xref: /linux/mm/vmstat.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/sched.h>
17 
18 #ifdef CONFIG_VM_EVENT_COUNTERS
19 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
20 EXPORT_PER_CPU_SYMBOL(vm_event_states);
21 
22 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
23 {
24 	int cpu;
25 	int i;
26 
27 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
28 
29 	for_each_cpu_mask(cpu, *cpumask) {
30 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
31 
32 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
33 			ret[i] += this->event[i];
34 	}
35 }
36 
37 /*
38  * Accumulate the vm event counters across all CPUs.
39  * The result is unavoidably approximate - it can change
40  * during and after execution of this function.
41 */
42 void all_vm_events(unsigned long *ret)
43 {
44 	sum_vm_events(ret, &cpu_online_map);
45 }
46 EXPORT_SYMBOL_GPL(all_vm_events);
47 
48 #ifdef CONFIG_HOTPLUG
49 /*
50  * Fold the foreign cpu events into our own.
51  *
52  * This is adding to the events on one processor
53  * but keeps the global counts constant.
54  */
55 void vm_events_fold_cpu(int cpu)
56 {
57 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
58 	int i;
59 
60 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
61 		count_vm_events(i, fold_state->event[i]);
62 		fold_state->event[i] = 0;
63 	}
64 }
65 #endif /* CONFIG_HOTPLUG */
66 
67 #endif /* CONFIG_VM_EVENT_COUNTERS */
68 
69 /*
70  * Manage combined zone based / global counters
71  *
72  * vm_stat contains the global counters
73  */
74 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
75 EXPORT_SYMBOL(vm_stat);
76 
77 #ifdef CONFIG_SMP
78 
79 static int calculate_threshold(struct zone *zone)
80 {
81 	int threshold;
82 	int mem;	/* memory in 128 MB units */
83 
84 	/*
85 	 * The threshold scales with the number of processors and the amount
86 	 * of memory per zone. More memory means that we can defer updates for
87 	 * longer, more processors could lead to more contention.
88  	 * fls() is used to have a cheap way of logarithmic scaling.
89 	 *
90 	 * Some sample thresholds:
91 	 *
92 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
93 	 * ------------------------------------------------------------------
94 	 * 8		1		1	0.9-1 GB	4
95 	 * 16		2		2	0.9-1 GB	4
96 	 * 20 		2		2	1-2 GB		5
97 	 * 24		2		2	2-4 GB		6
98 	 * 28		2		2	4-8 GB		7
99 	 * 32		2		2	8-16 GB		8
100 	 * 4		2		2	<128M		1
101 	 * 30		4		3	2-4 GB		5
102 	 * 48		4		3	8-16 GB		8
103 	 * 32		8		4	1-2 GB		4
104 	 * 32		8		4	0.9-1GB		4
105 	 * 10		16		5	<128M		1
106 	 * 40		16		5	900M		4
107 	 * 70		64		7	2-4 GB		5
108 	 * 84		64		7	4-8 GB		6
109 	 * 108		512		9	4-8 GB		6
110 	 * 125		1024		10	8-16 GB		8
111 	 * 125		1024		10	16-32 GB	9
112 	 */
113 
114 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
115 
116 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
117 
118 	/*
119 	 * Maximum threshold is 125
120 	 */
121 	threshold = min(125, threshold);
122 
123 	return threshold;
124 }
125 
126 /*
127  * Refresh the thresholds for each zone.
128  */
129 static void refresh_zone_stat_thresholds(void)
130 {
131 	struct zone *zone;
132 	int cpu;
133 	int threshold;
134 
135 	for_each_zone(zone) {
136 
137 		if (!zone->present_pages)
138 			continue;
139 
140 		threshold = calculate_threshold(zone);
141 
142 		for_each_online_cpu(cpu)
143 			zone_pcp(zone, cpu)->stat_threshold = threshold;
144 	}
145 }
146 
147 /*
148  * For use when we know that interrupts are disabled.
149  */
150 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
151 				int delta)
152 {
153 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
154 	s8 *p = pcp->vm_stat_diff + item;
155 	long x;
156 
157 	x = delta + *p;
158 
159 	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
160 		zone_page_state_add(x, zone, item);
161 		x = 0;
162 	}
163 	*p = x;
164 }
165 EXPORT_SYMBOL(__mod_zone_page_state);
166 
167 /*
168  * For an unknown interrupt state
169  */
170 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
171 					int delta)
172 {
173 	unsigned long flags;
174 
175 	local_irq_save(flags);
176 	__mod_zone_page_state(zone, item, delta);
177 	local_irq_restore(flags);
178 }
179 EXPORT_SYMBOL(mod_zone_page_state);
180 
181 /*
182  * Optimized increment and decrement functions.
183  *
184  * These are only for a single page and therefore can take a struct page *
185  * argument instead of struct zone *. This allows the inclusion of the code
186  * generated for page_zone(page) into the optimized functions.
187  *
188  * No overflow check is necessary and therefore the differential can be
189  * incremented or decremented in place which may allow the compilers to
190  * generate better code.
191  * The increment or decrement is known and therefore one boundary check can
192  * be omitted.
193  *
194  * NOTE: These functions are very performance sensitive. Change only
195  * with care.
196  *
197  * Some processors have inc/dec instructions that are atomic vs an interrupt.
198  * However, the code must first determine the differential location in a zone
199  * based on the processor number and then inc/dec the counter. There is no
200  * guarantee without disabling preemption that the processor will not change
201  * in between and therefore the atomicity vs. interrupt cannot be exploited
202  * in a useful way here.
203  */
204 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
205 {
206 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
207 	s8 *p = pcp->vm_stat_diff + item;
208 
209 	(*p)++;
210 
211 	if (unlikely(*p > pcp->stat_threshold)) {
212 		int overstep = pcp->stat_threshold / 2;
213 
214 		zone_page_state_add(*p + overstep, zone, item);
215 		*p = -overstep;
216 	}
217 }
218 
219 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
220 {
221 	__inc_zone_state(page_zone(page), item);
222 }
223 EXPORT_SYMBOL(__inc_zone_page_state);
224 
225 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
226 {
227 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
228 	s8 *p = pcp->vm_stat_diff + item;
229 
230 	(*p)--;
231 
232 	if (unlikely(*p < - pcp->stat_threshold)) {
233 		int overstep = pcp->stat_threshold / 2;
234 
235 		zone_page_state_add(*p - overstep, zone, item);
236 		*p = overstep;
237 	}
238 }
239 
240 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
241 {
242 	__dec_zone_state(page_zone(page), item);
243 }
244 EXPORT_SYMBOL(__dec_zone_page_state);
245 
246 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
247 {
248 	unsigned long flags;
249 
250 	local_irq_save(flags);
251 	__inc_zone_state(zone, item);
252 	local_irq_restore(flags);
253 }
254 
255 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
256 {
257 	unsigned long flags;
258 	struct zone *zone;
259 
260 	zone = page_zone(page);
261 	local_irq_save(flags);
262 	__inc_zone_state(zone, item);
263 	local_irq_restore(flags);
264 }
265 EXPORT_SYMBOL(inc_zone_page_state);
266 
267 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
268 {
269 	unsigned long flags;
270 
271 	local_irq_save(flags);
272 	__dec_zone_page_state(page, item);
273 	local_irq_restore(flags);
274 }
275 EXPORT_SYMBOL(dec_zone_page_state);
276 
277 /*
278  * Update the zone counters for one cpu.
279  *
280  * The cpu specified must be either the current cpu or a processor that
281  * is not online. If it is the current cpu then the execution thread must
282  * be pinned to the current cpu.
283  *
284  * Note that refresh_cpu_vm_stats strives to only access
285  * node local memory. The per cpu pagesets on remote zones are placed
286  * in the memory local to the processor using that pageset. So the
287  * loop over all zones will access a series of cachelines local to
288  * the processor.
289  *
290  * The call to zone_page_state_add updates the cachelines with the
291  * statistics in the remote zone struct as well as the global cachelines
292  * with the global counters. These could cause remote node cache line
293  * bouncing and will have to be only done when necessary.
294  */
295 void refresh_cpu_vm_stats(int cpu)
296 {
297 	struct zone *zone;
298 	int i;
299 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
300 
301 	for_each_zone(zone) {
302 		struct per_cpu_pageset *p;
303 
304 		if (!populated_zone(zone))
305 			continue;
306 
307 		p = zone_pcp(zone, cpu);
308 
309 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
310 			if (p->vm_stat_diff[i]) {
311 				unsigned long flags;
312 				int v;
313 
314 				local_irq_save(flags);
315 				v = p->vm_stat_diff[i];
316 				p->vm_stat_diff[i] = 0;
317 				local_irq_restore(flags);
318 				atomic_long_add(v, &zone->vm_stat[i]);
319 				global_diff[i] += v;
320 #ifdef CONFIG_NUMA
321 				/* 3 seconds idle till flush */
322 				p->expire = 3;
323 #endif
324 			}
325 #ifdef CONFIG_NUMA
326 		/*
327 		 * Deal with draining the remote pageset of this
328 		 * processor
329 		 *
330 		 * Check if there are pages remaining in this pageset
331 		 * if not then there is nothing to expire.
332 		 */
333 		if (!p->expire || !p->pcp.count)
334 			continue;
335 
336 		/*
337 		 * We never drain zones local to this processor.
338 		 */
339 		if (zone_to_nid(zone) == numa_node_id()) {
340 			p->expire = 0;
341 			continue;
342 		}
343 
344 		p->expire--;
345 		if (p->expire)
346 			continue;
347 
348 		if (p->pcp.count)
349 			drain_zone_pages(zone, &p->pcp);
350 #endif
351 	}
352 
353 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
354 		if (global_diff[i])
355 			atomic_long_add(global_diff[i], &vm_stat[i]);
356 }
357 
358 #endif
359 
360 #ifdef CONFIG_NUMA
361 /*
362  * zonelist = the list of zones passed to the allocator
363  * z 	    = the zone from which the allocation occurred.
364  *
365  * Must be called with interrupts disabled.
366  */
367 void zone_statistics(struct zonelist *zonelist, struct zone *z)
368 {
369 	if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
370 		__inc_zone_state(z, NUMA_HIT);
371 	} else {
372 		__inc_zone_state(z, NUMA_MISS);
373 		__inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
374 	}
375 	if (z->node == numa_node_id())
376 		__inc_zone_state(z, NUMA_LOCAL);
377 	else
378 		__inc_zone_state(z, NUMA_OTHER);
379 }
380 #endif
381 
382 #ifdef CONFIG_PROC_FS
383 
384 #include <linux/seq_file.h>
385 
386 static char * const migratetype_names[MIGRATE_TYPES] = {
387 	"Unmovable",
388 	"Reclaimable",
389 	"Movable",
390 	"Reserve",
391 };
392 
393 static void *frag_start(struct seq_file *m, loff_t *pos)
394 {
395 	pg_data_t *pgdat;
396 	loff_t node = *pos;
397 	for (pgdat = first_online_pgdat();
398 	     pgdat && node;
399 	     pgdat = next_online_pgdat(pgdat))
400 		--node;
401 
402 	return pgdat;
403 }
404 
405 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
406 {
407 	pg_data_t *pgdat = (pg_data_t *)arg;
408 
409 	(*pos)++;
410 	return next_online_pgdat(pgdat);
411 }
412 
413 static void frag_stop(struct seq_file *m, void *arg)
414 {
415 }
416 
417 /* Walk all the zones in a node and print using a callback */
418 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
419 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
420 {
421 	struct zone *zone;
422 	struct zone *node_zones = pgdat->node_zones;
423 	unsigned long flags;
424 
425 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
426 		if (!populated_zone(zone))
427 			continue;
428 
429 		spin_lock_irqsave(&zone->lock, flags);
430 		print(m, pgdat, zone);
431 		spin_unlock_irqrestore(&zone->lock, flags);
432 	}
433 }
434 
435 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
436 						struct zone *zone)
437 {
438 	int order;
439 
440 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
441 	for (order = 0; order < MAX_ORDER; ++order)
442 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
443 	seq_putc(m, '\n');
444 }
445 
446 /*
447  * This walks the free areas for each zone.
448  */
449 static int frag_show(struct seq_file *m, void *arg)
450 {
451 	pg_data_t *pgdat = (pg_data_t *)arg;
452 	walk_zones_in_node(m, pgdat, frag_show_print);
453 	return 0;
454 }
455 
456 static void pagetypeinfo_showfree_print(struct seq_file *m,
457 					pg_data_t *pgdat, struct zone *zone)
458 {
459 	int order, mtype;
460 
461 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
462 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
463 					pgdat->node_id,
464 					zone->name,
465 					migratetype_names[mtype]);
466 		for (order = 0; order < MAX_ORDER; ++order) {
467 			unsigned long freecount = 0;
468 			struct free_area *area;
469 			struct list_head *curr;
470 
471 			area = &(zone->free_area[order]);
472 
473 			list_for_each(curr, &area->free_list[mtype])
474 				freecount++;
475 			seq_printf(m, "%6lu ", freecount);
476 		}
477 		seq_putc(m, '\n');
478 	}
479 }
480 
481 /* Print out the free pages at each order for each migatetype */
482 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
483 {
484 	int order;
485 	pg_data_t *pgdat = (pg_data_t *)arg;
486 
487 	/* Print header */
488 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
489 	for (order = 0; order < MAX_ORDER; ++order)
490 		seq_printf(m, "%6d ", order);
491 	seq_putc(m, '\n');
492 
493 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
494 
495 	return 0;
496 }
497 
498 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
499 					pg_data_t *pgdat, struct zone *zone)
500 {
501 	int mtype;
502 	unsigned long pfn;
503 	unsigned long start_pfn = zone->zone_start_pfn;
504 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
505 	unsigned long count[MIGRATE_TYPES] = { 0, };
506 
507 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
508 		struct page *page;
509 
510 		if (!pfn_valid(pfn))
511 			continue;
512 
513 		page = pfn_to_page(pfn);
514 		mtype = get_pageblock_migratetype(page);
515 
516 		count[mtype]++;
517 	}
518 
519 	/* Print counts */
520 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
521 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
522 		seq_printf(m, "%12lu ", count[mtype]);
523 	seq_putc(m, '\n');
524 }
525 
526 /* Print out the free pages at each order for each migratetype */
527 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
528 {
529 	int mtype;
530 	pg_data_t *pgdat = (pg_data_t *)arg;
531 
532 	seq_printf(m, "\n%-23s", "Number of blocks type ");
533 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
534 		seq_printf(m, "%12s ", migratetype_names[mtype]);
535 	seq_putc(m, '\n');
536 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
537 
538 	return 0;
539 }
540 
541 /*
542  * This prints out statistics in relation to grouping pages by mobility.
543  * It is expensive to collect so do not constantly read the file.
544  */
545 static int pagetypeinfo_show(struct seq_file *m, void *arg)
546 {
547 	pg_data_t *pgdat = (pg_data_t *)arg;
548 
549 	seq_printf(m, "Page block order: %d\n", pageblock_order);
550 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
551 	seq_putc(m, '\n');
552 	pagetypeinfo_showfree(m, pgdat);
553 	pagetypeinfo_showblockcount(m, pgdat);
554 
555 	return 0;
556 }
557 
558 const struct seq_operations fragmentation_op = {
559 	.start	= frag_start,
560 	.next	= frag_next,
561 	.stop	= frag_stop,
562 	.show	= frag_show,
563 };
564 
565 const struct seq_operations pagetypeinfo_op = {
566 	.start	= frag_start,
567 	.next	= frag_next,
568 	.stop	= frag_stop,
569 	.show	= pagetypeinfo_show,
570 };
571 
572 #ifdef CONFIG_ZONE_DMA
573 #define TEXT_FOR_DMA(xx) xx "_dma",
574 #else
575 #define TEXT_FOR_DMA(xx)
576 #endif
577 
578 #ifdef CONFIG_ZONE_DMA32
579 #define TEXT_FOR_DMA32(xx) xx "_dma32",
580 #else
581 #define TEXT_FOR_DMA32(xx)
582 #endif
583 
584 #ifdef CONFIG_HIGHMEM
585 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
586 #else
587 #define TEXT_FOR_HIGHMEM(xx)
588 #endif
589 
590 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
591 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
592 
593 static const char * const vmstat_text[] = {
594 	/* Zoned VM counters */
595 	"nr_free_pages",
596 	"nr_inactive",
597 	"nr_active",
598 	"nr_anon_pages",
599 	"nr_mapped",
600 	"nr_file_pages",
601 	"nr_dirty",
602 	"nr_writeback",
603 	"nr_slab_reclaimable",
604 	"nr_slab_unreclaimable",
605 	"nr_page_table_pages",
606 	"nr_unstable",
607 	"nr_bounce",
608 	"nr_vmscan_write",
609 
610 #ifdef CONFIG_NUMA
611 	"numa_hit",
612 	"numa_miss",
613 	"numa_foreign",
614 	"numa_interleave",
615 	"numa_local",
616 	"numa_other",
617 #endif
618 
619 #ifdef CONFIG_VM_EVENT_COUNTERS
620 	"pgpgin",
621 	"pgpgout",
622 	"pswpin",
623 	"pswpout",
624 
625 	TEXTS_FOR_ZONES("pgalloc")
626 
627 	"pgfree",
628 	"pgactivate",
629 	"pgdeactivate",
630 
631 	"pgfault",
632 	"pgmajfault",
633 
634 	TEXTS_FOR_ZONES("pgrefill")
635 	TEXTS_FOR_ZONES("pgsteal")
636 	TEXTS_FOR_ZONES("pgscan_kswapd")
637 	TEXTS_FOR_ZONES("pgscan_direct")
638 
639 	"pginodesteal",
640 	"slabs_scanned",
641 	"kswapd_steal",
642 	"kswapd_inodesteal",
643 	"pageoutrun",
644 	"allocstall",
645 
646 	"pgrotated",
647 #endif
648 };
649 
650 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
651 							struct zone *zone)
652 {
653 	int i;
654 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
655 	seq_printf(m,
656 		   "\n  pages free     %lu"
657 		   "\n        min      %lu"
658 		   "\n        low      %lu"
659 		   "\n        high     %lu"
660 		   "\n        scanned  %lu (a: %lu i: %lu)"
661 		   "\n        spanned  %lu"
662 		   "\n        present  %lu",
663 		   zone_page_state(zone, NR_FREE_PAGES),
664 		   zone->pages_min,
665 		   zone->pages_low,
666 		   zone->pages_high,
667 		   zone->pages_scanned,
668 		   zone->nr_scan_active, zone->nr_scan_inactive,
669 		   zone->spanned_pages,
670 		   zone->present_pages);
671 
672 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
673 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
674 				zone_page_state(zone, i));
675 
676 	seq_printf(m,
677 		   "\n        protection: (%lu",
678 		   zone->lowmem_reserve[0]);
679 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
680 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
681 	seq_printf(m,
682 		   ")"
683 		   "\n  pagesets");
684 	for_each_online_cpu(i) {
685 		struct per_cpu_pageset *pageset;
686 
687 		pageset = zone_pcp(zone, i);
688 		seq_printf(m,
689 			   "\n    cpu: %i"
690 			   "\n              count: %i"
691 			   "\n              high:  %i"
692 			   "\n              batch: %i",
693 			   i,
694 			   pageset->pcp.count,
695 			   pageset->pcp.high,
696 			   pageset->pcp.batch);
697 #ifdef CONFIG_SMP
698 		seq_printf(m, "\n  vm stats threshold: %d",
699 				pageset->stat_threshold);
700 #endif
701 	}
702 	seq_printf(m,
703 		   "\n  all_unreclaimable: %u"
704 		   "\n  prev_priority:     %i"
705 		   "\n  start_pfn:         %lu",
706 			   zone_is_all_unreclaimable(zone),
707 		   zone->prev_priority,
708 		   zone->zone_start_pfn);
709 	seq_putc(m, '\n');
710 }
711 
712 /*
713  * Output information about zones in @pgdat.
714  */
715 static int zoneinfo_show(struct seq_file *m, void *arg)
716 {
717 	pg_data_t *pgdat = (pg_data_t *)arg;
718 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
719 	return 0;
720 }
721 
722 const struct seq_operations zoneinfo_op = {
723 	.start	= frag_start, /* iterate over all zones. The same as in
724 			       * fragmentation. */
725 	.next	= frag_next,
726 	.stop	= frag_stop,
727 	.show	= zoneinfo_show,
728 };
729 
730 static void *vmstat_start(struct seq_file *m, loff_t *pos)
731 {
732 	unsigned long *v;
733 #ifdef CONFIG_VM_EVENT_COUNTERS
734 	unsigned long *e;
735 #endif
736 	int i;
737 
738 	if (*pos >= ARRAY_SIZE(vmstat_text))
739 		return NULL;
740 
741 #ifdef CONFIG_VM_EVENT_COUNTERS
742 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
743 			+ sizeof(struct vm_event_state), GFP_KERNEL);
744 #else
745 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
746 			GFP_KERNEL);
747 #endif
748 	m->private = v;
749 	if (!v)
750 		return ERR_PTR(-ENOMEM);
751 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
752 		v[i] = global_page_state(i);
753 #ifdef CONFIG_VM_EVENT_COUNTERS
754 	e = v + NR_VM_ZONE_STAT_ITEMS;
755 	all_vm_events(e);
756 	e[PGPGIN] /= 2;		/* sectors -> kbytes */
757 	e[PGPGOUT] /= 2;
758 #endif
759 	return v + *pos;
760 }
761 
762 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
763 {
764 	(*pos)++;
765 	if (*pos >= ARRAY_SIZE(vmstat_text))
766 		return NULL;
767 	return (unsigned long *)m->private + *pos;
768 }
769 
770 static int vmstat_show(struct seq_file *m, void *arg)
771 {
772 	unsigned long *l = arg;
773 	unsigned long off = l - (unsigned long *)m->private;
774 
775 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
776 	return 0;
777 }
778 
779 static void vmstat_stop(struct seq_file *m, void *arg)
780 {
781 	kfree(m->private);
782 	m->private = NULL;
783 }
784 
785 const struct seq_operations vmstat_op = {
786 	.start	= vmstat_start,
787 	.next	= vmstat_next,
788 	.stop	= vmstat_stop,
789 	.show	= vmstat_show,
790 };
791 
792 #endif /* CONFIG_PROC_FS */
793 
794 #ifdef CONFIG_SMP
795 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
796 int sysctl_stat_interval __read_mostly = HZ;
797 
798 static void vmstat_update(struct work_struct *w)
799 {
800 	refresh_cpu_vm_stats(smp_processor_id());
801 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
802 		sysctl_stat_interval);
803 }
804 
805 static void __cpuinit start_cpu_timer(int cpu)
806 {
807 	struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
808 
809 	INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
810 	schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
811 }
812 
813 /*
814  * Use the cpu notifier to insure that the thresholds are recalculated
815  * when necessary.
816  */
817 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
818 		unsigned long action,
819 		void *hcpu)
820 {
821 	long cpu = (long)hcpu;
822 
823 	switch (action) {
824 	case CPU_ONLINE:
825 	case CPU_ONLINE_FROZEN:
826 		start_cpu_timer(cpu);
827 		break;
828 	case CPU_DOWN_PREPARE:
829 	case CPU_DOWN_PREPARE_FROZEN:
830 		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
831 		per_cpu(vmstat_work, cpu).work.func = NULL;
832 		break;
833 	case CPU_DOWN_FAILED:
834 	case CPU_DOWN_FAILED_FROZEN:
835 		start_cpu_timer(cpu);
836 		break;
837 	case CPU_DEAD:
838 	case CPU_DEAD_FROZEN:
839 		refresh_zone_stat_thresholds();
840 		break;
841 	default:
842 		break;
843 	}
844 	return NOTIFY_OK;
845 }
846 
847 static struct notifier_block __cpuinitdata vmstat_notifier =
848 	{ &vmstat_cpuup_callback, NULL, 0 };
849 
850 static int __init setup_vmstat(void)
851 {
852 	int cpu;
853 
854 	refresh_zone_stat_thresholds();
855 	register_cpu_notifier(&vmstat_notifier);
856 
857 	for_each_online_cpu(cpu)
858 		start_cpu_timer(cpu);
859 	return 0;
860 }
861 module_init(setup_vmstat)
862 #endif
863