1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_owner.h> 30 #include <linux/sched/isolation.h> 31 32 #include "internal.h" 33 34 #ifdef CONFIG_NUMA 35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 36 37 /* zero numa counters within a zone */ 38 static void zero_zone_numa_counters(struct zone *zone) 39 { 40 int item, cpu; 41 42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { 43 atomic_long_set(&zone->vm_numa_event[item], 0); 44 for_each_online_cpu(cpu) { 45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] 46 = 0; 47 } 48 } 49 } 50 51 /* zero numa counters of all the populated zones */ 52 static void zero_zones_numa_counters(void) 53 { 54 struct zone *zone; 55 56 for_each_populated_zone(zone) 57 zero_zone_numa_counters(zone); 58 } 59 60 /* zero global numa counters */ 61 static void zero_global_numa_counters(void) 62 { 63 int item; 64 65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 66 atomic_long_set(&vm_numa_event[item], 0); 67 } 68 69 static void invalid_numa_statistics(void) 70 { 71 zero_zones_numa_counters(); 72 zero_global_numa_counters(); 73 } 74 75 static DEFINE_MUTEX(vm_numa_stat_lock); 76 77 int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write, 78 void *buffer, size_t *length, loff_t *ppos) 79 { 80 int ret, oldval; 81 82 mutex_lock(&vm_numa_stat_lock); 83 if (write) 84 oldval = sysctl_vm_numa_stat; 85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 86 if (ret || !write) 87 goto out; 88 89 if (oldval == sysctl_vm_numa_stat) 90 goto out; 91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 92 static_branch_enable(&vm_numa_stat_key); 93 pr_info("enable numa statistics\n"); 94 } else { 95 static_branch_disable(&vm_numa_stat_key); 96 invalid_numa_statistics(); 97 pr_info("disable numa statistics, and clear numa counters\n"); 98 } 99 100 out: 101 mutex_unlock(&vm_numa_stat_lock); 102 return ret; 103 } 104 #endif 105 106 #ifdef CONFIG_VM_EVENT_COUNTERS 107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 108 EXPORT_PER_CPU_SYMBOL(vm_event_states); 109 110 static void sum_vm_events(unsigned long *ret) 111 { 112 int cpu; 113 int i; 114 115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 116 117 for_each_online_cpu(cpu) { 118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 119 120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 121 ret[i] += this->event[i]; 122 } 123 } 124 125 /* 126 * Accumulate the vm event counters across all CPUs. 127 * The result is unavoidably approximate - it can change 128 * during and after execution of this function. 129 */ 130 void all_vm_events(unsigned long *ret) 131 { 132 cpus_read_lock(); 133 sum_vm_events(ret); 134 cpus_read_unlock(); 135 } 136 EXPORT_SYMBOL_GPL(all_vm_events); 137 138 /* 139 * Fold the foreign cpu events into our own. 140 * 141 * This is adding to the events on one processor 142 * but keeps the global counts constant. 143 */ 144 void vm_events_fold_cpu(int cpu) 145 { 146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 147 int i; 148 149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 150 count_vm_events(i, fold_state->event[i]); 151 fold_state->event[i] = 0; 152 } 153 } 154 155 #endif /* CONFIG_VM_EVENT_COUNTERS */ 156 157 /* 158 * Manage combined zone based / global counters 159 * 160 * vm_stat contains the global counters 161 */ 162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; 165 EXPORT_SYMBOL(vm_zone_stat); 166 EXPORT_SYMBOL(vm_node_stat); 167 168 #ifdef CONFIG_NUMA 169 static void fold_vm_zone_numa_events(struct zone *zone) 170 { 171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; 172 int cpu; 173 enum numa_stat_item item; 174 175 for_each_online_cpu(cpu) { 176 struct per_cpu_zonestat *pzstats; 177 178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); 181 } 182 183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 184 zone_numa_event_add(zone_numa_events[item], zone, item); 185 } 186 187 void fold_vm_numa_events(void) 188 { 189 struct zone *zone; 190 191 for_each_populated_zone(zone) 192 fold_vm_zone_numa_events(zone); 193 } 194 #endif 195 196 #ifdef CONFIG_SMP 197 198 int calculate_pressure_threshold(struct zone *zone) 199 { 200 int threshold; 201 int watermark_distance; 202 203 /* 204 * As vmstats are not up to date, there is drift between the estimated 205 * and real values. For high thresholds and a high number of CPUs, it 206 * is possible for the min watermark to be breached while the estimated 207 * value looks fine. The pressure threshold is a reduced value such 208 * that even the maximum amount of drift will not accidentally breach 209 * the min watermark 210 */ 211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 212 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 213 214 /* 215 * Maximum threshold is 125 216 */ 217 threshold = min(125, threshold); 218 219 return threshold; 220 } 221 222 int calculate_normal_threshold(struct zone *zone) 223 { 224 int threshold; 225 int mem; /* memory in 128 MB units */ 226 227 /* 228 * The threshold scales with the number of processors and the amount 229 * of memory per zone. More memory means that we can defer updates for 230 * longer, more processors could lead to more contention. 231 * fls() is used to have a cheap way of logarithmic scaling. 232 * 233 * Some sample thresholds: 234 * 235 * Threshold Processors (fls) Zonesize fls(mem)+1 236 * ------------------------------------------------------------------ 237 * 8 1 1 0.9-1 GB 4 238 * 16 2 2 0.9-1 GB 4 239 * 20 2 2 1-2 GB 5 240 * 24 2 2 2-4 GB 6 241 * 28 2 2 4-8 GB 7 242 * 32 2 2 8-16 GB 8 243 * 4 2 2 <128M 1 244 * 30 4 3 2-4 GB 5 245 * 48 4 3 8-16 GB 8 246 * 32 8 4 1-2 GB 4 247 * 32 8 4 0.9-1GB 4 248 * 10 16 5 <128M 1 249 * 40 16 5 900M 4 250 * 70 64 7 2-4 GB 5 251 * 84 64 7 4-8 GB 6 252 * 108 512 9 4-8 GB 6 253 * 125 1024 10 8-16 GB 8 254 * 125 1024 10 16-32 GB 9 255 */ 256 257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 258 259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 260 261 /* 262 * Maximum threshold is 125 263 */ 264 threshold = min(125, threshold); 265 266 return threshold; 267 } 268 269 /* 270 * Refresh the thresholds for each zone. 271 */ 272 void refresh_zone_stat_thresholds(void) 273 { 274 struct pglist_data *pgdat; 275 struct zone *zone; 276 int cpu; 277 int threshold; 278 279 /* Zero current pgdat thresholds */ 280 for_each_online_pgdat(pgdat) { 281 for_each_online_cpu(cpu) { 282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 283 } 284 } 285 286 for_each_populated_zone(zone) { 287 struct pglist_data *pgdat = zone->zone_pgdat; 288 unsigned long max_drift, tolerate_drift; 289 290 threshold = calculate_normal_threshold(zone); 291 292 for_each_online_cpu(cpu) { 293 int pgdat_threshold; 294 295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 296 = threshold; 297 298 /* Base nodestat threshold on the largest populated zone. */ 299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 301 = max(threshold, pgdat_threshold); 302 } 303 304 /* 305 * Only set percpu_drift_mark if there is a danger that 306 * NR_FREE_PAGES reports the low watermark is ok when in fact 307 * the min watermark could be breached by an allocation 308 */ 309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 310 max_drift = num_online_cpus() * threshold; 311 if (max_drift > tolerate_drift) 312 zone->percpu_drift_mark = high_wmark_pages(zone) + 313 max_drift; 314 } 315 } 316 317 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 318 int (*calculate_pressure)(struct zone *)) 319 { 320 struct zone *zone; 321 int cpu; 322 int threshold; 323 int i; 324 325 for (i = 0; i < pgdat->nr_zones; i++) { 326 zone = &pgdat->node_zones[i]; 327 if (!zone->percpu_drift_mark) 328 continue; 329 330 threshold = (*calculate_pressure)(zone); 331 for_each_online_cpu(cpu) 332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 333 = threshold; 334 } 335 } 336 337 /* 338 * For use when we know that interrupts are disabled, 339 * or when we know that preemption is disabled and that 340 * particular counter cannot be updated from interrupt context. 341 */ 342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 343 long delta) 344 { 345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 346 s8 __percpu *p = pcp->vm_stat_diff + item; 347 long x; 348 long t; 349 350 /* 351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, 352 * atomicity is provided by IRQs being disabled -- either explicitly 353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables 354 * CPU migrations and preemption potentially corrupts a counter so 355 * disable preemption. 356 */ 357 preempt_disable_nested(); 358 359 x = delta + __this_cpu_read(*p); 360 361 t = __this_cpu_read(pcp->stat_threshold); 362 363 if (unlikely(abs(x) > t)) { 364 zone_page_state_add(x, zone, item); 365 x = 0; 366 } 367 __this_cpu_write(*p, x); 368 369 preempt_enable_nested(); 370 } 371 EXPORT_SYMBOL(__mod_zone_page_state); 372 373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 374 long delta) 375 { 376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 377 s8 __percpu *p = pcp->vm_node_stat_diff + item; 378 long x; 379 long t; 380 381 if (vmstat_item_in_bytes(item)) { 382 /* 383 * Only cgroups use subpage accounting right now; at 384 * the global level, these items still change in 385 * multiples of whole pages. Store them as pages 386 * internally to keep the per-cpu counters compact. 387 */ 388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 389 delta >>= PAGE_SHIFT; 390 } 391 392 /* See __mod_node_page_state */ 393 preempt_disable_nested(); 394 395 x = delta + __this_cpu_read(*p); 396 397 t = __this_cpu_read(pcp->stat_threshold); 398 399 if (unlikely(abs(x) > t)) { 400 node_page_state_add(x, pgdat, item); 401 x = 0; 402 } 403 __this_cpu_write(*p, x); 404 405 preempt_enable_nested(); 406 } 407 EXPORT_SYMBOL(__mod_node_page_state); 408 409 /* 410 * Optimized increment and decrement functions. 411 * 412 * These are only for a single page and therefore can take a struct page * 413 * argument instead of struct zone *. This allows the inclusion of the code 414 * generated for page_zone(page) into the optimized functions. 415 * 416 * No overflow check is necessary and therefore the differential can be 417 * incremented or decremented in place which may allow the compilers to 418 * generate better code. 419 * The increment or decrement is known and therefore one boundary check can 420 * be omitted. 421 * 422 * NOTE: These functions are very performance sensitive. Change only 423 * with care. 424 * 425 * Some processors have inc/dec instructions that are atomic vs an interrupt. 426 * However, the code must first determine the differential location in a zone 427 * based on the processor number and then inc/dec the counter. There is no 428 * guarantee without disabling preemption that the processor will not change 429 * in between and therefore the atomicity vs. interrupt cannot be exploited 430 * in a useful way here. 431 */ 432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 433 { 434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 435 s8 __percpu *p = pcp->vm_stat_diff + item; 436 s8 v, t; 437 438 /* See __mod_node_page_state */ 439 preempt_disable_nested(); 440 441 v = __this_cpu_inc_return(*p); 442 t = __this_cpu_read(pcp->stat_threshold); 443 if (unlikely(v > t)) { 444 s8 overstep = t >> 1; 445 446 zone_page_state_add(v + overstep, zone, item); 447 __this_cpu_write(*p, -overstep); 448 } 449 450 preempt_enable_nested(); 451 } 452 453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 454 { 455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 456 s8 __percpu *p = pcp->vm_node_stat_diff + item; 457 s8 v, t; 458 459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 460 461 /* See __mod_node_page_state */ 462 preempt_disable_nested(); 463 464 v = __this_cpu_inc_return(*p); 465 t = __this_cpu_read(pcp->stat_threshold); 466 if (unlikely(v > t)) { 467 s8 overstep = t >> 1; 468 469 node_page_state_add(v + overstep, pgdat, item); 470 __this_cpu_write(*p, -overstep); 471 } 472 473 preempt_enable_nested(); 474 } 475 476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 477 { 478 __inc_zone_state(page_zone(page), item); 479 } 480 EXPORT_SYMBOL(__inc_zone_page_state); 481 482 void __inc_node_page_state(struct page *page, enum node_stat_item item) 483 { 484 __inc_node_state(page_pgdat(page), item); 485 } 486 EXPORT_SYMBOL(__inc_node_page_state); 487 488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 489 { 490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 491 s8 __percpu *p = pcp->vm_stat_diff + item; 492 s8 v, t; 493 494 /* See __mod_node_page_state */ 495 preempt_disable_nested(); 496 497 v = __this_cpu_dec_return(*p); 498 t = __this_cpu_read(pcp->stat_threshold); 499 if (unlikely(v < - t)) { 500 s8 overstep = t >> 1; 501 502 zone_page_state_add(v - overstep, zone, item); 503 __this_cpu_write(*p, overstep); 504 } 505 506 preempt_enable_nested(); 507 } 508 509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 510 { 511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 512 s8 __percpu *p = pcp->vm_node_stat_diff + item; 513 s8 v, t; 514 515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 516 517 /* See __mod_node_page_state */ 518 preempt_disable_nested(); 519 520 v = __this_cpu_dec_return(*p); 521 t = __this_cpu_read(pcp->stat_threshold); 522 if (unlikely(v < - t)) { 523 s8 overstep = t >> 1; 524 525 node_page_state_add(v - overstep, pgdat, item); 526 __this_cpu_write(*p, overstep); 527 } 528 529 preempt_enable_nested(); 530 } 531 532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 533 { 534 __dec_zone_state(page_zone(page), item); 535 } 536 EXPORT_SYMBOL(__dec_zone_page_state); 537 538 void __dec_node_page_state(struct page *page, enum node_stat_item item) 539 { 540 __dec_node_state(page_pgdat(page), item); 541 } 542 EXPORT_SYMBOL(__dec_node_page_state); 543 544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 545 /* 546 * If we have cmpxchg_local support then we do not need to incur the overhead 547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 548 * 549 * mod_state() modifies the zone counter state through atomic per cpu 550 * operations. 551 * 552 * Overstep mode specifies how overstep should handled: 553 * 0 No overstepping 554 * 1 Overstepping half of threshold 555 * -1 Overstepping minus half of threshold 556 */ 557 static inline void mod_zone_state(struct zone *zone, 558 enum zone_stat_item item, long delta, int overstep_mode) 559 { 560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 561 s8 __percpu *p = pcp->vm_stat_diff + item; 562 long n, t, z; 563 s8 o; 564 565 o = this_cpu_read(*p); 566 do { 567 z = 0; /* overflow to zone counters */ 568 569 /* 570 * The fetching of the stat_threshold is racy. We may apply 571 * a counter threshold to the wrong the cpu if we get 572 * rescheduled while executing here. However, the next 573 * counter update will apply the threshold again and 574 * therefore bring the counter under the threshold again. 575 * 576 * Most of the time the thresholds are the same anyways 577 * for all cpus in a zone. 578 */ 579 t = this_cpu_read(pcp->stat_threshold); 580 581 n = delta + (long)o; 582 583 if (abs(n) > t) { 584 int os = overstep_mode * (t >> 1) ; 585 586 /* Overflow must be added to zone counters */ 587 z = n + os; 588 n = -os; 589 } 590 } while (!this_cpu_try_cmpxchg(*p, &o, n)); 591 592 if (z) 593 zone_page_state_add(z, zone, item); 594 } 595 596 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 597 long delta) 598 { 599 mod_zone_state(zone, item, delta, 0); 600 } 601 EXPORT_SYMBOL(mod_zone_page_state); 602 603 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 604 { 605 mod_zone_state(page_zone(page), item, 1, 1); 606 } 607 EXPORT_SYMBOL(inc_zone_page_state); 608 609 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 610 { 611 mod_zone_state(page_zone(page), item, -1, -1); 612 } 613 EXPORT_SYMBOL(dec_zone_page_state); 614 615 static inline void mod_node_state(struct pglist_data *pgdat, 616 enum node_stat_item item, int delta, int overstep_mode) 617 { 618 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 619 s8 __percpu *p = pcp->vm_node_stat_diff + item; 620 long n, t, z; 621 s8 o; 622 623 if (vmstat_item_in_bytes(item)) { 624 /* 625 * Only cgroups use subpage accounting right now; at 626 * the global level, these items still change in 627 * multiples of whole pages. Store them as pages 628 * internally to keep the per-cpu counters compact. 629 */ 630 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 631 delta >>= PAGE_SHIFT; 632 } 633 634 o = this_cpu_read(*p); 635 do { 636 z = 0; /* overflow to node counters */ 637 638 /* 639 * The fetching of the stat_threshold is racy. We may apply 640 * a counter threshold to the wrong the cpu if we get 641 * rescheduled while executing here. However, the next 642 * counter update will apply the threshold again and 643 * therefore bring the counter under the threshold again. 644 * 645 * Most of the time the thresholds are the same anyways 646 * for all cpus in a node. 647 */ 648 t = this_cpu_read(pcp->stat_threshold); 649 650 n = delta + (long)o; 651 652 if (abs(n) > t) { 653 int os = overstep_mode * (t >> 1) ; 654 655 /* Overflow must be added to node counters */ 656 z = n + os; 657 n = -os; 658 } 659 } while (!this_cpu_try_cmpxchg(*p, &o, n)); 660 661 if (z) 662 node_page_state_add(z, pgdat, item); 663 } 664 665 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 666 long delta) 667 { 668 mod_node_state(pgdat, item, delta, 0); 669 } 670 EXPORT_SYMBOL(mod_node_page_state); 671 672 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 673 { 674 mod_node_state(pgdat, item, 1, 1); 675 } 676 677 void inc_node_page_state(struct page *page, enum node_stat_item item) 678 { 679 mod_node_state(page_pgdat(page), item, 1, 1); 680 } 681 EXPORT_SYMBOL(inc_node_page_state); 682 683 void dec_node_page_state(struct page *page, enum node_stat_item item) 684 { 685 mod_node_state(page_pgdat(page), item, -1, -1); 686 } 687 EXPORT_SYMBOL(dec_node_page_state); 688 #else 689 /* 690 * Use interrupt disable to serialize counter updates 691 */ 692 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 693 long delta) 694 { 695 unsigned long flags; 696 697 local_irq_save(flags); 698 __mod_zone_page_state(zone, item, delta); 699 local_irq_restore(flags); 700 } 701 EXPORT_SYMBOL(mod_zone_page_state); 702 703 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 704 { 705 unsigned long flags; 706 struct zone *zone; 707 708 zone = page_zone(page); 709 local_irq_save(flags); 710 __inc_zone_state(zone, item); 711 local_irq_restore(flags); 712 } 713 EXPORT_SYMBOL(inc_zone_page_state); 714 715 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 716 { 717 unsigned long flags; 718 719 local_irq_save(flags); 720 __dec_zone_page_state(page, item); 721 local_irq_restore(flags); 722 } 723 EXPORT_SYMBOL(dec_zone_page_state); 724 725 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 726 { 727 unsigned long flags; 728 729 local_irq_save(flags); 730 __inc_node_state(pgdat, item); 731 local_irq_restore(flags); 732 } 733 EXPORT_SYMBOL(inc_node_state); 734 735 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 736 long delta) 737 { 738 unsigned long flags; 739 740 local_irq_save(flags); 741 __mod_node_page_state(pgdat, item, delta); 742 local_irq_restore(flags); 743 } 744 EXPORT_SYMBOL(mod_node_page_state); 745 746 void inc_node_page_state(struct page *page, enum node_stat_item item) 747 { 748 unsigned long flags; 749 struct pglist_data *pgdat; 750 751 pgdat = page_pgdat(page); 752 local_irq_save(flags); 753 __inc_node_state(pgdat, item); 754 local_irq_restore(flags); 755 } 756 EXPORT_SYMBOL(inc_node_page_state); 757 758 void dec_node_page_state(struct page *page, enum node_stat_item item) 759 { 760 unsigned long flags; 761 762 local_irq_save(flags); 763 __dec_node_page_state(page, item); 764 local_irq_restore(flags); 765 } 766 EXPORT_SYMBOL(dec_node_page_state); 767 #endif 768 769 /* 770 * Fold a differential into the global counters. 771 * Returns the number of counters updated. 772 */ 773 static int fold_diff(int *zone_diff, int *node_diff) 774 { 775 int i; 776 int changes = 0; 777 778 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 779 if (zone_diff[i]) { 780 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 781 changes++; 782 } 783 784 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 785 if (node_diff[i]) { 786 atomic_long_add(node_diff[i], &vm_node_stat[i]); 787 changes++; 788 } 789 return changes; 790 } 791 792 /* 793 * Update the zone counters for the current cpu. 794 * 795 * Note that refresh_cpu_vm_stats strives to only access 796 * node local memory. The per cpu pagesets on remote zones are placed 797 * in the memory local to the processor using that pageset. So the 798 * loop over all zones will access a series of cachelines local to 799 * the processor. 800 * 801 * The call to zone_page_state_add updates the cachelines with the 802 * statistics in the remote zone struct as well as the global cachelines 803 * with the global counters. These could cause remote node cache line 804 * bouncing and will have to be only done when necessary. 805 * 806 * The function returns the number of global counters updated. 807 */ 808 static int refresh_cpu_vm_stats(bool do_pagesets) 809 { 810 struct pglist_data *pgdat; 811 struct zone *zone; 812 int i; 813 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 814 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 815 int changes = 0; 816 817 for_each_populated_zone(zone) { 818 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; 819 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; 820 821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 822 int v; 823 824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); 825 if (v) { 826 827 atomic_long_add(v, &zone->vm_stat[i]); 828 global_zone_diff[i] += v; 829 #ifdef CONFIG_NUMA 830 /* 3 seconds idle till flush */ 831 __this_cpu_write(pcp->expire, 3); 832 #endif 833 } 834 } 835 836 if (do_pagesets) { 837 cond_resched(); 838 839 changes += decay_pcp_high(zone, this_cpu_ptr(pcp)); 840 #ifdef CONFIG_NUMA 841 /* 842 * Deal with draining the remote pageset of this 843 * processor 844 * 845 * Check if there are pages remaining in this pageset 846 * if not then there is nothing to expire. 847 */ 848 if (!__this_cpu_read(pcp->expire) || 849 !__this_cpu_read(pcp->count)) 850 continue; 851 852 /* 853 * We never drain zones local to this processor. 854 */ 855 if (zone_to_nid(zone) == numa_node_id()) { 856 __this_cpu_write(pcp->expire, 0); 857 continue; 858 } 859 860 if (__this_cpu_dec_return(pcp->expire)) { 861 changes++; 862 continue; 863 } 864 865 if (__this_cpu_read(pcp->count)) { 866 drain_zone_pages(zone, this_cpu_ptr(pcp)); 867 changes++; 868 } 869 #endif 870 } 871 } 872 873 for_each_online_pgdat(pgdat) { 874 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 875 876 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 877 int v; 878 879 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 880 if (v) { 881 atomic_long_add(v, &pgdat->vm_stat[i]); 882 global_node_diff[i] += v; 883 } 884 } 885 } 886 887 changes += fold_diff(global_zone_diff, global_node_diff); 888 return changes; 889 } 890 891 /* 892 * Fold the data for an offline cpu into the global array. 893 * There cannot be any access by the offline cpu and therefore 894 * synchronization is simplified. 895 */ 896 void cpu_vm_stats_fold(int cpu) 897 { 898 struct pglist_data *pgdat; 899 struct zone *zone; 900 int i; 901 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 902 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 903 904 for_each_populated_zone(zone) { 905 struct per_cpu_zonestat *pzstats; 906 907 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 908 909 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 910 if (pzstats->vm_stat_diff[i]) { 911 int v; 912 913 v = pzstats->vm_stat_diff[i]; 914 pzstats->vm_stat_diff[i] = 0; 915 atomic_long_add(v, &zone->vm_stat[i]); 916 global_zone_diff[i] += v; 917 } 918 } 919 #ifdef CONFIG_NUMA 920 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 921 if (pzstats->vm_numa_event[i]) { 922 unsigned long v; 923 924 v = pzstats->vm_numa_event[i]; 925 pzstats->vm_numa_event[i] = 0; 926 zone_numa_event_add(v, zone, i); 927 } 928 } 929 #endif 930 } 931 932 for_each_online_pgdat(pgdat) { 933 struct per_cpu_nodestat *p; 934 935 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 936 937 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 938 if (p->vm_node_stat_diff[i]) { 939 int v; 940 941 v = p->vm_node_stat_diff[i]; 942 p->vm_node_stat_diff[i] = 0; 943 atomic_long_add(v, &pgdat->vm_stat[i]); 944 global_node_diff[i] += v; 945 } 946 } 947 948 fold_diff(global_zone_diff, global_node_diff); 949 } 950 951 /* 952 * this is only called if !populated_zone(zone), which implies no other users of 953 * pset->vm_stat_diff[] exist. 954 */ 955 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) 956 { 957 unsigned long v; 958 int i; 959 960 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 961 if (pzstats->vm_stat_diff[i]) { 962 v = pzstats->vm_stat_diff[i]; 963 pzstats->vm_stat_diff[i] = 0; 964 zone_page_state_add(v, zone, i); 965 } 966 } 967 968 #ifdef CONFIG_NUMA 969 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 970 if (pzstats->vm_numa_event[i]) { 971 v = pzstats->vm_numa_event[i]; 972 pzstats->vm_numa_event[i] = 0; 973 zone_numa_event_add(v, zone, i); 974 } 975 } 976 #endif 977 } 978 #endif 979 980 #ifdef CONFIG_NUMA 981 /* 982 * Determine the per node value of a stat item. This function 983 * is called frequently in a NUMA machine, so try to be as 984 * frugal as possible. 985 */ 986 unsigned long sum_zone_node_page_state(int node, 987 enum zone_stat_item item) 988 { 989 struct zone *zones = NODE_DATA(node)->node_zones; 990 int i; 991 unsigned long count = 0; 992 993 for (i = 0; i < MAX_NR_ZONES; i++) 994 count += zone_page_state(zones + i, item); 995 996 return count; 997 } 998 999 /* Determine the per node value of a numa stat item. */ 1000 unsigned long sum_zone_numa_event_state(int node, 1001 enum numa_stat_item item) 1002 { 1003 struct zone *zones = NODE_DATA(node)->node_zones; 1004 unsigned long count = 0; 1005 int i; 1006 1007 for (i = 0; i < MAX_NR_ZONES; i++) 1008 count += zone_numa_event_state(zones + i, item); 1009 1010 return count; 1011 } 1012 1013 /* 1014 * Determine the per node value of a stat item. 1015 */ 1016 unsigned long node_page_state_pages(struct pglist_data *pgdat, 1017 enum node_stat_item item) 1018 { 1019 long x = atomic_long_read(&pgdat->vm_stat[item]); 1020 #ifdef CONFIG_SMP 1021 if (x < 0) 1022 x = 0; 1023 #endif 1024 return x; 1025 } 1026 1027 unsigned long node_page_state(struct pglist_data *pgdat, 1028 enum node_stat_item item) 1029 { 1030 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1031 1032 return node_page_state_pages(pgdat, item); 1033 } 1034 #endif 1035 1036 /* 1037 * Count number of pages "struct page" and "struct page_ext" consume. 1038 * nr_memmap_boot_pages: # of pages allocated by boot allocator 1039 * nr_memmap_pages: # of pages that were allocated by buddy allocator 1040 */ 1041 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0); 1042 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0); 1043 1044 void memmap_boot_pages_add(long delta) 1045 { 1046 atomic_long_add(delta, &nr_memmap_boot_pages); 1047 } 1048 1049 void memmap_pages_add(long delta) 1050 { 1051 atomic_long_add(delta, &nr_memmap_pages); 1052 } 1053 1054 #ifdef CONFIG_COMPACTION 1055 1056 struct contig_page_info { 1057 unsigned long free_pages; 1058 unsigned long free_blocks_total; 1059 unsigned long free_blocks_suitable; 1060 }; 1061 1062 /* 1063 * Calculate the number of free pages in a zone, how many contiguous 1064 * pages are free and how many are large enough to satisfy an allocation of 1065 * the target size. Note that this function makes no attempt to estimate 1066 * how many suitable free blocks there *might* be if MOVABLE pages were 1067 * migrated. Calculating that is possible, but expensive and can be 1068 * figured out from userspace 1069 */ 1070 static void fill_contig_page_info(struct zone *zone, 1071 unsigned int suitable_order, 1072 struct contig_page_info *info) 1073 { 1074 unsigned int order; 1075 1076 info->free_pages = 0; 1077 info->free_blocks_total = 0; 1078 info->free_blocks_suitable = 0; 1079 1080 for (order = 0; order < NR_PAGE_ORDERS; order++) { 1081 unsigned long blocks; 1082 1083 /* 1084 * Count number of free blocks. 1085 * 1086 * Access to nr_free is lockless as nr_free is used only for 1087 * diagnostic purposes. Use data_race to avoid KCSAN warning. 1088 */ 1089 blocks = data_race(zone->free_area[order].nr_free); 1090 info->free_blocks_total += blocks; 1091 1092 /* Count free base pages */ 1093 info->free_pages += blocks << order; 1094 1095 /* Count the suitable free blocks */ 1096 if (order >= suitable_order) 1097 info->free_blocks_suitable += blocks << 1098 (order - suitable_order); 1099 } 1100 } 1101 1102 /* 1103 * A fragmentation index only makes sense if an allocation of a requested 1104 * size would fail. If that is true, the fragmentation index indicates 1105 * whether external fragmentation or a lack of memory was the problem. 1106 * The value can be used to determine if page reclaim or compaction 1107 * should be used 1108 */ 1109 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1110 { 1111 unsigned long requested = 1UL << order; 1112 1113 if (WARN_ON_ONCE(order > MAX_PAGE_ORDER)) 1114 return 0; 1115 1116 if (!info->free_blocks_total) 1117 return 0; 1118 1119 /* Fragmentation index only makes sense when a request would fail */ 1120 if (info->free_blocks_suitable) 1121 return -1000; 1122 1123 /* 1124 * Index is between 0 and 1 so return within 3 decimal places 1125 * 1126 * 0 => allocation would fail due to lack of memory 1127 * 1 => allocation would fail due to fragmentation 1128 */ 1129 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1130 } 1131 1132 /* 1133 * Calculates external fragmentation within a zone wrt the given order. 1134 * It is defined as the percentage of pages found in blocks of size 1135 * less than 1 << order. It returns values in range [0, 100]. 1136 */ 1137 unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1138 { 1139 struct contig_page_info info; 1140 1141 fill_contig_page_info(zone, order, &info); 1142 if (info.free_pages == 0) 1143 return 0; 1144 1145 return div_u64((info.free_pages - 1146 (info.free_blocks_suitable << order)) * 100, 1147 info.free_pages); 1148 } 1149 1150 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1151 int fragmentation_index(struct zone *zone, unsigned int order) 1152 { 1153 struct contig_page_info info; 1154 1155 fill_contig_page_info(zone, order, &info); 1156 return __fragmentation_index(order, &info); 1157 } 1158 #endif 1159 1160 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1161 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1162 #ifdef CONFIG_ZONE_DMA 1163 #define TEXT_FOR_DMA(xx) xx "_dma", 1164 #else 1165 #define TEXT_FOR_DMA(xx) 1166 #endif 1167 1168 #ifdef CONFIG_ZONE_DMA32 1169 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1170 #else 1171 #define TEXT_FOR_DMA32(xx) 1172 #endif 1173 1174 #ifdef CONFIG_HIGHMEM 1175 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1176 #else 1177 #define TEXT_FOR_HIGHMEM(xx) 1178 #endif 1179 1180 #ifdef CONFIG_ZONE_DEVICE 1181 #define TEXT_FOR_DEVICE(xx) xx "_device", 1182 #else 1183 #define TEXT_FOR_DEVICE(xx) 1184 #endif 1185 1186 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1187 TEXT_FOR_HIGHMEM(xx) xx "_movable", \ 1188 TEXT_FOR_DEVICE(xx) 1189 1190 const char * const vmstat_text[] = { 1191 /* enum zone_stat_item counters */ 1192 "nr_free_pages", 1193 "nr_zone_inactive_anon", 1194 "nr_zone_active_anon", 1195 "nr_zone_inactive_file", 1196 "nr_zone_active_file", 1197 "nr_zone_unevictable", 1198 "nr_zone_write_pending", 1199 "nr_mlock", 1200 "nr_bounce", 1201 #if IS_ENABLED(CONFIG_ZSMALLOC) 1202 "nr_zspages", 1203 #endif 1204 "nr_free_cma", 1205 #ifdef CONFIG_UNACCEPTED_MEMORY 1206 "nr_unaccepted", 1207 #endif 1208 1209 /* enum numa_stat_item counters */ 1210 #ifdef CONFIG_NUMA 1211 "numa_hit", 1212 "numa_miss", 1213 "numa_foreign", 1214 "numa_interleave", 1215 "numa_local", 1216 "numa_other", 1217 #endif 1218 1219 /* enum node_stat_item counters */ 1220 "nr_inactive_anon", 1221 "nr_active_anon", 1222 "nr_inactive_file", 1223 "nr_active_file", 1224 "nr_unevictable", 1225 "nr_slab_reclaimable", 1226 "nr_slab_unreclaimable", 1227 "nr_isolated_anon", 1228 "nr_isolated_file", 1229 "workingset_nodes", 1230 "workingset_refault_anon", 1231 "workingset_refault_file", 1232 "workingset_activate_anon", 1233 "workingset_activate_file", 1234 "workingset_restore_anon", 1235 "workingset_restore_file", 1236 "workingset_nodereclaim", 1237 "nr_anon_pages", 1238 "nr_mapped", 1239 "nr_file_pages", 1240 "nr_dirty", 1241 "nr_writeback", 1242 "nr_writeback_temp", 1243 "nr_shmem", 1244 "nr_shmem_hugepages", 1245 "nr_shmem_pmdmapped", 1246 "nr_file_hugepages", 1247 "nr_file_pmdmapped", 1248 "nr_anon_transparent_hugepages", 1249 "nr_vmscan_write", 1250 "nr_vmscan_immediate_reclaim", 1251 "nr_dirtied", 1252 "nr_written", 1253 "nr_throttled_written", 1254 "nr_kernel_misc_reclaimable", 1255 "nr_foll_pin_acquired", 1256 "nr_foll_pin_released", 1257 "nr_kernel_stack", 1258 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1259 "nr_shadow_call_stack", 1260 #endif 1261 "nr_page_table_pages", 1262 "nr_sec_page_table_pages", 1263 #ifdef CONFIG_IOMMU_SUPPORT 1264 "nr_iommu_pages", 1265 #endif 1266 #ifdef CONFIG_SWAP 1267 "nr_swapcached", 1268 #endif 1269 #ifdef CONFIG_NUMA_BALANCING 1270 "pgpromote_success", 1271 "pgpromote_candidate", 1272 #endif 1273 "pgdemote_kswapd", 1274 "pgdemote_direct", 1275 "pgdemote_khugepaged", 1276 /* system-wide enum vm_stat_item counters */ 1277 "nr_dirty_threshold", 1278 "nr_dirty_background_threshold", 1279 "nr_memmap_pages", 1280 "nr_memmap_boot_pages", 1281 1282 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1283 /* enum vm_event_item counters */ 1284 "pgpgin", 1285 "pgpgout", 1286 "pswpin", 1287 "pswpout", 1288 1289 TEXTS_FOR_ZONES("pgalloc") 1290 TEXTS_FOR_ZONES("allocstall") 1291 TEXTS_FOR_ZONES("pgskip") 1292 1293 "pgfree", 1294 "pgactivate", 1295 "pgdeactivate", 1296 "pglazyfree", 1297 1298 "pgfault", 1299 "pgmajfault", 1300 "pglazyfreed", 1301 1302 "pgrefill", 1303 "pgreuse", 1304 "pgsteal_kswapd", 1305 "pgsteal_direct", 1306 "pgsteal_khugepaged", 1307 "pgscan_kswapd", 1308 "pgscan_direct", 1309 "pgscan_khugepaged", 1310 "pgscan_direct_throttle", 1311 "pgscan_anon", 1312 "pgscan_file", 1313 "pgsteal_anon", 1314 "pgsteal_file", 1315 1316 #ifdef CONFIG_NUMA 1317 "zone_reclaim_success", 1318 "zone_reclaim_failed", 1319 #endif 1320 "pginodesteal", 1321 "slabs_scanned", 1322 "kswapd_inodesteal", 1323 "kswapd_low_wmark_hit_quickly", 1324 "kswapd_high_wmark_hit_quickly", 1325 "pageoutrun", 1326 1327 "pgrotated", 1328 1329 "drop_pagecache", 1330 "drop_slab", 1331 "oom_kill", 1332 1333 #ifdef CONFIG_NUMA_BALANCING 1334 "numa_pte_updates", 1335 "numa_huge_pte_updates", 1336 "numa_hint_faults", 1337 "numa_hint_faults_local", 1338 "numa_pages_migrated", 1339 #endif 1340 #ifdef CONFIG_MIGRATION 1341 "pgmigrate_success", 1342 "pgmigrate_fail", 1343 "thp_migration_success", 1344 "thp_migration_fail", 1345 "thp_migration_split", 1346 #endif 1347 #ifdef CONFIG_COMPACTION 1348 "compact_migrate_scanned", 1349 "compact_free_scanned", 1350 "compact_isolated", 1351 "compact_stall", 1352 "compact_fail", 1353 "compact_success", 1354 "compact_daemon_wake", 1355 "compact_daemon_migrate_scanned", 1356 "compact_daemon_free_scanned", 1357 #endif 1358 1359 #ifdef CONFIG_HUGETLB_PAGE 1360 "htlb_buddy_alloc_success", 1361 "htlb_buddy_alloc_fail", 1362 #endif 1363 #ifdef CONFIG_CMA 1364 "cma_alloc_success", 1365 "cma_alloc_fail", 1366 #endif 1367 "unevictable_pgs_culled", 1368 "unevictable_pgs_scanned", 1369 "unevictable_pgs_rescued", 1370 "unevictable_pgs_mlocked", 1371 "unevictable_pgs_munlocked", 1372 "unevictable_pgs_cleared", 1373 "unevictable_pgs_stranded", 1374 1375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1376 "thp_fault_alloc", 1377 "thp_fault_fallback", 1378 "thp_fault_fallback_charge", 1379 "thp_collapse_alloc", 1380 "thp_collapse_alloc_failed", 1381 "thp_file_alloc", 1382 "thp_file_fallback", 1383 "thp_file_fallback_charge", 1384 "thp_file_mapped", 1385 "thp_split_page", 1386 "thp_split_page_failed", 1387 "thp_deferred_split_page", 1388 "thp_split_pmd", 1389 "thp_scan_exceed_none_pte", 1390 "thp_scan_exceed_swap_pte", 1391 "thp_scan_exceed_share_pte", 1392 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1393 "thp_split_pud", 1394 #endif 1395 "thp_zero_page_alloc", 1396 "thp_zero_page_alloc_failed", 1397 "thp_swpout", 1398 "thp_swpout_fallback", 1399 #endif 1400 #ifdef CONFIG_MEMORY_BALLOON 1401 "balloon_inflate", 1402 "balloon_deflate", 1403 #ifdef CONFIG_BALLOON_COMPACTION 1404 "balloon_migrate", 1405 #endif 1406 #endif /* CONFIG_MEMORY_BALLOON */ 1407 #ifdef CONFIG_DEBUG_TLBFLUSH 1408 "nr_tlb_remote_flush", 1409 "nr_tlb_remote_flush_received", 1410 "nr_tlb_local_flush_all", 1411 "nr_tlb_local_flush_one", 1412 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1413 1414 #ifdef CONFIG_SWAP 1415 "swap_ra", 1416 "swap_ra_hit", 1417 #ifdef CONFIG_KSM 1418 "ksm_swpin_copy", 1419 #endif 1420 #endif 1421 #ifdef CONFIG_KSM 1422 "cow_ksm", 1423 #endif 1424 #ifdef CONFIG_ZSWAP 1425 "zswpin", 1426 "zswpout", 1427 "zswpwb", 1428 #endif 1429 #ifdef CONFIG_X86 1430 "direct_map_level2_splits", 1431 "direct_map_level3_splits", 1432 #endif 1433 #ifdef CONFIG_PER_VMA_LOCK_STATS 1434 "vma_lock_success", 1435 "vma_lock_abort", 1436 "vma_lock_retry", 1437 "vma_lock_miss", 1438 #endif 1439 #ifdef CONFIG_DEBUG_STACK_USAGE 1440 "kstack_1k", 1441 #if THREAD_SIZE > 1024 1442 "kstack_2k", 1443 #endif 1444 #if THREAD_SIZE > 2048 1445 "kstack_4k", 1446 #endif 1447 #if THREAD_SIZE > 4096 1448 "kstack_8k", 1449 #endif 1450 #if THREAD_SIZE > 8192 1451 "kstack_16k", 1452 #endif 1453 #if THREAD_SIZE > 16384 1454 "kstack_32k", 1455 #endif 1456 #if THREAD_SIZE > 32768 1457 "kstack_64k", 1458 #endif 1459 #if THREAD_SIZE > 65536 1460 "kstack_rest", 1461 #endif 1462 #endif 1463 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1464 }; 1465 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1466 1467 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1468 defined(CONFIG_PROC_FS) 1469 static void *frag_start(struct seq_file *m, loff_t *pos) 1470 { 1471 pg_data_t *pgdat; 1472 loff_t node = *pos; 1473 1474 for (pgdat = first_online_pgdat(); 1475 pgdat && node; 1476 pgdat = next_online_pgdat(pgdat)) 1477 --node; 1478 1479 return pgdat; 1480 } 1481 1482 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1483 { 1484 pg_data_t *pgdat = (pg_data_t *)arg; 1485 1486 (*pos)++; 1487 return next_online_pgdat(pgdat); 1488 } 1489 1490 static void frag_stop(struct seq_file *m, void *arg) 1491 { 1492 } 1493 1494 /* 1495 * Walk zones in a node and print using a callback. 1496 * If @assert_populated is true, only use callback for zones that are populated. 1497 */ 1498 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1499 bool assert_populated, bool nolock, 1500 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1501 { 1502 struct zone *zone; 1503 struct zone *node_zones = pgdat->node_zones; 1504 unsigned long flags; 1505 1506 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1507 if (assert_populated && !populated_zone(zone)) 1508 continue; 1509 1510 if (!nolock) 1511 spin_lock_irqsave(&zone->lock, flags); 1512 print(m, pgdat, zone); 1513 if (!nolock) 1514 spin_unlock_irqrestore(&zone->lock, flags); 1515 } 1516 } 1517 #endif 1518 1519 #ifdef CONFIG_PROC_FS 1520 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1521 struct zone *zone) 1522 { 1523 int order; 1524 1525 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1526 for (order = 0; order < NR_PAGE_ORDERS; ++order) 1527 /* 1528 * Access to nr_free is lockless as nr_free is used only for 1529 * printing purposes. Use data_race to avoid KCSAN warning. 1530 */ 1531 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free)); 1532 seq_putc(m, '\n'); 1533 } 1534 1535 /* 1536 * This walks the free areas for each zone. 1537 */ 1538 static int frag_show(struct seq_file *m, void *arg) 1539 { 1540 pg_data_t *pgdat = (pg_data_t *)arg; 1541 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1542 return 0; 1543 } 1544 1545 static void pagetypeinfo_showfree_print(struct seq_file *m, 1546 pg_data_t *pgdat, struct zone *zone) 1547 { 1548 int order, mtype; 1549 1550 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1551 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1552 pgdat->node_id, 1553 zone->name, 1554 migratetype_names[mtype]); 1555 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 1556 unsigned long freecount = 0; 1557 struct free_area *area; 1558 struct list_head *curr; 1559 bool overflow = false; 1560 1561 area = &(zone->free_area[order]); 1562 1563 list_for_each(curr, &area->free_list[mtype]) { 1564 /* 1565 * Cap the free_list iteration because it might 1566 * be really large and we are under a spinlock 1567 * so a long time spent here could trigger a 1568 * hard lockup detector. Anyway this is a 1569 * debugging tool so knowing there is a handful 1570 * of pages of this order should be more than 1571 * sufficient. 1572 */ 1573 if (++freecount >= 100000) { 1574 overflow = true; 1575 break; 1576 } 1577 } 1578 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1579 spin_unlock_irq(&zone->lock); 1580 cond_resched(); 1581 spin_lock_irq(&zone->lock); 1582 } 1583 seq_putc(m, '\n'); 1584 } 1585 } 1586 1587 /* Print out the free pages at each order for each migatetype */ 1588 static void pagetypeinfo_showfree(struct seq_file *m, void *arg) 1589 { 1590 int order; 1591 pg_data_t *pgdat = (pg_data_t *)arg; 1592 1593 /* Print header */ 1594 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1595 for (order = 0; order < NR_PAGE_ORDERS; ++order) 1596 seq_printf(m, "%6d ", order); 1597 seq_putc(m, '\n'); 1598 1599 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1600 } 1601 1602 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1603 pg_data_t *pgdat, struct zone *zone) 1604 { 1605 int mtype; 1606 unsigned long pfn; 1607 unsigned long start_pfn = zone->zone_start_pfn; 1608 unsigned long end_pfn = zone_end_pfn(zone); 1609 unsigned long count[MIGRATE_TYPES] = { 0, }; 1610 1611 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1612 struct page *page; 1613 1614 page = pfn_to_online_page(pfn); 1615 if (!page) 1616 continue; 1617 1618 if (page_zone(page) != zone) 1619 continue; 1620 1621 mtype = get_pageblock_migratetype(page); 1622 1623 if (mtype < MIGRATE_TYPES) 1624 count[mtype]++; 1625 } 1626 1627 /* Print counts */ 1628 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1629 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1630 seq_printf(m, "%12lu ", count[mtype]); 1631 seq_putc(m, '\n'); 1632 } 1633 1634 /* Print out the number of pageblocks for each migratetype */ 1635 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1636 { 1637 int mtype; 1638 pg_data_t *pgdat = (pg_data_t *)arg; 1639 1640 seq_printf(m, "\n%-23s", "Number of blocks type "); 1641 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1642 seq_printf(m, "%12s ", migratetype_names[mtype]); 1643 seq_putc(m, '\n'); 1644 walk_zones_in_node(m, pgdat, true, false, 1645 pagetypeinfo_showblockcount_print); 1646 } 1647 1648 /* 1649 * Print out the number of pageblocks for each migratetype that contain pages 1650 * of other types. This gives an indication of how well fallbacks are being 1651 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1652 * to determine what is going on 1653 */ 1654 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1655 { 1656 #ifdef CONFIG_PAGE_OWNER 1657 int mtype; 1658 1659 if (!static_branch_unlikely(&page_owner_inited)) 1660 return; 1661 1662 drain_all_pages(NULL); 1663 1664 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1665 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1666 seq_printf(m, "%12s ", migratetype_names[mtype]); 1667 seq_putc(m, '\n'); 1668 1669 walk_zones_in_node(m, pgdat, true, true, 1670 pagetypeinfo_showmixedcount_print); 1671 #endif /* CONFIG_PAGE_OWNER */ 1672 } 1673 1674 /* 1675 * This prints out statistics in relation to grouping pages by mobility. 1676 * It is expensive to collect so do not constantly read the file. 1677 */ 1678 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1679 { 1680 pg_data_t *pgdat = (pg_data_t *)arg; 1681 1682 /* check memoryless node */ 1683 if (!node_state(pgdat->node_id, N_MEMORY)) 1684 return 0; 1685 1686 seq_printf(m, "Page block order: %d\n", pageblock_order); 1687 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1688 seq_putc(m, '\n'); 1689 pagetypeinfo_showfree(m, pgdat); 1690 pagetypeinfo_showblockcount(m, pgdat); 1691 pagetypeinfo_showmixedcount(m, pgdat); 1692 1693 return 0; 1694 } 1695 1696 static const struct seq_operations fragmentation_op = { 1697 .start = frag_start, 1698 .next = frag_next, 1699 .stop = frag_stop, 1700 .show = frag_show, 1701 }; 1702 1703 static const struct seq_operations pagetypeinfo_op = { 1704 .start = frag_start, 1705 .next = frag_next, 1706 .stop = frag_stop, 1707 .show = pagetypeinfo_show, 1708 }; 1709 1710 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1711 { 1712 int zid; 1713 1714 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1715 struct zone *compare = &pgdat->node_zones[zid]; 1716 1717 if (populated_zone(compare)) 1718 return zone == compare; 1719 } 1720 1721 return false; 1722 } 1723 1724 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1725 struct zone *zone) 1726 { 1727 int i; 1728 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1729 if (is_zone_first_populated(pgdat, zone)) { 1730 seq_printf(m, "\n per-node stats"); 1731 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1732 unsigned long pages = node_page_state_pages(pgdat, i); 1733 1734 if (vmstat_item_print_in_thp(i)) 1735 pages /= HPAGE_PMD_NR; 1736 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1737 pages); 1738 } 1739 } 1740 seq_printf(m, 1741 "\n pages free %lu" 1742 "\n boost %lu" 1743 "\n min %lu" 1744 "\n low %lu" 1745 "\n high %lu" 1746 "\n spanned %lu" 1747 "\n present %lu" 1748 "\n managed %lu" 1749 "\n cma %lu", 1750 zone_page_state(zone, NR_FREE_PAGES), 1751 zone->watermark_boost, 1752 min_wmark_pages(zone), 1753 low_wmark_pages(zone), 1754 high_wmark_pages(zone), 1755 zone->spanned_pages, 1756 zone->present_pages, 1757 zone_managed_pages(zone), 1758 zone_cma_pages(zone)); 1759 1760 seq_printf(m, 1761 "\n protection: (%ld", 1762 zone->lowmem_reserve[0]); 1763 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1764 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1765 seq_putc(m, ')'); 1766 1767 /* If unpopulated, no other information is useful */ 1768 if (!populated_zone(zone)) { 1769 seq_putc(m, '\n'); 1770 return; 1771 } 1772 1773 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1774 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1775 zone_page_state(zone, i)); 1776 1777 #ifdef CONFIG_NUMA 1778 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1779 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1780 zone_numa_event_state(zone, i)); 1781 #endif 1782 1783 seq_printf(m, "\n pagesets"); 1784 for_each_online_cpu(i) { 1785 struct per_cpu_pages *pcp; 1786 struct per_cpu_zonestat __maybe_unused *pzstats; 1787 1788 pcp = per_cpu_ptr(zone->per_cpu_pageset, i); 1789 seq_printf(m, 1790 "\n cpu: %i" 1791 "\n count: %i" 1792 "\n high: %i" 1793 "\n batch: %i", 1794 i, 1795 pcp->count, 1796 pcp->high, 1797 pcp->batch); 1798 #ifdef CONFIG_SMP 1799 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); 1800 seq_printf(m, "\n vm stats threshold: %d", 1801 pzstats->stat_threshold); 1802 #endif 1803 } 1804 seq_printf(m, 1805 "\n node_unreclaimable: %u" 1806 "\n start_pfn: %lu", 1807 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1808 zone->zone_start_pfn); 1809 seq_putc(m, '\n'); 1810 } 1811 1812 /* 1813 * Output information about zones in @pgdat. All zones are printed regardless 1814 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1815 * set of all zones and userspace would not be aware of such zones if they are 1816 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1817 */ 1818 static int zoneinfo_show(struct seq_file *m, void *arg) 1819 { 1820 pg_data_t *pgdat = (pg_data_t *)arg; 1821 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1822 return 0; 1823 } 1824 1825 static const struct seq_operations zoneinfo_op = { 1826 .start = frag_start, /* iterate over all zones. The same as in 1827 * fragmentation. */ 1828 .next = frag_next, 1829 .stop = frag_stop, 1830 .show = zoneinfo_show, 1831 }; 1832 1833 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1834 NR_VM_NUMA_EVENT_ITEMS + \ 1835 NR_VM_NODE_STAT_ITEMS + \ 1836 NR_VM_STAT_ITEMS + \ 1837 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1838 NR_VM_EVENT_ITEMS : 0)) 1839 1840 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1841 { 1842 unsigned long *v; 1843 int i; 1844 1845 if (*pos >= NR_VMSTAT_ITEMS) 1846 return NULL; 1847 1848 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1849 fold_vm_numa_events(); 1850 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1851 m->private = v; 1852 if (!v) 1853 return ERR_PTR(-ENOMEM); 1854 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1855 v[i] = global_zone_page_state(i); 1856 v += NR_VM_ZONE_STAT_ITEMS; 1857 1858 #ifdef CONFIG_NUMA 1859 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1860 v[i] = global_numa_event_state(i); 1861 v += NR_VM_NUMA_EVENT_ITEMS; 1862 #endif 1863 1864 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1865 v[i] = global_node_page_state_pages(i); 1866 if (vmstat_item_print_in_thp(i)) 1867 v[i] /= HPAGE_PMD_NR; 1868 } 1869 v += NR_VM_NODE_STAT_ITEMS; 1870 1871 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1872 v + NR_DIRTY_THRESHOLD); 1873 v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages); 1874 v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages); 1875 v += NR_VM_STAT_ITEMS; 1876 1877 #ifdef CONFIG_VM_EVENT_COUNTERS 1878 all_vm_events(v); 1879 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1880 v[PGPGOUT] /= 2; 1881 #endif 1882 return (unsigned long *)m->private + *pos; 1883 } 1884 1885 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1886 { 1887 (*pos)++; 1888 if (*pos >= NR_VMSTAT_ITEMS) 1889 return NULL; 1890 return (unsigned long *)m->private + *pos; 1891 } 1892 1893 static int vmstat_show(struct seq_file *m, void *arg) 1894 { 1895 unsigned long *l = arg; 1896 unsigned long off = l - (unsigned long *)m->private; 1897 1898 seq_puts(m, vmstat_text[off]); 1899 seq_put_decimal_ull(m, " ", *l); 1900 seq_putc(m, '\n'); 1901 1902 if (off == NR_VMSTAT_ITEMS - 1) { 1903 /* 1904 * We've come to the end - add any deprecated counters to avoid 1905 * breaking userspace which might depend on them being present. 1906 */ 1907 seq_puts(m, "nr_unstable 0\n"); 1908 } 1909 return 0; 1910 } 1911 1912 static void vmstat_stop(struct seq_file *m, void *arg) 1913 { 1914 kfree(m->private); 1915 m->private = NULL; 1916 } 1917 1918 static const struct seq_operations vmstat_op = { 1919 .start = vmstat_start, 1920 .next = vmstat_next, 1921 .stop = vmstat_stop, 1922 .show = vmstat_show, 1923 }; 1924 #endif /* CONFIG_PROC_FS */ 1925 1926 #ifdef CONFIG_SMP 1927 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1928 int sysctl_stat_interval __read_mostly = HZ; 1929 1930 #ifdef CONFIG_PROC_FS 1931 static void refresh_vm_stats(struct work_struct *work) 1932 { 1933 refresh_cpu_vm_stats(true); 1934 } 1935 1936 int vmstat_refresh(const struct ctl_table *table, int write, 1937 void *buffer, size_t *lenp, loff_t *ppos) 1938 { 1939 long val; 1940 int err; 1941 int i; 1942 1943 /* 1944 * The regular update, every sysctl_stat_interval, may come later 1945 * than expected: leaving a significant amount in per_cpu buckets. 1946 * This is particularly misleading when checking a quantity of HUGE 1947 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1948 * which can equally be echo'ed to or cat'ted from (by root), 1949 * can be used to update the stats just before reading them. 1950 * 1951 * Oh, and since global_zone_page_state() etc. are so careful to hide 1952 * transiently negative values, report an error here if any of 1953 * the stats is negative, so we know to go looking for imbalance. 1954 */ 1955 err = schedule_on_each_cpu(refresh_vm_stats); 1956 if (err) 1957 return err; 1958 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1959 /* 1960 * Skip checking stats known to go negative occasionally. 1961 */ 1962 switch (i) { 1963 case NR_ZONE_WRITE_PENDING: 1964 case NR_FREE_CMA_PAGES: 1965 continue; 1966 } 1967 val = atomic_long_read(&vm_zone_stat[i]); 1968 if (val < 0) { 1969 pr_warn("%s: %s %ld\n", 1970 __func__, zone_stat_name(i), val); 1971 } 1972 } 1973 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1974 /* 1975 * Skip checking stats known to go negative occasionally. 1976 */ 1977 switch (i) { 1978 case NR_WRITEBACK: 1979 continue; 1980 } 1981 val = atomic_long_read(&vm_node_stat[i]); 1982 if (val < 0) { 1983 pr_warn("%s: %s %ld\n", 1984 __func__, node_stat_name(i), val); 1985 } 1986 } 1987 if (write) 1988 *ppos += *lenp; 1989 else 1990 *lenp = 0; 1991 return 0; 1992 } 1993 #endif /* CONFIG_PROC_FS */ 1994 1995 static void vmstat_update(struct work_struct *w) 1996 { 1997 if (refresh_cpu_vm_stats(true)) { 1998 /* 1999 * Counters were updated so we expect more updates 2000 * to occur in the future. Keep on running the 2001 * update worker thread. 2002 */ 2003 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 2004 this_cpu_ptr(&vmstat_work), 2005 round_jiffies_relative(sysctl_stat_interval)); 2006 } 2007 } 2008 2009 /* 2010 * Check if the diffs for a certain cpu indicate that 2011 * an update is needed. 2012 */ 2013 static bool need_update(int cpu) 2014 { 2015 pg_data_t *last_pgdat = NULL; 2016 struct zone *zone; 2017 2018 for_each_populated_zone(zone) { 2019 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 2020 struct per_cpu_nodestat *n; 2021 2022 /* 2023 * The fast way of checking if there are any vmstat diffs. 2024 */ 2025 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) 2026 return true; 2027 2028 if (last_pgdat == zone->zone_pgdat) 2029 continue; 2030 last_pgdat = zone->zone_pgdat; 2031 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); 2032 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) 2033 return true; 2034 } 2035 return false; 2036 } 2037 2038 /* 2039 * Switch off vmstat processing and then fold all the remaining differentials 2040 * until the diffs stay at zero. The function is used by NOHZ and can only be 2041 * invoked when tick processing is not active. 2042 */ 2043 void quiet_vmstat(void) 2044 { 2045 if (system_state != SYSTEM_RUNNING) 2046 return; 2047 2048 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 2049 return; 2050 2051 if (!need_update(smp_processor_id())) 2052 return; 2053 2054 /* 2055 * Just refresh counters and do not care about the pending delayed 2056 * vmstat_update. It doesn't fire that often to matter and canceling 2057 * it would be too expensive from this path. 2058 * vmstat_shepherd will take care about that for us. 2059 */ 2060 refresh_cpu_vm_stats(false); 2061 } 2062 2063 /* 2064 * Shepherd worker thread that checks the 2065 * differentials of processors that have their worker 2066 * threads for vm statistics updates disabled because of 2067 * inactivity. 2068 */ 2069 static void vmstat_shepherd(struct work_struct *w); 2070 2071 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 2072 2073 static void vmstat_shepherd(struct work_struct *w) 2074 { 2075 int cpu; 2076 2077 cpus_read_lock(); 2078 /* Check processors whose vmstat worker threads have been disabled */ 2079 for_each_online_cpu(cpu) { 2080 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 2081 2082 /* 2083 * In kernel users of vmstat counters either require the precise value and 2084 * they are using zone_page_state_snapshot interface or they can live with 2085 * an imprecision as the regular flushing can happen at arbitrary time and 2086 * cumulative error can grow (see calculate_normal_threshold). 2087 * 2088 * From that POV the regular flushing can be postponed for CPUs that have 2089 * been isolated from the kernel interference without critical 2090 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd 2091 * for all isolated CPUs to avoid interference with the isolated workload. 2092 */ 2093 if (cpu_is_isolated(cpu)) 2094 continue; 2095 2096 if (!delayed_work_pending(dw) && need_update(cpu)) 2097 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 2098 2099 cond_resched(); 2100 } 2101 cpus_read_unlock(); 2102 2103 schedule_delayed_work(&shepherd, 2104 round_jiffies_relative(sysctl_stat_interval)); 2105 } 2106 2107 static void __init start_shepherd_timer(void) 2108 { 2109 int cpu; 2110 2111 for_each_possible_cpu(cpu) 2112 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 2113 vmstat_update); 2114 2115 schedule_delayed_work(&shepherd, 2116 round_jiffies_relative(sysctl_stat_interval)); 2117 } 2118 2119 static void __init init_cpu_node_state(void) 2120 { 2121 int node; 2122 2123 for_each_online_node(node) { 2124 if (!cpumask_empty(cpumask_of_node(node))) 2125 node_set_state(node, N_CPU); 2126 } 2127 } 2128 2129 static int vmstat_cpu_online(unsigned int cpu) 2130 { 2131 refresh_zone_stat_thresholds(); 2132 2133 if (!node_state(cpu_to_node(cpu), N_CPU)) { 2134 node_set_state(cpu_to_node(cpu), N_CPU); 2135 } 2136 2137 return 0; 2138 } 2139 2140 static int vmstat_cpu_down_prep(unsigned int cpu) 2141 { 2142 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2143 return 0; 2144 } 2145 2146 static int vmstat_cpu_dead(unsigned int cpu) 2147 { 2148 const struct cpumask *node_cpus; 2149 int node; 2150 2151 node = cpu_to_node(cpu); 2152 2153 refresh_zone_stat_thresholds(); 2154 node_cpus = cpumask_of_node(node); 2155 if (!cpumask_empty(node_cpus)) 2156 return 0; 2157 2158 node_clear_state(node, N_CPU); 2159 2160 return 0; 2161 } 2162 2163 #endif 2164 2165 struct workqueue_struct *mm_percpu_wq; 2166 2167 void __init init_mm_internals(void) 2168 { 2169 int ret __maybe_unused; 2170 2171 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2172 2173 #ifdef CONFIG_SMP 2174 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2175 NULL, vmstat_cpu_dead); 2176 if (ret < 0) 2177 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2178 2179 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2180 vmstat_cpu_online, 2181 vmstat_cpu_down_prep); 2182 if (ret < 0) 2183 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2184 2185 cpus_read_lock(); 2186 init_cpu_node_state(); 2187 cpus_read_unlock(); 2188 2189 start_shepherd_timer(); 2190 #endif 2191 #ifdef CONFIG_PROC_FS 2192 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2193 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2194 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2195 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2196 #endif 2197 } 2198 2199 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2200 2201 /* 2202 * Return an index indicating how much of the available free memory is 2203 * unusable for an allocation of the requested size. 2204 */ 2205 static int unusable_free_index(unsigned int order, 2206 struct contig_page_info *info) 2207 { 2208 /* No free memory is interpreted as all free memory is unusable */ 2209 if (info->free_pages == 0) 2210 return 1000; 2211 2212 /* 2213 * Index should be a value between 0 and 1. Return a value to 3 2214 * decimal places. 2215 * 2216 * 0 => no fragmentation 2217 * 1 => high fragmentation 2218 */ 2219 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2220 2221 } 2222 2223 static void unusable_show_print(struct seq_file *m, 2224 pg_data_t *pgdat, struct zone *zone) 2225 { 2226 unsigned int order; 2227 int index; 2228 struct contig_page_info info; 2229 2230 seq_printf(m, "Node %d, zone %8s ", 2231 pgdat->node_id, 2232 zone->name); 2233 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 2234 fill_contig_page_info(zone, order, &info); 2235 index = unusable_free_index(order, &info); 2236 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2237 } 2238 2239 seq_putc(m, '\n'); 2240 } 2241 2242 /* 2243 * Display unusable free space index 2244 * 2245 * The unusable free space index measures how much of the available free 2246 * memory cannot be used to satisfy an allocation of a given size and is a 2247 * value between 0 and 1. The higher the value, the more of free memory is 2248 * unusable and by implication, the worse the external fragmentation is. This 2249 * can be expressed as a percentage by multiplying by 100. 2250 */ 2251 static int unusable_show(struct seq_file *m, void *arg) 2252 { 2253 pg_data_t *pgdat = (pg_data_t *)arg; 2254 2255 /* check memoryless node */ 2256 if (!node_state(pgdat->node_id, N_MEMORY)) 2257 return 0; 2258 2259 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2260 2261 return 0; 2262 } 2263 2264 static const struct seq_operations unusable_sops = { 2265 .start = frag_start, 2266 .next = frag_next, 2267 .stop = frag_stop, 2268 .show = unusable_show, 2269 }; 2270 2271 DEFINE_SEQ_ATTRIBUTE(unusable); 2272 2273 static void extfrag_show_print(struct seq_file *m, 2274 pg_data_t *pgdat, struct zone *zone) 2275 { 2276 unsigned int order; 2277 int index; 2278 2279 /* Alloc on stack as interrupts are disabled for zone walk */ 2280 struct contig_page_info info; 2281 2282 seq_printf(m, "Node %d, zone %8s ", 2283 pgdat->node_id, 2284 zone->name); 2285 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 2286 fill_contig_page_info(zone, order, &info); 2287 index = __fragmentation_index(order, &info); 2288 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000); 2289 } 2290 2291 seq_putc(m, '\n'); 2292 } 2293 2294 /* 2295 * Display fragmentation index for orders that allocations would fail for 2296 */ 2297 static int extfrag_show(struct seq_file *m, void *arg) 2298 { 2299 pg_data_t *pgdat = (pg_data_t *)arg; 2300 2301 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2302 2303 return 0; 2304 } 2305 2306 static const struct seq_operations extfrag_sops = { 2307 .start = frag_start, 2308 .next = frag_next, 2309 .stop = frag_stop, 2310 .show = extfrag_show, 2311 }; 2312 2313 DEFINE_SEQ_ATTRIBUTE(extfrag); 2314 2315 static int __init extfrag_debug_init(void) 2316 { 2317 struct dentry *extfrag_debug_root; 2318 2319 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2320 2321 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2322 &unusable_fops); 2323 2324 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2325 &extfrag_fops); 2326 2327 return 0; 2328 } 2329 2330 module_init(extfrag_debug_init); 2331 2332 #endif 2333