xref: /linux/mm/workingset.c (revision 4b4e41f35cc700e328e693f0c18b24424ab47ff0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/writeback.h>
10 #include <linux/shmem_fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/swap.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 
19 /*
20  *		Double CLOCK lists
21  *
22  * Per node, two clock lists are maintained for file pages: the
23  * inactive and the active list.  Freshly faulted pages start out at
24  * the head of the inactive list and page reclaim scans pages from the
25  * tail.  Pages that are accessed multiple times on the inactive list
26  * are promoted to the active list, to protect them from reclaim,
27  * whereas active pages are demoted to the inactive list when the
28  * active list grows too big.
29  *
30  *   fault ------------------------+
31  *                                 |
32  *              +--------------+   |            +-------------+
33  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
34  *              +--------------+                +-------------+    |
35  *                     |                                           |
36  *                     +-------------- promotion ------------------+
37  *
38  *
39  *		Access frequency and refault distance
40  *
41  * A workload is thrashing when its pages are frequently used but they
42  * are evicted from the inactive list every time before another access
43  * would have promoted them to the active list.
44  *
45  * In cases where the average access distance between thrashing pages
46  * is bigger than the size of memory there is nothing that can be
47  * done - the thrashing set could never fit into memory under any
48  * circumstance.
49  *
50  * However, the average access distance could be bigger than the
51  * inactive list, yet smaller than the size of memory.  In this case,
52  * the set could fit into memory if it weren't for the currently
53  * active pages - which may be used more, hopefully less frequently:
54  *
55  *      +-memory available to cache-+
56  *      |                           |
57  *      +-inactive------+-active----+
58  *  a b | c d e f g h i | J K L M N |
59  *      +---------------+-----------+
60  *
61  * It is prohibitively expensive to accurately track access frequency
62  * of pages.  But a reasonable approximation can be made to measure
63  * thrashing on the inactive list, after which refaulting pages can be
64  * activated optimistically to compete with the existing active pages.
65  *
66  * Approximating inactive page access frequency - Observations:
67  *
68  * 1. When a page is accessed for the first time, it is added to the
69  *    head of the inactive list, slides every existing inactive page
70  *    towards the tail by one slot, and pushes the current tail page
71  *    out of memory.
72  *
73  * 2. When a page is accessed for the second time, it is promoted to
74  *    the active list, shrinking the inactive list by one slot.  This
75  *    also slides all inactive pages that were faulted into the cache
76  *    more recently than the activated page towards the tail of the
77  *    inactive list.
78  *
79  * Thus:
80  *
81  * 1. The sum of evictions and activations between any two points in
82  *    time indicate the minimum number of inactive pages accessed in
83  *    between.
84  *
85  * 2. Moving one inactive page N page slots towards the tail of the
86  *    list requires at least N inactive page accesses.
87  *
88  * Combining these:
89  *
90  * 1. When a page is finally evicted from memory, the number of
91  *    inactive pages accessed while the page was in cache is at least
92  *    the number of page slots on the inactive list.
93  *
94  * 2. In addition, measuring the sum of evictions and activations (E)
95  *    at the time of a page's eviction, and comparing it to another
96  *    reading (R) at the time the page faults back into memory tells
97  *    the minimum number of accesses while the page was not cached.
98  *    This is called the refault distance.
99  *
100  * Because the first access of the page was the fault and the second
101  * access the refault, we combine the in-cache distance with the
102  * out-of-cache distance to get the complete minimum access distance
103  * of this page:
104  *
105  *      NR_inactive + (R - E)
106  *
107  * And knowing the minimum access distance of a page, we can easily
108  * tell if the page would be able to stay in cache assuming all page
109  * slots in the cache were available:
110  *
111  *   NR_inactive + (R - E) <= NR_inactive + NR_active
112  *
113  * which can be further simplified to
114  *
115  *   (R - E) <= NR_active
116  *
117  * Put into words, the refault distance (out-of-cache) can be seen as
118  * a deficit in inactive list space (in-cache).  If the inactive list
119  * had (R - E) more page slots, the page would not have been evicted
120  * in between accesses, but activated instead.  And on a full system,
121  * the only thing eating into inactive list space is active pages.
122  *
123  *
124  *		Refaulting inactive pages
125  *
126  * All that is known about the active list is that the pages have been
127  * accessed more than once in the past.  This means that at any given
128  * time there is actually a good chance that pages on the active list
129  * are no longer in active use.
130  *
131  * So when a refault distance of (R - E) is observed and there are at
132  * least (R - E) active pages, the refaulting page is activated
133  * optimistically in the hope that (R - E) active pages are actually
134  * used less frequently than the refaulting page - or even not used at
135  * all anymore.
136  *
137  * That means if inactive cache is refaulting with a suitable refault
138  * distance, we assume the cache workingset is transitioning and put
139  * pressure on the current active list.
140  *
141  * If this is wrong and demotion kicks in, the pages which are truly
142  * used more frequently will be reactivated while the less frequently
143  * used once will be evicted from memory.
144  *
145  * But if this is right, the stale pages will be pushed out of memory
146  * and the used pages get to stay in cache.
147  *
148  *		Refaulting active pages
149  *
150  * If on the other hand the refaulting pages have recently been
151  * deactivated, it means that the active list is no longer protecting
152  * actively used cache from reclaim. The cache is NOT transitioning to
153  * a different workingset; the existing workingset is thrashing in the
154  * space allocated to the page cache.
155  *
156  *
157  *		Implementation
158  *
159  * For each node's file LRU lists, a counter for inactive evictions
160  * and activations is maintained (node->inactive_age).
161  *
162  * On eviction, a snapshot of this counter (along with some bits to
163  * identify the node) is stored in the now empty page cache
164  * slot of the evicted page.  This is called a shadow entry.
165  *
166  * On cache misses for which there are shadow entries, an eligible
167  * refault distance will immediately activate the refaulting page.
168  */
169 
170 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
171 			 1 + NODES_SHIFT + MEM_CGROUP_ID_SHIFT)
172 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
173 
174 /*
175  * Eviction timestamps need to be able to cover the full range of
176  * actionable refaults. However, bits are tight in the xarray
177  * entry, and after storing the identifier for the lruvec there might
178  * not be enough left to represent every single actionable refault. In
179  * that case, we have to sacrifice granularity for distance, and group
180  * evictions into coarser buckets by shaving off lower timestamp bits.
181  */
182 static unsigned int bucket_order __read_mostly;
183 
184 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
185 			 bool workingset)
186 {
187 	eviction >>= bucket_order;
188 	eviction &= EVICTION_MASK;
189 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
190 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
191 	eviction = (eviction << 1) | workingset;
192 
193 	return xa_mk_value(eviction);
194 }
195 
196 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
197 			  unsigned long *evictionp, bool *workingsetp)
198 {
199 	unsigned long entry = xa_to_value(shadow);
200 	int memcgid, nid;
201 	bool workingset;
202 
203 	workingset = entry & 1;
204 	entry >>= 1;
205 	nid = entry & ((1UL << NODES_SHIFT) - 1);
206 	entry >>= NODES_SHIFT;
207 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
208 	entry >>= MEM_CGROUP_ID_SHIFT;
209 
210 	*memcgidp = memcgid;
211 	*pgdat = NODE_DATA(nid);
212 	*evictionp = entry << bucket_order;
213 	*workingsetp = workingset;
214 }
215 
216 static void advance_inactive_age(struct mem_cgroup *memcg, pg_data_t *pgdat)
217 {
218 	/*
219 	 * Reclaiming a cgroup means reclaiming all its children in a
220 	 * round-robin fashion. That means that each cgroup has an LRU
221 	 * order that is composed of the LRU orders of its child
222 	 * cgroups; and every page has an LRU position not just in the
223 	 * cgroup that owns it, but in all of that group's ancestors.
224 	 *
225 	 * So when the physical inactive list of a leaf cgroup ages,
226 	 * the virtual inactive lists of all its parents, including
227 	 * the root cgroup's, age as well.
228 	 */
229 	do {
230 		struct lruvec *lruvec;
231 
232 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
233 		atomic_long_inc(&lruvec->inactive_age);
234 	} while (memcg && (memcg = parent_mem_cgroup(memcg)));
235 }
236 
237 /**
238  * workingset_eviction - note the eviction of a page from memory
239  * @target_memcg: the cgroup that is causing the reclaim
240  * @page: the page being evicted
241  *
242  * Returns a shadow entry to be stored in @page->mapping->i_pages in place
243  * of the evicted @page so that a later refault can be detected.
244  */
245 void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg)
246 {
247 	struct pglist_data *pgdat = page_pgdat(page);
248 	unsigned long eviction;
249 	struct lruvec *lruvec;
250 	int memcgid;
251 
252 	/* Page is fully exclusive and pins page->mem_cgroup */
253 	VM_BUG_ON_PAGE(PageLRU(page), page);
254 	VM_BUG_ON_PAGE(page_count(page), page);
255 	VM_BUG_ON_PAGE(!PageLocked(page), page);
256 
257 	advance_inactive_age(page_memcg(page), pgdat);
258 
259 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
260 	/* XXX: target_memcg can be NULL, go through lruvec */
261 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
262 	eviction = atomic_long_read(&lruvec->inactive_age);
263 	return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
264 }
265 
266 /**
267  * workingset_refault - evaluate the refault of a previously evicted page
268  * @page: the freshly allocated replacement page
269  * @shadow: shadow entry of the evicted page
270  *
271  * Calculates and evaluates the refault distance of the previously
272  * evicted page in the context of the node and the memcg whose memory
273  * pressure caused the eviction.
274  */
275 void workingset_refault(struct page *page, void *shadow)
276 {
277 	struct mem_cgroup *eviction_memcg;
278 	struct lruvec *eviction_lruvec;
279 	unsigned long refault_distance;
280 	struct pglist_data *pgdat;
281 	unsigned long active_file;
282 	struct mem_cgroup *memcg;
283 	unsigned long eviction;
284 	struct lruvec *lruvec;
285 	unsigned long refault;
286 	bool workingset;
287 	int memcgid;
288 
289 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
290 
291 	rcu_read_lock();
292 	/*
293 	 * Look up the memcg associated with the stored ID. It might
294 	 * have been deleted since the page's eviction.
295 	 *
296 	 * Note that in rare events the ID could have been recycled
297 	 * for a new cgroup that refaults a shared page. This is
298 	 * impossible to tell from the available data. However, this
299 	 * should be a rare and limited disturbance, and activations
300 	 * are always speculative anyway. Ultimately, it's the aging
301 	 * algorithm's job to shake out the minimum access frequency
302 	 * for the active cache.
303 	 *
304 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
305 	 * would be better if the root_mem_cgroup existed in all
306 	 * configurations instead.
307 	 */
308 	eviction_memcg = mem_cgroup_from_id(memcgid);
309 	if (!mem_cgroup_disabled() && !eviction_memcg)
310 		goto out;
311 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
312 	refault = atomic_long_read(&eviction_lruvec->inactive_age);
313 	active_file = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
314 
315 	/*
316 	 * Calculate the refault distance
317 	 *
318 	 * The unsigned subtraction here gives an accurate distance
319 	 * across inactive_age overflows in most cases. There is a
320 	 * special case: usually, shadow entries have a short lifetime
321 	 * and are either refaulted or reclaimed along with the inode
322 	 * before they get too old.  But it is not impossible for the
323 	 * inactive_age to lap a shadow entry in the field, which can
324 	 * then result in a false small refault distance, leading to a
325 	 * false activation should this old entry actually refault
326 	 * again.  However, earlier kernels used to deactivate
327 	 * unconditionally with *every* reclaim invocation for the
328 	 * longest time, so the occasional inappropriate activation
329 	 * leading to pressure on the active list is not a problem.
330 	 */
331 	refault_distance = (refault - eviction) & EVICTION_MASK;
332 
333 	/*
334 	 * The activation decision for this page is made at the level
335 	 * where the eviction occurred, as that is where the LRU order
336 	 * during page reclaim is being determined.
337 	 *
338 	 * However, the cgroup that will own the page is the one that
339 	 * is actually experiencing the refault event.
340 	 */
341 	memcg = page_memcg(page);
342 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
343 
344 	inc_lruvec_state(lruvec, WORKINGSET_REFAULT);
345 
346 	/*
347 	 * Compare the distance to the existing workingset size. We
348 	 * don't act on pages that couldn't stay resident even if all
349 	 * the memory was available to the page cache.
350 	 */
351 	if (refault_distance > active_file)
352 		goto out;
353 
354 	SetPageActive(page);
355 	advance_inactive_age(memcg, pgdat);
356 	inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE);
357 
358 	/* Page was active prior to eviction */
359 	if (workingset) {
360 		SetPageWorkingset(page);
361 		inc_lruvec_state(lruvec, WORKINGSET_RESTORE);
362 	}
363 out:
364 	rcu_read_unlock();
365 }
366 
367 /**
368  * workingset_activation - note a page activation
369  * @page: page that is being activated
370  */
371 void workingset_activation(struct page *page)
372 {
373 	struct mem_cgroup *memcg;
374 
375 	rcu_read_lock();
376 	/*
377 	 * Filter non-memcg pages here, e.g. unmap can call
378 	 * mark_page_accessed() on VDSO pages.
379 	 *
380 	 * XXX: See workingset_refault() - this should return
381 	 * root_mem_cgroup even for !CONFIG_MEMCG.
382 	 */
383 	memcg = page_memcg_rcu(page);
384 	if (!mem_cgroup_disabled() && !memcg)
385 		goto out;
386 	advance_inactive_age(memcg, page_pgdat(page));
387 out:
388 	rcu_read_unlock();
389 }
390 
391 /*
392  * Shadow entries reflect the share of the working set that does not
393  * fit into memory, so their number depends on the access pattern of
394  * the workload.  In most cases, they will refault or get reclaimed
395  * along with the inode, but a (malicious) workload that streams
396  * through files with a total size several times that of available
397  * memory, while preventing the inodes from being reclaimed, can
398  * create excessive amounts of shadow nodes.  To keep a lid on this,
399  * track shadow nodes and reclaim them when they grow way past the
400  * point where they would still be useful.
401  */
402 
403 static struct list_lru shadow_nodes;
404 
405 void workingset_update_node(struct xa_node *node)
406 {
407 	/*
408 	 * Track non-empty nodes that contain only shadow entries;
409 	 * unlink those that contain pages or are being freed.
410 	 *
411 	 * Avoid acquiring the list_lru lock when the nodes are
412 	 * already where they should be. The list_empty() test is safe
413 	 * as node->private_list is protected by the i_pages lock.
414 	 */
415 	VM_WARN_ON_ONCE(!irqs_disabled());  /* For __inc_lruvec_page_state */
416 
417 	if (node->count && node->count == node->nr_values) {
418 		if (list_empty(&node->private_list)) {
419 			list_lru_add(&shadow_nodes, &node->private_list);
420 			__inc_lruvec_slab_state(node, WORKINGSET_NODES);
421 		}
422 	} else {
423 		if (!list_empty(&node->private_list)) {
424 			list_lru_del(&shadow_nodes, &node->private_list);
425 			__dec_lruvec_slab_state(node, WORKINGSET_NODES);
426 		}
427 	}
428 }
429 
430 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
431 					struct shrink_control *sc)
432 {
433 	unsigned long max_nodes;
434 	unsigned long nodes;
435 	unsigned long pages;
436 
437 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
438 
439 	/*
440 	 * Approximate a reasonable limit for the nodes
441 	 * containing shadow entries. We don't need to keep more
442 	 * shadow entries than possible pages on the active list,
443 	 * since refault distances bigger than that are dismissed.
444 	 *
445 	 * The size of the active list converges toward 100% of
446 	 * overall page cache as memory grows, with only a tiny
447 	 * inactive list. Assume the total cache size for that.
448 	 *
449 	 * Nodes might be sparsely populated, with only one shadow
450 	 * entry in the extreme case. Obviously, we cannot keep one
451 	 * node for every eligible shadow entry, so compromise on a
452 	 * worst-case density of 1/8th. Below that, not all eligible
453 	 * refaults can be detected anymore.
454 	 *
455 	 * On 64-bit with 7 xa_nodes per page and 64 slots
456 	 * each, this will reclaim shadow entries when they consume
457 	 * ~1.8% of available memory:
458 	 *
459 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
460 	 */
461 #ifdef CONFIG_MEMCG
462 	if (sc->memcg) {
463 		struct lruvec *lruvec;
464 		int i;
465 
466 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
467 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
468 			pages += lruvec_page_state_local(lruvec,
469 							 NR_LRU_BASE + i);
470 		pages += lruvec_page_state_local(lruvec, NR_SLAB_RECLAIMABLE);
471 		pages += lruvec_page_state_local(lruvec, NR_SLAB_UNRECLAIMABLE);
472 	} else
473 #endif
474 		pages = node_present_pages(sc->nid);
475 
476 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
477 
478 	if (!nodes)
479 		return SHRINK_EMPTY;
480 
481 	if (nodes <= max_nodes)
482 		return 0;
483 	return nodes - max_nodes;
484 }
485 
486 static enum lru_status shadow_lru_isolate(struct list_head *item,
487 					  struct list_lru_one *lru,
488 					  spinlock_t *lru_lock,
489 					  void *arg) __must_hold(lru_lock)
490 {
491 	struct xa_node *node = container_of(item, struct xa_node, private_list);
492 	XA_STATE(xas, node->array, 0);
493 	struct address_space *mapping;
494 	int ret;
495 
496 	/*
497 	 * Page cache insertions and deletions synchroneously maintain
498 	 * the shadow node LRU under the i_pages lock and the
499 	 * lru_lock.  Because the page cache tree is emptied before
500 	 * the inode can be destroyed, holding the lru_lock pins any
501 	 * address_space that has nodes on the LRU.
502 	 *
503 	 * We can then safely transition to the i_pages lock to
504 	 * pin only the address_space of the particular node we want
505 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
506 	 */
507 
508 	mapping = container_of(node->array, struct address_space, i_pages);
509 
510 	/* Coming from the list, invert the lock order */
511 	if (!xa_trylock(&mapping->i_pages)) {
512 		spin_unlock_irq(lru_lock);
513 		ret = LRU_RETRY;
514 		goto out;
515 	}
516 
517 	list_lru_isolate(lru, item);
518 	__dec_lruvec_slab_state(node, WORKINGSET_NODES);
519 
520 	spin_unlock(lru_lock);
521 
522 	/*
523 	 * The nodes should only contain one or more shadow entries,
524 	 * no pages, so we expect to be able to remove them all and
525 	 * delete and free the empty node afterwards.
526 	 */
527 	if (WARN_ON_ONCE(!node->nr_values))
528 		goto out_invalid;
529 	if (WARN_ON_ONCE(node->count != node->nr_values))
530 		goto out_invalid;
531 	mapping->nrexceptional -= node->nr_values;
532 	xas.xa_node = xa_parent_locked(&mapping->i_pages, node);
533 	xas.xa_offset = node->offset;
534 	xas.xa_shift = node->shift + XA_CHUNK_SHIFT;
535 	xas_set_update(&xas, workingset_update_node);
536 	/*
537 	 * We could store a shadow entry here which was the minimum of the
538 	 * shadow entries we were tracking ...
539 	 */
540 	xas_store(&xas, NULL);
541 	__inc_lruvec_slab_state(node, WORKINGSET_NODERECLAIM);
542 
543 out_invalid:
544 	xa_unlock_irq(&mapping->i_pages);
545 	ret = LRU_REMOVED_RETRY;
546 out:
547 	cond_resched();
548 	spin_lock_irq(lru_lock);
549 	return ret;
550 }
551 
552 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
553 				       struct shrink_control *sc)
554 {
555 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
556 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
557 					NULL);
558 }
559 
560 static struct shrinker workingset_shadow_shrinker = {
561 	.count_objects = count_shadow_nodes,
562 	.scan_objects = scan_shadow_nodes,
563 	.seeks = 0, /* ->count reports only fully expendable nodes */
564 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
565 };
566 
567 /*
568  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
569  * i_pages lock.
570  */
571 static struct lock_class_key shadow_nodes_key;
572 
573 static int __init workingset_init(void)
574 {
575 	unsigned int timestamp_bits;
576 	unsigned int max_order;
577 	int ret;
578 
579 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
580 	/*
581 	 * Calculate the eviction bucket size to cover the longest
582 	 * actionable refault distance, which is currently half of
583 	 * memory (totalram_pages/2). However, memory hotplug may add
584 	 * some more pages at runtime, so keep working with up to
585 	 * double the initial memory by using totalram_pages as-is.
586 	 */
587 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
588 	max_order = fls_long(totalram_pages() - 1);
589 	if (max_order > timestamp_bits)
590 		bucket_order = max_order - timestamp_bits;
591 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
592 	       timestamp_bits, max_order, bucket_order);
593 
594 	ret = prealloc_shrinker(&workingset_shadow_shrinker);
595 	if (ret)
596 		goto err;
597 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
598 			      &workingset_shadow_shrinker);
599 	if (ret)
600 		goto err_list_lru;
601 	register_shrinker_prepared(&workingset_shadow_shrinker);
602 	return 0;
603 err_list_lru:
604 	free_prealloced_shrinker(&workingset_shadow_shrinker);
605 err:
606 	return ret;
607 }
608 module_init(workingset_init);
609