xref: /linux/mm/workingset.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/writeback.h>
10 #include <linux/shmem_fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/swap.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 
19 /*
20  *		Double CLOCK lists
21  *
22  * Per node, two clock lists are maintained for file pages: the
23  * inactive and the active list.  Freshly faulted pages start out at
24  * the head of the inactive list and page reclaim scans pages from the
25  * tail.  Pages that are accessed multiple times on the inactive list
26  * are promoted to the active list, to protect them from reclaim,
27  * whereas active pages are demoted to the inactive list when the
28  * active list grows too big.
29  *
30  *   fault ------------------------+
31  *                                 |
32  *              +--------------+   |            +-------------+
33  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
34  *              +--------------+                +-------------+    |
35  *                     |                                           |
36  *                     +-------------- promotion ------------------+
37  *
38  *
39  *		Access frequency and refault distance
40  *
41  * A workload is thrashing when its pages are frequently used but they
42  * are evicted from the inactive list every time before another access
43  * would have promoted them to the active list.
44  *
45  * In cases where the average access distance between thrashing pages
46  * is bigger than the size of memory there is nothing that can be
47  * done - the thrashing set could never fit into memory under any
48  * circumstance.
49  *
50  * However, the average access distance could be bigger than the
51  * inactive list, yet smaller than the size of memory.  In this case,
52  * the set could fit into memory if it weren't for the currently
53  * active pages - which may be used more, hopefully less frequently:
54  *
55  *      +-memory available to cache-+
56  *      |                           |
57  *      +-inactive------+-active----+
58  *  a b | c d e f g h i | J K L M N |
59  *      +---------------+-----------+
60  *
61  * It is prohibitively expensive to accurately track access frequency
62  * of pages.  But a reasonable approximation can be made to measure
63  * thrashing on the inactive list, after which refaulting pages can be
64  * activated optimistically to compete with the existing active pages.
65  *
66  * Approximating inactive page access frequency - Observations:
67  *
68  * 1. When a page is accessed for the first time, it is added to the
69  *    head of the inactive list, slides every existing inactive page
70  *    towards the tail by one slot, and pushes the current tail page
71  *    out of memory.
72  *
73  * 2. When a page is accessed for the second time, it is promoted to
74  *    the active list, shrinking the inactive list by one slot.  This
75  *    also slides all inactive pages that were faulted into the cache
76  *    more recently than the activated page towards the tail of the
77  *    inactive list.
78  *
79  * Thus:
80  *
81  * 1. The sum of evictions and activations between any two points in
82  *    time indicate the minimum number of inactive pages accessed in
83  *    between.
84  *
85  * 2. Moving one inactive page N page slots towards the tail of the
86  *    list requires at least N inactive page accesses.
87  *
88  * Combining these:
89  *
90  * 1. When a page is finally evicted from memory, the number of
91  *    inactive pages accessed while the page was in cache is at least
92  *    the number of page slots on the inactive list.
93  *
94  * 2. In addition, measuring the sum of evictions and activations (E)
95  *    at the time of a page's eviction, and comparing it to another
96  *    reading (R) at the time the page faults back into memory tells
97  *    the minimum number of accesses while the page was not cached.
98  *    This is called the refault distance.
99  *
100  * Because the first access of the page was the fault and the second
101  * access the refault, we combine the in-cache distance with the
102  * out-of-cache distance to get the complete minimum access distance
103  * of this page:
104  *
105  *      NR_inactive + (R - E)
106  *
107  * And knowing the minimum access distance of a page, we can easily
108  * tell if the page would be able to stay in cache assuming all page
109  * slots in the cache were available:
110  *
111  *   NR_inactive + (R - E) <= NR_inactive + NR_active
112  *
113  * which can be further simplified to
114  *
115  *   (R - E) <= NR_active
116  *
117  * Put into words, the refault distance (out-of-cache) can be seen as
118  * a deficit in inactive list space (in-cache).  If the inactive list
119  * had (R - E) more page slots, the page would not have been evicted
120  * in between accesses, but activated instead.  And on a full system,
121  * the only thing eating into inactive list space is active pages.
122  *
123  *
124  *		Refaulting inactive pages
125  *
126  * All that is known about the active list is that the pages have been
127  * accessed more than once in the past.  This means that at any given
128  * time there is actually a good chance that pages on the active list
129  * are no longer in active use.
130  *
131  * So when a refault distance of (R - E) is observed and there are at
132  * least (R - E) active pages, the refaulting page is activated
133  * optimistically in the hope that (R - E) active pages are actually
134  * used less frequently than the refaulting page - or even not used at
135  * all anymore.
136  *
137  * That means if inactive cache is refaulting with a suitable refault
138  * distance, we assume the cache workingset is transitioning and put
139  * pressure on the current active list.
140  *
141  * If this is wrong and demotion kicks in, the pages which are truly
142  * used more frequently will be reactivated while the less frequently
143  * used once will be evicted from memory.
144  *
145  * But if this is right, the stale pages will be pushed out of memory
146  * and the used pages get to stay in cache.
147  *
148  *		Refaulting active pages
149  *
150  * If on the other hand the refaulting pages have recently been
151  * deactivated, it means that the active list is no longer protecting
152  * actively used cache from reclaim. The cache is NOT transitioning to
153  * a different workingset; the existing workingset is thrashing in the
154  * space allocated to the page cache.
155  *
156  *
157  *		Implementation
158  *
159  * For each node's file LRU lists, a counter for inactive evictions
160  * and activations is maintained (node->inactive_age).
161  *
162  * On eviction, a snapshot of this counter (along with some bits to
163  * identify the node) is stored in the now empty page cache
164  * slot of the evicted page.  This is called a shadow entry.
165  *
166  * On cache misses for which there are shadow entries, an eligible
167  * refault distance will immediately activate the refaulting page.
168  */
169 
170 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
171 			 1 + NODES_SHIFT + MEM_CGROUP_ID_SHIFT)
172 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
173 
174 /*
175  * Eviction timestamps need to be able to cover the full range of
176  * actionable refaults. However, bits are tight in the xarray
177  * entry, and after storing the identifier for the lruvec there might
178  * not be enough left to represent every single actionable refault. In
179  * that case, we have to sacrifice granularity for distance, and group
180  * evictions into coarser buckets by shaving off lower timestamp bits.
181  */
182 static unsigned int bucket_order __read_mostly;
183 
184 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
185 			 bool workingset)
186 {
187 	eviction >>= bucket_order;
188 	eviction &= EVICTION_MASK;
189 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
190 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
191 	eviction = (eviction << 1) | workingset;
192 
193 	return xa_mk_value(eviction);
194 }
195 
196 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
197 			  unsigned long *evictionp, bool *workingsetp)
198 {
199 	unsigned long entry = xa_to_value(shadow);
200 	int memcgid, nid;
201 	bool workingset;
202 
203 	workingset = entry & 1;
204 	entry >>= 1;
205 	nid = entry & ((1UL << NODES_SHIFT) - 1);
206 	entry >>= NODES_SHIFT;
207 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
208 	entry >>= MEM_CGROUP_ID_SHIFT;
209 
210 	*memcgidp = memcgid;
211 	*pgdat = NODE_DATA(nid);
212 	*evictionp = entry << bucket_order;
213 	*workingsetp = workingset;
214 }
215 
216 static void advance_inactive_age(struct mem_cgroup *memcg, pg_data_t *pgdat)
217 {
218 	/*
219 	 * Reclaiming a cgroup means reclaiming all its children in a
220 	 * round-robin fashion. That means that each cgroup has an LRU
221 	 * order that is composed of the LRU orders of its child
222 	 * cgroups; and every page has an LRU position not just in the
223 	 * cgroup that owns it, but in all of that group's ancestors.
224 	 *
225 	 * So when the physical inactive list of a leaf cgroup ages,
226 	 * the virtual inactive lists of all its parents, including
227 	 * the root cgroup's, age as well.
228 	 */
229 	do {
230 		struct lruvec *lruvec;
231 
232 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
233 		atomic_long_inc(&lruvec->inactive_age);
234 	} while (memcg && (memcg = parent_mem_cgroup(memcg)));
235 }
236 
237 /**
238  * workingset_eviction - note the eviction of a page from memory
239  * @target_memcg: the cgroup that is causing the reclaim
240  * @page: the page being evicted
241  *
242  * Returns a shadow entry to be stored in @page->mapping->i_pages in place
243  * of the evicted @page so that a later refault can be detected.
244  */
245 void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg)
246 {
247 	struct pglist_data *pgdat = page_pgdat(page);
248 	unsigned long eviction;
249 	struct lruvec *lruvec;
250 	int memcgid;
251 
252 	/* Page is fully exclusive and pins page->mem_cgroup */
253 	VM_BUG_ON_PAGE(PageLRU(page), page);
254 	VM_BUG_ON_PAGE(page_count(page), page);
255 	VM_BUG_ON_PAGE(!PageLocked(page), page);
256 
257 	advance_inactive_age(page_memcg(page), pgdat);
258 
259 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
260 	/* XXX: target_memcg can be NULL, go through lruvec */
261 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
262 	eviction = atomic_long_read(&lruvec->inactive_age);
263 	return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
264 }
265 
266 /**
267  * workingset_refault - evaluate the refault of a previously evicted page
268  * @page: the freshly allocated replacement page
269  * @shadow: shadow entry of the evicted page
270  *
271  * Calculates and evaluates the refault distance of the previously
272  * evicted page in the context of the node and the memcg whose memory
273  * pressure caused the eviction.
274  */
275 void workingset_refault(struct page *page, void *shadow)
276 {
277 	struct mem_cgroup *eviction_memcg;
278 	struct lruvec *eviction_lruvec;
279 	unsigned long refault_distance;
280 	unsigned long workingset_size;
281 	struct pglist_data *pgdat;
282 	struct mem_cgroup *memcg;
283 	unsigned long eviction;
284 	struct lruvec *lruvec;
285 	unsigned long refault;
286 	bool workingset;
287 	int memcgid;
288 
289 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
290 
291 	rcu_read_lock();
292 	/*
293 	 * Look up the memcg associated with the stored ID. It might
294 	 * have been deleted since the page's eviction.
295 	 *
296 	 * Note that in rare events the ID could have been recycled
297 	 * for a new cgroup that refaults a shared page. This is
298 	 * impossible to tell from the available data. However, this
299 	 * should be a rare and limited disturbance, and activations
300 	 * are always speculative anyway. Ultimately, it's the aging
301 	 * algorithm's job to shake out the minimum access frequency
302 	 * for the active cache.
303 	 *
304 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
305 	 * would be better if the root_mem_cgroup existed in all
306 	 * configurations instead.
307 	 */
308 	eviction_memcg = mem_cgroup_from_id(memcgid);
309 	if (!mem_cgroup_disabled() && !eviction_memcg)
310 		goto out;
311 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
312 	refault = atomic_long_read(&eviction_lruvec->inactive_age);
313 
314 	/*
315 	 * Calculate the refault distance
316 	 *
317 	 * The unsigned subtraction here gives an accurate distance
318 	 * across inactive_age overflows in most cases. There is a
319 	 * special case: usually, shadow entries have a short lifetime
320 	 * and are either refaulted or reclaimed along with the inode
321 	 * before they get too old.  But it is not impossible for the
322 	 * inactive_age to lap a shadow entry in the field, which can
323 	 * then result in a false small refault distance, leading to a
324 	 * false activation should this old entry actually refault
325 	 * again.  However, earlier kernels used to deactivate
326 	 * unconditionally with *every* reclaim invocation for the
327 	 * longest time, so the occasional inappropriate activation
328 	 * leading to pressure on the active list is not a problem.
329 	 */
330 	refault_distance = (refault - eviction) & EVICTION_MASK;
331 
332 	/*
333 	 * The activation decision for this page is made at the level
334 	 * where the eviction occurred, as that is where the LRU order
335 	 * during page reclaim is being determined.
336 	 *
337 	 * However, the cgroup that will own the page is the one that
338 	 * is actually experiencing the refault event.
339 	 */
340 	memcg = page_memcg(page);
341 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
342 
343 	inc_lruvec_state(lruvec, WORKINGSET_REFAULT);
344 
345 	/*
346 	 * Compare the distance to the existing workingset size. We
347 	 * don't activate pages that couldn't stay resident even if
348 	 * all the memory was available to the page cache. Whether
349 	 * cache can compete with anon or not depends on having swap.
350 	 */
351 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
352 	if (mem_cgroup_get_nr_swap_pages(memcg) > 0) {
353 		workingset_size += lruvec_page_state(eviction_lruvec,
354 						     NR_INACTIVE_ANON);
355 		workingset_size += lruvec_page_state(eviction_lruvec,
356 						     NR_ACTIVE_ANON);
357 	}
358 	if (refault_distance > workingset_size)
359 		goto out;
360 
361 	SetPageActive(page);
362 	advance_inactive_age(memcg, pgdat);
363 	inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE);
364 
365 	/* Page was active prior to eviction */
366 	if (workingset) {
367 		SetPageWorkingset(page);
368 		/* XXX: Move to lru_cache_add() when it supports new vs putback */
369 		spin_lock_irq(&page_pgdat(page)->lru_lock);
370 		lru_note_cost_page(page);
371 		spin_unlock_irq(&page_pgdat(page)->lru_lock);
372 		inc_lruvec_state(lruvec, WORKINGSET_RESTORE);
373 	}
374 out:
375 	rcu_read_unlock();
376 }
377 
378 /**
379  * workingset_activation - note a page activation
380  * @page: page that is being activated
381  */
382 void workingset_activation(struct page *page)
383 {
384 	struct mem_cgroup *memcg;
385 
386 	rcu_read_lock();
387 	/*
388 	 * Filter non-memcg pages here, e.g. unmap can call
389 	 * mark_page_accessed() on VDSO pages.
390 	 *
391 	 * XXX: See workingset_refault() - this should return
392 	 * root_mem_cgroup even for !CONFIG_MEMCG.
393 	 */
394 	memcg = page_memcg_rcu(page);
395 	if (!mem_cgroup_disabled() && !memcg)
396 		goto out;
397 	advance_inactive_age(memcg, page_pgdat(page));
398 out:
399 	rcu_read_unlock();
400 }
401 
402 /*
403  * Shadow entries reflect the share of the working set that does not
404  * fit into memory, so their number depends on the access pattern of
405  * the workload.  In most cases, they will refault or get reclaimed
406  * along with the inode, but a (malicious) workload that streams
407  * through files with a total size several times that of available
408  * memory, while preventing the inodes from being reclaimed, can
409  * create excessive amounts of shadow nodes.  To keep a lid on this,
410  * track shadow nodes and reclaim them when they grow way past the
411  * point where they would still be useful.
412  */
413 
414 static struct list_lru shadow_nodes;
415 
416 void workingset_update_node(struct xa_node *node)
417 {
418 	/*
419 	 * Track non-empty nodes that contain only shadow entries;
420 	 * unlink those that contain pages or are being freed.
421 	 *
422 	 * Avoid acquiring the list_lru lock when the nodes are
423 	 * already where they should be. The list_empty() test is safe
424 	 * as node->private_list is protected by the i_pages lock.
425 	 */
426 	VM_WARN_ON_ONCE(!irqs_disabled());  /* For __inc_lruvec_page_state */
427 
428 	if (node->count && node->count == node->nr_values) {
429 		if (list_empty(&node->private_list)) {
430 			list_lru_add(&shadow_nodes, &node->private_list);
431 			__inc_lruvec_slab_state(node, WORKINGSET_NODES);
432 		}
433 	} else {
434 		if (!list_empty(&node->private_list)) {
435 			list_lru_del(&shadow_nodes, &node->private_list);
436 			__dec_lruvec_slab_state(node, WORKINGSET_NODES);
437 		}
438 	}
439 }
440 
441 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
442 					struct shrink_control *sc)
443 {
444 	unsigned long max_nodes;
445 	unsigned long nodes;
446 	unsigned long pages;
447 
448 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
449 
450 	/*
451 	 * Approximate a reasonable limit for the nodes
452 	 * containing shadow entries. We don't need to keep more
453 	 * shadow entries than possible pages on the active list,
454 	 * since refault distances bigger than that are dismissed.
455 	 *
456 	 * The size of the active list converges toward 100% of
457 	 * overall page cache as memory grows, with only a tiny
458 	 * inactive list. Assume the total cache size for that.
459 	 *
460 	 * Nodes might be sparsely populated, with only one shadow
461 	 * entry in the extreme case. Obviously, we cannot keep one
462 	 * node for every eligible shadow entry, so compromise on a
463 	 * worst-case density of 1/8th. Below that, not all eligible
464 	 * refaults can be detected anymore.
465 	 *
466 	 * On 64-bit with 7 xa_nodes per page and 64 slots
467 	 * each, this will reclaim shadow entries when they consume
468 	 * ~1.8% of available memory:
469 	 *
470 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
471 	 */
472 #ifdef CONFIG_MEMCG
473 	if (sc->memcg) {
474 		struct lruvec *lruvec;
475 		int i;
476 
477 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
478 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
479 			pages += lruvec_page_state_local(lruvec,
480 							 NR_LRU_BASE + i);
481 		pages += lruvec_page_state_local(lruvec, NR_SLAB_RECLAIMABLE);
482 		pages += lruvec_page_state_local(lruvec, NR_SLAB_UNRECLAIMABLE);
483 	} else
484 #endif
485 		pages = node_present_pages(sc->nid);
486 
487 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
488 
489 	if (!nodes)
490 		return SHRINK_EMPTY;
491 
492 	if (nodes <= max_nodes)
493 		return 0;
494 	return nodes - max_nodes;
495 }
496 
497 static enum lru_status shadow_lru_isolate(struct list_head *item,
498 					  struct list_lru_one *lru,
499 					  spinlock_t *lru_lock,
500 					  void *arg) __must_hold(lru_lock)
501 {
502 	struct xa_node *node = container_of(item, struct xa_node, private_list);
503 	XA_STATE(xas, node->array, 0);
504 	struct address_space *mapping;
505 	int ret;
506 
507 	/*
508 	 * Page cache insertions and deletions synchroneously maintain
509 	 * the shadow node LRU under the i_pages lock and the
510 	 * lru_lock.  Because the page cache tree is emptied before
511 	 * the inode can be destroyed, holding the lru_lock pins any
512 	 * address_space that has nodes on the LRU.
513 	 *
514 	 * We can then safely transition to the i_pages lock to
515 	 * pin only the address_space of the particular node we want
516 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
517 	 */
518 
519 	mapping = container_of(node->array, struct address_space, i_pages);
520 
521 	/* Coming from the list, invert the lock order */
522 	if (!xa_trylock(&mapping->i_pages)) {
523 		spin_unlock_irq(lru_lock);
524 		ret = LRU_RETRY;
525 		goto out;
526 	}
527 
528 	list_lru_isolate(lru, item);
529 	__dec_lruvec_slab_state(node, WORKINGSET_NODES);
530 
531 	spin_unlock(lru_lock);
532 
533 	/*
534 	 * The nodes should only contain one or more shadow entries,
535 	 * no pages, so we expect to be able to remove them all and
536 	 * delete and free the empty node afterwards.
537 	 */
538 	if (WARN_ON_ONCE(!node->nr_values))
539 		goto out_invalid;
540 	if (WARN_ON_ONCE(node->count != node->nr_values))
541 		goto out_invalid;
542 	mapping->nrexceptional -= node->nr_values;
543 	xas.xa_node = xa_parent_locked(&mapping->i_pages, node);
544 	xas.xa_offset = node->offset;
545 	xas.xa_shift = node->shift + XA_CHUNK_SHIFT;
546 	xas_set_update(&xas, workingset_update_node);
547 	/*
548 	 * We could store a shadow entry here which was the minimum of the
549 	 * shadow entries we were tracking ...
550 	 */
551 	xas_store(&xas, NULL);
552 	__inc_lruvec_slab_state(node, WORKINGSET_NODERECLAIM);
553 
554 out_invalid:
555 	xa_unlock_irq(&mapping->i_pages);
556 	ret = LRU_REMOVED_RETRY;
557 out:
558 	cond_resched();
559 	spin_lock_irq(lru_lock);
560 	return ret;
561 }
562 
563 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
564 				       struct shrink_control *sc)
565 {
566 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
567 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
568 					NULL);
569 }
570 
571 static struct shrinker workingset_shadow_shrinker = {
572 	.count_objects = count_shadow_nodes,
573 	.scan_objects = scan_shadow_nodes,
574 	.seeks = 0, /* ->count reports only fully expendable nodes */
575 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
576 };
577 
578 /*
579  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
580  * i_pages lock.
581  */
582 static struct lock_class_key shadow_nodes_key;
583 
584 static int __init workingset_init(void)
585 {
586 	unsigned int timestamp_bits;
587 	unsigned int max_order;
588 	int ret;
589 
590 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
591 	/*
592 	 * Calculate the eviction bucket size to cover the longest
593 	 * actionable refault distance, which is currently half of
594 	 * memory (totalram_pages/2). However, memory hotplug may add
595 	 * some more pages at runtime, so keep working with up to
596 	 * double the initial memory by using totalram_pages as-is.
597 	 */
598 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
599 	max_order = fls_long(totalram_pages() - 1);
600 	if (max_order > timestamp_bits)
601 		bucket_order = max_order - timestamp_bits;
602 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
603 	       timestamp_bits, max_order, bucket_order);
604 
605 	ret = prealloc_shrinker(&workingset_shadow_shrinker);
606 	if (ret)
607 		goto err;
608 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
609 			      &workingset_shadow_shrinker);
610 	if (ret)
611 		goto err_list_lru;
612 	register_shrinker_prepared(&workingset_shadow_shrinker);
613 	return 0;
614 err_list_lru:
615 	free_prealloced_shrinker(&workingset_shadow_shrinker);
616 err:
617 	return ret;
618 }
619 module_init(workingset_init);
620