ret; 1475 } 1476 1477 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1478 enum zpool_mapmode mm) 1479 { 1480 return z3fold_map(pool, handle); 1481 } 1482 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1483 { 1484 z3fold_unmap(pool, handle); 1485 } 1486 1487 static u64 z3fold_zpool_total_size(void *pool) 1488 { 1489 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1490 } 1491 1492 static struct zpool_driver z3fold_zpool_driver = { 1493 .type = "z3fold", 1494 .owner = THIS_MODULE, 1495 .create = z3fold_zpool_create, 1496 .destroy = z3fold_zpool_destroy, 1497 .malloc = z3fold_zpool_malloc, 1498 .free = z3fold_zpool_free, 1499 .shrink = z3fold_zpool_shrink, 1500 .map = z3fold_zpool_map, 1501 .unmap = z3fold_zpool_unmap, 1502 .total_size = z3fold_zpool_total_size, 1503 }; 1504 1505 MODULE_ALIAS("zpool-z3fold"); 1506 1507 static int __init init_z3fold(void) 1508 { 1509 int ret; 1510 1511 /* Make sure the z3fold header is not larger than the page size */ 1512 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE); 1513 ret = z3fold_mount(); 1514 if (ret) 1515 return ret; 1516 1517 zpool_register_driver(&z3fold_zpool_driver); 1518 1519 return 0; 1520 } 1521 1522 static void __exit exit_z3fold(void) 1523 { 1524 z3fold_unmount(); 1525 zpool_unregister_driver(&z3fold_zpool_driver); 1526 } 1527 1528 module_init(init_z3fold); 1529 module_exit(exit_z3fold); 1530 1531 MODULE_LICENSE("GPL"); 1532 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1533 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1534