1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * z3fold.c 4 * 5 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 6 * Copyright (C) 2016, Sony Mobile Communications Inc. 7 * 8 * This implementation is based on zbud written by Seth Jennings. 9 * 10 * z3fold is an special purpose allocator for storing compressed pages. It 11 * can store up to three compressed pages per page which improves the 12 * compression ratio of zbud while retaining its main concepts (e. g. always 13 * storing an integral number of objects per page) and simplicity. 14 * It still has simple and deterministic reclaim properties that make it 15 * preferable to a higher density approach (with no requirement on integral 16 * number of object per page) when reclaim is used. 17 * 18 * As in zbud, pages are divided into "chunks". The size of the chunks is 19 * fixed at compile time and is determined by NCHUNKS_ORDER below. 20 * 21 * z3fold doesn't export any API and is meant to be used via zpool API. 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <linux/cpumask.h> 29 #include <linux/dcache.h> 30 #include <linux/list.h> 31 #include <linux/mm.h> 32 #include <linux/module.h> 33 #include <linux/page-flags.h> 34 #include <linux/migrate.h> 35 #include <linux/node.h> 36 #include <linux/compaction.h> 37 #include <linux/percpu.h> 38 #include <linux/mount.h> 39 #include <linux/fs.h> 40 #include <linux/preempt.h> 41 #include <linux/workqueue.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/zpool.h> 45 46 /* 47 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 48 * adjusting internal fragmentation. It also determines the number of 49 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 50 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 51 * in the beginning of an allocated page are occupied by z3fold header, so 52 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 53 * which shows the max number of free chunks in z3fold page, also there will 54 * be 63, or 62, respectively, freelists per pool. 55 */ 56 #define NCHUNKS_ORDER 6 57 58 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 59 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 60 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 61 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 62 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 63 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 64 65 #define BUDDY_MASK (0x3) 66 #define BUDDY_SHIFT 2 67 #define SLOTS_ALIGN (0x40) 68 69 /***************** 70 * Structures 71 *****************/ 72 struct z3fold_pool; 73 struct z3fold_ops { 74 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 75 }; 76 77 enum buddy { 78 HEADLESS = 0, 79 FIRST, 80 MIDDLE, 81 LAST, 82 BUDDIES_MAX = LAST 83 }; 84 85 struct z3fold_buddy_slots { 86 /* 87 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 88 * be enough slots to hold all possible variants 89 */ 90 unsigned long slot[BUDDY_MASK + 1]; 91 unsigned long pool; /* back link + flags */ 92 }; 93 #define HANDLE_FLAG_MASK (0x03) 94 95 /* 96 * struct z3fold_header - z3fold page metadata occupying first chunks of each 97 * z3fold page, except for HEADLESS pages 98 * @buddy: links the z3fold page into the relevant list in the 99 * pool 100 * @page_lock: per-page lock 101 * @refcount: reference count for the z3fold page 102 * @work: work_struct for page layout optimization 103 * @slots: pointer to the structure holding buddy slots 104 * @cpu: CPU which this page "belongs" to 105 * @first_chunks: the size of the first buddy in chunks, 0 if free 106 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 107 * @last_chunks: the size of the last buddy in chunks, 0 if free 108 * @first_num: the starting number (for the first handle) 109 * @mapped_count: the number of objects currently mapped 110 */ 111 struct z3fold_header { 112 struct list_head buddy; 113 spinlock_t page_lock; 114 struct kref refcount; 115 struct work_struct work; 116 struct z3fold_buddy_slots *slots; 117 short cpu; 118 unsigned short first_chunks; 119 unsigned short middle_chunks; 120 unsigned short last_chunks; 121 unsigned short start_middle; 122 unsigned short first_num:2; 123 unsigned short mapped_count:2; 124 }; 125 126 /** 127 * struct z3fold_pool - stores metadata for each z3fold pool 128 * @name: pool name 129 * @lock: protects pool unbuddied/lru lists 130 * @stale_lock: protects pool stale page list 131 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 132 * buddies; the list each z3fold page is added to depends on 133 * the size of its free region. 134 * @lru: list tracking the z3fold pages in LRU order by most recently 135 * added buddy. 136 * @stale: list of pages marked for freeing 137 * @pages_nr: number of z3fold pages in the pool. 138 * @c_handle: cache for z3fold_buddy_slots allocation 139 * @ops: pointer to a structure of user defined operations specified at 140 * pool creation time. 141 * @compact_wq: workqueue for page layout background optimization 142 * @release_wq: workqueue for safe page release 143 * @work: work_struct for safe page release 144 * @inode: inode for z3fold pseudo filesystem 145 * 146 * This structure is allocated at pool creation time and maintains metadata 147 * pertaining to a particular z3fold pool. 148 */ 149 struct z3fold_pool { 150 const char *name; 151 spinlock_t lock; 152 spinlock_t stale_lock; 153 struct list_head *unbuddied; 154 struct list_head lru; 155 struct list_head stale; 156 atomic64_t pages_nr; 157 struct kmem_cache *c_handle; 158 const struct z3fold_ops *ops; 159 struct zpool *zpool; 160 const struct zpool_ops *zpool_ops; 161 struct workqueue_struct *compact_wq; 162 struct workqueue_struct *release_wq; 163 struct work_struct work; 164 struct inode *inode; 165 }; 166 167 /* 168 * Internal z3fold page flags 169 */ 170 enum z3fold_page_flags { 171 PAGE_HEADLESS = 0, 172 MIDDLE_CHUNK_MAPPED, 173 NEEDS_COMPACTING, 174 PAGE_STALE, 175 PAGE_CLAIMED, /* by either reclaim or free */ 176 }; 177 178 /***************** 179 * Helpers 180 *****************/ 181 182 /* Converts an allocation size in bytes to size in z3fold chunks */ 183 static int size_to_chunks(size_t size) 184 { 185 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 186 } 187 188 #define for_each_unbuddied_list(_iter, _begin) \ 189 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 190 191 static void compact_page_work(struct work_struct *w); 192 193 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool, 194 gfp_t gfp) 195 { 196 struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle, 197 gfp); 198 199 if (slots) { 200 memset(slots->slot, 0, sizeof(slots->slot)); 201 slots->pool = (unsigned long)pool; 202 } 203 204 return slots; 205 } 206 207 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 208 { 209 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 210 } 211 212 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 213 { 214 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 215 } 216 217 static inline void free_handle(unsigned long handle) 218 { 219 struct z3fold_buddy_slots *slots; 220 int i; 221 bool is_free; 222 223 if (handle & (1 << PAGE_HEADLESS)) 224 return; 225 226 WARN_ON(*(unsigned long *)handle == 0); 227 *(unsigned long *)handle = 0; 228 slots = handle_to_slots(handle); 229 is_free = true; 230 for (i = 0; i <= BUDDY_MASK; i++) { 231 if (slots->slot[i]) { 232 is_free = false; 233 break; 234 } 235 } 236 237 if (is_free) { 238 struct z3fold_pool *pool = slots_to_pool(slots); 239 240 kmem_cache_free(pool->c_handle, slots); 241 } 242 } 243 244 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type, 245 int flags, const char *dev_name, void *data) 246 { 247 static const struct dentry_operations ops = { 248 .d_dname = simple_dname, 249 }; 250 251 return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33); 252 } 253 254 static struct file_system_type z3fold_fs = { 255 .name = "z3fold", 256 .mount = z3fold_do_mount, 257 .kill_sb = kill_anon_super, 258 }; 259 260 static struct vfsmount *z3fold_mnt; 261 static int z3fold_mount(void) 262 { 263 int ret = 0; 264 265 z3fold_mnt = kern_mount(&z3fold_fs); 266 if (IS_ERR(z3fold_mnt)) 267 ret = PTR_ERR(z3fold_mnt); 268 269 return ret; 270 } 271 272 static void z3fold_unmount(void) 273 { 274 kern_unmount(z3fold_mnt); 275 } 276 277 static const struct address_space_operations z3fold_aops; 278 static int z3fold_register_migration(struct z3fold_pool *pool) 279 { 280 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 281 if (IS_ERR(pool->inode)) { 282 pool->inode = NULL; 283 return 1; 284 } 285 286 pool->inode->i_mapping->private_data = pool; 287 pool->inode->i_mapping->a_ops = &z3fold_aops; 288 return 0; 289 } 290 291 static void z3fold_unregister_migration(struct z3fold_pool *pool) 292 { 293 if (pool->inode) 294 iput(pool->inode); 295 } 296 297 /* Initializes the z3fold header of a newly allocated z3fold page */ 298 static struct z3fold_header *init_z3fold_page(struct page *page, 299 struct z3fold_pool *pool, gfp_t gfp) 300 { 301 struct z3fold_header *zhdr = page_address(page); 302 struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp); 303 304 if (!slots) 305 return NULL; 306 307 INIT_LIST_HEAD(&page->lru); 308 clear_bit(PAGE_HEADLESS, &page->private); 309 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 310 clear_bit(NEEDS_COMPACTING, &page->private); 311 clear_bit(PAGE_STALE, &page->private); 312 clear_bit(PAGE_CLAIMED, &page->private); 313 314 spin_lock_init(&zhdr->page_lock); 315 kref_init(&zhdr->refcount); 316 zhdr->first_chunks = 0; 317 zhdr->middle_chunks = 0; 318 zhdr->last_chunks = 0; 319 zhdr->first_num = 0; 320 zhdr->start_middle = 0; 321 zhdr->cpu = -1; 322 zhdr->slots = slots; 323 INIT_LIST_HEAD(&zhdr->buddy); 324 INIT_WORK(&zhdr->work, compact_page_work); 325 return zhdr; 326 } 327 328 /* Resets the struct page fields and frees the page */ 329 static void free_z3fold_page(struct page *page, bool headless) 330 { 331 if (!headless) { 332 lock_page(page); 333 __ClearPageMovable(page); 334 unlock_page(page); 335 } 336 ClearPagePrivate(page); 337 __free_page(page); 338 } 339 340 /* Lock a z3fold page */ 341 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 342 { 343 spin_lock(&zhdr->page_lock); 344 } 345 346 /* Try to lock a z3fold page */ 347 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 348 { 349 return spin_trylock(&zhdr->page_lock); 350 } 351 352 /* Unlock a z3fold page */ 353 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 354 { 355 spin_unlock(&zhdr->page_lock); 356 } 357 358 /* Helper function to build the index */ 359 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 360 { 361 return (bud + zhdr->first_num) & BUDDY_MASK; 362 } 363 364 /* 365 * Encodes the handle of a particular buddy within a z3fold page 366 * Pool lock should be held as this function accesses first_num 367 */ 368 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 369 { 370 struct z3fold_buddy_slots *slots; 371 unsigned long h = (unsigned long)zhdr; 372 int idx = 0; 373 374 /* 375 * For a headless page, its handle is its pointer with the extra 376 * PAGE_HEADLESS bit set 377 */ 378 if (bud == HEADLESS) 379 return h | (1 << PAGE_HEADLESS); 380 381 /* otherwise, return pointer to encoded handle */ 382 idx = __idx(zhdr, bud); 383 h += idx; 384 if (bud == LAST) 385 h |= (zhdr->last_chunks << BUDDY_SHIFT); 386 387 slots = zhdr->slots; 388 slots->slot[idx] = h; 389 return (unsigned long)&slots->slot[idx]; 390 } 391 392 /* Returns the z3fold page where a given handle is stored */ 393 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h) 394 { 395 unsigned long addr = h; 396 397 if (!(addr & (1 << PAGE_HEADLESS))) 398 addr = *(unsigned long *)h; 399 400 return (struct z3fold_header *)(addr & PAGE_MASK); 401 } 402 403 /* only for LAST bud, returns zero otherwise */ 404 static unsigned short handle_to_chunks(unsigned long handle) 405 { 406 unsigned long addr = *(unsigned long *)handle; 407 408 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 409 } 410 411 /* 412 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 413 * but that doesn't matter. because the masking will result in the 414 * correct buddy number. 415 */ 416 static enum buddy handle_to_buddy(unsigned long handle) 417 { 418 struct z3fold_header *zhdr; 419 unsigned long addr; 420 421 WARN_ON(handle & (1 << PAGE_HEADLESS)); 422 addr = *(unsigned long *)handle; 423 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 424 return (addr - zhdr->first_num) & BUDDY_MASK; 425 } 426 427 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 428 { 429 return slots_to_pool(zhdr->slots); 430 } 431 432 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 433 { 434 struct page *page = virt_to_page(zhdr); 435 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 436 437 WARN_ON(!list_empty(&zhdr->buddy)); 438 set_bit(PAGE_STALE, &page->private); 439 clear_bit(NEEDS_COMPACTING, &page->private); 440 spin_lock(&pool->lock); 441 if (!list_empty(&page->lru)) 442 list_del_init(&page->lru); 443 spin_unlock(&pool->lock); 444 if (locked) 445 z3fold_page_unlock(zhdr); 446 spin_lock(&pool->stale_lock); 447 list_add(&zhdr->buddy, &pool->stale); 448 queue_work(pool->release_wq, &pool->work); 449 spin_unlock(&pool->stale_lock); 450 } 451 452 static void __attribute__((__unused__)) 453 release_z3fold_page(struct kref *ref) 454 { 455 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 456 refcount); 457 __release_z3fold_page(zhdr, false); 458 } 459 460 static void release_z3fold_page_locked(struct kref *ref) 461 { 462 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 463 refcount); 464 WARN_ON(z3fold_page_trylock(zhdr)); 465 __release_z3fold_page(zhdr, true); 466 } 467 468 static void release_z3fold_page_locked_list(struct kref *ref) 469 { 470 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 471 refcount); 472 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 473 spin_lock(&pool->lock); 474 list_del_init(&zhdr->buddy); 475 spin_unlock(&pool->lock); 476 477 WARN_ON(z3fold_page_trylock(zhdr)); 478 __release_z3fold_page(zhdr, true); 479 } 480 481 static void free_pages_work(struct work_struct *w) 482 { 483 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 484 485 spin_lock(&pool->stale_lock); 486 while (!list_empty(&pool->stale)) { 487 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 488 struct z3fold_header, buddy); 489 struct page *page = virt_to_page(zhdr); 490 491 list_del(&zhdr->buddy); 492 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 493 continue; 494 spin_unlock(&pool->stale_lock); 495 cancel_work_sync(&zhdr->work); 496 free_z3fold_page(page, false); 497 cond_resched(); 498 spin_lock(&pool->stale_lock); 499 } 500 spin_unlock(&pool->stale_lock); 501 } 502 503 /* 504 * Returns the number of free chunks in a z3fold page. 505 * NB: can't be used with HEADLESS pages. 506 */ 507 static int num_free_chunks(struct z3fold_header *zhdr) 508 { 509 int nfree; 510 /* 511 * If there is a middle object, pick up the bigger free space 512 * either before or after it. Otherwise just subtract the number 513 * of chunks occupied by the first and the last objects. 514 */ 515 if (zhdr->middle_chunks != 0) { 516 int nfree_before = zhdr->first_chunks ? 517 0 : zhdr->start_middle - ZHDR_CHUNKS; 518 int nfree_after = zhdr->last_chunks ? 519 0 : TOTAL_CHUNKS - 520 (zhdr->start_middle + zhdr->middle_chunks); 521 nfree = max(nfree_before, nfree_after); 522 } else 523 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 524 return nfree; 525 } 526 527 /* Add to the appropriate unbuddied list */ 528 static inline void add_to_unbuddied(struct z3fold_pool *pool, 529 struct z3fold_header *zhdr) 530 { 531 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 532 zhdr->middle_chunks == 0) { 533 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); 534 535 int freechunks = num_free_chunks(zhdr); 536 spin_lock(&pool->lock); 537 list_add(&zhdr->buddy, &unbuddied[freechunks]); 538 spin_unlock(&pool->lock); 539 zhdr->cpu = smp_processor_id(); 540 put_cpu_ptr(pool->unbuddied); 541 } 542 } 543 544 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 545 unsigned short dst_chunk) 546 { 547 void *beg = zhdr; 548 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 549 beg + (zhdr->start_middle << CHUNK_SHIFT), 550 zhdr->middle_chunks << CHUNK_SHIFT); 551 } 552 553 #define BIG_CHUNK_GAP 3 554 /* Has to be called with lock held */ 555 static int z3fold_compact_page(struct z3fold_header *zhdr) 556 { 557 struct page *page = virt_to_page(zhdr); 558 559 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 560 return 0; /* can't move middle chunk, it's used */ 561 562 if (unlikely(PageIsolated(page))) 563 return 0; 564 565 if (zhdr->middle_chunks == 0) 566 return 0; /* nothing to compact */ 567 568 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 569 /* move to the beginning */ 570 mchunk_memmove(zhdr, ZHDR_CHUNKS); 571 zhdr->first_chunks = zhdr->middle_chunks; 572 zhdr->middle_chunks = 0; 573 zhdr->start_middle = 0; 574 zhdr->first_num++; 575 return 1; 576 } 577 578 /* 579 * moving data is expensive, so let's only do that if 580 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 581 */ 582 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 583 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 584 BIG_CHUNK_GAP) { 585 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 586 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 587 return 1; 588 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 589 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 590 + zhdr->middle_chunks) >= 591 BIG_CHUNK_GAP) { 592 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 593 zhdr->middle_chunks; 594 mchunk_memmove(zhdr, new_start); 595 zhdr->start_middle = new_start; 596 return 1; 597 } 598 599 return 0; 600 } 601 602 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 603 { 604 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 605 struct page *page; 606 607 page = virt_to_page(zhdr); 608 if (locked) 609 WARN_ON(z3fold_page_trylock(zhdr)); 610 else 611 z3fold_page_lock(zhdr); 612 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 613 z3fold_page_unlock(zhdr); 614 return; 615 } 616 spin_lock(&pool->lock); 617 list_del_init(&zhdr->buddy); 618 spin_unlock(&pool->lock); 619 620 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 621 atomic64_dec(&pool->pages_nr); 622 return; 623 } 624 625 if (unlikely(PageIsolated(page) || 626 test_bit(PAGE_STALE, &page->private))) { 627 z3fold_page_unlock(zhdr); 628 return; 629 } 630 631 z3fold_compact_page(zhdr); 632 add_to_unbuddied(pool, zhdr); 633 z3fold_page_unlock(zhdr); 634 } 635 636 static void compact_page_work(struct work_struct *w) 637 { 638 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 639 work); 640 641 do_compact_page(zhdr, false); 642 } 643 644 /* returns _locked_ z3fold page header or NULL */ 645 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 646 size_t size, bool can_sleep) 647 { 648 struct z3fold_header *zhdr = NULL; 649 struct page *page; 650 struct list_head *unbuddied; 651 int chunks = size_to_chunks(size), i; 652 653 lookup: 654 /* First, try to find an unbuddied z3fold page. */ 655 unbuddied = get_cpu_ptr(pool->unbuddied); 656 for_each_unbuddied_list(i, chunks) { 657 struct list_head *l = &unbuddied[i]; 658 659 zhdr = list_first_entry_or_null(READ_ONCE(l), 660 struct z3fold_header, buddy); 661 662 if (!zhdr) 663 continue; 664 665 /* Re-check under lock. */ 666 spin_lock(&pool->lock); 667 l = &unbuddied[i]; 668 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 669 struct z3fold_header, buddy)) || 670 !z3fold_page_trylock(zhdr)) { 671 spin_unlock(&pool->lock); 672 zhdr = NULL; 673 put_cpu_ptr(pool->unbuddied); 674 if (can_sleep) 675 cond_resched(); 676 goto lookup; 677 } 678 list_del_init(&zhdr->buddy); 679 zhdr->cpu = -1; 680 spin_unlock(&pool->lock); 681 682 page = virt_to_page(zhdr); 683 if (test_bit(NEEDS_COMPACTING, &page->private)) { 684 z3fold_page_unlock(zhdr); 685 zhdr = NULL; 686 put_cpu_ptr(pool->unbuddied); 687 if (can_sleep) 688 cond_resched(); 689 goto lookup; 690 } 691 692 /* 693 * this page could not be removed from its unbuddied 694 * list while pool lock was held, and then we've taken 695 * page lock so kref_put could not be called before 696 * we got here, so it's safe to just call kref_get() 697 */ 698 kref_get(&zhdr->refcount); 699 break; 700 } 701 put_cpu_ptr(pool->unbuddied); 702 703 if (!zhdr) { 704 int cpu; 705 706 /* look for _exact_ match on other cpus' lists */ 707 for_each_online_cpu(cpu) { 708 struct list_head *l; 709 710 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 711 spin_lock(&pool->lock); 712 l = &unbuddied[chunks]; 713 714 zhdr = list_first_entry_or_null(READ_ONCE(l), 715 struct z3fold_header, buddy); 716 717 if (!zhdr || !z3fold_page_trylock(zhdr)) { 718 spin_unlock(&pool->lock); 719 zhdr = NULL; 720 continue; 721 } 722 list_del_init(&zhdr->buddy); 723 zhdr->cpu = -1; 724 spin_unlock(&pool->lock); 725 726 page = virt_to_page(zhdr); 727 if (test_bit(NEEDS_COMPACTING, &page->private)) { 728 z3fold_page_unlock(zhdr); 729 zhdr = NULL; 730 if (can_sleep) 731 cond_resched(); 732 continue; 733 } 734 kref_get(&zhdr->refcount); 735 break; 736 } 737 } 738 739 return zhdr; 740 } 741 742 /* 743 * API Functions 744 */ 745 746 /** 747 * z3fold_create_pool() - create a new z3fold pool 748 * @name: pool name 749 * @gfp: gfp flags when allocating the z3fold pool structure 750 * @ops: user-defined operations for the z3fold pool 751 * 752 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 753 * failed. 754 */ 755 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 756 const struct z3fold_ops *ops) 757 { 758 struct z3fold_pool *pool = NULL; 759 int i, cpu; 760 761 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 762 if (!pool) 763 goto out; 764 pool->c_handle = kmem_cache_create("z3fold_handle", 765 sizeof(struct z3fold_buddy_slots), 766 SLOTS_ALIGN, 0, NULL); 767 if (!pool->c_handle) 768 goto out_c; 769 spin_lock_init(&pool->lock); 770 spin_lock_init(&pool->stale_lock); 771 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2); 772 if (!pool->unbuddied) 773 goto out_pool; 774 for_each_possible_cpu(cpu) { 775 struct list_head *unbuddied = 776 per_cpu_ptr(pool->unbuddied, cpu); 777 for_each_unbuddied_list(i, 0) 778 INIT_LIST_HEAD(&unbuddied[i]); 779 } 780 INIT_LIST_HEAD(&pool->lru); 781 INIT_LIST_HEAD(&pool->stale); 782 atomic64_set(&pool->pages_nr, 0); 783 pool->name = name; 784 pool->compact_wq = create_singlethread_workqueue(pool->name); 785 if (!pool->compact_wq) 786 goto out_unbuddied; 787 pool->release_wq = create_singlethread_workqueue(pool->name); 788 if (!pool->release_wq) 789 goto out_wq; 790 if (z3fold_register_migration(pool)) 791 goto out_rwq; 792 INIT_WORK(&pool->work, free_pages_work); 793 pool->ops = ops; 794 return pool; 795 796 out_rwq: 797 destroy_workqueue(pool->release_wq); 798 out_wq: 799 destroy_workqueue(pool->compact_wq); 800 out_unbuddied: 801 free_percpu(pool->unbuddied); 802 out_pool: 803 kmem_cache_destroy(pool->c_handle); 804 out_c: 805 kfree(pool); 806 out: 807 return NULL; 808 } 809 810 /** 811 * z3fold_destroy_pool() - destroys an existing z3fold pool 812 * @pool: the z3fold pool to be destroyed 813 * 814 * The pool should be emptied before this function is called. 815 */ 816 static void z3fold_destroy_pool(struct z3fold_pool *pool) 817 { 818 kmem_cache_destroy(pool->c_handle); 819 z3fold_unregister_migration(pool); 820 destroy_workqueue(pool->release_wq); 821 destroy_workqueue(pool->compact_wq); 822 kfree(pool); 823 } 824 825 /** 826 * z3fold_alloc() - allocates a region of a given size 827 * @pool: z3fold pool from which to allocate 828 * @size: size in bytes of the desired allocation 829 * @gfp: gfp flags used if the pool needs to grow 830 * @handle: handle of the new allocation 831 * 832 * This function will attempt to find a free region in the pool large enough to 833 * satisfy the allocation request. A search of the unbuddied lists is 834 * performed first. If no suitable free region is found, then a new page is 835 * allocated and added to the pool to satisfy the request. 836 * 837 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 838 * as z3fold pool pages. 839 * 840 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 841 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 842 * a new page. 843 */ 844 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 845 unsigned long *handle) 846 { 847 int chunks = size_to_chunks(size); 848 struct z3fold_header *zhdr = NULL; 849 struct page *page = NULL; 850 enum buddy bud; 851 bool can_sleep = gfpflags_allow_blocking(gfp); 852 853 if (!size || (gfp & __GFP_HIGHMEM)) 854 return -EINVAL; 855 856 if (size > PAGE_SIZE) 857 return -ENOSPC; 858 859 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 860 bud = HEADLESS; 861 else { 862 retry: 863 zhdr = __z3fold_alloc(pool, size, can_sleep); 864 if (zhdr) { 865 if (zhdr->first_chunks == 0) { 866 if (zhdr->middle_chunks != 0 && 867 chunks >= zhdr->start_middle) 868 bud = LAST; 869 else 870 bud = FIRST; 871 } else if (zhdr->last_chunks == 0) 872 bud = LAST; 873 else if (zhdr->middle_chunks == 0) 874 bud = MIDDLE; 875 else { 876 if (kref_put(&zhdr->refcount, 877 release_z3fold_page_locked)) 878 atomic64_dec(&pool->pages_nr); 879 else 880 z3fold_page_unlock(zhdr); 881 pr_err("No free chunks in unbuddied\n"); 882 WARN_ON(1); 883 goto retry; 884 } 885 page = virt_to_page(zhdr); 886 goto found; 887 } 888 bud = FIRST; 889 } 890 891 page = NULL; 892 if (can_sleep) { 893 spin_lock(&pool->stale_lock); 894 zhdr = list_first_entry_or_null(&pool->stale, 895 struct z3fold_header, buddy); 896 /* 897 * Before allocating a page, let's see if we can take one from 898 * the stale pages list. cancel_work_sync() can sleep so we 899 * limit this case to the contexts where we can sleep 900 */ 901 if (zhdr) { 902 list_del(&zhdr->buddy); 903 spin_unlock(&pool->stale_lock); 904 cancel_work_sync(&zhdr->work); 905 page = virt_to_page(zhdr); 906 } else { 907 spin_unlock(&pool->stale_lock); 908 } 909 } 910 if (!page) 911 page = alloc_page(gfp); 912 913 if (!page) 914 return -ENOMEM; 915 916 zhdr = init_z3fold_page(page, pool, gfp); 917 if (!zhdr) { 918 __free_page(page); 919 return -ENOMEM; 920 } 921 atomic64_inc(&pool->pages_nr); 922 923 if (bud == HEADLESS) { 924 set_bit(PAGE_HEADLESS, &page->private); 925 goto headless; 926 } 927 if (can_sleep) { 928 lock_page(page); 929 __SetPageMovable(page, pool->inode->i_mapping); 930 unlock_page(page); 931 } else { 932 if (trylock_page(page)) { 933 __SetPageMovable(page, pool->inode->i_mapping); 934 unlock_page(page); 935 } 936 } 937 z3fold_page_lock(zhdr); 938 939 found: 940 if (bud == FIRST) 941 zhdr->first_chunks = chunks; 942 else if (bud == LAST) 943 zhdr->last_chunks = chunks; 944 else { 945 zhdr->middle_chunks = chunks; 946 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 947 } 948 add_to_unbuddied(pool, zhdr); 949 950 headless: 951 spin_lock(&pool->lock); 952 /* Add/move z3fold page to beginning of LRU */ 953 if (!list_empty(&page->lru)) 954 list_del(&page->lru); 955 956 list_add(&page->lru, &pool->lru); 957 958 *handle = encode_handle(zhdr, bud); 959 spin_unlock(&pool->lock); 960 if (bud != HEADLESS) 961 z3fold_page_unlock(zhdr); 962 963 return 0; 964 } 965 966 /** 967 * z3fold_free() - frees the allocation associated with the given handle 968 * @pool: pool in which the allocation resided 969 * @handle: handle associated with the allocation returned by z3fold_alloc() 970 * 971 * In the case that the z3fold page in which the allocation resides is under 972 * reclaim, as indicated by the PG_reclaim flag being set, this function 973 * only sets the first|last_chunks to 0. The page is actually freed 974 * once both buddies are evicted (see z3fold_reclaim_page() below). 975 */ 976 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 977 { 978 struct z3fold_header *zhdr; 979 struct page *page; 980 enum buddy bud; 981 982 zhdr = handle_to_z3fold_header(handle); 983 page = virt_to_page(zhdr); 984 985 if (test_bit(PAGE_HEADLESS, &page->private)) { 986 /* if a headless page is under reclaim, just leave. 987 * NB: we use test_and_set_bit for a reason: if the bit 988 * has not been set before, we release this page 989 * immediately so we don't care about its value any more. 990 */ 991 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) { 992 spin_lock(&pool->lock); 993 list_del(&page->lru); 994 spin_unlock(&pool->lock); 995 free_z3fold_page(page, true); 996 atomic64_dec(&pool->pages_nr); 997 } 998 return; 999 } 1000 1001 /* Non-headless case */ 1002 z3fold_page_lock(zhdr); 1003 bud = handle_to_buddy(handle); 1004 1005 switch (bud) { 1006 case FIRST: 1007 zhdr->first_chunks = 0; 1008 break; 1009 case MIDDLE: 1010 zhdr->middle_chunks = 0; 1011 break; 1012 case LAST: 1013 zhdr->last_chunks = 0; 1014 break; 1015 default: 1016 pr_err("%s: unknown bud %d\n", __func__, bud); 1017 WARN_ON(1); 1018 z3fold_page_unlock(zhdr); 1019 return; 1020 } 1021 1022 free_handle(handle); 1023 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) { 1024 atomic64_dec(&pool->pages_nr); 1025 return; 1026 } 1027 if (test_bit(PAGE_CLAIMED, &page->private)) { 1028 z3fold_page_unlock(zhdr); 1029 return; 1030 } 1031 if (unlikely(PageIsolated(page)) || 1032 test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1033 z3fold_page_unlock(zhdr); 1034 return; 1035 } 1036 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1037 spin_lock(&pool->lock); 1038 list_del_init(&zhdr->buddy); 1039 spin_unlock(&pool->lock); 1040 zhdr->cpu = -1; 1041 kref_get(&zhdr->refcount); 1042 do_compact_page(zhdr, true); 1043 return; 1044 } 1045 kref_get(&zhdr->refcount); 1046 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1047 z3fold_page_unlock(zhdr); 1048 } 1049 1050 /** 1051 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1052 * @pool: pool from which a page will attempt to be evicted 1053 * @retries: number of pages on the LRU list for which eviction will 1054 * be attempted before failing 1055 * 1056 * z3fold reclaim is different from normal system reclaim in that it is done 1057 * from the bottom, up. This is because only the bottom layer, z3fold, has 1058 * information on how the allocations are organized within each z3fold page. 1059 * This has the potential to create interesting locking situations between 1060 * z3fold and the user, however. 1061 * 1062 * To avoid these, this is how z3fold_reclaim_page() should be called: 1063 * 1064 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1065 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1066 * call the user-defined eviction handler with the pool and handle as 1067 * arguments. 1068 * 1069 * If the handle can not be evicted, the eviction handler should return 1070 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1071 * appropriate list and try the next z3fold page on the LRU up to 1072 * a user defined number of retries. 1073 * 1074 * If the handle is successfully evicted, the eviction handler should 1075 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1076 * contains logic to delay freeing the page if the page is under reclaim, 1077 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1078 * 1079 * If all buddies in the z3fold page are successfully evicted, then the 1080 * z3fold page can be freed. 1081 * 1082 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1083 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1084 * the retry limit was hit. 1085 */ 1086 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1087 { 1088 int i, ret = 0; 1089 struct z3fold_header *zhdr = NULL; 1090 struct page *page = NULL; 1091 struct list_head *pos; 1092 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1093 1094 spin_lock(&pool->lock); 1095 if (!pool->ops || !pool->ops->evict || retries == 0) { 1096 spin_unlock(&pool->lock); 1097 return -EINVAL; 1098 } 1099 for (i = 0; i < retries; i++) { 1100 if (list_empty(&pool->lru)) { 1101 spin_unlock(&pool->lock); 1102 return -EINVAL; 1103 } 1104 list_for_each_prev(pos, &pool->lru) { 1105 page = list_entry(pos, struct page, lru); 1106 1107 /* this bit could have been set by free, in which case 1108 * we pass over to the next page in the pool. 1109 */ 1110 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) 1111 continue; 1112 1113 if (unlikely(PageIsolated(page))) 1114 continue; 1115 if (test_bit(PAGE_HEADLESS, &page->private)) 1116 break; 1117 1118 zhdr = page_address(page); 1119 if (!z3fold_page_trylock(zhdr)) { 1120 zhdr = NULL; 1121 continue; /* can't evict at this point */ 1122 } 1123 kref_get(&zhdr->refcount); 1124 list_del_init(&zhdr->buddy); 1125 zhdr->cpu = -1; 1126 break; 1127 } 1128 1129 if (!zhdr) 1130 break; 1131 1132 list_del_init(&page->lru); 1133 spin_unlock(&pool->lock); 1134 1135 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1136 /* 1137 * We need encode the handles before unlocking, since 1138 * we can race with free that will set 1139 * (first|last)_chunks to 0 1140 */ 1141 first_handle = 0; 1142 last_handle = 0; 1143 middle_handle = 0; 1144 if (zhdr->first_chunks) 1145 first_handle = encode_handle(zhdr, FIRST); 1146 if (zhdr->middle_chunks) 1147 middle_handle = encode_handle(zhdr, MIDDLE); 1148 if (zhdr->last_chunks) 1149 last_handle = encode_handle(zhdr, LAST); 1150 /* 1151 * it's safe to unlock here because we hold a 1152 * reference to this page 1153 */ 1154 z3fold_page_unlock(zhdr); 1155 } else { 1156 first_handle = encode_handle(zhdr, HEADLESS); 1157 last_handle = middle_handle = 0; 1158 } 1159 1160 /* Issue the eviction callback(s) */ 1161 if (middle_handle) { 1162 ret = pool->ops->evict(pool, middle_handle); 1163 if (ret) 1164 goto next; 1165 } 1166 if (first_handle) { 1167 ret = pool->ops->evict(pool, first_handle); 1168 if (ret) 1169 goto next; 1170 } 1171 if (last_handle) { 1172 ret = pool->ops->evict(pool, last_handle); 1173 if (ret) 1174 goto next; 1175 } 1176 next: 1177 if (test_bit(PAGE_HEADLESS, &page->private)) { 1178 if (ret == 0) { 1179 free_z3fold_page(page, true); 1180 atomic64_dec(&pool->pages_nr); 1181 return 0; 1182 } 1183 spin_lock(&pool->lock); 1184 list_add(&page->lru, &pool->lru); 1185 spin_unlock(&pool->lock); 1186 } else { 1187 z3fold_page_lock(zhdr); 1188 clear_bit(PAGE_CLAIMED, &page->private); 1189 if (kref_put(&zhdr->refcount, 1190 release_z3fold_page_locked)) { 1191 atomic64_dec(&pool->pages_nr); 1192 return 0; 1193 } 1194 /* 1195 * if we are here, the page is still not completely 1196 * free. Take the global pool lock then to be able 1197 * to add it back to the lru list 1198 */ 1199 spin_lock(&pool->lock); 1200 list_add(&page->lru, &pool->lru); 1201 spin_unlock(&pool->lock); 1202 z3fold_page_unlock(zhdr); 1203 } 1204 1205 /* We started off locked to we need to lock the pool back */ 1206 spin_lock(&pool->lock); 1207 } 1208 spin_unlock(&pool->lock); 1209 return -EAGAIN; 1210 } 1211 1212 /** 1213 * z3fold_map() - maps the allocation associated with the given handle 1214 * @pool: pool in which the allocation resides 1215 * @handle: handle associated with the allocation to be mapped 1216 * 1217 * Extracts the buddy number from handle and constructs the pointer to the 1218 * correct starting chunk within the page. 1219 * 1220 * Returns: a pointer to the mapped allocation 1221 */ 1222 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1223 { 1224 struct z3fold_header *zhdr; 1225 struct page *page; 1226 void *addr; 1227 enum buddy buddy; 1228 1229 zhdr = handle_to_z3fold_header(handle); 1230 addr = zhdr; 1231 page = virt_to_page(zhdr); 1232 1233 if (test_bit(PAGE_HEADLESS, &page->private)) 1234 goto out; 1235 1236 z3fold_page_lock(zhdr); 1237 buddy = handle_to_buddy(handle); 1238 switch (buddy) { 1239 case FIRST: 1240 addr += ZHDR_SIZE_ALIGNED; 1241 break; 1242 case MIDDLE: 1243 addr += zhdr->start_middle << CHUNK_SHIFT; 1244 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1245 break; 1246 case LAST: 1247 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1248 break; 1249 default: 1250 pr_err("unknown buddy id %d\n", buddy); 1251 WARN_ON(1); 1252 addr = NULL; 1253 break; 1254 } 1255 1256 if (addr) 1257 zhdr->mapped_count++; 1258 z3fold_page_unlock(zhdr); 1259 out: 1260 return addr; 1261 } 1262 1263 /** 1264 * z3fold_unmap() - unmaps the allocation associated with the given handle 1265 * @pool: pool in which the allocation resides 1266 * @handle: handle associated with the allocation to be unmapped 1267 */ 1268 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1269 { 1270 struct z3fold_header *zhdr; 1271 struct page *page; 1272 enum buddy buddy; 1273 1274 zhdr = handle_to_z3fold_header(handle); 1275 page = virt_to_page(zhdr); 1276 1277 if (test_bit(PAGE_HEADLESS, &page->private)) 1278 return; 1279 1280 z3fold_page_lock(zhdr); 1281 buddy = handle_to_buddy(handle); 1282 if (buddy == MIDDLE) 1283 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1284 zhdr->mapped_count--; 1285 z3fold_page_unlock(zhdr); 1286 } 1287 1288 /** 1289 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1290 * @pool: pool whose size is being queried 1291 * 1292 * Returns: size in pages of the given pool. 1293 */ 1294 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1295 { 1296 return atomic64_read(&pool->pages_nr); 1297 } 1298 1299 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1300 { 1301 struct z3fold_header *zhdr; 1302 struct z3fold_pool *pool; 1303 1304 VM_BUG_ON_PAGE(!PageMovable(page), page); 1305 VM_BUG_ON_PAGE(PageIsolated(page), page); 1306 1307 if (test_bit(PAGE_HEADLESS, &page->private)) 1308 return false; 1309 1310 zhdr = page_address(page); 1311 z3fold_page_lock(zhdr); 1312 if (test_bit(NEEDS_COMPACTING, &page->private) || 1313 test_bit(PAGE_STALE, &page->private)) 1314 goto out; 1315 1316 pool = zhdr_to_pool(zhdr); 1317 1318 if (zhdr->mapped_count == 0) { 1319 kref_get(&zhdr->refcount); 1320 if (!list_empty(&zhdr->buddy)) 1321 list_del_init(&zhdr->buddy); 1322 spin_lock(&pool->lock); 1323 if (!list_empty(&page->lru)) 1324 list_del(&page->lru); 1325 spin_unlock(&pool->lock); 1326 z3fold_page_unlock(zhdr); 1327 return true; 1328 } 1329 out: 1330 z3fold_page_unlock(zhdr); 1331 return false; 1332 } 1333 1334 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1335 struct page *page, enum migrate_mode mode) 1336 { 1337 struct z3fold_header *zhdr, *new_zhdr; 1338 struct z3fold_pool *pool; 1339 struct address_space *new_mapping; 1340 1341 VM_BUG_ON_PAGE(!PageMovable(page), page); 1342 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1343 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1344 1345 zhdr = page_address(page); 1346 pool = zhdr_to_pool(zhdr); 1347 1348 if (!trylock_page(page)) 1349 return -EAGAIN; 1350 1351 if (!z3fold_page_trylock(zhdr)) { 1352 unlock_page(page); 1353 return -EAGAIN; 1354 } 1355 if (zhdr->mapped_count != 0) { 1356 z3fold_page_unlock(zhdr); 1357 unlock_page(page); 1358 return -EBUSY; 1359 } 1360 new_zhdr = page_address(newpage); 1361 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1362 newpage->private = page->private; 1363 page->private = 0; 1364 z3fold_page_unlock(zhdr); 1365 spin_lock_init(&new_zhdr->page_lock); 1366 new_mapping = page_mapping(page); 1367 __ClearPageMovable(page); 1368 ClearPagePrivate(page); 1369 1370 get_page(newpage); 1371 z3fold_page_lock(new_zhdr); 1372 if (new_zhdr->first_chunks) 1373 encode_handle(new_zhdr, FIRST); 1374 if (new_zhdr->last_chunks) 1375 encode_handle(new_zhdr, LAST); 1376 if (new_zhdr->middle_chunks) 1377 encode_handle(new_zhdr, MIDDLE); 1378 set_bit(NEEDS_COMPACTING, &newpage->private); 1379 new_zhdr->cpu = smp_processor_id(); 1380 spin_lock(&pool->lock); 1381 list_add(&newpage->lru, &pool->lru); 1382 spin_unlock(&pool->lock); 1383 __SetPageMovable(newpage, new_mapping); 1384 z3fold_page_unlock(new_zhdr); 1385 1386 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1387 1388 page_mapcount_reset(page); 1389 unlock_page(page); 1390 put_page(page); 1391 return 0; 1392 } 1393 1394 static void z3fold_page_putback(struct page *page) 1395 { 1396 struct z3fold_header *zhdr; 1397 struct z3fold_pool *pool; 1398 1399 zhdr = page_address(page); 1400 pool = zhdr_to_pool(zhdr); 1401 1402 z3fold_page_lock(zhdr); 1403 if (!list_empty(&zhdr->buddy)) 1404 list_del_init(&zhdr->buddy); 1405 INIT_LIST_HEAD(&page->lru); 1406 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 1407 atomic64_dec(&pool->pages_nr); 1408 return; 1409 } 1410 spin_lock(&pool->lock); 1411 list_add(&page->lru, &pool->lru); 1412 spin_unlock(&pool->lock); 1413 z3fold_page_unlock(zhdr); 1414 } 1415 1416 static const struct address_space_operations z3fold_aops = { 1417 .isolate_page = z3fold_page_isolate, 1418 .migratepage = z3fold_page_migrate, 1419 .putback_page = z3fold_page_putback, 1420 }; 1421 1422 /***************** 1423 * zpool 1424 ****************/ 1425 1426 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1427 { 1428 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1429 return pool->zpool_ops->evict(pool->zpool, handle); 1430 else 1431 return -ENOENT; 1432 } 1433 1434 static const struct z3fold_ops z3fold_zpool_ops = { 1435 .evict = z3fold_zpool_evict 1436 }; 1437 1438 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1439 const struct zpool_ops *zpool_ops, 1440 struct zpool *zpool) 1441 { 1442 struct z3fold_pool *pool; 1443 1444 pool = z3fold_create_pool(name, gfp, 1445 zpool_ops ? &z3fold_zpool_ops : NULL); 1446 if (pool) { 1447 pool->zpool = zpool; 1448 pool->zpool_ops = zpool_ops; 1449 } 1450 return pool; 1451 } 1452 1453 static void z3fold_zpool_destroy(void *pool) 1454 { 1455 z3fold_destroy_pool(pool); 1456 } 1457 1458 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1459 unsigned long *handle) 1460 { 1461 return z3fold_alloc(pool, size, gfp, handle); 1462 } 1463 static void z3fold_zpool_free(void *pool, unsigned long handle) 1464 { 1465 z3fold_free(pool, handle); 1466 } 1467 1468 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1469 unsigned int *reclaimed) 1470 { 1471 unsigned int total = 0; 1472 int ret = -EINVAL; 1473 1474 while (total < pages) { 1475 ret = z3fold_reclaim_page(pool, 8); 1476 if (ret < 0) 1477 break; 1478 total++; 1479 } 1480 1481 if (reclaimed) 1482 *reclaimed = total; 1483 1484 return ret; 1485 } 1486 1487 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1488 enum zpool_mapmode mm) 1489 { 1490 return z3fold_map(pool, handle); 1491 } 1492 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1493 { 1494 z3fold_unmap(pool, handle); 1495 } 1496 1497 static u64 z3fold_zpool_total_size(void *pool) 1498 { 1499 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1500 } 1501 1502 static struct zpool_driver z3fold_zpool_driver = { 1503 .type = "z3fold", 1504 .owner = THIS_MODULE, 1505 .create = z3fold_zpool_create, 1506 .destroy = z3fold_zpool_destroy, 1507 .malloc = z3fold_zpool_malloc, 1508 .free = z3fold_zpool_free, 1509 .shrink = z3fold_zpool_shrink, 1510 .map = z3fold_zpool_map, 1511 .unmap = z3fold_zpool_unmap, 1512 .total_size = z3fold_zpool_total_size, 1513 }; 1514 1515 MODULE_ALIAS("zpool-z3fold"); 1516 1517 static int __init init_z3fold(void) 1518 { 1519 int ret; 1520 1521 /* Make sure the z3fold header is not larger than the page size */ 1522 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE); 1523 ret = z3fold_mount(); 1524 if (ret) 1525 return ret; 1526 1527 zpool_register_driver(&z3fold_zpool_driver); 1528 1529 return 0; 1530 } 1531 1532 static void __exit exit_z3fold(void) 1533 { 1534 z3fold_unmount(); 1535 zpool_unregister_driver(&z3fold_zpool_driver); 1536 } 1537 1538 module_init(init_z3fold); 1539 module_exit(exit_z3fold); 1540 1541 MODULE_LICENSE("GPL"); 1542 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1543 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1544