1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/cpu.h> 16 #include <linux/sched.h> 17 18 #ifdef CONFIG_VM_EVENT_COUNTERS 19 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 20 EXPORT_PER_CPU_SYMBOL(vm_event_states); 21 22 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask) 23 { 24 int cpu; 25 int i; 26 27 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 28 29 for_each_cpu_mask(cpu, *cpumask) { 30 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 31 32 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 33 ret[i] += this->event[i]; 34 } 35 } 36 37 /* 38 * Accumulate the vm event counters across all CPUs. 39 * The result is unavoidably approximate - it can change 40 * during and after execution of this function. 41 */ 42 void all_vm_events(unsigned long *ret) 43 { 44 sum_vm_events(ret, &cpu_online_map); 45 } 46 EXPORT_SYMBOL_GPL(all_vm_events); 47 48 #ifdef CONFIG_HOTPLUG 49 /* 50 * Fold the foreign cpu events into our own. 51 * 52 * This is adding to the events on one processor 53 * but keeps the global counts constant. 54 */ 55 void vm_events_fold_cpu(int cpu) 56 { 57 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 58 int i; 59 60 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 61 count_vm_events(i, fold_state->event[i]); 62 fold_state->event[i] = 0; 63 } 64 } 65 #endif /* CONFIG_HOTPLUG */ 66 67 #endif /* CONFIG_VM_EVENT_COUNTERS */ 68 69 /* 70 * Manage combined zone based / global counters 71 * 72 * vm_stat contains the global counters 73 */ 74 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 75 EXPORT_SYMBOL(vm_stat); 76 77 #ifdef CONFIG_SMP 78 79 static int calculate_threshold(struct zone *zone) 80 { 81 int threshold; 82 int mem; /* memory in 128 MB units */ 83 84 /* 85 * The threshold scales with the number of processors and the amount 86 * of memory per zone. More memory means that we can defer updates for 87 * longer, more processors could lead to more contention. 88 * fls() is used to have a cheap way of logarithmic scaling. 89 * 90 * Some sample thresholds: 91 * 92 * Threshold Processors (fls) Zonesize fls(mem+1) 93 * ------------------------------------------------------------------ 94 * 8 1 1 0.9-1 GB 4 95 * 16 2 2 0.9-1 GB 4 96 * 20 2 2 1-2 GB 5 97 * 24 2 2 2-4 GB 6 98 * 28 2 2 4-8 GB 7 99 * 32 2 2 8-16 GB 8 100 * 4 2 2 <128M 1 101 * 30 4 3 2-4 GB 5 102 * 48 4 3 8-16 GB 8 103 * 32 8 4 1-2 GB 4 104 * 32 8 4 0.9-1GB 4 105 * 10 16 5 <128M 1 106 * 40 16 5 900M 4 107 * 70 64 7 2-4 GB 5 108 * 84 64 7 4-8 GB 6 109 * 108 512 9 4-8 GB 6 110 * 125 1024 10 8-16 GB 8 111 * 125 1024 10 16-32 GB 9 112 */ 113 114 mem = zone->present_pages >> (27 - PAGE_SHIFT); 115 116 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 117 118 /* 119 * Maximum threshold is 125 120 */ 121 threshold = min(125, threshold); 122 123 return threshold; 124 } 125 126 /* 127 * Refresh the thresholds for each zone. 128 */ 129 static void refresh_zone_stat_thresholds(void) 130 { 131 struct zone *zone; 132 int cpu; 133 int threshold; 134 135 for_each_zone(zone) { 136 137 if (!zone->present_pages) 138 continue; 139 140 threshold = calculate_threshold(zone); 141 142 for_each_online_cpu(cpu) 143 zone_pcp(zone, cpu)->stat_threshold = threshold; 144 } 145 } 146 147 /* 148 * For use when we know that interrupts are disabled. 149 */ 150 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 151 int delta) 152 { 153 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 154 s8 *p = pcp->vm_stat_diff + item; 155 long x; 156 157 x = delta + *p; 158 159 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) { 160 zone_page_state_add(x, zone, item); 161 x = 0; 162 } 163 *p = x; 164 } 165 EXPORT_SYMBOL(__mod_zone_page_state); 166 167 /* 168 * For an unknown interrupt state 169 */ 170 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 171 int delta) 172 { 173 unsigned long flags; 174 175 local_irq_save(flags); 176 __mod_zone_page_state(zone, item, delta); 177 local_irq_restore(flags); 178 } 179 EXPORT_SYMBOL(mod_zone_page_state); 180 181 /* 182 * Optimized increment and decrement functions. 183 * 184 * These are only for a single page and therefore can take a struct page * 185 * argument instead of struct zone *. This allows the inclusion of the code 186 * generated for page_zone(page) into the optimized functions. 187 * 188 * No overflow check is necessary and therefore the differential can be 189 * incremented or decremented in place which may allow the compilers to 190 * generate better code. 191 * The increment or decrement is known and therefore one boundary check can 192 * be omitted. 193 * 194 * NOTE: These functions are very performance sensitive. Change only 195 * with care. 196 * 197 * Some processors have inc/dec instructions that are atomic vs an interrupt. 198 * However, the code must first determine the differential location in a zone 199 * based on the processor number and then inc/dec the counter. There is no 200 * guarantee without disabling preemption that the processor will not change 201 * in between and therefore the atomicity vs. interrupt cannot be exploited 202 * in a useful way here. 203 */ 204 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 205 { 206 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 207 s8 *p = pcp->vm_stat_diff + item; 208 209 (*p)++; 210 211 if (unlikely(*p > pcp->stat_threshold)) { 212 int overstep = pcp->stat_threshold / 2; 213 214 zone_page_state_add(*p + overstep, zone, item); 215 *p = -overstep; 216 } 217 } 218 219 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 220 { 221 __inc_zone_state(page_zone(page), item); 222 } 223 EXPORT_SYMBOL(__inc_zone_page_state); 224 225 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 226 { 227 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 228 s8 *p = pcp->vm_stat_diff + item; 229 230 (*p)--; 231 232 if (unlikely(*p < - pcp->stat_threshold)) { 233 int overstep = pcp->stat_threshold / 2; 234 235 zone_page_state_add(*p - overstep, zone, item); 236 *p = overstep; 237 } 238 } 239 240 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 241 { 242 __dec_zone_state(page_zone(page), item); 243 } 244 EXPORT_SYMBOL(__dec_zone_page_state); 245 246 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 247 { 248 unsigned long flags; 249 250 local_irq_save(flags); 251 __inc_zone_state(zone, item); 252 local_irq_restore(flags); 253 } 254 255 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 256 { 257 unsigned long flags; 258 struct zone *zone; 259 260 zone = page_zone(page); 261 local_irq_save(flags); 262 __inc_zone_state(zone, item); 263 local_irq_restore(flags); 264 } 265 EXPORT_SYMBOL(inc_zone_page_state); 266 267 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 268 { 269 unsigned long flags; 270 271 local_irq_save(flags); 272 __dec_zone_page_state(page, item); 273 local_irq_restore(flags); 274 } 275 EXPORT_SYMBOL(dec_zone_page_state); 276 277 /* 278 * Update the zone counters for one cpu. 279 * 280 * The cpu specified must be either the current cpu or a processor that 281 * is not online. If it is the current cpu then the execution thread must 282 * be pinned to the current cpu. 283 * 284 * Note that refresh_cpu_vm_stats strives to only access 285 * node local memory. The per cpu pagesets on remote zones are placed 286 * in the memory local to the processor using that pageset. So the 287 * loop over all zones will access a series of cachelines local to 288 * the processor. 289 * 290 * The call to zone_page_state_add updates the cachelines with the 291 * statistics in the remote zone struct as well as the global cachelines 292 * with the global counters. These could cause remote node cache line 293 * bouncing and will have to be only done when necessary. 294 */ 295 void refresh_cpu_vm_stats(int cpu) 296 { 297 struct zone *zone; 298 int i; 299 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 300 301 for_each_zone(zone) { 302 struct per_cpu_pageset *p; 303 304 if (!populated_zone(zone)) 305 continue; 306 307 p = zone_pcp(zone, cpu); 308 309 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 310 if (p->vm_stat_diff[i]) { 311 unsigned long flags; 312 int v; 313 314 local_irq_save(flags); 315 v = p->vm_stat_diff[i]; 316 p->vm_stat_diff[i] = 0; 317 local_irq_restore(flags); 318 atomic_long_add(v, &zone->vm_stat[i]); 319 global_diff[i] += v; 320 #ifdef CONFIG_NUMA 321 /* 3 seconds idle till flush */ 322 p->expire = 3; 323 #endif 324 } 325 #ifdef CONFIG_NUMA 326 /* 327 * Deal with draining the remote pageset of this 328 * processor 329 * 330 * Check if there are pages remaining in this pageset 331 * if not then there is nothing to expire. 332 */ 333 if (!p->expire || !p->pcp.count) 334 continue; 335 336 /* 337 * We never drain zones local to this processor. 338 */ 339 if (zone_to_nid(zone) == numa_node_id()) { 340 p->expire = 0; 341 continue; 342 } 343 344 p->expire--; 345 if (p->expire) 346 continue; 347 348 if (p->pcp.count) 349 drain_zone_pages(zone, &p->pcp); 350 #endif 351 } 352 353 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 354 if (global_diff[i]) 355 atomic_long_add(global_diff[i], &vm_stat[i]); 356 } 357 358 #endif 359 360 #ifdef CONFIG_NUMA 361 /* 362 * zonelist = the list of zones passed to the allocator 363 * z = the zone from which the allocation occurred. 364 * 365 * Must be called with interrupts disabled. 366 */ 367 void zone_statistics(struct zonelist *zonelist, struct zone *z) 368 { 369 if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) { 370 __inc_zone_state(z, NUMA_HIT); 371 } else { 372 __inc_zone_state(z, NUMA_MISS); 373 __inc_zone_state(zonelist->zones[0], NUMA_FOREIGN); 374 } 375 if (z->node == numa_node_id()) 376 __inc_zone_state(z, NUMA_LOCAL); 377 else 378 __inc_zone_state(z, NUMA_OTHER); 379 } 380 #endif 381 382 #ifdef CONFIG_PROC_FS 383 384 #include <linux/seq_file.h> 385 386 static char * const migratetype_names[MIGRATE_TYPES] = { 387 "Unmovable", 388 "Reclaimable", 389 "Movable", 390 "Reserve", 391 }; 392 393 static void *frag_start(struct seq_file *m, loff_t *pos) 394 { 395 pg_data_t *pgdat; 396 loff_t node = *pos; 397 for (pgdat = first_online_pgdat(); 398 pgdat && node; 399 pgdat = next_online_pgdat(pgdat)) 400 --node; 401 402 return pgdat; 403 } 404 405 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 406 { 407 pg_data_t *pgdat = (pg_data_t *)arg; 408 409 (*pos)++; 410 return next_online_pgdat(pgdat); 411 } 412 413 static void frag_stop(struct seq_file *m, void *arg) 414 { 415 } 416 417 /* Walk all the zones in a node and print using a callback */ 418 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 419 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 420 { 421 struct zone *zone; 422 struct zone *node_zones = pgdat->node_zones; 423 unsigned long flags; 424 425 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 426 if (!populated_zone(zone)) 427 continue; 428 429 spin_lock_irqsave(&zone->lock, flags); 430 print(m, pgdat, zone); 431 spin_unlock_irqrestore(&zone->lock, flags); 432 } 433 } 434 435 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 436 struct zone *zone) 437 { 438 int order; 439 440 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 441 for (order = 0; order < MAX_ORDER; ++order) 442 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 443 seq_putc(m, '\n'); 444 } 445 446 /* 447 * This walks the free areas for each zone. 448 */ 449 static int frag_show(struct seq_file *m, void *arg) 450 { 451 pg_data_t *pgdat = (pg_data_t *)arg; 452 walk_zones_in_node(m, pgdat, frag_show_print); 453 return 0; 454 } 455 456 static void pagetypeinfo_showfree_print(struct seq_file *m, 457 pg_data_t *pgdat, struct zone *zone) 458 { 459 int order, mtype; 460 461 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 462 seq_printf(m, "Node %4d, zone %8s, type %12s ", 463 pgdat->node_id, 464 zone->name, 465 migratetype_names[mtype]); 466 for (order = 0; order < MAX_ORDER; ++order) { 467 unsigned long freecount = 0; 468 struct free_area *area; 469 struct list_head *curr; 470 471 area = &(zone->free_area[order]); 472 473 list_for_each(curr, &area->free_list[mtype]) 474 freecount++; 475 seq_printf(m, "%6lu ", freecount); 476 } 477 seq_putc(m, '\n'); 478 } 479 } 480 481 /* Print out the free pages at each order for each migatetype */ 482 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 483 { 484 int order; 485 pg_data_t *pgdat = (pg_data_t *)arg; 486 487 /* Print header */ 488 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 489 for (order = 0; order < MAX_ORDER; ++order) 490 seq_printf(m, "%6d ", order); 491 seq_putc(m, '\n'); 492 493 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 494 495 return 0; 496 } 497 498 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 499 pg_data_t *pgdat, struct zone *zone) 500 { 501 int mtype; 502 unsigned long pfn; 503 unsigned long start_pfn = zone->zone_start_pfn; 504 unsigned long end_pfn = start_pfn + zone->spanned_pages; 505 unsigned long count[MIGRATE_TYPES] = { 0, }; 506 507 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 508 struct page *page; 509 510 if (!pfn_valid(pfn)) 511 continue; 512 513 page = pfn_to_page(pfn); 514 mtype = get_pageblock_migratetype(page); 515 516 count[mtype]++; 517 } 518 519 /* Print counts */ 520 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 521 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 522 seq_printf(m, "%12lu ", count[mtype]); 523 seq_putc(m, '\n'); 524 } 525 526 /* Print out the free pages at each order for each migratetype */ 527 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 528 { 529 int mtype; 530 pg_data_t *pgdat = (pg_data_t *)arg; 531 532 seq_printf(m, "\n%-23s", "Number of blocks type "); 533 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 534 seq_printf(m, "%12s ", migratetype_names[mtype]); 535 seq_putc(m, '\n'); 536 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 537 538 return 0; 539 } 540 541 /* 542 * This prints out statistics in relation to grouping pages by mobility. 543 * It is expensive to collect so do not constantly read the file. 544 */ 545 static int pagetypeinfo_show(struct seq_file *m, void *arg) 546 { 547 pg_data_t *pgdat = (pg_data_t *)arg; 548 549 seq_printf(m, "Page block order: %d\n", pageblock_order); 550 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 551 seq_putc(m, '\n'); 552 pagetypeinfo_showfree(m, pgdat); 553 pagetypeinfo_showblockcount(m, pgdat); 554 555 return 0; 556 } 557 558 const struct seq_operations fragmentation_op = { 559 .start = frag_start, 560 .next = frag_next, 561 .stop = frag_stop, 562 .show = frag_show, 563 }; 564 565 const struct seq_operations pagetypeinfo_op = { 566 .start = frag_start, 567 .next = frag_next, 568 .stop = frag_stop, 569 .show = pagetypeinfo_show, 570 }; 571 572 #ifdef CONFIG_ZONE_DMA 573 #define TEXT_FOR_DMA(xx) xx "_dma", 574 #else 575 #define TEXT_FOR_DMA(xx) 576 #endif 577 578 #ifdef CONFIG_ZONE_DMA32 579 #define TEXT_FOR_DMA32(xx) xx "_dma32", 580 #else 581 #define TEXT_FOR_DMA32(xx) 582 #endif 583 584 #ifdef CONFIG_HIGHMEM 585 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 586 #else 587 #define TEXT_FOR_HIGHMEM(xx) 588 #endif 589 590 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 591 TEXT_FOR_HIGHMEM(xx) xx "_movable", 592 593 static const char * const vmstat_text[] = { 594 /* Zoned VM counters */ 595 "nr_free_pages", 596 "nr_inactive", 597 "nr_active", 598 "nr_anon_pages", 599 "nr_mapped", 600 "nr_file_pages", 601 "nr_dirty", 602 "nr_writeback", 603 "nr_slab_reclaimable", 604 "nr_slab_unreclaimable", 605 "nr_page_table_pages", 606 "nr_unstable", 607 "nr_bounce", 608 "nr_vmscan_write", 609 610 #ifdef CONFIG_NUMA 611 "numa_hit", 612 "numa_miss", 613 "numa_foreign", 614 "numa_interleave", 615 "numa_local", 616 "numa_other", 617 #endif 618 619 #ifdef CONFIG_VM_EVENT_COUNTERS 620 "pgpgin", 621 "pgpgout", 622 "pswpin", 623 "pswpout", 624 625 TEXTS_FOR_ZONES("pgalloc") 626 627 "pgfree", 628 "pgactivate", 629 "pgdeactivate", 630 631 "pgfault", 632 "pgmajfault", 633 634 TEXTS_FOR_ZONES("pgrefill") 635 TEXTS_FOR_ZONES("pgsteal") 636 TEXTS_FOR_ZONES("pgscan_kswapd") 637 TEXTS_FOR_ZONES("pgscan_direct") 638 639 "pginodesteal", 640 "slabs_scanned", 641 "kswapd_steal", 642 "kswapd_inodesteal", 643 "pageoutrun", 644 "allocstall", 645 646 "pgrotated", 647 #endif 648 }; 649 650 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 651 struct zone *zone) 652 { 653 int i; 654 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 655 seq_printf(m, 656 "\n pages free %lu" 657 "\n min %lu" 658 "\n low %lu" 659 "\n high %lu" 660 "\n scanned %lu (a: %lu i: %lu)" 661 "\n spanned %lu" 662 "\n present %lu", 663 zone_page_state(zone, NR_FREE_PAGES), 664 zone->pages_min, 665 zone->pages_low, 666 zone->pages_high, 667 zone->pages_scanned, 668 zone->nr_scan_active, zone->nr_scan_inactive, 669 zone->spanned_pages, 670 zone->present_pages); 671 672 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 673 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 674 zone_page_state(zone, i)); 675 676 seq_printf(m, 677 "\n protection: (%lu", 678 zone->lowmem_reserve[0]); 679 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 680 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 681 seq_printf(m, 682 ")" 683 "\n pagesets"); 684 for_each_online_cpu(i) { 685 struct per_cpu_pageset *pageset; 686 687 pageset = zone_pcp(zone, i); 688 seq_printf(m, 689 "\n cpu: %i" 690 "\n count: %i" 691 "\n high: %i" 692 "\n batch: %i", 693 i, 694 pageset->pcp.count, 695 pageset->pcp.high, 696 pageset->pcp.batch); 697 #ifdef CONFIG_SMP 698 seq_printf(m, "\n vm stats threshold: %d", 699 pageset->stat_threshold); 700 #endif 701 } 702 seq_printf(m, 703 "\n all_unreclaimable: %u" 704 "\n prev_priority: %i" 705 "\n start_pfn: %lu", 706 zone_is_all_unreclaimable(zone), 707 zone->prev_priority, 708 zone->zone_start_pfn); 709 seq_putc(m, '\n'); 710 } 711 712 /* 713 * Output information about zones in @pgdat. 714 */ 715 static int zoneinfo_show(struct seq_file *m, void *arg) 716 { 717 pg_data_t *pgdat = (pg_data_t *)arg; 718 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 719 return 0; 720 } 721 722 const struct seq_operations zoneinfo_op = { 723 .start = frag_start, /* iterate over all zones. The same as in 724 * fragmentation. */ 725 .next = frag_next, 726 .stop = frag_stop, 727 .show = zoneinfo_show, 728 }; 729 730 static void *vmstat_start(struct seq_file *m, loff_t *pos) 731 { 732 unsigned long *v; 733 #ifdef CONFIG_VM_EVENT_COUNTERS 734 unsigned long *e; 735 #endif 736 int i; 737 738 if (*pos >= ARRAY_SIZE(vmstat_text)) 739 return NULL; 740 741 #ifdef CONFIG_VM_EVENT_COUNTERS 742 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) 743 + sizeof(struct vm_event_state), GFP_KERNEL); 744 #else 745 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long), 746 GFP_KERNEL); 747 #endif 748 m->private = v; 749 if (!v) 750 return ERR_PTR(-ENOMEM); 751 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 752 v[i] = global_page_state(i); 753 #ifdef CONFIG_VM_EVENT_COUNTERS 754 e = v + NR_VM_ZONE_STAT_ITEMS; 755 all_vm_events(e); 756 e[PGPGIN] /= 2; /* sectors -> kbytes */ 757 e[PGPGOUT] /= 2; 758 #endif 759 return v + *pos; 760 } 761 762 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 763 { 764 (*pos)++; 765 if (*pos >= ARRAY_SIZE(vmstat_text)) 766 return NULL; 767 return (unsigned long *)m->private + *pos; 768 } 769 770 static int vmstat_show(struct seq_file *m, void *arg) 771 { 772 unsigned long *l = arg; 773 unsigned long off = l - (unsigned long *)m->private; 774 775 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 776 return 0; 777 } 778 779 static void vmstat_stop(struct seq_file *m, void *arg) 780 { 781 kfree(m->private); 782 m->private = NULL; 783 } 784 785 const struct seq_operations vmstat_op = { 786 .start = vmstat_start, 787 .next = vmstat_next, 788 .stop = vmstat_stop, 789 .show = vmstat_show, 790 }; 791 792 #endif /* CONFIG_PROC_FS */ 793 794 #ifdef CONFIG_SMP 795 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 796 int sysctl_stat_interval __read_mostly = HZ; 797 798 static void vmstat_update(struct work_struct *w) 799 { 800 refresh_cpu_vm_stats(smp_processor_id()); 801 schedule_delayed_work(&__get_cpu_var(vmstat_work), 802 sysctl_stat_interval); 803 } 804 805 static void __cpuinit start_cpu_timer(int cpu) 806 { 807 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu); 808 809 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update); 810 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu); 811 } 812 813 /* 814 * Use the cpu notifier to insure that the thresholds are recalculated 815 * when necessary. 816 */ 817 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, 818 unsigned long action, 819 void *hcpu) 820 { 821 long cpu = (long)hcpu; 822 823 switch (action) { 824 case CPU_ONLINE: 825 case CPU_ONLINE_FROZEN: 826 start_cpu_timer(cpu); 827 break; 828 case CPU_DOWN_PREPARE: 829 case CPU_DOWN_PREPARE_FROZEN: 830 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu)); 831 per_cpu(vmstat_work, cpu).work.func = NULL; 832 break; 833 case CPU_DOWN_FAILED: 834 case CPU_DOWN_FAILED_FROZEN: 835 start_cpu_timer(cpu); 836 break; 837 case CPU_DEAD: 838 case CPU_DEAD_FROZEN: 839 refresh_zone_stat_thresholds(); 840 break; 841 default: 842 break; 843 } 844 return NOTIFY_OK; 845 } 846 847 static struct notifier_block __cpuinitdata vmstat_notifier = 848 { &vmstat_cpuup_callback, NULL, 0 }; 849 850 static int __init setup_vmstat(void) 851 { 852 int cpu; 853 854 refresh_zone_stat_thresholds(); 855 register_cpu_notifier(&vmstat_notifier); 856 857 for_each_online_cpu(cpu) 858 start_cpu_timer(cpu); 859 return 0; 860 } 861 module_init(setup_vmstat) 862 #endif 863