xref: /linux/mm/vmstat.c (revision e53524cdcc02d089e757b668da031ba06ff665c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 #include <linux/sched/isolation.h>
32 
33 #include "internal.h"
34 
35 #ifdef CONFIG_NUMA
36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37 
38 /* zero numa counters within a zone */
39 static void zero_zone_numa_counters(struct zone *zone)
40 {
41 	int item, cpu;
42 
43 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 		atomic_long_set(&zone->vm_numa_event[item], 0);
45 		for_each_online_cpu(cpu) {
46 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
47 						= 0;
48 		}
49 	}
50 }
51 
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
54 {
55 	struct zone *zone;
56 
57 	for_each_populated_zone(zone)
58 		zero_zone_numa_counters(zone);
59 }
60 
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
63 {
64 	int item;
65 
66 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 		atomic_long_set(&vm_numa_event[item], 0);
68 }
69 
70 static void invalid_numa_statistics(void)
71 {
72 	zero_zones_numa_counters();
73 	zero_global_numa_counters();
74 }
75 
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77 
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 		void *buffer, size_t *length, loff_t *ppos)
80 {
81 	int ret, oldval;
82 
83 	mutex_lock(&vm_numa_stat_lock);
84 	if (write)
85 		oldval = sysctl_vm_numa_stat;
86 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 	if (ret || !write)
88 		goto out;
89 
90 	if (oldval == sysctl_vm_numa_stat)
91 		goto out;
92 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 		static_branch_enable(&vm_numa_stat_key);
94 		pr_info("enable numa statistics\n");
95 	} else {
96 		static_branch_disable(&vm_numa_stat_key);
97 		invalid_numa_statistics();
98 		pr_info("disable numa statistics, and clear numa counters\n");
99 	}
100 
101 out:
102 	mutex_unlock(&vm_numa_stat_lock);
103 	return ret;
104 }
105 #endif
106 
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 
111 static void sum_vm_events(unsigned long *ret)
112 {
113 	int cpu;
114 	int i;
115 
116 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 
118 	for_each_online_cpu(cpu) {
119 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 
121 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 			ret[i] += this->event[i];
123 	}
124 }
125 
126 /*
127  * Accumulate the vm event counters across all CPUs.
128  * The result is unavoidably approximate - it can change
129  * during and after execution of this function.
130 */
131 void all_vm_events(unsigned long *ret)
132 {
133 	cpus_read_lock();
134 	sum_vm_events(ret);
135 	cpus_read_unlock();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138 
139 /*
140  * Fold the foreign cpu events into our own.
141  *
142  * This is adding to the events on one processor
143  * but keeps the global counts constant.
144  */
145 void vm_events_fold_cpu(int cpu)
146 {
147 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 	int i;
149 
150 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 		count_vm_events(i, fold_state->event[i]);
152 		fold_state->event[i] = 0;
153 	}
154 }
155 
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157 
158 /*
159  * Manage combined zone based / global counters
160  *
161  * vm_stat contains the global counters
162  */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_node_stat);
168 
169 #ifdef CONFIG_NUMA
170 static void fold_vm_zone_numa_events(struct zone *zone)
171 {
172 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 	int cpu;
174 	enum numa_stat_item item;
175 
176 	for_each_online_cpu(cpu) {
177 		struct per_cpu_zonestat *pzstats;
178 
179 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
182 	}
183 
184 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 		zone_numa_event_add(zone_numa_events[item], zone, item);
186 }
187 
188 void fold_vm_numa_events(void)
189 {
190 	struct zone *zone;
191 
192 	for_each_populated_zone(zone)
193 		fold_vm_zone_numa_events(zone);
194 }
195 #endif
196 
197 #ifdef CONFIG_SMP
198 
199 int calculate_pressure_threshold(struct zone *zone)
200 {
201 	int threshold;
202 	int watermark_distance;
203 
204 	/*
205 	 * As vmstats are not up to date, there is drift between the estimated
206 	 * and real values. For high thresholds and a high number of CPUs, it
207 	 * is possible for the min watermark to be breached while the estimated
208 	 * value looks fine. The pressure threshold is a reduced value such
209 	 * that even the maximum amount of drift will not accidentally breach
210 	 * the min watermark
211 	 */
212 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
214 
215 	/*
216 	 * Maximum threshold is 125
217 	 */
218 	threshold = min(125, threshold);
219 
220 	return threshold;
221 }
222 
223 int calculate_normal_threshold(struct zone *zone)
224 {
225 	int threshold;
226 	int mem;	/* memory in 128 MB units */
227 
228 	/*
229 	 * The threshold scales with the number of processors and the amount
230 	 * of memory per zone. More memory means that we can defer updates for
231 	 * longer, more processors could lead to more contention.
232  	 * fls() is used to have a cheap way of logarithmic scaling.
233 	 *
234 	 * Some sample thresholds:
235 	 *
236 	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
237 	 * ------------------------------------------------------------------
238 	 * 8		1		1	0.9-1 GB	4
239 	 * 16		2		2	0.9-1 GB	4
240 	 * 20 		2		2	1-2 GB		5
241 	 * 24		2		2	2-4 GB		6
242 	 * 28		2		2	4-8 GB		7
243 	 * 32		2		2	8-16 GB		8
244 	 * 4		2		2	<128M		1
245 	 * 30		4		3	2-4 GB		5
246 	 * 48		4		3	8-16 GB		8
247 	 * 32		8		4	1-2 GB		4
248 	 * 32		8		4	0.9-1GB		4
249 	 * 10		16		5	<128M		1
250 	 * 40		16		5	900M		4
251 	 * 70		64		7	2-4 GB		5
252 	 * 84		64		7	4-8 GB		6
253 	 * 108		512		9	4-8 GB		6
254 	 * 125		1024		10	8-16 GB		8
255 	 * 125		1024		10	16-32 GB	9
256 	 */
257 
258 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
259 
260 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
261 
262 	/*
263 	 * Maximum threshold is 125
264 	 */
265 	threshold = min(125, threshold);
266 
267 	return threshold;
268 }
269 
270 /*
271  * Refresh the thresholds for each zone.
272  */
273 void refresh_zone_stat_thresholds(void)
274 {
275 	struct pglist_data *pgdat;
276 	struct zone *zone;
277 	int cpu;
278 	int threshold;
279 
280 	/* Zero current pgdat thresholds */
281 	for_each_online_pgdat(pgdat) {
282 		for_each_online_cpu(cpu) {
283 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
284 		}
285 	}
286 
287 	for_each_populated_zone(zone) {
288 		struct pglist_data *pgdat = zone->zone_pgdat;
289 		unsigned long max_drift, tolerate_drift;
290 
291 		threshold = calculate_normal_threshold(zone);
292 
293 		for_each_online_cpu(cpu) {
294 			int pgdat_threshold;
295 
296 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
297 							= threshold;
298 
299 			/* Base nodestat threshold on the largest populated zone. */
300 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 				= max(threshold, pgdat_threshold);
303 		}
304 
305 		/*
306 		 * Only set percpu_drift_mark if there is a danger that
307 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
308 		 * the min watermark could be breached by an allocation
309 		 */
310 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 		max_drift = num_online_cpus() * threshold;
312 		if (max_drift > tolerate_drift)
313 			zone->percpu_drift_mark = high_wmark_pages(zone) +
314 					max_drift;
315 	}
316 }
317 
318 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 				int (*calculate_pressure)(struct zone *))
320 {
321 	struct zone *zone;
322 	int cpu;
323 	int threshold;
324 	int i;
325 
326 	for (i = 0; i < pgdat->nr_zones; i++) {
327 		zone = &pgdat->node_zones[i];
328 		if (!zone->percpu_drift_mark)
329 			continue;
330 
331 		threshold = (*calculate_pressure)(zone);
332 		for_each_online_cpu(cpu)
333 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
334 							= threshold;
335 	}
336 }
337 
338 /*
339  * For use when we know that interrupts are disabled,
340  * or when we know that preemption is disabled and that
341  * particular counter cannot be updated from interrupt context.
342  */
343 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
344 			   long delta)
345 {
346 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
347 	s8 __percpu *p = pcp->vm_stat_diff + item;
348 	long x;
349 	long t;
350 
351 	/*
352 	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 	 * atomicity is provided by IRQs being disabled -- either explicitly
354 	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 	 * CPU migrations and preemption potentially corrupts a counter so
356 	 * disable preemption.
357 	 */
358 	preempt_disable_nested();
359 
360 	x = delta + __this_cpu_read(*p);
361 
362 	t = __this_cpu_read(pcp->stat_threshold);
363 
364 	if (unlikely(abs(x) > t)) {
365 		zone_page_state_add(x, zone, item);
366 		x = 0;
367 	}
368 	__this_cpu_write(*p, x);
369 
370 	preempt_enable_nested();
371 }
372 EXPORT_SYMBOL(__mod_zone_page_state);
373 
374 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
375 				long delta)
376 {
377 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
378 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
379 	long x;
380 	long t;
381 
382 	if (vmstat_item_in_bytes(item)) {
383 		/*
384 		 * Only cgroups use subpage accounting right now; at
385 		 * the global level, these items still change in
386 		 * multiples of whole pages. Store them as pages
387 		 * internally to keep the per-cpu counters compact.
388 		 */
389 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
390 		delta >>= PAGE_SHIFT;
391 	}
392 
393 	/* See __mod_node_page_state */
394 	preempt_disable_nested();
395 
396 	x = delta + __this_cpu_read(*p);
397 
398 	t = __this_cpu_read(pcp->stat_threshold);
399 
400 	if (unlikely(abs(x) > t)) {
401 		node_page_state_add(x, pgdat, item);
402 		x = 0;
403 	}
404 	__this_cpu_write(*p, x);
405 
406 	preempt_enable_nested();
407 }
408 EXPORT_SYMBOL(__mod_node_page_state);
409 
410 /*
411  * Optimized increment and decrement functions.
412  *
413  * These are only for a single page and therefore can take a struct page *
414  * argument instead of struct zone *. This allows the inclusion of the code
415  * generated for page_zone(page) into the optimized functions.
416  *
417  * No overflow check is necessary and therefore the differential can be
418  * incremented or decremented in place which may allow the compilers to
419  * generate better code.
420  * The increment or decrement is known and therefore one boundary check can
421  * be omitted.
422  *
423  * NOTE: These functions are very performance sensitive. Change only
424  * with care.
425  *
426  * Some processors have inc/dec instructions that are atomic vs an interrupt.
427  * However, the code must first determine the differential location in a zone
428  * based on the processor number and then inc/dec the counter. There is no
429  * guarantee without disabling preemption that the processor will not change
430  * in between and therefore the atomicity vs. interrupt cannot be exploited
431  * in a useful way here.
432  */
433 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
434 {
435 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
436 	s8 __percpu *p = pcp->vm_stat_diff + item;
437 	s8 v, t;
438 
439 	/* See __mod_node_page_state */
440 	preempt_disable_nested();
441 
442 	v = __this_cpu_inc_return(*p);
443 	t = __this_cpu_read(pcp->stat_threshold);
444 	if (unlikely(v > t)) {
445 		s8 overstep = t >> 1;
446 
447 		zone_page_state_add(v + overstep, zone, item);
448 		__this_cpu_write(*p, -overstep);
449 	}
450 
451 	preempt_enable_nested();
452 }
453 
454 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
455 {
456 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
457 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
458 	s8 v, t;
459 
460 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
461 
462 	/* See __mod_node_page_state */
463 	preempt_disable_nested();
464 
465 	v = __this_cpu_inc_return(*p);
466 	t = __this_cpu_read(pcp->stat_threshold);
467 	if (unlikely(v > t)) {
468 		s8 overstep = t >> 1;
469 
470 		node_page_state_add(v + overstep, pgdat, item);
471 		__this_cpu_write(*p, -overstep);
472 	}
473 
474 	preempt_enable_nested();
475 }
476 
477 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
478 {
479 	__inc_zone_state(page_zone(page), item);
480 }
481 EXPORT_SYMBOL(__inc_zone_page_state);
482 
483 void __inc_node_page_state(struct page *page, enum node_stat_item item)
484 {
485 	__inc_node_state(page_pgdat(page), item);
486 }
487 EXPORT_SYMBOL(__inc_node_page_state);
488 
489 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
490 {
491 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
492 	s8 __percpu *p = pcp->vm_stat_diff + item;
493 	s8 v, t;
494 
495 	/* See __mod_node_page_state */
496 	preempt_disable_nested();
497 
498 	v = __this_cpu_dec_return(*p);
499 	t = __this_cpu_read(pcp->stat_threshold);
500 	if (unlikely(v < - t)) {
501 		s8 overstep = t >> 1;
502 
503 		zone_page_state_add(v - overstep, zone, item);
504 		__this_cpu_write(*p, overstep);
505 	}
506 
507 	preempt_enable_nested();
508 }
509 
510 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
511 {
512 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
513 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
514 	s8 v, t;
515 
516 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
517 
518 	/* See __mod_node_page_state */
519 	preempt_disable_nested();
520 
521 	v = __this_cpu_dec_return(*p);
522 	t = __this_cpu_read(pcp->stat_threshold);
523 	if (unlikely(v < - t)) {
524 		s8 overstep = t >> 1;
525 
526 		node_page_state_add(v - overstep, pgdat, item);
527 		__this_cpu_write(*p, overstep);
528 	}
529 
530 	preempt_enable_nested();
531 }
532 
533 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
534 {
535 	__dec_zone_state(page_zone(page), item);
536 }
537 EXPORT_SYMBOL(__dec_zone_page_state);
538 
539 void __dec_node_page_state(struct page *page, enum node_stat_item item)
540 {
541 	__dec_node_state(page_pgdat(page), item);
542 }
543 EXPORT_SYMBOL(__dec_node_page_state);
544 
545 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
546 /*
547  * If we have cmpxchg_local support then we do not need to incur the overhead
548  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
549  *
550  * mod_state() modifies the zone counter state through atomic per cpu
551  * operations.
552  *
553  * Overstep mode specifies how overstep should handled:
554  *     0       No overstepping
555  *     1       Overstepping half of threshold
556  *     -1      Overstepping minus half of threshold
557 */
558 static inline void mod_zone_state(struct zone *zone,
559        enum zone_stat_item item, long delta, int overstep_mode)
560 {
561 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
562 	s8 __percpu *p = pcp->vm_stat_diff + item;
563 	long o, n, t, z;
564 
565 	do {
566 		z = 0;  /* overflow to zone counters */
567 
568 		/*
569 		 * The fetching of the stat_threshold is racy. We may apply
570 		 * a counter threshold to the wrong the cpu if we get
571 		 * rescheduled while executing here. However, the next
572 		 * counter update will apply the threshold again and
573 		 * therefore bring the counter under the threshold again.
574 		 *
575 		 * Most of the time the thresholds are the same anyways
576 		 * for all cpus in a zone.
577 		 */
578 		t = this_cpu_read(pcp->stat_threshold);
579 
580 		o = this_cpu_read(*p);
581 		n = delta + o;
582 
583 		if (abs(n) > t) {
584 			int os = overstep_mode * (t >> 1) ;
585 
586 			/* Overflow must be added to zone counters */
587 			z = n + os;
588 			n = -os;
589 		}
590 	} while (this_cpu_cmpxchg(*p, o, n) != o);
591 
592 	if (z)
593 		zone_page_state_add(z, zone, item);
594 }
595 
596 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597 			 long delta)
598 {
599 	mod_zone_state(zone, item, delta, 0);
600 }
601 EXPORT_SYMBOL(mod_zone_page_state);
602 
603 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604 {
605 	mod_zone_state(page_zone(page), item, 1, 1);
606 }
607 EXPORT_SYMBOL(inc_zone_page_state);
608 
609 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610 {
611 	mod_zone_state(page_zone(page), item, -1, -1);
612 }
613 EXPORT_SYMBOL(dec_zone_page_state);
614 
615 static inline void mod_node_state(struct pglist_data *pgdat,
616        enum node_stat_item item, int delta, int overstep_mode)
617 {
618 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
620 	long o, n, t, z;
621 
622 	if (vmstat_item_in_bytes(item)) {
623 		/*
624 		 * Only cgroups use subpage accounting right now; at
625 		 * the global level, these items still change in
626 		 * multiples of whole pages. Store them as pages
627 		 * internally to keep the per-cpu counters compact.
628 		 */
629 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
630 		delta >>= PAGE_SHIFT;
631 	}
632 
633 	do {
634 		z = 0;  /* overflow to node counters */
635 
636 		/*
637 		 * The fetching of the stat_threshold is racy. We may apply
638 		 * a counter threshold to the wrong the cpu if we get
639 		 * rescheduled while executing here. However, the next
640 		 * counter update will apply the threshold again and
641 		 * therefore bring the counter under the threshold again.
642 		 *
643 		 * Most of the time the thresholds are the same anyways
644 		 * for all cpus in a node.
645 		 */
646 		t = this_cpu_read(pcp->stat_threshold);
647 
648 		o = this_cpu_read(*p);
649 		n = delta + o;
650 
651 		if (abs(n) > t) {
652 			int os = overstep_mode * (t >> 1) ;
653 
654 			/* Overflow must be added to node counters */
655 			z = n + os;
656 			n = -os;
657 		}
658 	} while (this_cpu_cmpxchg(*p, o, n) != o);
659 
660 	if (z)
661 		node_page_state_add(z, pgdat, item);
662 }
663 
664 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
665 					long delta)
666 {
667 	mod_node_state(pgdat, item, delta, 0);
668 }
669 EXPORT_SYMBOL(mod_node_page_state);
670 
671 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
672 {
673 	mod_node_state(pgdat, item, 1, 1);
674 }
675 
676 void inc_node_page_state(struct page *page, enum node_stat_item item)
677 {
678 	mod_node_state(page_pgdat(page), item, 1, 1);
679 }
680 EXPORT_SYMBOL(inc_node_page_state);
681 
682 void dec_node_page_state(struct page *page, enum node_stat_item item)
683 {
684 	mod_node_state(page_pgdat(page), item, -1, -1);
685 }
686 EXPORT_SYMBOL(dec_node_page_state);
687 #else
688 /*
689  * Use interrupt disable to serialize counter updates
690  */
691 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
692 			 long delta)
693 {
694 	unsigned long flags;
695 
696 	local_irq_save(flags);
697 	__mod_zone_page_state(zone, item, delta);
698 	local_irq_restore(flags);
699 }
700 EXPORT_SYMBOL(mod_zone_page_state);
701 
702 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
703 {
704 	unsigned long flags;
705 	struct zone *zone;
706 
707 	zone = page_zone(page);
708 	local_irq_save(flags);
709 	__inc_zone_state(zone, item);
710 	local_irq_restore(flags);
711 }
712 EXPORT_SYMBOL(inc_zone_page_state);
713 
714 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
715 {
716 	unsigned long flags;
717 
718 	local_irq_save(flags);
719 	__dec_zone_page_state(page, item);
720 	local_irq_restore(flags);
721 }
722 EXPORT_SYMBOL(dec_zone_page_state);
723 
724 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
725 {
726 	unsigned long flags;
727 
728 	local_irq_save(flags);
729 	__inc_node_state(pgdat, item);
730 	local_irq_restore(flags);
731 }
732 EXPORT_SYMBOL(inc_node_state);
733 
734 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
735 					long delta)
736 {
737 	unsigned long flags;
738 
739 	local_irq_save(flags);
740 	__mod_node_page_state(pgdat, item, delta);
741 	local_irq_restore(flags);
742 }
743 EXPORT_SYMBOL(mod_node_page_state);
744 
745 void inc_node_page_state(struct page *page, enum node_stat_item item)
746 {
747 	unsigned long flags;
748 	struct pglist_data *pgdat;
749 
750 	pgdat = page_pgdat(page);
751 	local_irq_save(flags);
752 	__inc_node_state(pgdat, item);
753 	local_irq_restore(flags);
754 }
755 EXPORT_SYMBOL(inc_node_page_state);
756 
757 void dec_node_page_state(struct page *page, enum node_stat_item item)
758 {
759 	unsigned long flags;
760 
761 	local_irq_save(flags);
762 	__dec_node_page_state(page, item);
763 	local_irq_restore(flags);
764 }
765 EXPORT_SYMBOL(dec_node_page_state);
766 #endif
767 
768 /*
769  * Fold a differential into the global counters.
770  * Returns the number of counters updated.
771  */
772 static int fold_diff(int *zone_diff, int *node_diff)
773 {
774 	int i;
775 	int changes = 0;
776 
777 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
778 		if (zone_diff[i]) {
779 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
780 			changes++;
781 	}
782 
783 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
784 		if (node_diff[i]) {
785 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
786 			changes++;
787 	}
788 	return changes;
789 }
790 
791 /*
792  * Update the zone counters for the current cpu.
793  *
794  * Note that refresh_cpu_vm_stats strives to only access
795  * node local memory. The per cpu pagesets on remote zones are placed
796  * in the memory local to the processor using that pageset. So the
797  * loop over all zones will access a series of cachelines local to
798  * the processor.
799  *
800  * The call to zone_page_state_add updates the cachelines with the
801  * statistics in the remote zone struct as well as the global cachelines
802  * with the global counters. These could cause remote node cache line
803  * bouncing and will have to be only done when necessary.
804  *
805  * The function returns the number of global counters updated.
806  */
807 static int refresh_cpu_vm_stats(bool do_pagesets)
808 {
809 	struct pglist_data *pgdat;
810 	struct zone *zone;
811 	int i;
812 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
813 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
814 	int changes = 0;
815 
816 	for_each_populated_zone(zone) {
817 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
818 #ifdef CONFIG_NUMA
819 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820 #endif
821 
822 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
823 			int v;
824 
825 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
826 			if (v) {
827 
828 				atomic_long_add(v, &zone->vm_stat[i]);
829 				global_zone_diff[i] += v;
830 #ifdef CONFIG_NUMA
831 				/* 3 seconds idle till flush */
832 				__this_cpu_write(pcp->expire, 3);
833 #endif
834 			}
835 		}
836 #ifdef CONFIG_NUMA
837 
838 		if (do_pagesets) {
839 			cond_resched();
840 			/*
841 			 * Deal with draining the remote pageset of this
842 			 * processor
843 			 *
844 			 * Check if there are pages remaining in this pageset
845 			 * if not then there is nothing to expire.
846 			 */
847 			if (!__this_cpu_read(pcp->expire) ||
848 			       !__this_cpu_read(pcp->count))
849 				continue;
850 
851 			/*
852 			 * We never drain zones local to this processor.
853 			 */
854 			if (zone_to_nid(zone) == numa_node_id()) {
855 				__this_cpu_write(pcp->expire, 0);
856 				continue;
857 			}
858 
859 			if (__this_cpu_dec_return(pcp->expire))
860 				continue;
861 
862 			if (__this_cpu_read(pcp->count)) {
863 				drain_zone_pages(zone, this_cpu_ptr(pcp));
864 				changes++;
865 			}
866 		}
867 #endif
868 	}
869 
870 	for_each_online_pgdat(pgdat) {
871 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
872 
873 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
874 			int v;
875 
876 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
877 			if (v) {
878 				atomic_long_add(v, &pgdat->vm_stat[i]);
879 				global_node_diff[i] += v;
880 			}
881 		}
882 	}
883 
884 	changes += fold_diff(global_zone_diff, global_node_diff);
885 	return changes;
886 }
887 
888 /*
889  * Fold the data for an offline cpu into the global array.
890  * There cannot be any access by the offline cpu and therefore
891  * synchronization is simplified.
892  */
893 void cpu_vm_stats_fold(int cpu)
894 {
895 	struct pglist_data *pgdat;
896 	struct zone *zone;
897 	int i;
898 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
899 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
900 
901 	for_each_populated_zone(zone) {
902 		struct per_cpu_zonestat *pzstats;
903 
904 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
905 
906 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
907 			if (pzstats->vm_stat_diff[i]) {
908 				int v;
909 
910 				v = pzstats->vm_stat_diff[i];
911 				pzstats->vm_stat_diff[i] = 0;
912 				atomic_long_add(v, &zone->vm_stat[i]);
913 				global_zone_diff[i] += v;
914 			}
915 		}
916 #ifdef CONFIG_NUMA
917 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
918 			if (pzstats->vm_numa_event[i]) {
919 				unsigned long v;
920 
921 				v = pzstats->vm_numa_event[i];
922 				pzstats->vm_numa_event[i] = 0;
923 				zone_numa_event_add(v, zone, i);
924 			}
925 		}
926 #endif
927 	}
928 
929 	for_each_online_pgdat(pgdat) {
930 		struct per_cpu_nodestat *p;
931 
932 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
933 
934 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
935 			if (p->vm_node_stat_diff[i]) {
936 				int v;
937 
938 				v = p->vm_node_stat_diff[i];
939 				p->vm_node_stat_diff[i] = 0;
940 				atomic_long_add(v, &pgdat->vm_stat[i]);
941 				global_node_diff[i] += v;
942 			}
943 	}
944 
945 	fold_diff(global_zone_diff, global_node_diff);
946 }
947 
948 /*
949  * this is only called if !populated_zone(zone), which implies no other users of
950  * pset->vm_stat_diff[] exist.
951  */
952 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
953 {
954 	unsigned long v;
955 	int i;
956 
957 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
958 		if (pzstats->vm_stat_diff[i]) {
959 			v = pzstats->vm_stat_diff[i];
960 			pzstats->vm_stat_diff[i] = 0;
961 			zone_page_state_add(v, zone, i);
962 		}
963 	}
964 
965 #ifdef CONFIG_NUMA
966 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
967 		if (pzstats->vm_numa_event[i]) {
968 			v = pzstats->vm_numa_event[i];
969 			pzstats->vm_numa_event[i] = 0;
970 			zone_numa_event_add(v, zone, i);
971 		}
972 	}
973 #endif
974 }
975 #endif
976 
977 #ifdef CONFIG_NUMA
978 /*
979  * Determine the per node value of a stat item. This function
980  * is called frequently in a NUMA machine, so try to be as
981  * frugal as possible.
982  */
983 unsigned long sum_zone_node_page_state(int node,
984 				 enum zone_stat_item item)
985 {
986 	struct zone *zones = NODE_DATA(node)->node_zones;
987 	int i;
988 	unsigned long count = 0;
989 
990 	for (i = 0; i < MAX_NR_ZONES; i++)
991 		count += zone_page_state(zones + i, item);
992 
993 	return count;
994 }
995 
996 /* Determine the per node value of a numa stat item. */
997 unsigned long sum_zone_numa_event_state(int node,
998 				 enum numa_stat_item item)
999 {
1000 	struct zone *zones = NODE_DATA(node)->node_zones;
1001 	unsigned long count = 0;
1002 	int i;
1003 
1004 	for (i = 0; i < MAX_NR_ZONES; i++)
1005 		count += zone_numa_event_state(zones + i, item);
1006 
1007 	return count;
1008 }
1009 
1010 /*
1011  * Determine the per node value of a stat item.
1012  */
1013 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1014 				    enum node_stat_item item)
1015 {
1016 	long x = atomic_long_read(&pgdat->vm_stat[item]);
1017 #ifdef CONFIG_SMP
1018 	if (x < 0)
1019 		x = 0;
1020 #endif
1021 	return x;
1022 }
1023 
1024 unsigned long node_page_state(struct pglist_data *pgdat,
1025 			      enum node_stat_item item)
1026 {
1027 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1028 
1029 	return node_page_state_pages(pgdat, item);
1030 }
1031 #endif
1032 
1033 #ifdef CONFIG_COMPACTION
1034 
1035 struct contig_page_info {
1036 	unsigned long free_pages;
1037 	unsigned long free_blocks_total;
1038 	unsigned long free_blocks_suitable;
1039 };
1040 
1041 /*
1042  * Calculate the number of free pages in a zone, how many contiguous
1043  * pages are free and how many are large enough to satisfy an allocation of
1044  * the target size. Note that this function makes no attempt to estimate
1045  * how many suitable free blocks there *might* be if MOVABLE pages were
1046  * migrated. Calculating that is possible, but expensive and can be
1047  * figured out from userspace
1048  */
1049 static void fill_contig_page_info(struct zone *zone,
1050 				unsigned int suitable_order,
1051 				struct contig_page_info *info)
1052 {
1053 	unsigned int order;
1054 
1055 	info->free_pages = 0;
1056 	info->free_blocks_total = 0;
1057 	info->free_blocks_suitable = 0;
1058 
1059 	for (order = 0; order <= MAX_ORDER; order++) {
1060 		unsigned long blocks;
1061 
1062 		/*
1063 		 * Count number of free blocks.
1064 		 *
1065 		 * Access to nr_free is lockless as nr_free is used only for
1066 		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1067 		 */
1068 		blocks = data_race(zone->free_area[order].nr_free);
1069 		info->free_blocks_total += blocks;
1070 
1071 		/* Count free base pages */
1072 		info->free_pages += blocks << order;
1073 
1074 		/* Count the suitable free blocks */
1075 		if (order >= suitable_order)
1076 			info->free_blocks_suitable += blocks <<
1077 						(order - suitable_order);
1078 	}
1079 }
1080 
1081 /*
1082  * A fragmentation index only makes sense if an allocation of a requested
1083  * size would fail. If that is true, the fragmentation index indicates
1084  * whether external fragmentation or a lack of memory was the problem.
1085  * The value can be used to determine if page reclaim or compaction
1086  * should be used
1087  */
1088 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1089 {
1090 	unsigned long requested = 1UL << order;
1091 
1092 	if (WARN_ON_ONCE(order > MAX_ORDER))
1093 		return 0;
1094 
1095 	if (!info->free_blocks_total)
1096 		return 0;
1097 
1098 	/* Fragmentation index only makes sense when a request would fail */
1099 	if (info->free_blocks_suitable)
1100 		return -1000;
1101 
1102 	/*
1103 	 * Index is between 0 and 1 so return within 3 decimal places
1104 	 *
1105 	 * 0 => allocation would fail due to lack of memory
1106 	 * 1 => allocation would fail due to fragmentation
1107 	 */
1108 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1109 }
1110 
1111 /*
1112  * Calculates external fragmentation within a zone wrt the given order.
1113  * It is defined as the percentage of pages found in blocks of size
1114  * less than 1 << order. It returns values in range [0, 100].
1115  */
1116 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1117 {
1118 	struct contig_page_info info;
1119 
1120 	fill_contig_page_info(zone, order, &info);
1121 	if (info.free_pages == 0)
1122 		return 0;
1123 
1124 	return div_u64((info.free_pages -
1125 			(info.free_blocks_suitable << order)) * 100,
1126 			info.free_pages);
1127 }
1128 
1129 /* Same as __fragmentation index but allocs contig_page_info on stack */
1130 int fragmentation_index(struct zone *zone, unsigned int order)
1131 {
1132 	struct contig_page_info info;
1133 
1134 	fill_contig_page_info(zone, order, &info);
1135 	return __fragmentation_index(order, &info);
1136 }
1137 #endif
1138 
1139 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1141 #ifdef CONFIG_ZONE_DMA
1142 #define TEXT_FOR_DMA(xx) xx "_dma",
1143 #else
1144 #define TEXT_FOR_DMA(xx)
1145 #endif
1146 
1147 #ifdef CONFIG_ZONE_DMA32
1148 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1149 #else
1150 #define TEXT_FOR_DMA32(xx)
1151 #endif
1152 
1153 #ifdef CONFIG_HIGHMEM
1154 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1155 #else
1156 #define TEXT_FOR_HIGHMEM(xx)
1157 #endif
1158 
1159 #ifdef CONFIG_ZONE_DEVICE
1160 #define TEXT_FOR_DEVICE(xx) xx "_device",
1161 #else
1162 #define TEXT_FOR_DEVICE(xx)
1163 #endif
1164 
1165 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1166 					TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1167 					TEXT_FOR_DEVICE(xx)
1168 
1169 const char * const vmstat_text[] = {
1170 	/* enum zone_stat_item counters */
1171 	"nr_free_pages",
1172 	"nr_zone_inactive_anon",
1173 	"nr_zone_active_anon",
1174 	"nr_zone_inactive_file",
1175 	"nr_zone_active_file",
1176 	"nr_zone_unevictable",
1177 	"nr_zone_write_pending",
1178 	"nr_mlock",
1179 	"nr_bounce",
1180 #if IS_ENABLED(CONFIG_ZSMALLOC)
1181 	"nr_zspages",
1182 #endif
1183 	"nr_free_cma",
1184 #ifdef CONFIG_UNACCEPTED_MEMORY
1185 	"nr_unaccepted",
1186 #endif
1187 
1188 	/* enum numa_stat_item counters */
1189 #ifdef CONFIG_NUMA
1190 	"numa_hit",
1191 	"numa_miss",
1192 	"numa_foreign",
1193 	"numa_interleave",
1194 	"numa_local",
1195 	"numa_other",
1196 #endif
1197 
1198 	/* enum node_stat_item counters */
1199 	"nr_inactive_anon",
1200 	"nr_active_anon",
1201 	"nr_inactive_file",
1202 	"nr_active_file",
1203 	"nr_unevictable",
1204 	"nr_slab_reclaimable",
1205 	"nr_slab_unreclaimable",
1206 	"nr_isolated_anon",
1207 	"nr_isolated_file",
1208 	"workingset_nodes",
1209 	"workingset_refault_anon",
1210 	"workingset_refault_file",
1211 	"workingset_activate_anon",
1212 	"workingset_activate_file",
1213 	"workingset_restore_anon",
1214 	"workingset_restore_file",
1215 	"workingset_nodereclaim",
1216 	"nr_anon_pages",
1217 	"nr_mapped",
1218 	"nr_file_pages",
1219 	"nr_dirty",
1220 	"nr_writeback",
1221 	"nr_writeback_temp",
1222 	"nr_shmem",
1223 	"nr_shmem_hugepages",
1224 	"nr_shmem_pmdmapped",
1225 	"nr_file_hugepages",
1226 	"nr_file_pmdmapped",
1227 	"nr_anon_transparent_hugepages",
1228 	"nr_vmscan_write",
1229 	"nr_vmscan_immediate_reclaim",
1230 	"nr_dirtied",
1231 	"nr_written",
1232 	"nr_throttled_written",
1233 	"nr_kernel_misc_reclaimable",
1234 	"nr_foll_pin_acquired",
1235 	"nr_foll_pin_released",
1236 	"nr_kernel_stack",
1237 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1238 	"nr_shadow_call_stack",
1239 #endif
1240 	"nr_page_table_pages",
1241 	"nr_sec_page_table_pages",
1242 #ifdef CONFIG_SWAP
1243 	"nr_swapcached",
1244 #endif
1245 #ifdef CONFIG_NUMA_BALANCING
1246 	"pgpromote_success",
1247 	"pgpromote_candidate",
1248 #endif
1249 
1250 	/* enum writeback_stat_item counters */
1251 	"nr_dirty_threshold",
1252 	"nr_dirty_background_threshold",
1253 
1254 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1255 	/* enum vm_event_item counters */
1256 	"pgpgin",
1257 	"pgpgout",
1258 	"pswpin",
1259 	"pswpout",
1260 
1261 	TEXTS_FOR_ZONES("pgalloc")
1262 	TEXTS_FOR_ZONES("allocstall")
1263 	TEXTS_FOR_ZONES("pgskip")
1264 
1265 	"pgfree",
1266 	"pgactivate",
1267 	"pgdeactivate",
1268 	"pglazyfree",
1269 
1270 	"pgfault",
1271 	"pgmajfault",
1272 	"pglazyfreed",
1273 
1274 	"pgrefill",
1275 	"pgreuse",
1276 	"pgsteal_kswapd",
1277 	"pgsteal_direct",
1278 	"pgsteal_khugepaged",
1279 	"pgdemote_kswapd",
1280 	"pgdemote_direct",
1281 	"pgdemote_khugepaged",
1282 	"pgscan_kswapd",
1283 	"pgscan_direct",
1284 	"pgscan_khugepaged",
1285 	"pgscan_direct_throttle",
1286 	"pgscan_anon",
1287 	"pgscan_file",
1288 	"pgsteal_anon",
1289 	"pgsteal_file",
1290 
1291 #ifdef CONFIG_NUMA
1292 	"zone_reclaim_failed",
1293 #endif
1294 	"pginodesteal",
1295 	"slabs_scanned",
1296 	"kswapd_inodesteal",
1297 	"kswapd_low_wmark_hit_quickly",
1298 	"kswapd_high_wmark_hit_quickly",
1299 	"pageoutrun",
1300 
1301 	"pgrotated",
1302 
1303 	"drop_pagecache",
1304 	"drop_slab",
1305 	"oom_kill",
1306 
1307 #ifdef CONFIG_NUMA_BALANCING
1308 	"numa_pte_updates",
1309 	"numa_huge_pte_updates",
1310 	"numa_hint_faults",
1311 	"numa_hint_faults_local",
1312 	"numa_pages_migrated",
1313 #endif
1314 #ifdef CONFIG_MIGRATION
1315 	"pgmigrate_success",
1316 	"pgmigrate_fail",
1317 	"thp_migration_success",
1318 	"thp_migration_fail",
1319 	"thp_migration_split",
1320 #endif
1321 #ifdef CONFIG_COMPACTION
1322 	"compact_migrate_scanned",
1323 	"compact_free_scanned",
1324 	"compact_isolated",
1325 	"compact_stall",
1326 	"compact_fail",
1327 	"compact_success",
1328 	"compact_daemon_wake",
1329 	"compact_daemon_migrate_scanned",
1330 	"compact_daemon_free_scanned",
1331 #endif
1332 
1333 #ifdef CONFIG_HUGETLB_PAGE
1334 	"htlb_buddy_alloc_success",
1335 	"htlb_buddy_alloc_fail",
1336 #endif
1337 #ifdef CONFIG_CMA
1338 	"cma_alloc_success",
1339 	"cma_alloc_fail",
1340 #endif
1341 	"unevictable_pgs_culled",
1342 	"unevictable_pgs_scanned",
1343 	"unevictable_pgs_rescued",
1344 	"unevictable_pgs_mlocked",
1345 	"unevictable_pgs_munlocked",
1346 	"unevictable_pgs_cleared",
1347 	"unevictable_pgs_stranded",
1348 
1349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1350 	"thp_fault_alloc",
1351 	"thp_fault_fallback",
1352 	"thp_fault_fallback_charge",
1353 	"thp_collapse_alloc",
1354 	"thp_collapse_alloc_failed",
1355 	"thp_file_alloc",
1356 	"thp_file_fallback",
1357 	"thp_file_fallback_charge",
1358 	"thp_file_mapped",
1359 	"thp_split_page",
1360 	"thp_split_page_failed",
1361 	"thp_deferred_split_page",
1362 	"thp_split_pmd",
1363 	"thp_scan_exceed_none_pte",
1364 	"thp_scan_exceed_swap_pte",
1365 	"thp_scan_exceed_share_pte",
1366 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1367 	"thp_split_pud",
1368 #endif
1369 	"thp_zero_page_alloc",
1370 	"thp_zero_page_alloc_failed",
1371 	"thp_swpout",
1372 	"thp_swpout_fallback",
1373 #endif
1374 #ifdef CONFIG_MEMORY_BALLOON
1375 	"balloon_inflate",
1376 	"balloon_deflate",
1377 #ifdef CONFIG_BALLOON_COMPACTION
1378 	"balloon_migrate",
1379 #endif
1380 #endif /* CONFIG_MEMORY_BALLOON */
1381 #ifdef CONFIG_DEBUG_TLBFLUSH
1382 	"nr_tlb_remote_flush",
1383 	"nr_tlb_remote_flush_received",
1384 	"nr_tlb_local_flush_all",
1385 	"nr_tlb_local_flush_one",
1386 #endif /* CONFIG_DEBUG_TLBFLUSH */
1387 
1388 #ifdef CONFIG_SWAP
1389 	"swap_ra",
1390 	"swap_ra_hit",
1391 #ifdef CONFIG_KSM
1392 	"ksm_swpin_copy",
1393 #endif
1394 #endif
1395 #ifdef CONFIG_KSM
1396 	"cow_ksm",
1397 #endif
1398 #ifdef CONFIG_ZSWAP
1399 	"zswpin",
1400 	"zswpout",
1401 #endif
1402 #ifdef CONFIG_X86
1403 	"direct_map_level2_splits",
1404 	"direct_map_level3_splits",
1405 #endif
1406 #ifdef CONFIG_PER_VMA_LOCK_STATS
1407 	"vma_lock_success",
1408 	"vma_lock_abort",
1409 	"vma_lock_retry",
1410 	"vma_lock_miss",
1411 #endif
1412 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1413 };
1414 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1415 
1416 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1417      defined(CONFIG_PROC_FS)
1418 static void *frag_start(struct seq_file *m, loff_t *pos)
1419 {
1420 	pg_data_t *pgdat;
1421 	loff_t node = *pos;
1422 
1423 	for (pgdat = first_online_pgdat();
1424 	     pgdat && node;
1425 	     pgdat = next_online_pgdat(pgdat))
1426 		--node;
1427 
1428 	return pgdat;
1429 }
1430 
1431 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1432 {
1433 	pg_data_t *pgdat = (pg_data_t *)arg;
1434 
1435 	(*pos)++;
1436 	return next_online_pgdat(pgdat);
1437 }
1438 
1439 static void frag_stop(struct seq_file *m, void *arg)
1440 {
1441 }
1442 
1443 /*
1444  * Walk zones in a node and print using a callback.
1445  * If @assert_populated is true, only use callback for zones that are populated.
1446  */
1447 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1448 		bool assert_populated, bool nolock,
1449 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1450 {
1451 	struct zone *zone;
1452 	struct zone *node_zones = pgdat->node_zones;
1453 	unsigned long flags;
1454 
1455 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1456 		if (assert_populated && !populated_zone(zone))
1457 			continue;
1458 
1459 		if (!nolock)
1460 			spin_lock_irqsave(&zone->lock, flags);
1461 		print(m, pgdat, zone);
1462 		if (!nolock)
1463 			spin_unlock_irqrestore(&zone->lock, flags);
1464 	}
1465 }
1466 #endif
1467 
1468 #ifdef CONFIG_PROC_FS
1469 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1470 						struct zone *zone)
1471 {
1472 	int order;
1473 
1474 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1475 	for (order = 0; order <= MAX_ORDER; ++order)
1476 		/*
1477 		 * Access to nr_free is lockless as nr_free is used only for
1478 		 * printing purposes. Use data_race to avoid KCSAN warning.
1479 		 */
1480 		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1481 	seq_putc(m, '\n');
1482 }
1483 
1484 /*
1485  * This walks the free areas for each zone.
1486  */
1487 static int frag_show(struct seq_file *m, void *arg)
1488 {
1489 	pg_data_t *pgdat = (pg_data_t *)arg;
1490 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1491 	return 0;
1492 }
1493 
1494 static void pagetypeinfo_showfree_print(struct seq_file *m,
1495 					pg_data_t *pgdat, struct zone *zone)
1496 {
1497 	int order, mtype;
1498 
1499 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1500 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1501 					pgdat->node_id,
1502 					zone->name,
1503 					migratetype_names[mtype]);
1504 		for (order = 0; order <= MAX_ORDER; ++order) {
1505 			unsigned long freecount = 0;
1506 			struct free_area *area;
1507 			struct list_head *curr;
1508 			bool overflow = false;
1509 
1510 			area = &(zone->free_area[order]);
1511 
1512 			list_for_each(curr, &area->free_list[mtype]) {
1513 				/*
1514 				 * Cap the free_list iteration because it might
1515 				 * be really large and we are under a spinlock
1516 				 * so a long time spent here could trigger a
1517 				 * hard lockup detector. Anyway this is a
1518 				 * debugging tool so knowing there is a handful
1519 				 * of pages of this order should be more than
1520 				 * sufficient.
1521 				 */
1522 				if (++freecount >= 100000) {
1523 					overflow = true;
1524 					break;
1525 				}
1526 			}
1527 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1528 			spin_unlock_irq(&zone->lock);
1529 			cond_resched();
1530 			spin_lock_irq(&zone->lock);
1531 		}
1532 		seq_putc(m, '\n');
1533 	}
1534 }
1535 
1536 /* Print out the free pages at each order for each migatetype */
1537 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1538 {
1539 	int order;
1540 	pg_data_t *pgdat = (pg_data_t *)arg;
1541 
1542 	/* Print header */
1543 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1544 	for (order = 0; order <= MAX_ORDER; ++order)
1545 		seq_printf(m, "%6d ", order);
1546 	seq_putc(m, '\n');
1547 
1548 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1549 }
1550 
1551 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1552 					pg_data_t *pgdat, struct zone *zone)
1553 {
1554 	int mtype;
1555 	unsigned long pfn;
1556 	unsigned long start_pfn = zone->zone_start_pfn;
1557 	unsigned long end_pfn = zone_end_pfn(zone);
1558 	unsigned long count[MIGRATE_TYPES] = { 0, };
1559 
1560 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1561 		struct page *page;
1562 
1563 		page = pfn_to_online_page(pfn);
1564 		if (!page)
1565 			continue;
1566 
1567 		if (page_zone(page) != zone)
1568 			continue;
1569 
1570 		mtype = get_pageblock_migratetype(page);
1571 
1572 		if (mtype < MIGRATE_TYPES)
1573 			count[mtype]++;
1574 	}
1575 
1576 	/* Print counts */
1577 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1578 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1579 		seq_printf(m, "%12lu ", count[mtype]);
1580 	seq_putc(m, '\n');
1581 }
1582 
1583 /* Print out the number of pageblocks for each migratetype */
1584 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1585 {
1586 	int mtype;
1587 	pg_data_t *pgdat = (pg_data_t *)arg;
1588 
1589 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1590 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1591 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1592 	seq_putc(m, '\n');
1593 	walk_zones_in_node(m, pgdat, true, false,
1594 		pagetypeinfo_showblockcount_print);
1595 }
1596 
1597 /*
1598  * Print out the number of pageblocks for each migratetype that contain pages
1599  * of other types. This gives an indication of how well fallbacks are being
1600  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1601  * to determine what is going on
1602  */
1603 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1604 {
1605 #ifdef CONFIG_PAGE_OWNER
1606 	int mtype;
1607 
1608 	if (!static_branch_unlikely(&page_owner_inited))
1609 		return;
1610 
1611 	drain_all_pages(NULL);
1612 
1613 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1614 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1615 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1616 	seq_putc(m, '\n');
1617 
1618 	walk_zones_in_node(m, pgdat, true, true,
1619 		pagetypeinfo_showmixedcount_print);
1620 #endif /* CONFIG_PAGE_OWNER */
1621 }
1622 
1623 /*
1624  * This prints out statistics in relation to grouping pages by mobility.
1625  * It is expensive to collect so do not constantly read the file.
1626  */
1627 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1628 {
1629 	pg_data_t *pgdat = (pg_data_t *)arg;
1630 
1631 	/* check memoryless node */
1632 	if (!node_state(pgdat->node_id, N_MEMORY))
1633 		return 0;
1634 
1635 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1636 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1637 	seq_putc(m, '\n');
1638 	pagetypeinfo_showfree(m, pgdat);
1639 	pagetypeinfo_showblockcount(m, pgdat);
1640 	pagetypeinfo_showmixedcount(m, pgdat);
1641 
1642 	return 0;
1643 }
1644 
1645 static const struct seq_operations fragmentation_op = {
1646 	.start	= frag_start,
1647 	.next	= frag_next,
1648 	.stop	= frag_stop,
1649 	.show	= frag_show,
1650 };
1651 
1652 static const struct seq_operations pagetypeinfo_op = {
1653 	.start	= frag_start,
1654 	.next	= frag_next,
1655 	.stop	= frag_stop,
1656 	.show	= pagetypeinfo_show,
1657 };
1658 
1659 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1660 {
1661 	int zid;
1662 
1663 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1664 		struct zone *compare = &pgdat->node_zones[zid];
1665 
1666 		if (populated_zone(compare))
1667 			return zone == compare;
1668 	}
1669 
1670 	return false;
1671 }
1672 
1673 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1674 							struct zone *zone)
1675 {
1676 	int i;
1677 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1678 	if (is_zone_first_populated(pgdat, zone)) {
1679 		seq_printf(m, "\n  per-node stats");
1680 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1681 			unsigned long pages = node_page_state_pages(pgdat, i);
1682 
1683 			if (vmstat_item_print_in_thp(i))
1684 				pages /= HPAGE_PMD_NR;
1685 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1686 				   pages);
1687 		}
1688 	}
1689 	seq_printf(m,
1690 		   "\n  pages free     %lu"
1691 		   "\n        boost    %lu"
1692 		   "\n        min      %lu"
1693 		   "\n        low      %lu"
1694 		   "\n        high     %lu"
1695 		   "\n        spanned  %lu"
1696 		   "\n        present  %lu"
1697 		   "\n        managed  %lu"
1698 		   "\n        cma      %lu",
1699 		   zone_page_state(zone, NR_FREE_PAGES),
1700 		   zone->watermark_boost,
1701 		   min_wmark_pages(zone),
1702 		   low_wmark_pages(zone),
1703 		   high_wmark_pages(zone),
1704 		   zone->spanned_pages,
1705 		   zone->present_pages,
1706 		   zone_managed_pages(zone),
1707 		   zone_cma_pages(zone));
1708 
1709 	seq_printf(m,
1710 		   "\n        protection: (%ld",
1711 		   zone->lowmem_reserve[0]);
1712 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1713 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1714 	seq_putc(m, ')');
1715 
1716 	/* If unpopulated, no other information is useful */
1717 	if (!populated_zone(zone)) {
1718 		seq_putc(m, '\n');
1719 		return;
1720 	}
1721 
1722 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1723 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1724 			   zone_page_state(zone, i));
1725 
1726 #ifdef CONFIG_NUMA
1727 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1728 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1729 			   zone_numa_event_state(zone, i));
1730 #endif
1731 
1732 	seq_printf(m, "\n  pagesets");
1733 	for_each_online_cpu(i) {
1734 		struct per_cpu_pages *pcp;
1735 		struct per_cpu_zonestat __maybe_unused *pzstats;
1736 
1737 		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1738 		seq_printf(m,
1739 			   "\n    cpu: %i"
1740 			   "\n              count: %i"
1741 			   "\n              high:  %i"
1742 			   "\n              batch: %i",
1743 			   i,
1744 			   pcp->count,
1745 			   pcp->high,
1746 			   pcp->batch);
1747 #ifdef CONFIG_SMP
1748 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1749 		seq_printf(m, "\n  vm stats threshold: %d",
1750 				pzstats->stat_threshold);
1751 #endif
1752 	}
1753 	seq_printf(m,
1754 		   "\n  node_unreclaimable:  %u"
1755 		   "\n  start_pfn:           %lu",
1756 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1757 		   zone->zone_start_pfn);
1758 	seq_putc(m, '\n');
1759 }
1760 
1761 /*
1762  * Output information about zones in @pgdat.  All zones are printed regardless
1763  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1764  * set of all zones and userspace would not be aware of such zones if they are
1765  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1766  */
1767 static int zoneinfo_show(struct seq_file *m, void *arg)
1768 {
1769 	pg_data_t *pgdat = (pg_data_t *)arg;
1770 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1771 	return 0;
1772 }
1773 
1774 static const struct seq_operations zoneinfo_op = {
1775 	.start	= frag_start, /* iterate over all zones. The same as in
1776 			       * fragmentation. */
1777 	.next	= frag_next,
1778 	.stop	= frag_stop,
1779 	.show	= zoneinfo_show,
1780 };
1781 
1782 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1783 			 NR_VM_NUMA_EVENT_ITEMS + \
1784 			 NR_VM_NODE_STAT_ITEMS + \
1785 			 NR_VM_WRITEBACK_STAT_ITEMS + \
1786 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1787 			  NR_VM_EVENT_ITEMS : 0))
1788 
1789 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1790 {
1791 	unsigned long *v;
1792 	int i;
1793 
1794 	if (*pos >= NR_VMSTAT_ITEMS)
1795 		return NULL;
1796 
1797 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1798 	fold_vm_numa_events();
1799 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1800 	m->private = v;
1801 	if (!v)
1802 		return ERR_PTR(-ENOMEM);
1803 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1804 		v[i] = global_zone_page_state(i);
1805 	v += NR_VM_ZONE_STAT_ITEMS;
1806 
1807 #ifdef CONFIG_NUMA
1808 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1809 		v[i] = global_numa_event_state(i);
1810 	v += NR_VM_NUMA_EVENT_ITEMS;
1811 #endif
1812 
1813 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1814 		v[i] = global_node_page_state_pages(i);
1815 		if (vmstat_item_print_in_thp(i))
1816 			v[i] /= HPAGE_PMD_NR;
1817 	}
1818 	v += NR_VM_NODE_STAT_ITEMS;
1819 
1820 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1821 			    v + NR_DIRTY_THRESHOLD);
1822 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1823 
1824 #ifdef CONFIG_VM_EVENT_COUNTERS
1825 	all_vm_events(v);
1826 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1827 	v[PGPGOUT] /= 2;
1828 #endif
1829 	return (unsigned long *)m->private + *pos;
1830 }
1831 
1832 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1833 {
1834 	(*pos)++;
1835 	if (*pos >= NR_VMSTAT_ITEMS)
1836 		return NULL;
1837 	return (unsigned long *)m->private + *pos;
1838 }
1839 
1840 static int vmstat_show(struct seq_file *m, void *arg)
1841 {
1842 	unsigned long *l = arg;
1843 	unsigned long off = l - (unsigned long *)m->private;
1844 
1845 	seq_puts(m, vmstat_text[off]);
1846 	seq_put_decimal_ull(m, " ", *l);
1847 	seq_putc(m, '\n');
1848 
1849 	if (off == NR_VMSTAT_ITEMS - 1) {
1850 		/*
1851 		 * We've come to the end - add any deprecated counters to avoid
1852 		 * breaking userspace which might depend on them being present.
1853 		 */
1854 		seq_puts(m, "nr_unstable 0\n");
1855 	}
1856 	return 0;
1857 }
1858 
1859 static void vmstat_stop(struct seq_file *m, void *arg)
1860 {
1861 	kfree(m->private);
1862 	m->private = NULL;
1863 }
1864 
1865 static const struct seq_operations vmstat_op = {
1866 	.start	= vmstat_start,
1867 	.next	= vmstat_next,
1868 	.stop	= vmstat_stop,
1869 	.show	= vmstat_show,
1870 };
1871 #endif /* CONFIG_PROC_FS */
1872 
1873 #ifdef CONFIG_SMP
1874 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1875 int sysctl_stat_interval __read_mostly = HZ;
1876 
1877 #ifdef CONFIG_PROC_FS
1878 static void refresh_vm_stats(struct work_struct *work)
1879 {
1880 	refresh_cpu_vm_stats(true);
1881 }
1882 
1883 int vmstat_refresh(struct ctl_table *table, int write,
1884 		   void *buffer, size_t *lenp, loff_t *ppos)
1885 {
1886 	long val;
1887 	int err;
1888 	int i;
1889 
1890 	/*
1891 	 * The regular update, every sysctl_stat_interval, may come later
1892 	 * than expected: leaving a significant amount in per_cpu buckets.
1893 	 * This is particularly misleading when checking a quantity of HUGE
1894 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1895 	 * which can equally be echo'ed to or cat'ted from (by root),
1896 	 * can be used to update the stats just before reading them.
1897 	 *
1898 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1899 	 * transiently negative values, report an error here if any of
1900 	 * the stats is negative, so we know to go looking for imbalance.
1901 	 */
1902 	err = schedule_on_each_cpu(refresh_vm_stats);
1903 	if (err)
1904 		return err;
1905 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1906 		/*
1907 		 * Skip checking stats known to go negative occasionally.
1908 		 */
1909 		switch (i) {
1910 		case NR_ZONE_WRITE_PENDING:
1911 		case NR_FREE_CMA_PAGES:
1912 			continue;
1913 		}
1914 		val = atomic_long_read(&vm_zone_stat[i]);
1915 		if (val < 0) {
1916 			pr_warn("%s: %s %ld\n",
1917 				__func__, zone_stat_name(i), val);
1918 		}
1919 	}
1920 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1921 		/*
1922 		 * Skip checking stats known to go negative occasionally.
1923 		 */
1924 		switch (i) {
1925 		case NR_WRITEBACK:
1926 			continue;
1927 		}
1928 		val = atomic_long_read(&vm_node_stat[i]);
1929 		if (val < 0) {
1930 			pr_warn("%s: %s %ld\n",
1931 				__func__, node_stat_name(i), val);
1932 		}
1933 	}
1934 	if (write)
1935 		*ppos += *lenp;
1936 	else
1937 		*lenp = 0;
1938 	return 0;
1939 }
1940 #endif /* CONFIG_PROC_FS */
1941 
1942 static void vmstat_update(struct work_struct *w)
1943 {
1944 	if (refresh_cpu_vm_stats(true)) {
1945 		/*
1946 		 * Counters were updated so we expect more updates
1947 		 * to occur in the future. Keep on running the
1948 		 * update worker thread.
1949 		 */
1950 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1951 				this_cpu_ptr(&vmstat_work),
1952 				round_jiffies_relative(sysctl_stat_interval));
1953 	}
1954 }
1955 
1956 /*
1957  * Check if the diffs for a certain cpu indicate that
1958  * an update is needed.
1959  */
1960 static bool need_update(int cpu)
1961 {
1962 	pg_data_t *last_pgdat = NULL;
1963 	struct zone *zone;
1964 
1965 	for_each_populated_zone(zone) {
1966 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1967 		struct per_cpu_nodestat *n;
1968 
1969 		/*
1970 		 * The fast way of checking if there are any vmstat diffs.
1971 		 */
1972 		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1973 			return true;
1974 
1975 		if (last_pgdat == zone->zone_pgdat)
1976 			continue;
1977 		last_pgdat = zone->zone_pgdat;
1978 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1979 		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1980 			return true;
1981 	}
1982 	return false;
1983 }
1984 
1985 /*
1986  * Switch off vmstat processing and then fold all the remaining differentials
1987  * until the diffs stay at zero. The function is used by NOHZ and can only be
1988  * invoked when tick processing is not active.
1989  */
1990 void quiet_vmstat(void)
1991 {
1992 	if (system_state != SYSTEM_RUNNING)
1993 		return;
1994 
1995 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1996 		return;
1997 
1998 	if (!need_update(smp_processor_id()))
1999 		return;
2000 
2001 	/*
2002 	 * Just refresh counters and do not care about the pending delayed
2003 	 * vmstat_update. It doesn't fire that often to matter and canceling
2004 	 * it would be too expensive from this path.
2005 	 * vmstat_shepherd will take care about that for us.
2006 	 */
2007 	refresh_cpu_vm_stats(false);
2008 }
2009 
2010 /*
2011  * Shepherd worker thread that checks the
2012  * differentials of processors that have their worker
2013  * threads for vm statistics updates disabled because of
2014  * inactivity.
2015  */
2016 static void vmstat_shepherd(struct work_struct *w);
2017 
2018 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2019 
2020 static void vmstat_shepherd(struct work_struct *w)
2021 {
2022 	int cpu;
2023 
2024 	cpus_read_lock();
2025 	/* Check processors whose vmstat worker threads have been disabled */
2026 	for_each_online_cpu(cpu) {
2027 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2028 
2029 		/*
2030 		 * In kernel users of vmstat counters either require the precise value and
2031 		 * they are using zone_page_state_snapshot interface or they can live with
2032 		 * an imprecision as the regular flushing can happen at arbitrary time and
2033 		 * cumulative error can grow (see calculate_normal_threshold).
2034 		 *
2035 		 * From that POV the regular flushing can be postponed for CPUs that have
2036 		 * been isolated from the kernel interference without critical
2037 		 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2038 		 * for all isolated CPUs to avoid interference with the isolated workload.
2039 		 */
2040 		if (cpu_is_isolated(cpu))
2041 			continue;
2042 
2043 		if (!delayed_work_pending(dw) && need_update(cpu))
2044 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2045 
2046 		cond_resched();
2047 	}
2048 	cpus_read_unlock();
2049 
2050 	schedule_delayed_work(&shepherd,
2051 		round_jiffies_relative(sysctl_stat_interval));
2052 }
2053 
2054 static void __init start_shepherd_timer(void)
2055 {
2056 	int cpu;
2057 
2058 	for_each_possible_cpu(cpu)
2059 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2060 			vmstat_update);
2061 
2062 	schedule_delayed_work(&shepherd,
2063 		round_jiffies_relative(sysctl_stat_interval));
2064 }
2065 
2066 static void __init init_cpu_node_state(void)
2067 {
2068 	int node;
2069 
2070 	for_each_online_node(node) {
2071 		if (!cpumask_empty(cpumask_of_node(node)))
2072 			node_set_state(node, N_CPU);
2073 	}
2074 }
2075 
2076 static int vmstat_cpu_online(unsigned int cpu)
2077 {
2078 	refresh_zone_stat_thresholds();
2079 
2080 	if (!node_state(cpu_to_node(cpu), N_CPU)) {
2081 		node_set_state(cpu_to_node(cpu), N_CPU);
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 static int vmstat_cpu_down_prep(unsigned int cpu)
2088 {
2089 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2090 	return 0;
2091 }
2092 
2093 static int vmstat_cpu_dead(unsigned int cpu)
2094 {
2095 	const struct cpumask *node_cpus;
2096 	int node;
2097 
2098 	node = cpu_to_node(cpu);
2099 
2100 	refresh_zone_stat_thresholds();
2101 	node_cpus = cpumask_of_node(node);
2102 	if (!cpumask_empty(node_cpus))
2103 		return 0;
2104 
2105 	node_clear_state(node, N_CPU);
2106 
2107 	return 0;
2108 }
2109 
2110 #endif
2111 
2112 struct workqueue_struct *mm_percpu_wq;
2113 
2114 void __init init_mm_internals(void)
2115 {
2116 	int ret __maybe_unused;
2117 
2118 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2119 
2120 #ifdef CONFIG_SMP
2121 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2122 					NULL, vmstat_cpu_dead);
2123 	if (ret < 0)
2124 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2125 
2126 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2127 					vmstat_cpu_online,
2128 					vmstat_cpu_down_prep);
2129 	if (ret < 0)
2130 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2131 
2132 	cpus_read_lock();
2133 	init_cpu_node_state();
2134 	cpus_read_unlock();
2135 
2136 	start_shepherd_timer();
2137 #endif
2138 #ifdef CONFIG_PROC_FS
2139 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2140 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2141 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2142 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2143 #endif
2144 }
2145 
2146 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2147 
2148 /*
2149  * Return an index indicating how much of the available free memory is
2150  * unusable for an allocation of the requested size.
2151  */
2152 static int unusable_free_index(unsigned int order,
2153 				struct contig_page_info *info)
2154 {
2155 	/* No free memory is interpreted as all free memory is unusable */
2156 	if (info->free_pages == 0)
2157 		return 1000;
2158 
2159 	/*
2160 	 * Index should be a value between 0 and 1. Return a value to 3
2161 	 * decimal places.
2162 	 *
2163 	 * 0 => no fragmentation
2164 	 * 1 => high fragmentation
2165 	 */
2166 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2167 
2168 }
2169 
2170 static void unusable_show_print(struct seq_file *m,
2171 					pg_data_t *pgdat, struct zone *zone)
2172 {
2173 	unsigned int order;
2174 	int index;
2175 	struct contig_page_info info;
2176 
2177 	seq_printf(m, "Node %d, zone %8s ",
2178 				pgdat->node_id,
2179 				zone->name);
2180 	for (order = 0; order <= MAX_ORDER; ++order) {
2181 		fill_contig_page_info(zone, order, &info);
2182 		index = unusable_free_index(order, &info);
2183 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2184 	}
2185 
2186 	seq_putc(m, '\n');
2187 }
2188 
2189 /*
2190  * Display unusable free space index
2191  *
2192  * The unusable free space index measures how much of the available free
2193  * memory cannot be used to satisfy an allocation of a given size and is a
2194  * value between 0 and 1. The higher the value, the more of free memory is
2195  * unusable and by implication, the worse the external fragmentation is. This
2196  * can be expressed as a percentage by multiplying by 100.
2197  */
2198 static int unusable_show(struct seq_file *m, void *arg)
2199 {
2200 	pg_data_t *pgdat = (pg_data_t *)arg;
2201 
2202 	/* check memoryless node */
2203 	if (!node_state(pgdat->node_id, N_MEMORY))
2204 		return 0;
2205 
2206 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2207 
2208 	return 0;
2209 }
2210 
2211 static const struct seq_operations unusable_sops = {
2212 	.start	= frag_start,
2213 	.next	= frag_next,
2214 	.stop	= frag_stop,
2215 	.show	= unusable_show,
2216 };
2217 
2218 DEFINE_SEQ_ATTRIBUTE(unusable);
2219 
2220 static void extfrag_show_print(struct seq_file *m,
2221 					pg_data_t *pgdat, struct zone *zone)
2222 {
2223 	unsigned int order;
2224 	int index;
2225 
2226 	/* Alloc on stack as interrupts are disabled for zone walk */
2227 	struct contig_page_info info;
2228 
2229 	seq_printf(m, "Node %d, zone %8s ",
2230 				pgdat->node_id,
2231 				zone->name);
2232 	for (order = 0; order <= MAX_ORDER; ++order) {
2233 		fill_contig_page_info(zone, order, &info);
2234 		index = __fragmentation_index(order, &info);
2235 		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2236 	}
2237 
2238 	seq_putc(m, '\n');
2239 }
2240 
2241 /*
2242  * Display fragmentation index for orders that allocations would fail for
2243  */
2244 static int extfrag_show(struct seq_file *m, void *arg)
2245 {
2246 	pg_data_t *pgdat = (pg_data_t *)arg;
2247 
2248 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2249 
2250 	return 0;
2251 }
2252 
2253 static const struct seq_operations extfrag_sops = {
2254 	.start	= frag_start,
2255 	.next	= frag_next,
2256 	.stop	= frag_stop,
2257 	.show	= extfrag_show,
2258 };
2259 
2260 DEFINE_SEQ_ATTRIBUTE(extfrag);
2261 
2262 static int __init extfrag_debug_init(void)
2263 {
2264 	struct dentry *extfrag_debug_root;
2265 
2266 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2267 
2268 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2269 			    &unusable_fops);
2270 
2271 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2272 			    &extfrag_fops);
2273 
2274 	return 0;
2275 }
2276 
2277 module_init(extfrag_debug_init);
2278 #endif
2279