1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/cpu.h> 17 #include <linux/vmstat.h> 18 #include <linux/sched.h> 19 #include <linux/math64.h> 20 #include <linux/writeback.h> 21 #include <linux/compaction.h> 22 23 #ifdef CONFIG_VM_EVENT_COUNTERS 24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 25 EXPORT_PER_CPU_SYMBOL(vm_event_states); 26 27 static void sum_vm_events(unsigned long *ret) 28 { 29 int cpu; 30 int i; 31 32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 33 34 for_each_online_cpu(cpu) { 35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 36 37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 38 ret[i] += this->event[i]; 39 } 40 } 41 42 /* 43 * Accumulate the vm event counters across all CPUs. 44 * The result is unavoidably approximate - it can change 45 * during and after execution of this function. 46 */ 47 void all_vm_events(unsigned long *ret) 48 { 49 get_online_cpus(); 50 sum_vm_events(ret); 51 put_online_cpus(); 52 } 53 EXPORT_SYMBOL_GPL(all_vm_events); 54 55 #ifdef CONFIG_HOTPLUG 56 /* 57 * Fold the foreign cpu events into our own. 58 * 59 * This is adding to the events on one processor 60 * but keeps the global counts constant. 61 */ 62 void vm_events_fold_cpu(int cpu) 63 { 64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 65 int i; 66 67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 68 count_vm_events(i, fold_state->event[i]); 69 fold_state->event[i] = 0; 70 } 71 } 72 #endif /* CONFIG_HOTPLUG */ 73 74 #endif /* CONFIG_VM_EVENT_COUNTERS */ 75 76 /* 77 * Manage combined zone based / global counters 78 * 79 * vm_stat contains the global counters 80 */ 81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 82 EXPORT_SYMBOL(vm_stat); 83 84 #ifdef CONFIG_SMP 85 86 int calculate_pressure_threshold(struct zone *zone) 87 { 88 int threshold; 89 int watermark_distance; 90 91 /* 92 * As vmstats are not up to date, there is drift between the estimated 93 * and real values. For high thresholds and a high number of CPUs, it 94 * is possible for the min watermark to be breached while the estimated 95 * value looks fine. The pressure threshold is a reduced value such 96 * that even the maximum amount of drift will not accidentally breach 97 * the min watermark 98 */ 99 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 100 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 101 102 /* 103 * Maximum threshold is 125 104 */ 105 threshold = min(125, threshold); 106 107 return threshold; 108 } 109 110 int calculate_normal_threshold(struct zone *zone) 111 { 112 int threshold; 113 int mem; /* memory in 128 MB units */ 114 115 /* 116 * The threshold scales with the number of processors and the amount 117 * of memory per zone. More memory means that we can defer updates for 118 * longer, more processors could lead to more contention. 119 * fls() is used to have a cheap way of logarithmic scaling. 120 * 121 * Some sample thresholds: 122 * 123 * Threshold Processors (fls) Zonesize fls(mem+1) 124 * ------------------------------------------------------------------ 125 * 8 1 1 0.9-1 GB 4 126 * 16 2 2 0.9-1 GB 4 127 * 20 2 2 1-2 GB 5 128 * 24 2 2 2-4 GB 6 129 * 28 2 2 4-8 GB 7 130 * 32 2 2 8-16 GB 8 131 * 4 2 2 <128M 1 132 * 30 4 3 2-4 GB 5 133 * 48 4 3 8-16 GB 8 134 * 32 8 4 1-2 GB 4 135 * 32 8 4 0.9-1GB 4 136 * 10 16 5 <128M 1 137 * 40 16 5 900M 4 138 * 70 64 7 2-4 GB 5 139 * 84 64 7 4-8 GB 6 140 * 108 512 9 4-8 GB 6 141 * 125 1024 10 8-16 GB 8 142 * 125 1024 10 16-32 GB 9 143 */ 144 145 mem = zone->present_pages >> (27 - PAGE_SHIFT); 146 147 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 148 149 /* 150 * Maximum threshold is 125 151 */ 152 threshold = min(125, threshold); 153 154 return threshold; 155 } 156 157 /* 158 * Refresh the thresholds for each zone. 159 */ 160 static void refresh_zone_stat_thresholds(void) 161 { 162 struct zone *zone; 163 int cpu; 164 int threshold; 165 166 for_each_populated_zone(zone) { 167 unsigned long max_drift, tolerate_drift; 168 169 threshold = calculate_normal_threshold(zone); 170 171 for_each_online_cpu(cpu) 172 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 173 = threshold; 174 175 /* 176 * Only set percpu_drift_mark if there is a danger that 177 * NR_FREE_PAGES reports the low watermark is ok when in fact 178 * the min watermark could be breached by an allocation 179 */ 180 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 181 max_drift = num_online_cpus() * threshold; 182 if (max_drift > tolerate_drift) 183 zone->percpu_drift_mark = high_wmark_pages(zone) + 184 max_drift; 185 } 186 } 187 188 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 189 int (*calculate_pressure)(struct zone *)) 190 { 191 struct zone *zone; 192 int cpu; 193 int threshold; 194 int i; 195 196 for (i = 0; i < pgdat->nr_zones; i++) { 197 zone = &pgdat->node_zones[i]; 198 if (!zone->percpu_drift_mark) 199 continue; 200 201 threshold = (*calculate_pressure)(zone); 202 for_each_possible_cpu(cpu) 203 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 204 = threshold; 205 } 206 } 207 208 /* 209 * For use when we know that interrupts are disabled. 210 */ 211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 212 int delta) 213 { 214 struct per_cpu_pageset __percpu *pcp = zone->pageset; 215 s8 __percpu *p = pcp->vm_stat_diff + item; 216 long x; 217 long t; 218 219 x = delta + __this_cpu_read(*p); 220 221 t = __this_cpu_read(pcp->stat_threshold); 222 223 if (unlikely(x > t || x < -t)) { 224 zone_page_state_add(x, zone, item); 225 x = 0; 226 } 227 __this_cpu_write(*p, x); 228 } 229 EXPORT_SYMBOL(__mod_zone_page_state); 230 231 /* 232 * Optimized increment and decrement functions. 233 * 234 * These are only for a single page and therefore can take a struct page * 235 * argument instead of struct zone *. This allows the inclusion of the code 236 * generated for page_zone(page) into the optimized functions. 237 * 238 * No overflow check is necessary and therefore the differential can be 239 * incremented or decremented in place which may allow the compilers to 240 * generate better code. 241 * The increment or decrement is known and therefore one boundary check can 242 * be omitted. 243 * 244 * NOTE: These functions are very performance sensitive. Change only 245 * with care. 246 * 247 * Some processors have inc/dec instructions that are atomic vs an interrupt. 248 * However, the code must first determine the differential location in a zone 249 * based on the processor number and then inc/dec the counter. There is no 250 * guarantee without disabling preemption that the processor will not change 251 * in between and therefore the atomicity vs. interrupt cannot be exploited 252 * in a useful way here. 253 */ 254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 255 { 256 struct per_cpu_pageset __percpu *pcp = zone->pageset; 257 s8 __percpu *p = pcp->vm_stat_diff + item; 258 s8 v, t; 259 260 v = __this_cpu_inc_return(*p); 261 t = __this_cpu_read(pcp->stat_threshold); 262 if (unlikely(v > t)) { 263 s8 overstep = t >> 1; 264 265 zone_page_state_add(v + overstep, zone, item); 266 __this_cpu_write(*p, -overstep); 267 } 268 } 269 270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 271 { 272 __inc_zone_state(page_zone(page), item); 273 } 274 EXPORT_SYMBOL(__inc_zone_page_state); 275 276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 277 { 278 struct per_cpu_pageset __percpu *pcp = zone->pageset; 279 s8 __percpu *p = pcp->vm_stat_diff + item; 280 s8 v, t; 281 282 v = __this_cpu_dec_return(*p); 283 t = __this_cpu_read(pcp->stat_threshold); 284 if (unlikely(v < - t)) { 285 s8 overstep = t >> 1; 286 287 zone_page_state_add(v - overstep, zone, item); 288 __this_cpu_write(*p, overstep); 289 } 290 } 291 292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 293 { 294 __dec_zone_state(page_zone(page), item); 295 } 296 EXPORT_SYMBOL(__dec_zone_page_state); 297 298 #ifdef CONFIG_CMPXCHG_LOCAL 299 /* 300 * If we have cmpxchg_local support then we do not need to incur the overhead 301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 302 * 303 * mod_state() modifies the zone counter state through atomic per cpu 304 * operations. 305 * 306 * Overstep mode specifies how overstep should handled: 307 * 0 No overstepping 308 * 1 Overstepping half of threshold 309 * -1 Overstepping minus half of threshold 310 */ 311 static inline void mod_state(struct zone *zone, 312 enum zone_stat_item item, int delta, int overstep_mode) 313 { 314 struct per_cpu_pageset __percpu *pcp = zone->pageset; 315 s8 __percpu *p = pcp->vm_stat_diff + item; 316 long o, n, t, z; 317 318 do { 319 z = 0; /* overflow to zone counters */ 320 321 /* 322 * The fetching of the stat_threshold is racy. We may apply 323 * a counter threshold to the wrong the cpu if we get 324 * rescheduled while executing here. However, the following 325 * will apply the threshold again and therefore bring the 326 * counter under the threshold. 327 */ 328 t = this_cpu_read(pcp->stat_threshold); 329 330 o = this_cpu_read(*p); 331 n = delta + o; 332 333 if (n > t || n < -t) { 334 int os = overstep_mode * (t >> 1) ; 335 336 /* Overflow must be added to zone counters */ 337 z = n + os; 338 n = -os; 339 } 340 } while (this_cpu_cmpxchg(*p, o, n) != o); 341 342 if (z) 343 zone_page_state_add(z, zone, item); 344 } 345 346 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 347 int delta) 348 { 349 mod_state(zone, item, delta, 0); 350 } 351 EXPORT_SYMBOL(mod_zone_page_state); 352 353 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 354 { 355 mod_state(zone, item, 1, 1); 356 } 357 358 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 359 { 360 mod_state(page_zone(page), item, 1, 1); 361 } 362 EXPORT_SYMBOL(inc_zone_page_state); 363 364 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 365 { 366 mod_state(page_zone(page), item, -1, -1); 367 } 368 EXPORT_SYMBOL(dec_zone_page_state); 369 #else 370 /* 371 * Use interrupt disable to serialize counter updates 372 */ 373 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 374 int delta) 375 { 376 unsigned long flags; 377 378 local_irq_save(flags); 379 __mod_zone_page_state(zone, item, delta); 380 local_irq_restore(flags); 381 } 382 EXPORT_SYMBOL(mod_zone_page_state); 383 384 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 385 { 386 unsigned long flags; 387 388 local_irq_save(flags); 389 __inc_zone_state(zone, item); 390 local_irq_restore(flags); 391 } 392 393 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 394 { 395 unsigned long flags; 396 struct zone *zone; 397 398 zone = page_zone(page); 399 local_irq_save(flags); 400 __inc_zone_state(zone, item); 401 local_irq_restore(flags); 402 } 403 EXPORT_SYMBOL(inc_zone_page_state); 404 405 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 406 { 407 unsigned long flags; 408 409 local_irq_save(flags); 410 __dec_zone_page_state(page, item); 411 local_irq_restore(flags); 412 } 413 EXPORT_SYMBOL(dec_zone_page_state); 414 #endif 415 416 /* 417 * Update the zone counters for one cpu. 418 * 419 * The cpu specified must be either the current cpu or a processor that 420 * is not online. If it is the current cpu then the execution thread must 421 * be pinned to the current cpu. 422 * 423 * Note that refresh_cpu_vm_stats strives to only access 424 * node local memory. The per cpu pagesets on remote zones are placed 425 * in the memory local to the processor using that pageset. So the 426 * loop over all zones will access a series of cachelines local to 427 * the processor. 428 * 429 * The call to zone_page_state_add updates the cachelines with the 430 * statistics in the remote zone struct as well as the global cachelines 431 * with the global counters. These could cause remote node cache line 432 * bouncing and will have to be only done when necessary. 433 */ 434 void refresh_cpu_vm_stats(int cpu) 435 { 436 struct zone *zone; 437 int i; 438 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 439 440 for_each_populated_zone(zone) { 441 struct per_cpu_pageset *p; 442 443 p = per_cpu_ptr(zone->pageset, cpu); 444 445 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 446 if (p->vm_stat_diff[i]) { 447 unsigned long flags; 448 int v; 449 450 local_irq_save(flags); 451 v = p->vm_stat_diff[i]; 452 p->vm_stat_diff[i] = 0; 453 local_irq_restore(flags); 454 atomic_long_add(v, &zone->vm_stat[i]); 455 global_diff[i] += v; 456 #ifdef CONFIG_NUMA 457 /* 3 seconds idle till flush */ 458 p->expire = 3; 459 #endif 460 } 461 cond_resched(); 462 #ifdef CONFIG_NUMA 463 /* 464 * Deal with draining the remote pageset of this 465 * processor 466 * 467 * Check if there are pages remaining in this pageset 468 * if not then there is nothing to expire. 469 */ 470 if (!p->expire || !p->pcp.count) 471 continue; 472 473 /* 474 * We never drain zones local to this processor. 475 */ 476 if (zone_to_nid(zone) == numa_node_id()) { 477 p->expire = 0; 478 continue; 479 } 480 481 p->expire--; 482 if (p->expire) 483 continue; 484 485 if (p->pcp.count) 486 drain_zone_pages(zone, &p->pcp); 487 #endif 488 } 489 490 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 491 if (global_diff[i]) 492 atomic_long_add(global_diff[i], &vm_stat[i]); 493 } 494 495 #endif 496 497 #ifdef CONFIG_NUMA 498 /* 499 * zonelist = the list of zones passed to the allocator 500 * z = the zone from which the allocation occurred. 501 * 502 * Must be called with interrupts disabled. 503 */ 504 void zone_statistics(struct zone *preferred_zone, struct zone *z) 505 { 506 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 507 __inc_zone_state(z, NUMA_HIT); 508 } else { 509 __inc_zone_state(z, NUMA_MISS); 510 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 511 } 512 if (z->node == numa_node_id()) 513 __inc_zone_state(z, NUMA_LOCAL); 514 else 515 __inc_zone_state(z, NUMA_OTHER); 516 } 517 #endif 518 519 #ifdef CONFIG_COMPACTION 520 521 struct contig_page_info { 522 unsigned long free_pages; 523 unsigned long free_blocks_total; 524 unsigned long free_blocks_suitable; 525 }; 526 527 /* 528 * Calculate the number of free pages in a zone, how many contiguous 529 * pages are free and how many are large enough to satisfy an allocation of 530 * the target size. Note that this function makes no attempt to estimate 531 * how many suitable free blocks there *might* be if MOVABLE pages were 532 * migrated. Calculating that is possible, but expensive and can be 533 * figured out from userspace 534 */ 535 static void fill_contig_page_info(struct zone *zone, 536 unsigned int suitable_order, 537 struct contig_page_info *info) 538 { 539 unsigned int order; 540 541 info->free_pages = 0; 542 info->free_blocks_total = 0; 543 info->free_blocks_suitable = 0; 544 545 for (order = 0; order < MAX_ORDER; order++) { 546 unsigned long blocks; 547 548 /* Count number of free blocks */ 549 blocks = zone->free_area[order].nr_free; 550 info->free_blocks_total += blocks; 551 552 /* Count free base pages */ 553 info->free_pages += blocks << order; 554 555 /* Count the suitable free blocks */ 556 if (order >= suitable_order) 557 info->free_blocks_suitable += blocks << 558 (order - suitable_order); 559 } 560 } 561 562 /* 563 * A fragmentation index only makes sense if an allocation of a requested 564 * size would fail. If that is true, the fragmentation index indicates 565 * whether external fragmentation or a lack of memory was the problem. 566 * The value can be used to determine if page reclaim or compaction 567 * should be used 568 */ 569 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 570 { 571 unsigned long requested = 1UL << order; 572 573 if (!info->free_blocks_total) 574 return 0; 575 576 /* Fragmentation index only makes sense when a request would fail */ 577 if (info->free_blocks_suitable) 578 return -1000; 579 580 /* 581 * Index is between 0 and 1 so return within 3 decimal places 582 * 583 * 0 => allocation would fail due to lack of memory 584 * 1 => allocation would fail due to fragmentation 585 */ 586 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 587 } 588 589 /* Same as __fragmentation index but allocs contig_page_info on stack */ 590 int fragmentation_index(struct zone *zone, unsigned int order) 591 { 592 struct contig_page_info info; 593 594 fill_contig_page_info(zone, order, &info); 595 return __fragmentation_index(order, &info); 596 } 597 #endif 598 599 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) 600 #include <linux/proc_fs.h> 601 #include <linux/seq_file.h> 602 603 static char * const migratetype_names[MIGRATE_TYPES] = { 604 "Unmovable", 605 "Reclaimable", 606 "Movable", 607 "Reserve", 608 "Isolate", 609 }; 610 611 static void *frag_start(struct seq_file *m, loff_t *pos) 612 { 613 pg_data_t *pgdat; 614 loff_t node = *pos; 615 for (pgdat = first_online_pgdat(); 616 pgdat && node; 617 pgdat = next_online_pgdat(pgdat)) 618 --node; 619 620 return pgdat; 621 } 622 623 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 624 { 625 pg_data_t *pgdat = (pg_data_t *)arg; 626 627 (*pos)++; 628 return next_online_pgdat(pgdat); 629 } 630 631 static void frag_stop(struct seq_file *m, void *arg) 632 { 633 } 634 635 /* Walk all the zones in a node and print using a callback */ 636 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 637 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 638 { 639 struct zone *zone; 640 struct zone *node_zones = pgdat->node_zones; 641 unsigned long flags; 642 643 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 644 if (!populated_zone(zone)) 645 continue; 646 647 spin_lock_irqsave(&zone->lock, flags); 648 print(m, pgdat, zone); 649 spin_unlock_irqrestore(&zone->lock, flags); 650 } 651 } 652 #endif 653 654 #ifdef CONFIG_PROC_FS 655 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 656 struct zone *zone) 657 { 658 int order; 659 660 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 661 for (order = 0; order < MAX_ORDER; ++order) 662 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 663 seq_putc(m, '\n'); 664 } 665 666 /* 667 * This walks the free areas for each zone. 668 */ 669 static int frag_show(struct seq_file *m, void *arg) 670 { 671 pg_data_t *pgdat = (pg_data_t *)arg; 672 walk_zones_in_node(m, pgdat, frag_show_print); 673 return 0; 674 } 675 676 static void pagetypeinfo_showfree_print(struct seq_file *m, 677 pg_data_t *pgdat, struct zone *zone) 678 { 679 int order, mtype; 680 681 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 682 seq_printf(m, "Node %4d, zone %8s, type %12s ", 683 pgdat->node_id, 684 zone->name, 685 migratetype_names[mtype]); 686 for (order = 0; order < MAX_ORDER; ++order) { 687 unsigned long freecount = 0; 688 struct free_area *area; 689 struct list_head *curr; 690 691 area = &(zone->free_area[order]); 692 693 list_for_each(curr, &area->free_list[mtype]) 694 freecount++; 695 seq_printf(m, "%6lu ", freecount); 696 } 697 seq_putc(m, '\n'); 698 } 699 } 700 701 /* Print out the free pages at each order for each migatetype */ 702 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 703 { 704 int order; 705 pg_data_t *pgdat = (pg_data_t *)arg; 706 707 /* Print header */ 708 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 709 for (order = 0; order < MAX_ORDER; ++order) 710 seq_printf(m, "%6d ", order); 711 seq_putc(m, '\n'); 712 713 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 714 715 return 0; 716 } 717 718 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 719 pg_data_t *pgdat, struct zone *zone) 720 { 721 int mtype; 722 unsigned long pfn; 723 unsigned long start_pfn = zone->zone_start_pfn; 724 unsigned long end_pfn = start_pfn + zone->spanned_pages; 725 unsigned long count[MIGRATE_TYPES] = { 0, }; 726 727 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 728 struct page *page; 729 730 if (!pfn_valid(pfn)) 731 continue; 732 733 page = pfn_to_page(pfn); 734 735 /* Watch for unexpected holes punched in the memmap */ 736 if (!memmap_valid_within(pfn, page, zone)) 737 continue; 738 739 mtype = get_pageblock_migratetype(page); 740 741 if (mtype < MIGRATE_TYPES) 742 count[mtype]++; 743 } 744 745 /* Print counts */ 746 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 747 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 748 seq_printf(m, "%12lu ", count[mtype]); 749 seq_putc(m, '\n'); 750 } 751 752 /* Print out the free pages at each order for each migratetype */ 753 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 754 { 755 int mtype; 756 pg_data_t *pgdat = (pg_data_t *)arg; 757 758 seq_printf(m, "\n%-23s", "Number of blocks type "); 759 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 760 seq_printf(m, "%12s ", migratetype_names[mtype]); 761 seq_putc(m, '\n'); 762 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 763 764 return 0; 765 } 766 767 /* 768 * This prints out statistics in relation to grouping pages by mobility. 769 * It is expensive to collect so do not constantly read the file. 770 */ 771 static int pagetypeinfo_show(struct seq_file *m, void *arg) 772 { 773 pg_data_t *pgdat = (pg_data_t *)arg; 774 775 /* check memoryless node */ 776 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 777 return 0; 778 779 seq_printf(m, "Page block order: %d\n", pageblock_order); 780 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 781 seq_putc(m, '\n'); 782 pagetypeinfo_showfree(m, pgdat); 783 pagetypeinfo_showblockcount(m, pgdat); 784 785 return 0; 786 } 787 788 static const struct seq_operations fragmentation_op = { 789 .start = frag_start, 790 .next = frag_next, 791 .stop = frag_stop, 792 .show = frag_show, 793 }; 794 795 static int fragmentation_open(struct inode *inode, struct file *file) 796 { 797 return seq_open(file, &fragmentation_op); 798 } 799 800 static const struct file_operations fragmentation_file_operations = { 801 .open = fragmentation_open, 802 .read = seq_read, 803 .llseek = seq_lseek, 804 .release = seq_release, 805 }; 806 807 static const struct seq_operations pagetypeinfo_op = { 808 .start = frag_start, 809 .next = frag_next, 810 .stop = frag_stop, 811 .show = pagetypeinfo_show, 812 }; 813 814 static int pagetypeinfo_open(struct inode *inode, struct file *file) 815 { 816 return seq_open(file, &pagetypeinfo_op); 817 } 818 819 static const struct file_operations pagetypeinfo_file_ops = { 820 .open = pagetypeinfo_open, 821 .read = seq_read, 822 .llseek = seq_lseek, 823 .release = seq_release, 824 }; 825 826 #ifdef CONFIG_ZONE_DMA 827 #define TEXT_FOR_DMA(xx) xx "_dma", 828 #else 829 #define TEXT_FOR_DMA(xx) 830 #endif 831 832 #ifdef CONFIG_ZONE_DMA32 833 #define TEXT_FOR_DMA32(xx) xx "_dma32", 834 #else 835 #define TEXT_FOR_DMA32(xx) 836 #endif 837 838 #ifdef CONFIG_HIGHMEM 839 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 840 #else 841 #define TEXT_FOR_HIGHMEM(xx) 842 #endif 843 844 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 845 TEXT_FOR_HIGHMEM(xx) xx "_movable", 846 847 static const char * const vmstat_text[] = { 848 /* Zoned VM counters */ 849 "nr_free_pages", 850 "nr_inactive_anon", 851 "nr_active_anon", 852 "nr_inactive_file", 853 "nr_active_file", 854 "nr_unevictable", 855 "nr_mlock", 856 "nr_anon_pages", 857 "nr_mapped", 858 "nr_file_pages", 859 "nr_dirty", 860 "nr_writeback", 861 "nr_slab_reclaimable", 862 "nr_slab_unreclaimable", 863 "nr_page_table_pages", 864 "nr_kernel_stack", 865 "nr_unstable", 866 "nr_bounce", 867 "nr_vmscan_write", 868 "nr_writeback_temp", 869 "nr_isolated_anon", 870 "nr_isolated_file", 871 "nr_shmem", 872 "nr_dirtied", 873 "nr_written", 874 875 #ifdef CONFIG_NUMA 876 "numa_hit", 877 "numa_miss", 878 "numa_foreign", 879 "numa_interleave", 880 "numa_local", 881 "numa_other", 882 #endif 883 "nr_anon_transparent_hugepages", 884 "nr_dirty_threshold", 885 "nr_dirty_background_threshold", 886 887 #ifdef CONFIG_VM_EVENT_COUNTERS 888 "pgpgin", 889 "pgpgout", 890 "pswpin", 891 "pswpout", 892 893 TEXTS_FOR_ZONES("pgalloc") 894 895 "pgfree", 896 "pgactivate", 897 "pgdeactivate", 898 899 "pgfault", 900 "pgmajfault", 901 902 TEXTS_FOR_ZONES("pgrefill") 903 TEXTS_FOR_ZONES("pgsteal") 904 TEXTS_FOR_ZONES("pgscan_kswapd") 905 TEXTS_FOR_ZONES("pgscan_direct") 906 907 #ifdef CONFIG_NUMA 908 "zone_reclaim_failed", 909 #endif 910 "pginodesteal", 911 "slabs_scanned", 912 "kswapd_steal", 913 "kswapd_inodesteal", 914 "kswapd_low_wmark_hit_quickly", 915 "kswapd_high_wmark_hit_quickly", 916 "kswapd_skip_congestion_wait", 917 "pageoutrun", 918 "allocstall", 919 920 "pgrotated", 921 922 #ifdef CONFIG_COMPACTION 923 "compact_blocks_moved", 924 "compact_pages_moved", 925 "compact_pagemigrate_failed", 926 "compact_stall", 927 "compact_fail", 928 "compact_success", 929 #endif 930 931 #ifdef CONFIG_HUGETLB_PAGE 932 "htlb_buddy_alloc_success", 933 "htlb_buddy_alloc_fail", 934 #endif 935 "unevictable_pgs_culled", 936 "unevictable_pgs_scanned", 937 "unevictable_pgs_rescued", 938 "unevictable_pgs_mlocked", 939 "unevictable_pgs_munlocked", 940 "unevictable_pgs_cleared", 941 "unevictable_pgs_stranded", 942 "unevictable_pgs_mlockfreed", 943 #endif 944 }; 945 946 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 947 struct zone *zone) 948 { 949 int i; 950 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 951 seq_printf(m, 952 "\n pages free %lu" 953 "\n min %lu" 954 "\n low %lu" 955 "\n high %lu" 956 "\n scanned %lu" 957 "\n spanned %lu" 958 "\n present %lu", 959 zone_page_state(zone, NR_FREE_PAGES), 960 min_wmark_pages(zone), 961 low_wmark_pages(zone), 962 high_wmark_pages(zone), 963 zone->pages_scanned, 964 zone->spanned_pages, 965 zone->present_pages); 966 967 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 968 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 969 zone_page_state(zone, i)); 970 971 seq_printf(m, 972 "\n protection: (%lu", 973 zone->lowmem_reserve[0]); 974 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 975 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 976 seq_printf(m, 977 ")" 978 "\n pagesets"); 979 for_each_online_cpu(i) { 980 struct per_cpu_pageset *pageset; 981 982 pageset = per_cpu_ptr(zone->pageset, i); 983 seq_printf(m, 984 "\n cpu: %i" 985 "\n count: %i" 986 "\n high: %i" 987 "\n batch: %i", 988 i, 989 pageset->pcp.count, 990 pageset->pcp.high, 991 pageset->pcp.batch); 992 #ifdef CONFIG_SMP 993 seq_printf(m, "\n vm stats threshold: %d", 994 pageset->stat_threshold); 995 #endif 996 } 997 seq_printf(m, 998 "\n all_unreclaimable: %u" 999 "\n start_pfn: %lu" 1000 "\n inactive_ratio: %u", 1001 zone->all_unreclaimable, 1002 zone->zone_start_pfn, 1003 zone->inactive_ratio); 1004 seq_putc(m, '\n'); 1005 } 1006 1007 /* 1008 * Output information about zones in @pgdat. 1009 */ 1010 static int zoneinfo_show(struct seq_file *m, void *arg) 1011 { 1012 pg_data_t *pgdat = (pg_data_t *)arg; 1013 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1014 return 0; 1015 } 1016 1017 static const struct seq_operations zoneinfo_op = { 1018 .start = frag_start, /* iterate over all zones. The same as in 1019 * fragmentation. */ 1020 .next = frag_next, 1021 .stop = frag_stop, 1022 .show = zoneinfo_show, 1023 }; 1024 1025 static int zoneinfo_open(struct inode *inode, struct file *file) 1026 { 1027 return seq_open(file, &zoneinfo_op); 1028 } 1029 1030 static const struct file_operations proc_zoneinfo_file_operations = { 1031 .open = zoneinfo_open, 1032 .read = seq_read, 1033 .llseek = seq_lseek, 1034 .release = seq_release, 1035 }; 1036 1037 enum writeback_stat_item { 1038 NR_DIRTY_THRESHOLD, 1039 NR_DIRTY_BG_THRESHOLD, 1040 NR_VM_WRITEBACK_STAT_ITEMS, 1041 }; 1042 1043 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1044 { 1045 unsigned long *v; 1046 int i, stat_items_size; 1047 1048 if (*pos >= ARRAY_SIZE(vmstat_text)) 1049 return NULL; 1050 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1051 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1052 1053 #ifdef CONFIG_VM_EVENT_COUNTERS 1054 stat_items_size += sizeof(struct vm_event_state); 1055 #endif 1056 1057 v = kmalloc(stat_items_size, GFP_KERNEL); 1058 m->private = v; 1059 if (!v) 1060 return ERR_PTR(-ENOMEM); 1061 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1062 v[i] = global_page_state(i); 1063 v += NR_VM_ZONE_STAT_ITEMS; 1064 1065 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1066 v + NR_DIRTY_THRESHOLD); 1067 v += NR_VM_WRITEBACK_STAT_ITEMS; 1068 1069 #ifdef CONFIG_VM_EVENT_COUNTERS 1070 all_vm_events(v); 1071 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1072 v[PGPGOUT] /= 2; 1073 #endif 1074 return (unsigned long *)m->private + *pos; 1075 } 1076 1077 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1078 { 1079 (*pos)++; 1080 if (*pos >= ARRAY_SIZE(vmstat_text)) 1081 return NULL; 1082 return (unsigned long *)m->private + *pos; 1083 } 1084 1085 static int vmstat_show(struct seq_file *m, void *arg) 1086 { 1087 unsigned long *l = arg; 1088 unsigned long off = l - (unsigned long *)m->private; 1089 1090 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1091 return 0; 1092 } 1093 1094 static void vmstat_stop(struct seq_file *m, void *arg) 1095 { 1096 kfree(m->private); 1097 m->private = NULL; 1098 } 1099 1100 static const struct seq_operations vmstat_op = { 1101 .start = vmstat_start, 1102 .next = vmstat_next, 1103 .stop = vmstat_stop, 1104 .show = vmstat_show, 1105 }; 1106 1107 static int vmstat_open(struct inode *inode, struct file *file) 1108 { 1109 return seq_open(file, &vmstat_op); 1110 } 1111 1112 static const struct file_operations proc_vmstat_file_operations = { 1113 .open = vmstat_open, 1114 .read = seq_read, 1115 .llseek = seq_lseek, 1116 .release = seq_release, 1117 }; 1118 #endif /* CONFIG_PROC_FS */ 1119 1120 #ifdef CONFIG_SMP 1121 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1122 int sysctl_stat_interval __read_mostly = HZ; 1123 1124 static void vmstat_update(struct work_struct *w) 1125 { 1126 refresh_cpu_vm_stats(smp_processor_id()); 1127 schedule_delayed_work(&__get_cpu_var(vmstat_work), 1128 round_jiffies_relative(sysctl_stat_interval)); 1129 } 1130 1131 static void __cpuinit start_cpu_timer(int cpu) 1132 { 1133 struct delayed_work *work = &per_cpu(vmstat_work, cpu); 1134 1135 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update); 1136 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); 1137 } 1138 1139 /* 1140 * Use the cpu notifier to insure that the thresholds are recalculated 1141 * when necessary. 1142 */ 1143 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, 1144 unsigned long action, 1145 void *hcpu) 1146 { 1147 long cpu = (long)hcpu; 1148 1149 switch (action) { 1150 case CPU_ONLINE: 1151 case CPU_ONLINE_FROZEN: 1152 refresh_zone_stat_thresholds(); 1153 start_cpu_timer(cpu); 1154 node_set_state(cpu_to_node(cpu), N_CPU); 1155 break; 1156 case CPU_DOWN_PREPARE: 1157 case CPU_DOWN_PREPARE_FROZEN: 1158 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1159 per_cpu(vmstat_work, cpu).work.func = NULL; 1160 break; 1161 case CPU_DOWN_FAILED: 1162 case CPU_DOWN_FAILED_FROZEN: 1163 start_cpu_timer(cpu); 1164 break; 1165 case CPU_DEAD: 1166 case CPU_DEAD_FROZEN: 1167 refresh_zone_stat_thresholds(); 1168 break; 1169 default: 1170 break; 1171 } 1172 return NOTIFY_OK; 1173 } 1174 1175 static struct notifier_block __cpuinitdata vmstat_notifier = 1176 { &vmstat_cpuup_callback, NULL, 0 }; 1177 #endif 1178 1179 static int __init setup_vmstat(void) 1180 { 1181 #ifdef CONFIG_SMP 1182 int cpu; 1183 1184 refresh_zone_stat_thresholds(); 1185 register_cpu_notifier(&vmstat_notifier); 1186 1187 for_each_online_cpu(cpu) 1188 start_cpu_timer(cpu); 1189 #endif 1190 #ifdef CONFIG_PROC_FS 1191 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1192 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1193 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1194 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1195 #endif 1196 return 0; 1197 } 1198 module_init(setup_vmstat) 1199 1200 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1201 #include <linux/debugfs.h> 1202 1203 static struct dentry *extfrag_debug_root; 1204 1205 /* 1206 * Return an index indicating how much of the available free memory is 1207 * unusable for an allocation of the requested size. 1208 */ 1209 static int unusable_free_index(unsigned int order, 1210 struct contig_page_info *info) 1211 { 1212 /* No free memory is interpreted as all free memory is unusable */ 1213 if (info->free_pages == 0) 1214 return 1000; 1215 1216 /* 1217 * Index should be a value between 0 and 1. Return a value to 3 1218 * decimal places. 1219 * 1220 * 0 => no fragmentation 1221 * 1 => high fragmentation 1222 */ 1223 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1224 1225 } 1226 1227 static void unusable_show_print(struct seq_file *m, 1228 pg_data_t *pgdat, struct zone *zone) 1229 { 1230 unsigned int order; 1231 int index; 1232 struct contig_page_info info; 1233 1234 seq_printf(m, "Node %d, zone %8s ", 1235 pgdat->node_id, 1236 zone->name); 1237 for (order = 0; order < MAX_ORDER; ++order) { 1238 fill_contig_page_info(zone, order, &info); 1239 index = unusable_free_index(order, &info); 1240 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1241 } 1242 1243 seq_putc(m, '\n'); 1244 } 1245 1246 /* 1247 * Display unusable free space index 1248 * 1249 * The unusable free space index measures how much of the available free 1250 * memory cannot be used to satisfy an allocation of a given size and is a 1251 * value between 0 and 1. The higher the value, the more of free memory is 1252 * unusable and by implication, the worse the external fragmentation is. This 1253 * can be expressed as a percentage by multiplying by 100. 1254 */ 1255 static int unusable_show(struct seq_file *m, void *arg) 1256 { 1257 pg_data_t *pgdat = (pg_data_t *)arg; 1258 1259 /* check memoryless node */ 1260 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 1261 return 0; 1262 1263 walk_zones_in_node(m, pgdat, unusable_show_print); 1264 1265 return 0; 1266 } 1267 1268 static const struct seq_operations unusable_op = { 1269 .start = frag_start, 1270 .next = frag_next, 1271 .stop = frag_stop, 1272 .show = unusable_show, 1273 }; 1274 1275 static int unusable_open(struct inode *inode, struct file *file) 1276 { 1277 return seq_open(file, &unusable_op); 1278 } 1279 1280 static const struct file_operations unusable_file_ops = { 1281 .open = unusable_open, 1282 .read = seq_read, 1283 .llseek = seq_lseek, 1284 .release = seq_release, 1285 }; 1286 1287 static void extfrag_show_print(struct seq_file *m, 1288 pg_data_t *pgdat, struct zone *zone) 1289 { 1290 unsigned int order; 1291 int index; 1292 1293 /* Alloc on stack as interrupts are disabled for zone walk */ 1294 struct contig_page_info info; 1295 1296 seq_printf(m, "Node %d, zone %8s ", 1297 pgdat->node_id, 1298 zone->name); 1299 for (order = 0; order < MAX_ORDER; ++order) { 1300 fill_contig_page_info(zone, order, &info); 1301 index = __fragmentation_index(order, &info); 1302 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1303 } 1304 1305 seq_putc(m, '\n'); 1306 } 1307 1308 /* 1309 * Display fragmentation index for orders that allocations would fail for 1310 */ 1311 static int extfrag_show(struct seq_file *m, void *arg) 1312 { 1313 pg_data_t *pgdat = (pg_data_t *)arg; 1314 1315 walk_zones_in_node(m, pgdat, extfrag_show_print); 1316 1317 return 0; 1318 } 1319 1320 static const struct seq_operations extfrag_op = { 1321 .start = frag_start, 1322 .next = frag_next, 1323 .stop = frag_stop, 1324 .show = extfrag_show, 1325 }; 1326 1327 static int extfrag_open(struct inode *inode, struct file *file) 1328 { 1329 return seq_open(file, &extfrag_op); 1330 } 1331 1332 static const struct file_operations extfrag_file_ops = { 1333 .open = extfrag_open, 1334 .read = seq_read, 1335 .llseek = seq_lseek, 1336 .release = seq_release, 1337 }; 1338 1339 static int __init extfrag_debug_init(void) 1340 { 1341 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1342 if (!extfrag_debug_root) 1343 return -ENOMEM; 1344 1345 if (!debugfs_create_file("unusable_index", 0444, 1346 extfrag_debug_root, NULL, &unusable_file_ops)) 1347 return -ENOMEM; 1348 1349 if (!debugfs_create_file("extfrag_index", 0444, 1350 extfrag_debug_root, NULL, &extfrag_file_ops)) 1351 return -ENOMEM; 1352 1353 return 0; 1354 } 1355 1356 module_init(extfrag_debug_init); 1357 #endif 1358