xref: /linux/mm/workingset.c (revision dcb8cbb58a218c99aab0dbf3f76cf06a04d44f37)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/mm_inline.h>
10 #include <linux/writeback.h>
11 #include <linux/shmem_fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/atomic.h>
14 #include <linux/module.h>
15 #include <linux/swap.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 
20 /*
21  *		Double CLOCK lists
22  *
23  * Per node, two clock lists are maintained for file pages: the
24  * inactive and the active list.  Freshly faulted pages start out at
25  * the head of the inactive list and page reclaim scans pages from the
26  * tail.  Pages that are accessed multiple times on the inactive list
27  * are promoted to the active list, to protect them from reclaim,
28  * whereas active pages are demoted to the inactive list when the
29  * active list grows too big.
30  *
31  *   fault ------------------------+
32  *                                 |
33  *              +--------------+   |            +-------------+
34  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
35  *              +--------------+                +-------------+    |
36  *                     |                                           |
37  *                     +-------------- promotion ------------------+
38  *
39  *
40  *		Access frequency and refault distance
41  *
42  * A workload is thrashing when its pages are frequently used but they
43  * are evicted from the inactive list every time before another access
44  * would have promoted them to the active list.
45  *
46  * In cases where the average access distance between thrashing pages
47  * is bigger than the size of memory there is nothing that can be
48  * done - the thrashing set could never fit into memory under any
49  * circumstance.
50  *
51  * However, the average access distance could be bigger than the
52  * inactive list, yet smaller than the size of memory.  In this case,
53  * the set could fit into memory if it weren't for the currently
54  * active pages - which may be used more, hopefully less frequently:
55  *
56  *      +-memory available to cache-+
57  *      |                           |
58  *      +-inactive------+-active----+
59  *  a b | c d e f g h i | J K L M N |
60  *      +---------------+-----------+
61  *
62  * It is prohibitively expensive to accurately track access frequency
63  * of pages.  But a reasonable approximation can be made to measure
64  * thrashing on the inactive list, after which refaulting pages can be
65  * activated optimistically to compete with the existing active pages.
66  *
67  * Approximating inactive page access frequency - Observations:
68  *
69  * 1. When a page is accessed for the first time, it is added to the
70  *    head of the inactive list, slides every existing inactive page
71  *    towards the tail by one slot, and pushes the current tail page
72  *    out of memory.
73  *
74  * 2. When a page is accessed for the second time, it is promoted to
75  *    the active list, shrinking the inactive list by one slot.  This
76  *    also slides all inactive pages that were faulted into the cache
77  *    more recently than the activated page towards the tail of the
78  *    inactive list.
79  *
80  * Thus:
81  *
82  * 1. The sum of evictions and activations between any two points in
83  *    time indicate the minimum number of inactive pages accessed in
84  *    between.
85  *
86  * 2. Moving one inactive page N page slots towards the tail of the
87  *    list requires at least N inactive page accesses.
88  *
89  * Combining these:
90  *
91  * 1. When a page is finally evicted from memory, the number of
92  *    inactive pages accessed while the page was in cache is at least
93  *    the number of page slots on the inactive list.
94  *
95  * 2. In addition, measuring the sum of evictions and activations (E)
96  *    at the time of a page's eviction, and comparing it to another
97  *    reading (R) at the time the page faults back into memory tells
98  *    the minimum number of accesses while the page was not cached.
99  *    This is called the refault distance.
100  *
101  * Because the first access of the page was the fault and the second
102  * access the refault, we combine the in-cache distance with the
103  * out-of-cache distance to get the complete minimum access distance
104  * of this page:
105  *
106  *      NR_inactive + (R - E)
107  *
108  * And knowing the minimum access distance of a page, we can easily
109  * tell if the page would be able to stay in cache assuming all page
110  * slots in the cache were available:
111  *
112  *   NR_inactive + (R - E) <= NR_inactive + NR_active
113  *
114  * If we have swap we should consider about NR_inactive_anon and
115  * NR_active_anon, so for page cache and anonymous respectively:
116  *
117  *   NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
118  *   + NR_inactive_anon + NR_active_anon
119  *
120  *   NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
121  *   + NR_inactive_file + NR_active_file
122  *
123  * Which can be further simplified to:
124  *
125  *   (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
126  *
127  *   (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
128  *
129  * Put into words, the refault distance (out-of-cache) can be seen as
130  * a deficit in inactive list space (in-cache).  If the inactive list
131  * had (R - E) more page slots, the page would not have been evicted
132  * in between accesses, but activated instead.  And on a full system,
133  * the only thing eating into inactive list space is active pages.
134  *
135  *
136  *		Refaulting inactive pages
137  *
138  * All that is known about the active list is that the pages have been
139  * accessed more than once in the past.  This means that at any given
140  * time there is actually a good chance that pages on the active list
141  * are no longer in active use.
142  *
143  * So when a refault distance of (R - E) is observed and there are at
144  * least (R - E) pages in the userspace workingset, the refaulting page
145  * is activated optimistically in the hope that (R - E) pages are actually
146  * used less frequently than the refaulting page - or even not used at
147  * all anymore.
148  *
149  * That means if inactive cache is refaulting with a suitable refault
150  * distance, we assume the cache workingset is transitioning and put
151  * pressure on the current workingset.
152  *
153  * If this is wrong and demotion kicks in, the pages which are truly
154  * used more frequently will be reactivated while the less frequently
155  * used once will be evicted from memory.
156  *
157  * But if this is right, the stale pages will be pushed out of memory
158  * and the used pages get to stay in cache.
159  *
160  *		Refaulting active pages
161  *
162  * If on the other hand the refaulting pages have recently been
163  * deactivated, it means that the active list is no longer protecting
164  * actively used cache from reclaim. The cache is NOT transitioning to
165  * a different workingset; the existing workingset is thrashing in the
166  * space allocated to the page cache.
167  *
168  *
169  *		Implementation
170  *
171  * For each node's LRU lists, a counter for inactive evictions and
172  * activations is maintained (node->nonresident_age).
173  *
174  * On eviction, a snapshot of this counter (along with some bits to
175  * identify the node) is stored in the now empty page cache
176  * slot of the evicted page.  This is called a shadow entry.
177  *
178  * On cache misses for which there are shadow entries, an eligible
179  * refault distance will immediately activate the refaulting page.
180  */
181 
182 #define WORKINGSET_SHIFT 1
183 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
184 			 WORKINGSET_SHIFT + NODES_SHIFT + \
185 			 MEM_CGROUP_ID_SHIFT)
186 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
187 
188 /*
189  * Eviction timestamps need to be able to cover the full range of
190  * actionable refaults. However, bits are tight in the xarray
191  * entry, and after storing the identifier for the lruvec there might
192  * not be enough left to represent every single actionable refault. In
193  * that case, we have to sacrifice granularity for distance, and group
194  * evictions into coarser buckets by shaving off lower timestamp bits.
195  */
196 static unsigned int bucket_order __read_mostly;
197 
198 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
199 			 bool workingset)
200 {
201 	eviction &= EVICTION_MASK;
202 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
203 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
204 	eviction = (eviction << WORKINGSET_SHIFT) | workingset;
205 
206 	return xa_mk_value(eviction);
207 }
208 
209 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
210 			  unsigned long *evictionp, bool *workingsetp)
211 {
212 	unsigned long entry = xa_to_value(shadow);
213 	int memcgid, nid;
214 	bool workingset;
215 
216 	workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
217 	entry >>= WORKINGSET_SHIFT;
218 	nid = entry & ((1UL << NODES_SHIFT) - 1);
219 	entry >>= NODES_SHIFT;
220 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
221 	entry >>= MEM_CGROUP_ID_SHIFT;
222 
223 	*memcgidp = memcgid;
224 	*pgdat = NODE_DATA(nid);
225 	*evictionp = entry;
226 	*workingsetp = workingset;
227 }
228 
229 #ifdef CONFIG_LRU_GEN
230 
231 static void *lru_gen_eviction(struct folio *folio)
232 {
233 	int hist;
234 	unsigned long token;
235 	unsigned long min_seq;
236 	struct lruvec *lruvec;
237 	struct lru_gen_folio *lrugen;
238 	int type = folio_is_file_lru(folio);
239 	int delta = folio_nr_pages(folio);
240 	int refs = folio_lru_refs(folio);
241 	int tier = lru_tier_from_refs(refs);
242 	struct mem_cgroup *memcg = folio_memcg(folio);
243 	struct pglist_data *pgdat = folio_pgdat(folio);
244 
245 	BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
246 
247 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
248 	lrugen = &lruvec->lrugen;
249 	min_seq = READ_ONCE(lrugen->min_seq[type]);
250 	token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
251 
252 	hist = lru_hist_from_seq(min_seq);
253 	atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
254 
255 	return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
256 }
257 
258 /*
259  * Tests if the shadow entry is for a folio that was recently evicted.
260  * Fills in @lruvec, @token, @workingset with the values unpacked from shadow.
261  */
262 static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
263 				unsigned long *token, bool *workingset)
264 {
265 	int memcg_id;
266 	unsigned long min_seq;
267 	struct mem_cgroup *memcg;
268 	struct pglist_data *pgdat;
269 
270 	unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset);
271 
272 	memcg = mem_cgroup_from_id(memcg_id);
273 	*lruvec = mem_cgroup_lruvec(memcg, pgdat);
274 
275 	min_seq = READ_ONCE((*lruvec)->lrugen.min_seq[file]);
276 	return (*token >> LRU_REFS_WIDTH) == (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH));
277 }
278 
279 static void lru_gen_refault(struct folio *folio, void *shadow)
280 {
281 	int hist, tier, refs;
282 	bool workingset;
283 	unsigned long token;
284 	struct lruvec *lruvec;
285 	struct lru_gen_folio *lrugen;
286 	int type = folio_is_file_lru(folio);
287 	int delta = folio_nr_pages(folio);
288 
289 	rcu_read_lock();
290 
291 	if (!lru_gen_test_recent(shadow, type, &lruvec, &token, &workingset))
292 		goto unlock;
293 
294 	if (lruvec != folio_lruvec(folio))
295 		goto unlock;
296 
297 	lrugen = &lruvec->lrugen;
298 
299 	hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type]));
300 	/* see the comment in folio_lru_refs() */
301 	refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
302 	tier = lru_tier_from_refs(refs);
303 
304 	atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
305 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
306 
307 	/*
308 	 * Count the following two cases as stalls:
309 	 * 1. For pages accessed through page tables, hotter pages pushed out
310 	 *    hot pages which refaulted immediately.
311 	 * 2. For pages accessed multiple times through file descriptors,
312 	 *    numbers of accesses might have been out of the range.
313 	 */
314 	if (lru_gen_in_fault() || refs == BIT(LRU_REFS_WIDTH)) {
315 		folio_set_workingset(folio);
316 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
317 	}
318 unlock:
319 	rcu_read_unlock();
320 }
321 
322 #else /* !CONFIG_LRU_GEN */
323 
324 static void *lru_gen_eviction(struct folio *folio)
325 {
326 	return NULL;
327 }
328 
329 static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
330 				unsigned long *token, bool *workingset)
331 {
332 	return false;
333 }
334 
335 static void lru_gen_refault(struct folio *folio, void *shadow)
336 {
337 }
338 
339 #endif /* CONFIG_LRU_GEN */
340 
341 /**
342  * workingset_age_nonresident - age non-resident entries as LRU ages
343  * @lruvec: the lruvec that was aged
344  * @nr_pages: the number of pages to count
345  *
346  * As in-memory pages are aged, non-resident pages need to be aged as
347  * well, in order for the refault distances later on to be comparable
348  * to the in-memory dimensions. This function allows reclaim and LRU
349  * operations to drive the non-resident aging along in parallel.
350  */
351 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
352 {
353 	/*
354 	 * Reclaiming a cgroup means reclaiming all its children in a
355 	 * round-robin fashion. That means that each cgroup has an LRU
356 	 * order that is composed of the LRU orders of its child
357 	 * cgroups; and every page has an LRU position not just in the
358 	 * cgroup that owns it, but in all of that group's ancestors.
359 	 *
360 	 * So when the physical inactive list of a leaf cgroup ages,
361 	 * the virtual inactive lists of all its parents, including
362 	 * the root cgroup's, age as well.
363 	 */
364 	do {
365 		atomic_long_add(nr_pages, &lruvec->nonresident_age);
366 	} while ((lruvec = parent_lruvec(lruvec)));
367 }
368 
369 /**
370  * workingset_eviction - note the eviction of a folio from memory
371  * @target_memcg: the cgroup that is causing the reclaim
372  * @folio: the folio being evicted
373  *
374  * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
375  * of the evicted @folio so that a later refault can be detected.
376  */
377 void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
378 {
379 	struct pglist_data *pgdat = folio_pgdat(folio);
380 	unsigned long eviction;
381 	struct lruvec *lruvec;
382 	int memcgid;
383 
384 	/* Folio is fully exclusive and pins folio's memory cgroup pointer */
385 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
386 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
387 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
388 
389 	if (lru_gen_enabled())
390 		return lru_gen_eviction(folio);
391 
392 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
393 	/* XXX: target_memcg can be NULL, go through lruvec */
394 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
395 	eviction = atomic_long_read(&lruvec->nonresident_age);
396 	eviction >>= bucket_order;
397 	workingset_age_nonresident(lruvec, folio_nr_pages(folio));
398 	return pack_shadow(memcgid, pgdat, eviction,
399 				folio_test_workingset(folio));
400 }
401 
402 /**
403  * workingset_test_recent - tests if the shadow entry is for a folio that was
404  * recently evicted. Also fills in @workingset with the value unpacked from
405  * shadow.
406  * @shadow: the shadow entry to be tested.
407  * @file: whether the corresponding folio is from the file lru.
408  * @workingset: where the workingset value unpacked from shadow should
409  * be stored.
410  *
411  * Return: true if the shadow is for a recently evicted folio; false otherwise.
412  */
413 bool workingset_test_recent(void *shadow, bool file, bool *workingset)
414 {
415 	struct mem_cgroup *eviction_memcg;
416 	struct lruvec *eviction_lruvec;
417 	unsigned long refault_distance;
418 	unsigned long workingset_size;
419 	unsigned long refault;
420 	int memcgid;
421 	struct pglist_data *pgdat;
422 	unsigned long eviction;
423 
424 	if (lru_gen_enabled())
425 		return lru_gen_test_recent(shadow, file, &eviction_lruvec, &eviction, workingset);
426 
427 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset);
428 	eviction <<= bucket_order;
429 
430 	/*
431 	 * Look up the memcg associated with the stored ID. It might
432 	 * have been deleted since the folio's eviction.
433 	 *
434 	 * Note that in rare events the ID could have been recycled
435 	 * for a new cgroup that refaults a shared folio. This is
436 	 * impossible to tell from the available data. However, this
437 	 * should be a rare and limited disturbance, and activations
438 	 * are always speculative anyway. Ultimately, it's the aging
439 	 * algorithm's job to shake out the minimum access frequency
440 	 * for the active cache.
441 	 *
442 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
443 	 * would be better if the root_mem_cgroup existed in all
444 	 * configurations instead.
445 	 */
446 	eviction_memcg = mem_cgroup_from_id(memcgid);
447 	if (!mem_cgroup_disabled() && !eviction_memcg)
448 		return false;
449 
450 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
451 	refault = atomic_long_read(&eviction_lruvec->nonresident_age);
452 
453 	/*
454 	 * Calculate the refault distance
455 	 *
456 	 * The unsigned subtraction here gives an accurate distance
457 	 * across nonresident_age overflows in most cases. There is a
458 	 * special case: usually, shadow entries have a short lifetime
459 	 * and are either refaulted or reclaimed along with the inode
460 	 * before they get too old.  But it is not impossible for the
461 	 * nonresident_age to lap a shadow entry in the field, which
462 	 * can then result in a false small refault distance, leading
463 	 * to a false activation should this old entry actually
464 	 * refault again.  However, earlier kernels used to deactivate
465 	 * unconditionally with *every* reclaim invocation for the
466 	 * longest time, so the occasional inappropriate activation
467 	 * leading to pressure on the active list is not a problem.
468 	 */
469 	refault_distance = (refault - eviction) & EVICTION_MASK;
470 
471 	/*
472 	 * Compare the distance to the existing workingset size. We
473 	 * don't activate pages that couldn't stay resident even if
474 	 * all the memory was available to the workingset. Whether
475 	 * workingset competition needs to consider anon or not depends
476 	 * on having free swap space.
477 	 */
478 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
479 	if (!file) {
480 		workingset_size += lruvec_page_state(eviction_lruvec,
481 						     NR_INACTIVE_FILE);
482 	}
483 	if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
484 		workingset_size += lruvec_page_state(eviction_lruvec,
485 						     NR_ACTIVE_ANON);
486 		if (file) {
487 			workingset_size += lruvec_page_state(eviction_lruvec,
488 						     NR_INACTIVE_ANON);
489 		}
490 	}
491 
492 	return refault_distance <= workingset_size;
493 }
494 
495 /**
496  * workingset_refault - Evaluate the refault of a previously evicted folio.
497  * @folio: The freshly allocated replacement folio.
498  * @shadow: Shadow entry of the evicted folio.
499  *
500  * Calculates and evaluates the refault distance of the previously
501  * evicted folio in the context of the node and the memcg whose memory
502  * pressure caused the eviction.
503  */
504 void workingset_refault(struct folio *folio, void *shadow)
505 {
506 	bool file = folio_is_file_lru(folio);
507 	struct pglist_data *pgdat;
508 	struct mem_cgroup *memcg;
509 	struct lruvec *lruvec;
510 	bool workingset;
511 	long nr;
512 
513 	if (lru_gen_enabled()) {
514 		lru_gen_refault(folio, shadow);
515 		return;
516 	}
517 
518 	/* Flush stats (and potentially sleep) before holding RCU read lock */
519 	mem_cgroup_flush_stats_ratelimited();
520 
521 	rcu_read_lock();
522 
523 	/*
524 	 * The activation decision for this folio is made at the level
525 	 * where the eviction occurred, as that is where the LRU order
526 	 * during folio reclaim is being determined.
527 	 *
528 	 * However, the cgroup that will own the folio is the one that
529 	 * is actually experiencing the refault event.
530 	 */
531 	nr = folio_nr_pages(folio);
532 	memcg = folio_memcg(folio);
533 	pgdat = folio_pgdat(folio);
534 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
535 
536 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
537 
538 	if (!workingset_test_recent(shadow, file, &workingset))
539 		goto out;
540 
541 	folio_set_active(folio);
542 	workingset_age_nonresident(lruvec, nr);
543 	mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
544 
545 	/* Folio was active prior to eviction */
546 	if (workingset) {
547 		folio_set_workingset(folio);
548 		/*
549 		 * XXX: Move to folio_add_lru() when it supports new vs
550 		 * putback
551 		 */
552 		lru_note_cost_refault(folio);
553 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
554 	}
555 out:
556 	rcu_read_unlock();
557 }
558 
559 /**
560  * workingset_activation - note a page activation
561  * @folio: Folio that is being activated.
562  */
563 void workingset_activation(struct folio *folio)
564 {
565 	struct mem_cgroup *memcg;
566 
567 	rcu_read_lock();
568 	/*
569 	 * Filter non-memcg pages here, e.g. unmap can call
570 	 * mark_page_accessed() on VDSO pages.
571 	 *
572 	 * XXX: See workingset_refault() - this should return
573 	 * root_mem_cgroup even for !CONFIG_MEMCG.
574 	 */
575 	memcg = folio_memcg_rcu(folio);
576 	if (!mem_cgroup_disabled() && !memcg)
577 		goto out;
578 	workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
579 out:
580 	rcu_read_unlock();
581 }
582 
583 /*
584  * Shadow entries reflect the share of the working set that does not
585  * fit into memory, so their number depends on the access pattern of
586  * the workload.  In most cases, they will refault or get reclaimed
587  * along with the inode, but a (malicious) workload that streams
588  * through files with a total size several times that of available
589  * memory, while preventing the inodes from being reclaimed, can
590  * create excessive amounts of shadow nodes.  To keep a lid on this,
591  * track shadow nodes and reclaim them when they grow way past the
592  * point where they would still be useful.
593  */
594 
595 struct list_lru shadow_nodes;
596 
597 void workingset_update_node(struct xa_node *node)
598 {
599 	struct address_space *mapping;
600 
601 	/*
602 	 * Track non-empty nodes that contain only shadow entries;
603 	 * unlink those that contain pages or are being freed.
604 	 *
605 	 * Avoid acquiring the list_lru lock when the nodes are
606 	 * already where they should be. The list_empty() test is safe
607 	 * as node->private_list is protected by the i_pages lock.
608 	 */
609 	mapping = container_of(node->array, struct address_space, i_pages);
610 	lockdep_assert_held(&mapping->i_pages.xa_lock);
611 
612 	if (node->count && node->count == node->nr_values) {
613 		if (list_empty(&node->private_list)) {
614 			list_lru_add(&shadow_nodes, &node->private_list);
615 			__inc_lruvec_kmem_state(node, WORKINGSET_NODES);
616 		}
617 	} else {
618 		if (!list_empty(&node->private_list)) {
619 			list_lru_del(&shadow_nodes, &node->private_list);
620 			__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
621 		}
622 	}
623 }
624 
625 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
626 					struct shrink_control *sc)
627 {
628 	unsigned long max_nodes;
629 	unsigned long nodes;
630 	unsigned long pages;
631 
632 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
633 	if (!nodes)
634 		return SHRINK_EMPTY;
635 
636 	/*
637 	 * Approximate a reasonable limit for the nodes
638 	 * containing shadow entries. We don't need to keep more
639 	 * shadow entries than possible pages on the active list,
640 	 * since refault distances bigger than that are dismissed.
641 	 *
642 	 * The size of the active list converges toward 100% of
643 	 * overall page cache as memory grows, with only a tiny
644 	 * inactive list. Assume the total cache size for that.
645 	 *
646 	 * Nodes might be sparsely populated, with only one shadow
647 	 * entry in the extreme case. Obviously, we cannot keep one
648 	 * node for every eligible shadow entry, so compromise on a
649 	 * worst-case density of 1/8th. Below that, not all eligible
650 	 * refaults can be detected anymore.
651 	 *
652 	 * On 64-bit with 7 xa_nodes per page and 64 slots
653 	 * each, this will reclaim shadow entries when they consume
654 	 * ~1.8% of available memory:
655 	 *
656 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
657 	 */
658 #ifdef CONFIG_MEMCG
659 	if (sc->memcg) {
660 		struct lruvec *lruvec;
661 		int i;
662 
663 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
664 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
665 			pages += lruvec_page_state_local(lruvec,
666 							 NR_LRU_BASE + i);
667 		pages += lruvec_page_state_local(
668 			lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
669 		pages += lruvec_page_state_local(
670 			lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
671 	} else
672 #endif
673 		pages = node_present_pages(sc->nid);
674 
675 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
676 
677 	if (nodes <= max_nodes)
678 		return 0;
679 	return nodes - max_nodes;
680 }
681 
682 static enum lru_status shadow_lru_isolate(struct list_head *item,
683 					  struct list_lru_one *lru,
684 					  spinlock_t *lru_lock,
685 					  void *arg) __must_hold(lru_lock)
686 {
687 	struct xa_node *node = container_of(item, struct xa_node, private_list);
688 	struct address_space *mapping;
689 	int ret;
690 
691 	/*
692 	 * Page cache insertions and deletions synchronously maintain
693 	 * the shadow node LRU under the i_pages lock and the
694 	 * lru_lock.  Because the page cache tree is emptied before
695 	 * the inode can be destroyed, holding the lru_lock pins any
696 	 * address_space that has nodes on the LRU.
697 	 *
698 	 * We can then safely transition to the i_pages lock to
699 	 * pin only the address_space of the particular node we want
700 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
701 	 */
702 
703 	mapping = container_of(node->array, struct address_space, i_pages);
704 
705 	/* Coming from the list, invert the lock order */
706 	if (!xa_trylock(&mapping->i_pages)) {
707 		spin_unlock_irq(lru_lock);
708 		ret = LRU_RETRY;
709 		goto out;
710 	}
711 
712 	/* For page cache we need to hold i_lock */
713 	if (mapping->host != NULL) {
714 		if (!spin_trylock(&mapping->host->i_lock)) {
715 			xa_unlock(&mapping->i_pages);
716 			spin_unlock_irq(lru_lock);
717 			ret = LRU_RETRY;
718 			goto out;
719 		}
720 	}
721 
722 	list_lru_isolate(lru, item);
723 	__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
724 
725 	spin_unlock(lru_lock);
726 
727 	/*
728 	 * The nodes should only contain one or more shadow entries,
729 	 * no pages, so we expect to be able to remove them all and
730 	 * delete and free the empty node afterwards.
731 	 */
732 	if (WARN_ON_ONCE(!node->nr_values))
733 		goto out_invalid;
734 	if (WARN_ON_ONCE(node->count != node->nr_values))
735 		goto out_invalid;
736 	xa_delete_node(node, workingset_update_node);
737 	__inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
738 
739 out_invalid:
740 	xa_unlock_irq(&mapping->i_pages);
741 	if (mapping->host != NULL) {
742 		if (mapping_shrinkable(mapping))
743 			inode_add_lru(mapping->host);
744 		spin_unlock(&mapping->host->i_lock);
745 	}
746 	ret = LRU_REMOVED_RETRY;
747 out:
748 	cond_resched();
749 	spin_lock_irq(lru_lock);
750 	return ret;
751 }
752 
753 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
754 				       struct shrink_control *sc)
755 {
756 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
757 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
758 					NULL);
759 }
760 
761 static struct shrinker workingset_shadow_shrinker = {
762 	.count_objects = count_shadow_nodes,
763 	.scan_objects = scan_shadow_nodes,
764 	.seeks = 0, /* ->count reports only fully expendable nodes */
765 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
766 };
767 
768 /*
769  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
770  * i_pages lock.
771  */
772 static struct lock_class_key shadow_nodes_key;
773 
774 static int __init workingset_init(void)
775 {
776 	unsigned int timestamp_bits;
777 	unsigned int max_order;
778 	int ret;
779 
780 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
781 	/*
782 	 * Calculate the eviction bucket size to cover the longest
783 	 * actionable refault distance, which is currently half of
784 	 * memory (totalram_pages/2). However, memory hotplug may add
785 	 * some more pages at runtime, so keep working with up to
786 	 * double the initial memory by using totalram_pages as-is.
787 	 */
788 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
789 	max_order = fls_long(totalram_pages() - 1);
790 	if (max_order > timestamp_bits)
791 		bucket_order = max_order - timestamp_bits;
792 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
793 	       timestamp_bits, max_order, bucket_order);
794 
795 	ret = prealloc_shrinker(&workingset_shadow_shrinker, "mm-shadow");
796 	if (ret)
797 		goto err;
798 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
799 			      &workingset_shadow_shrinker);
800 	if (ret)
801 		goto err_list_lru;
802 	register_shrinker_prepared(&workingset_shadow_shrinker);
803 	return 0;
804 err_list_lru:
805 	free_prealloced_shrinker(&workingset_shadow_shrinker);
806 err:
807 	return ret;
808 }
809 module_init(workingset_init);
810