xref: /linux/mm/vmstat.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26 
27 static void sum_vm_events(unsigned long *ret)
28 {
29 	int cpu;
30 	int i;
31 
32 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33 
34 	for_each_online_cpu(cpu) {
35 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36 
37 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 			ret[i] += this->event[i];
39 	}
40 }
41 
42 /*
43  * Accumulate the vm event counters across all CPUs.
44  * The result is unavoidably approximate - it can change
45  * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 	get_online_cpus();
50 	sum_vm_events(ret);
51 	put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54 
55 #ifdef CONFIG_HOTPLUG
56 /*
57  * Fold the foreign cpu events into our own.
58  *
59  * This is adding to the events on one processor
60  * but keeps the global counts constant.
61  */
62 void vm_events_fold_cpu(int cpu)
63 {
64 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 	int i;
66 
67 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 		count_vm_events(i, fold_state->event[i]);
69 		fold_state->event[i] = 0;
70 	}
71 }
72 #endif /* CONFIG_HOTPLUG */
73 
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 
76 /*
77  * Manage combined zone based / global counters
78  *
79  * vm_stat contains the global counters
80  */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
83 
84 #ifdef CONFIG_SMP
85 
86 int calculate_pressure_threshold(struct zone *zone)
87 {
88 	int threshold;
89 	int watermark_distance;
90 
91 	/*
92 	 * As vmstats are not up to date, there is drift between the estimated
93 	 * and real values. For high thresholds and a high number of CPUs, it
94 	 * is possible for the min watermark to be breached while the estimated
95 	 * value looks fine. The pressure threshold is a reduced value such
96 	 * that even the maximum amount of drift will not accidentally breach
97 	 * the min watermark
98 	 */
99 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101 
102 	/*
103 	 * Maximum threshold is 125
104 	 */
105 	threshold = min(125, threshold);
106 
107 	return threshold;
108 }
109 
110 int calculate_normal_threshold(struct zone *zone)
111 {
112 	int threshold;
113 	int mem;	/* memory in 128 MB units */
114 
115 	/*
116 	 * The threshold scales with the number of processors and the amount
117 	 * of memory per zone. More memory means that we can defer updates for
118 	 * longer, more processors could lead to more contention.
119  	 * fls() is used to have a cheap way of logarithmic scaling.
120 	 *
121 	 * Some sample thresholds:
122 	 *
123 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
124 	 * ------------------------------------------------------------------
125 	 * 8		1		1	0.9-1 GB	4
126 	 * 16		2		2	0.9-1 GB	4
127 	 * 20 		2		2	1-2 GB		5
128 	 * 24		2		2	2-4 GB		6
129 	 * 28		2		2	4-8 GB		7
130 	 * 32		2		2	8-16 GB		8
131 	 * 4		2		2	<128M		1
132 	 * 30		4		3	2-4 GB		5
133 	 * 48		4		3	8-16 GB		8
134 	 * 32		8		4	1-2 GB		4
135 	 * 32		8		4	0.9-1GB		4
136 	 * 10		16		5	<128M		1
137 	 * 40		16		5	900M		4
138 	 * 70		64		7	2-4 GB		5
139 	 * 84		64		7	4-8 GB		6
140 	 * 108		512		9	4-8 GB		6
141 	 * 125		1024		10	8-16 GB		8
142 	 * 125		1024		10	16-32 GB	9
143 	 */
144 
145 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
146 
147 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148 
149 	/*
150 	 * Maximum threshold is 125
151 	 */
152 	threshold = min(125, threshold);
153 
154 	return threshold;
155 }
156 
157 /*
158  * Refresh the thresholds for each zone.
159  */
160 static void refresh_zone_stat_thresholds(void)
161 {
162 	struct zone *zone;
163 	int cpu;
164 	int threshold;
165 
166 	for_each_populated_zone(zone) {
167 		unsigned long max_drift, tolerate_drift;
168 
169 		threshold = calculate_normal_threshold(zone);
170 
171 		for_each_online_cpu(cpu)
172 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173 							= threshold;
174 
175 		/*
176 		 * Only set percpu_drift_mark if there is a danger that
177 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 		 * the min watermark could be breached by an allocation
179 		 */
180 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 		max_drift = num_online_cpus() * threshold;
182 		if (max_drift > tolerate_drift)
183 			zone->percpu_drift_mark = high_wmark_pages(zone) +
184 					max_drift;
185 	}
186 }
187 
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189 				int (*calculate_pressure)(struct zone *))
190 {
191 	struct zone *zone;
192 	int cpu;
193 	int threshold;
194 	int i;
195 
196 	for (i = 0; i < pgdat->nr_zones; i++) {
197 		zone = &pgdat->node_zones[i];
198 		if (!zone->percpu_drift_mark)
199 			continue;
200 
201 		threshold = (*calculate_pressure)(zone);
202 		for_each_possible_cpu(cpu)
203 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204 							= threshold;
205 	}
206 }
207 
208 /*
209  * For use when we know that interrupts are disabled.
210  */
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212 				int delta)
213 {
214 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
215 	s8 __percpu *p = pcp->vm_stat_diff + item;
216 	long x;
217 	long t;
218 
219 	x = delta + __this_cpu_read(*p);
220 
221 	t = __this_cpu_read(pcp->stat_threshold);
222 
223 	if (unlikely(x > t || x < -t)) {
224 		zone_page_state_add(x, zone, item);
225 		x = 0;
226 	}
227 	__this_cpu_write(*p, x);
228 }
229 EXPORT_SYMBOL(__mod_zone_page_state);
230 
231 /*
232  * Optimized increment and decrement functions.
233  *
234  * These are only for a single page and therefore can take a struct page *
235  * argument instead of struct zone *. This allows the inclusion of the code
236  * generated for page_zone(page) into the optimized functions.
237  *
238  * No overflow check is necessary and therefore the differential can be
239  * incremented or decremented in place which may allow the compilers to
240  * generate better code.
241  * The increment or decrement is known and therefore one boundary check can
242  * be omitted.
243  *
244  * NOTE: These functions are very performance sensitive. Change only
245  * with care.
246  *
247  * Some processors have inc/dec instructions that are atomic vs an interrupt.
248  * However, the code must first determine the differential location in a zone
249  * based on the processor number and then inc/dec the counter. There is no
250  * guarantee without disabling preemption that the processor will not change
251  * in between and therefore the atomicity vs. interrupt cannot be exploited
252  * in a useful way here.
253  */
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 {
256 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
257 	s8 __percpu *p = pcp->vm_stat_diff + item;
258 	s8 v, t;
259 
260 	v = __this_cpu_inc_return(*p);
261 	t = __this_cpu_read(pcp->stat_threshold);
262 	if (unlikely(v > t)) {
263 		s8 overstep = t >> 1;
264 
265 		zone_page_state_add(v + overstep, zone, item);
266 		__this_cpu_write(*p, -overstep);
267 	}
268 }
269 
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 	__inc_zone_state(page_zone(page), item);
273 }
274 EXPORT_SYMBOL(__inc_zone_page_state);
275 
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277 {
278 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 	s8 __percpu *p = pcp->vm_stat_diff + item;
280 	s8 v, t;
281 
282 	v = __this_cpu_dec_return(*p);
283 	t = __this_cpu_read(pcp->stat_threshold);
284 	if (unlikely(v < - t)) {
285 		s8 overstep = t >> 1;
286 
287 		zone_page_state_add(v - overstep, zone, item);
288 		__this_cpu_write(*p, overstep);
289 	}
290 }
291 
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293 {
294 	__dec_zone_state(page_zone(page), item);
295 }
296 EXPORT_SYMBOL(__dec_zone_page_state);
297 
298 #ifdef CONFIG_CMPXCHG_LOCAL
299 /*
300  * If we have cmpxchg_local support then we do not need to incur the overhead
301  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302  *
303  * mod_state() modifies the zone counter state through atomic per cpu
304  * operations.
305  *
306  * Overstep mode specifies how overstep should handled:
307  *     0       No overstepping
308  *     1       Overstepping half of threshold
309  *     -1      Overstepping minus half of threshold
310 */
311 static inline void mod_state(struct zone *zone,
312        enum zone_stat_item item, int delta, int overstep_mode)
313 {
314 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
315 	s8 __percpu *p = pcp->vm_stat_diff + item;
316 	long o, n, t, z;
317 
318 	do {
319 		z = 0;  /* overflow to zone counters */
320 
321 		/*
322 		 * The fetching of the stat_threshold is racy. We may apply
323 		 * a counter threshold to the wrong the cpu if we get
324 		 * rescheduled while executing here. However, the following
325 		 * will apply the threshold again and therefore bring the
326 		 * counter under the threshold.
327 		 */
328 		t = this_cpu_read(pcp->stat_threshold);
329 
330 		o = this_cpu_read(*p);
331 		n = delta + o;
332 
333 		if (n > t || n < -t) {
334 			int os = overstep_mode * (t >> 1) ;
335 
336 			/* Overflow must be added to zone counters */
337 			z = n + os;
338 			n = -os;
339 		}
340 	} while (this_cpu_cmpxchg(*p, o, n) != o);
341 
342 	if (z)
343 		zone_page_state_add(z, zone, item);
344 }
345 
346 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
347 					int delta)
348 {
349 	mod_state(zone, item, delta, 0);
350 }
351 EXPORT_SYMBOL(mod_zone_page_state);
352 
353 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
354 {
355 	mod_state(zone, item, 1, 1);
356 }
357 
358 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
359 {
360 	mod_state(page_zone(page), item, 1, 1);
361 }
362 EXPORT_SYMBOL(inc_zone_page_state);
363 
364 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
365 {
366 	mod_state(page_zone(page), item, -1, -1);
367 }
368 EXPORT_SYMBOL(dec_zone_page_state);
369 #else
370 /*
371  * Use interrupt disable to serialize counter updates
372  */
373 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
374 					int delta)
375 {
376 	unsigned long flags;
377 
378 	local_irq_save(flags);
379 	__mod_zone_page_state(zone, item, delta);
380 	local_irq_restore(flags);
381 }
382 EXPORT_SYMBOL(mod_zone_page_state);
383 
384 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
385 {
386 	unsigned long flags;
387 
388 	local_irq_save(flags);
389 	__inc_zone_state(zone, item);
390 	local_irq_restore(flags);
391 }
392 
393 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
394 {
395 	unsigned long flags;
396 	struct zone *zone;
397 
398 	zone = page_zone(page);
399 	local_irq_save(flags);
400 	__inc_zone_state(zone, item);
401 	local_irq_restore(flags);
402 }
403 EXPORT_SYMBOL(inc_zone_page_state);
404 
405 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
406 {
407 	unsigned long flags;
408 
409 	local_irq_save(flags);
410 	__dec_zone_page_state(page, item);
411 	local_irq_restore(flags);
412 }
413 EXPORT_SYMBOL(dec_zone_page_state);
414 #endif
415 
416 /*
417  * Update the zone counters for one cpu.
418  *
419  * The cpu specified must be either the current cpu or a processor that
420  * is not online. If it is the current cpu then the execution thread must
421  * be pinned to the current cpu.
422  *
423  * Note that refresh_cpu_vm_stats strives to only access
424  * node local memory. The per cpu pagesets on remote zones are placed
425  * in the memory local to the processor using that pageset. So the
426  * loop over all zones will access a series of cachelines local to
427  * the processor.
428  *
429  * The call to zone_page_state_add updates the cachelines with the
430  * statistics in the remote zone struct as well as the global cachelines
431  * with the global counters. These could cause remote node cache line
432  * bouncing and will have to be only done when necessary.
433  */
434 void refresh_cpu_vm_stats(int cpu)
435 {
436 	struct zone *zone;
437 	int i;
438 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
439 
440 	for_each_populated_zone(zone) {
441 		struct per_cpu_pageset *p;
442 
443 		p = per_cpu_ptr(zone->pageset, cpu);
444 
445 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
446 			if (p->vm_stat_diff[i]) {
447 				unsigned long flags;
448 				int v;
449 
450 				local_irq_save(flags);
451 				v = p->vm_stat_diff[i];
452 				p->vm_stat_diff[i] = 0;
453 				local_irq_restore(flags);
454 				atomic_long_add(v, &zone->vm_stat[i]);
455 				global_diff[i] += v;
456 #ifdef CONFIG_NUMA
457 				/* 3 seconds idle till flush */
458 				p->expire = 3;
459 #endif
460 			}
461 		cond_resched();
462 #ifdef CONFIG_NUMA
463 		/*
464 		 * Deal with draining the remote pageset of this
465 		 * processor
466 		 *
467 		 * Check if there are pages remaining in this pageset
468 		 * if not then there is nothing to expire.
469 		 */
470 		if (!p->expire || !p->pcp.count)
471 			continue;
472 
473 		/*
474 		 * We never drain zones local to this processor.
475 		 */
476 		if (zone_to_nid(zone) == numa_node_id()) {
477 			p->expire = 0;
478 			continue;
479 		}
480 
481 		p->expire--;
482 		if (p->expire)
483 			continue;
484 
485 		if (p->pcp.count)
486 			drain_zone_pages(zone, &p->pcp);
487 #endif
488 	}
489 
490 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
491 		if (global_diff[i])
492 			atomic_long_add(global_diff[i], &vm_stat[i]);
493 }
494 
495 #endif
496 
497 #ifdef CONFIG_NUMA
498 /*
499  * zonelist = the list of zones passed to the allocator
500  * z 	    = the zone from which the allocation occurred.
501  *
502  * Must be called with interrupts disabled.
503  */
504 void zone_statistics(struct zone *preferred_zone, struct zone *z)
505 {
506 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
507 		__inc_zone_state(z, NUMA_HIT);
508 	} else {
509 		__inc_zone_state(z, NUMA_MISS);
510 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
511 	}
512 	if (z->node == numa_node_id())
513 		__inc_zone_state(z, NUMA_LOCAL);
514 	else
515 		__inc_zone_state(z, NUMA_OTHER);
516 }
517 #endif
518 
519 #ifdef CONFIG_COMPACTION
520 
521 struct contig_page_info {
522 	unsigned long free_pages;
523 	unsigned long free_blocks_total;
524 	unsigned long free_blocks_suitable;
525 };
526 
527 /*
528  * Calculate the number of free pages in a zone, how many contiguous
529  * pages are free and how many are large enough to satisfy an allocation of
530  * the target size. Note that this function makes no attempt to estimate
531  * how many suitable free blocks there *might* be if MOVABLE pages were
532  * migrated. Calculating that is possible, but expensive and can be
533  * figured out from userspace
534  */
535 static void fill_contig_page_info(struct zone *zone,
536 				unsigned int suitable_order,
537 				struct contig_page_info *info)
538 {
539 	unsigned int order;
540 
541 	info->free_pages = 0;
542 	info->free_blocks_total = 0;
543 	info->free_blocks_suitable = 0;
544 
545 	for (order = 0; order < MAX_ORDER; order++) {
546 		unsigned long blocks;
547 
548 		/* Count number of free blocks */
549 		blocks = zone->free_area[order].nr_free;
550 		info->free_blocks_total += blocks;
551 
552 		/* Count free base pages */
553 		info->free_pages += blocks << order;
554 
555 		/* Count the suitable free blocks */
556 		if (order >= suitable_order)
557 			info->free_blocks_suitable += blocks <<
558 						(order - suitable_order);
559 	}
560 }
561 
562 /*
563  * A fragmentation index only makes sense if an allocation of a requested
564  * size would fail. If that is true, the fragmentation index indicates
565  * whether external fragmentation or a lack of memory was the problem.
566  * The value can be used to determine if page reclaim or compaction
567  * should be used
568  */
569 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
570 {
571 	unsigned long requested = 1UL << order;
572 
573 	if (!info->free_blocks_total)
574 		return 0;
575 
576 	/* Fragmentation index only makes sense when a request would fail */
577 	if (info->free_blocks_suitable)
578 		return -1000;
579 
580 	/*
581 	 * Index is between 0 and 1 so return within 3 decimal places
582 	 *
583 	 * 0 => allocation would fail due to lack of memory
584 	 * 1 => allocation would fail due to fragmentation
585 	 */
586 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
587 }
588 
589 /* Same as __fragmentation index but allocs contig_page_info on stack */
590 int fragmentation_index(struct zone *zone, unsigned int order)
591 {
592 	struct contig_page_info info;
593 
594 	fill_contig_page_info(zone, order, &info);
595 	return __fragmentation_index(order, &info);
596 }
597 #endif
598 
599 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
600 #include <linux/proc_fs.h>
601 #include <linux/seq_file.h>
602 
603 static char * const migratetype_names[MIGRATE_TYPES] = {
604 	"Unmovable",
605 	"Reclaimable",
606 	"Movable",
607 	"Reserve",
608 	"Isolate",
609 };
610 
611 static void *frag_start(struct seq_file *m, loff_t *pos)
612 {
613 	pg_data_t *pgdat;
614 	loff_t node = *pos;
615 	for (pgdat = first_online_pgdat();
616 	     pgdat && node;
617 	     pgdat = next_online_pgdat(pgdat))
618 		--node;
619 
620 	return pgdat;
621 }
622 
623 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
624 {
625 	pg_data_t *pgdat = (pg_data_t *)arg;
626 
627 	(*pos)++;
628 	return next_online_pgdat(pgdat);
629 }
630 
631 static void frag_stop(struct seq_file *m, void *arg)
632 {
633 }
634 
635 /* Walk all the zones in a node and print using a callback */
636 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
637 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
638 {
639 	struct zone *zone;
640 	struct zone *node_zones = pgdat->node_zones;
641 	unsigned long flags;
642 
643 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
644 		if (!populated_zone(zone))
645 			continue;
646 
647 		spin_lock_irqsave(&zone->lock, flags);
648 		print(m, pgdat, zone);
649 		spin_unlock_irqrestore(&zone->lock, flags);
650 	}
651 }
652 #endif
653 
654 #ifdef CONFIG_PROC_FS
655 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
656 						struct zone *zone)
657 {
658 	int order;
659 
660 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
661 	for (order = 0; order < MAX_ORDER; ++order)
662 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
663 	seq_putc(m, '\n');
664 }
665 
666 /*
667  * This walks the free areas for each zone.
668  */
669 static int frag_show(struct seq_file *m, void *arg)
670 {
671 	pg_data_t *pgdat = (pg_data_t *)arg;
672 	walk_zones_in_node(m, pgdat, frag_show_print);
673 	return 0;
674 }
675 
676 static void pagetypeinfo_showfree_print(struct seq_file *m,
677 					pg_data_t *pgdat, struct zone *zone)
678 {
679 	int order, mtype;
680 
681 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
682 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
683 					pgdat->node_id,
684 					zone->name,
685 					migratetype_names[mtype]);
686 		for (order = 0; order < MAX_ORDER; ++order) {
687 			unsigned long freecount = 0;
688 			struct free_area *area;
689 			struct list_head *curr;
690 
691 			area = &(zone->free_area[order]);
692 
693 			list_for_each(curr, &area->free_list[mtype])
694 				freecount++;
695 			seq_printf(m, "%6lu ", freecount);
696 		}
697 		seq_putc(m, '\n');
698 	}
699 }
700 
701 /* Print out the free pages at each order for each migatetype */
702 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
703 {
704 	int order;
705 	pg_data_t *pgdat = (pg_data_t *)arg;
706 
707 	/* Print header */
708 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
709 	for (order = 0; order < MAX_ORDER; ++order)
710 		seq_printf(m, "%6d ", order);
711 	seq_putc(m, '\n');
712 
713 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
714 
715 	return 0;
716 }
717 
718 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
719 					pg_data_t *pgdat, struct zone *zone)
720 {
721 	int mtype;
722 	unsigned long pfn;
723 	unsigned long start_pfn = zone->zone_start_pfn;
724 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
725 	unsigned long count[MIGRATE_TYPES] = { 0, };
726 
727 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
728 		struct page *page;
729 
730 		if (!pfn_valid(pfn))
731 			continue;
732 
733 		page = pfn_to_page(pfn);
734 
735 		/* Watch for unexpected holes punched in the memmap */
736 		if (!memmap_valid_within(pfn, page, zone))
737 			continue;
738 
739 		mtype = get_pageblock_migratetype(page);
740 
741 		if (mtype < MIGRATE_TYPES)
742 			count[mtype]++;
743 	}
744 
745 	/* Print counts */
746 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
747 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
748 		seq_printf(m, "%12lu ", count[mtype]);
749 	seq_putc(m, '\n');
750 }
751 
752 /* Print out the free pages at each order for each migratetype */
753 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
754 {
755 	int mtype;
756 	pg_data_t *pgdat = (pg_data_t *)arg;
757 
758 	seq_printf(m, "\n%-23s", "Number of blocks type ");
759 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
760 		seq_printf(m, "%12s ", migratetype_names[mtype]);
761 	seq_putc(m, '\n');
762 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
763 
764 	return 0;
765 }
766 
767 /*
768  * This prints out statistics in relation to grouping pages by mobility.
769  * It is expensive to collect so do not constantly read the file.
770  */
771 static int pagetypeinfo_show(struct seq_file *m, void *arg)
772 {
773 	pg_data_t *pgdat = (pg_data_t *)arg;
774 
775 	/* check memoryless node */
776 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
777 		return 0;
778 
779 	seq_printf(m, "Page block order: %d\n", pageblock_order);
780 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
781 	seq_putc(m, '\n');
782 	pagetypeinfo_showfree(m, pgdat);
783 	pagetypeinfo_showblockcount(m, pgdat);
784 
785 	return 0;
786 }
787 
788 static const struct seq_operations fragmentation_op = {
789 	.start	= frag_start,
790 	.next	= frag_next,
791 	.stop	= frag_stop,
792 	.show	= frag_show,
793 };
794 
795 static int fragmentation_open(struct inode *inode, struct file *file)
796 {
797 	return seq_open(file, &fragmentation_op);
798 }
799 
800 static const struct file_operations fragmentation_file_operations = {
801 	.open		= fragmentation_open,
802 	.read		= seq_read,
803 	.llseek		= seq_lseek,
804 	.release	= seq_release,
805 };
806 
807 static const struct seq_operations pagetypeinfo_op = {
808 	.start	= frag_start,
809 	.next	= frag_next,
810 	.stop	= frag_stop,
811 	.show	= pagetypeinfo_show,
812 };
813 
814 static int pagetypeinfo_open(struct inode *inode, struct file *file)
815 {
816 	return seq_open(file, &pagetypeinfo_op);
817 }
818 
819 static const struct file_operations pagetypeinfo_file_ops = {
820 	.open		= pagetypeinfo_open,
821 	.read		= seq_read,
822 	.llseek		= seq_lseek,
823 	.release	= seq_release,
824 };
825 
826 #ifdef CONFIG_ZONE_DMA
827 #define TEXT_FOR_DMA(xx) xx "_dma",
828 #else
829 #define TEXT_FOR_DMA(xx)
830 #endif
831 
832 #ifdef CONFIG_ZONE_DMA32
833 #define TEXT_FOR_DMA32(xx) xx "_dma32",
834 #else
835 #define TEXT_FOR_DMA32(xx)
836 #endif
837 
838 #ifdef CONFIG_HIGHMEM
839 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
840 #else
841 #define TEXT_FOR_HIGHMEM(xx)
842 #endif
843 
844 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
845 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
846 
847 static const char * const vmstat_text[] = {
848 	/* Zoned VM counters */
849 	"nr_free_pages",
850 	"nr_inactive_anon",
851 	"nr_active_anon",
852 	"nr_inactive_file",
853 	"nr_active_file",
854 	"nr_unevictable",
855 	"nr_mlock",
856 	"nr_anon_pages",
857 	"nr_mapped",
858 	"nr_file_pages",
859 	"nr_dirty",
860 	"nr_writeback",
861 	"nr_slab_reclaimable",
862 	"nr_slab_unreclaimable",
863 	"nr_page_table_pages",
864 	"nr_kernel_stack",
865 	"nr_unstable",
866 	"nr_bounce",
867 	"nr_vmscan_write",
868 	"nr_writeback_temp",
869 	"nr_isolated_anon",
870 	"nr_isolated_file",
871 	"nr_shmem",
872 	"nr_dirtied",
873 	"nr_written",
874 
875 #ifdef CONFIG_NUMA
876 	"numa_hit",
877 	"numa_miss",
878 	"numa_foreign",
879 	"numa_interleave",
880 	"numa_local",
881 	"numa_other",
882 #endif
883 	"nr_anon_transparent_hugepages",
884 	"nr_dirty_threshold",
885 	"nr_dirty_background_threshold",
886 
887 #ifdef CONFIG_VM_EVENT_COUNTERS
888 	"pgpgin",
889 	"pgpgout",
890 	"pswpin",
891 	"pswpout",
892 
893 	TEXTS_FOR_ZONES("pgalloc")
894 
895 	"pgfree",
896 	"pgactivate",
897 	"pgdeactivate",
898 
899 	"pgfault",
900 	"pgmajfault",
901 
902 	TEXTS_FOR_ZONES("pgrefill")
903 	TEXTS_FOR_ZONES("pgsteal")
904 	TEXTS_FOR_ZONES("pgscan_kswapd")
905 	TEXTS_FOR_ZONES("pgscan_direct")
906 
907 #ifdef CONFIG_NUMA
908 	"zone_reclaim_failed",
909 #endif
910 	"pginodesteal",
911 	"slabs_scanned",
912 	"kswapd_steal",
913 	"kswapd_inodesteal",
914 	"kswapd_low_wmark_hit_quickly",
915 	"kswapd_high_wmark_hit_quickly",
916 	"kswapd_skip_congestion_wait",
917 	"pageoutrun",
918 	"allocstall",
919 
920 	"pgrotated",
921 
922 #ifdef CONFIG_COMPACTION
923 	"compact_blocks_moved",
924 	"compact_pages_moved",
925 	"compact_pagemigrate_failed",
926 	"compact_stall",
927 	"compact_fail",
928 	"compact_success",
929 #endif
930 
931 #ifdef CONFIG_HUGETLB_PAGE
932 	"htlb_buddy_alloc_success",
933 	"htlb_buddy_alloc_fail",
934 #endif
935 	"unevictable_pgs_culled",
936 	"unevictable_pgs_scanned",
937 	"unevictable_pgs_rescued",
938 	"unevictable_pgs_mlocked",
939 	"unevictable_pgs_munlocked",
940 	"unevictable_pgs_cleared",
941 	"unevictable_pgs_stranded",
942 	"unevictable_pgs_mlockfreed",
943 #endif
944 };
945 
946 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
947 							struct zone *zone)
948 {
949 	int i;
950 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
951 	seq_printf(m,
952 		   "\n  pages free     %lu"
953 		   "\n        min      %lu"
954 		   "\n        low      %lu"
955 		   "\n        high     %lu"
956 		   "\n        scanned  %lu"
957 		   "\n        spanned  %lu"
958 		   "\n        present  %lu",
959 		   zone_page_state(zone, NR_FREE_PAGES),
960 		   min_wmark_pages(zone),
961 		   low_wmark_pages(zone),
962 		   high_wmark_pages(zone),
963 		   zone->pages_scanned,
964 		   zone->spanned_pages,
965 		   zone->present_pages);
966 
967 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
968 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
969 				zone_page_state(zone, i));
970 
971 	seq_printf(m,
972 		   "\n        protection: (%lu",
973 		   zone->lowmem_reserve[0]);
974 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
975 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
976 	seq_printf(m,
977 		   ")"
978 		   "\n  pagesets");
979 	for_each_online_cpu(i) {
980 		struct per_cpu_pageset *pageset;
981 
982 		pageset = per_cpu_ptr(zone->pageset, i);
983 		seq_printf(m,
984 			   "\n    cpu: %i"
985 			   "\n              count: %i"
986 			   "\n              high:  %i"
987 			   "\n              batch: %i",
988 			   i,
989 			   pageset->pcp.count,
990 			   pageset->pcp.high,
991 			   pageset->pcp.batch);
992 #ifdef CONFIG_SMP
993 		seq_printf(m, "\n  vm stats threshold: %d",
994 				pageset->stat_threshold);
995 #endif
996 	}
997 	seq_printf(m,
998 		   "\n  all_unreclaimable: %u"
999 		   "\n  start_pfn:         %lu"
1000 		   "\n  inactive_ratio:    %u",
1001 		   zone->all_unreclaimable,
1002 		   zone->zone_start_pfn,
1003 		   zone->inactive_ratio);
1004 	seq_putc(m, '\n');
1005 }
1006 
1007 /*
1008  * Output information about zones in @pgdat.
1009  */
1010 static int zoneinfo_show(struct seq_file *m, void *arg)
1011 {
1012 	pg_data_t *pgdat = (pg_data_t *)arg;
1013 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1014 	return 0;
1015 }
1016 
1017 static const struct seq_operations zoneinfo_op = {
1018 	.start	= frag_start, /* iterate over all zones. The same as in
1019 			       * fragmentation. */
1020 	.next	= frag_next,
1021 	.stop	= frag_stop,
1022 	.show	= zoneinfo_show,
1023 };
1024 
1025 static int zoneinfo_open(struct inode *inode, struct file *file)
1026 {
1027 	return seq_open(file, &zoneinfo_op);
1028 }
1029 
1030 static const struct file_operations proc_zoneinfo_file_operations = {
1031 	.open		= zoneinfo_open,
1032 	.read		= seq_read,
1033 	.llseek		= seq_lseek,
1034 	.release	= seq_release,
1035 };
1036 
1037 enum writeback_stat_item {
1038 	NR_DIRTY_THRESHOLD,
1039 	NR_DIRTY_BG_THRESHOLD,
1040 	NR_VM_WRITEBACK_STAT_ITEMS,
1041 };
1042 
1043 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1044 {
1045 	unsigned long *v;
1046 	int i, stat_items_size;
1047 
1048 	if (*pos >= ARRAY_SIZE(vmstat_text))
1049 		return NULL;
1050 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1051 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1052 
1053 #ifdef CONFIG_VM_EVENT_COUNTERS
1054 	stat_items_size += sizeof(struct vm_event_state);
1055 #endif
1056 
1057 	v = kmalloc(stat_items_size, GFP_KERNEL);
1058 	m->private = v;
1059 	if (!v)
1060 		return ERR_PTR(-ENOMEM);
1061 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1062 		v[i] = global_page_state(i);
1063 	v += NR_VM_ZONE_STAT_ITEMS;
1064 
1065 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1066 			    v + NR_DIRTY_THRESHOLD);
1067 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1068 
1069 #ifdef CONFIG_VM_EVENT_COUNTERS
1070 	all_vm_events(v);
1071 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1072 	v[PGPGOUT] /= 2;
1073 #endif
1074 	return (unsigned long *)m->private + *pos;
1075 }
1076 
1077 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1078 {
1079 	(*pos)++;
1080 	if (*pos >= ARRAY_SIZE(vmstat_text))
1081 		return NULL;
1082 	return (unsigned long *)m->private + *pos;
1083 }
1084 
1085 static int vmstat_show(struct seq_file *m, void *arg)
1086 {
1087 	unsigned long *l = arg;
1088 	unsigned long off = l - (unsigned long *)m->private;
1089 
1090 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1091 	return 0;
1092 }
1093 
1094 static void vmstat_stop(struct seq_file *m, void *arg)
1095 {
1096 	kfree(m->private);
1097 	m->private = NULL;
1098 }
1099 
1100 static const struct seq_operations vmstat_op = {
1101 	.start	= vmstat_start,
1102 	.next	= vmstat_next,
1103 	.stop	= vmstat_stop,
1104 	.show	= vmstat_show,
1105 };
1106 
1107 static int vmstat_open(struct inode *inode, struct file *file)
1108 {
1109 	return seq_open(file, &vmstat_op);
1110 }
1111 
1112 static const struct file_operations proc_vmstat_file_operations = {
1113 	.open		= vmstat_open,
1114 	.read		= seq_read,
1115 	.llseek		= seq_lseek,
1116 	.release	= seq_release,
1117 };
1118 #endif /* CONFIG_PROC_FS */
1119 
1120 #ifdef CONFIG_SMP
1121 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1122 int sysctl_stat_interval __read_mostly = HZ;
1123 
1124 static void vmstat_update(struct work_struct *w)
1125 {
1126 	refresh_cpu_vm_stats(smp_processor_id());
1127 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
1128 		round_jiffies_relative(sysctl_stat_interval));
1129 }
1130 
1131 static void __cpuinit start_cpu_timer(int cpu)
1132 {
1133 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1134 
1135 	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1136 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1137 }
1138 
1139 /*
1140  * Use the cpu notifier to insure that the thresholds are recalculated
1141  * when necessary.
1142  */
1143 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1144 		unsigned long action,
1145 		void *hcpu)
1146 {
1147 	long cpu = (long)hcpu;
1148 
1149 	switch (action) {
1150 	case CPU_ONLINE:
1151 	case CPU_ONLINE_FROZEN:
1152 		refresh_zone_stat_thresholds();
1153 		start_cpu_timer(cpu);
1154 		node_set_state(cpu_to_node(cpu), N_CPU);
1155 		break;
1156 	case CPU_DOWN_PREPARE:
1157 	case CPU_DOWN_PREPARE_FROZEN:
1158 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1159 		per_cpu(vmstat_work, cpu).work.func = NULL;
1160 		break;
1161 	case CPU_DOWN_FAILED:
1162 	case CPU_DOWN_FAILED_FROZEN:
1163 		start_cpu_timer(cpu);
1164 		break;
1165 	case CPU_DEAD:
1166 	case CPU_DEAD_FROZEN:
1167 		refresh_zone_stat_thresholds();
1168 		break;
1169 	default:
1170 		break;
1171 	}
1172 	return NOTIFY_OK;
1173 }
1174 
1175 static struct notifier_block __cpuinitdata vmstat_notifier =
1176 	{ &vmstat_cpuup_callback, NULL, 0 };
1177 #endif
1178 
1179 static int __init setup_vmstat(void)
1180 {
1181 #ifdef CONFIG_SMP
1182 	int cpu;
1183 
1184 	refresh_zone_stat_thresholds();
1185 	register_cpu_notifier(&vmstat_notifier);
1186 
1187 	for_each_online_cpu(cpu)
1188 		start_cpu_timer(cpu);
1189 #endif
1190 #ifdef CONFIG_PROC_FS
1191 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1192 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1193 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1194 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1195 #endif
1196 	return 0;
1197 }
1198 module_init(setup_vmstat)
1199 
1200 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1201 #include <linux/debugfs.h>
1202 
1203 static struct dentry *extfrag_debug_root;
1204 
1205 /*
1206  * Return an index indicating how much of the available free memory is
1207  * unusable for an allocation of the requested size.
1208  */
1209 static int unusable_free_index(unsigned int order,
1210 				struct contig_page_info *info)
1211 {
1212 	/* No free memory is interpreted as all free memory is unusable */
1213 	if (info->free_pages == 0)
1214 		return 1000;
1215 
1216 	/*
1217 	 * Index should be a value between 0 and 1. Return a value to 3
1218 	 * decimal places.
1219 	 *
1220 	 * 0 => no fragmentation
1221 	 * 1 => high fragmentation
1222 	 */
1223 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1224 
1225 }
1226 
1227 static void unusable_show_print(struct seq_file *m,
1228 					pg_data_t *pgdat, struct zone *zone)
1229 {
1230 	unsigned int order;
1231 	int index;
1232 	struct contig_page_info info;
1233 
1234 	seq_printf(m, "Node %d, zone %8s ",
1235 				pgdat->node_id,
1236 				zone->name);
1237 	for (order = 0; order < MAX_ORDER; ++order) {
1238 		fill_contig_page_info(zone, order, &info);
1239 		index = unusable_free_index(order, &info);
1240 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1241 	}
1242 
1243 	seq_putc(m, '\n');
1244 }
1245 
1246 /*
1247  * Display unusable free space index
1248  *
1249  * The unusable free space index measures how much of the available free
1250  * memory cannot be used to satisfy an allocation of a given size and is a
1251  * value between 0 and 1. The higher the value, the more of free memory is
1252  * unusable and by implication, the worse the external fragmentation is. This
1253  * can be expressed as a percentage by multiplying by 100.
1254  */
1255 static int unusable_show(struct seq_file *m, void *arg)
1256 {
1257 	pg_data_t *pgdat = (pg_data_t *)arg;
1258 
1259 	/* check memoryless node */
1260 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1261 		return 0;
1262 
1263 	walk_zones_in_node(m, pgdat, unusable_show_print);
1264 
1265 	return 0;
1266 }
1267 
1268 static const struct seq_operations unusable_op = {
1269 	.start	= frag_start,
1270 	.next	= frag_next,
1271 	.stop	= frag_stop,
1272 	.show	= unusable_show,
1273 };
1274 
1275 static int unusable_open(struct inode *inode, struct file *file)
1276 {
1277 	return seq_open(file, &unusable_op);
1278 }
1279 
1280 static const struct file_operations unusable_file_ops = {
1281 	.open		= unusable_open,
1282 	.read		= seq_read,
1283 	.llseek		= seq_lseek,
1284 	.release	= seq_release,
1285 };
1286 
1287 static void extfrag_show_print(struct seq_file *m,
1288 					pg_data_t *pgdat, struct zone *zone)
1289 {
1290 	unsigned int order;
1291 	int index;
1292 
1293 	/* Alloc on stack as interrupts are disabled for zone walk */
1294 	struct contig_page_info info;
1295 
1296 	seq_printf(m, "Node %d, zone %8s ",
1297 				pgdat->node_id,
1298 				zone->name);
1299 	for (order = 0; order < MAX_ORDER; ++order) {
1300 		fill_contig_page_info(zone, order, &info);
1301 		index = __fragmentation_index(order, &info);
1302 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1303 	}
1304 
1305 	seq_putc(m, '\n');
1306 }
1307 
1308 /*
1309  * Display fragmentation index for orders that allocations would fail for
1310  */
1311 static int extfrag_show(struct seq_file *m, void *arg)
1312 {
1313 	pg_data_t *pgdat = (pg_data_t *)arg;
1314 
1315 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1316 
1317 	return 0;
1318 }
1319 
1320 static const struct seq_operations extfrag_op = {
1321 	.start	= frag_start,
1322 	.next	= frag_next,
1323 	.stop	= frag_stop,
1324 	.show	= extfrag_show,
1325 };
1326 
1327 static int extfrag_open(struct inode *inode, struct file *file)
1328 {
1329 	return seq_open(file, &extfrag_op);
1330 }
1331 
1332 static const struct file_operations extfrag_file_ops = {
1333 	.open		= extfrag_open,
1334 	.read		= seq_read,
1335 	.llseek		= seq_lseek,
1336 	.release	= seq_release,
1337 };
1338 
1339 static int __init extfrag_debug_init(void)
1340 {
1341 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1342 	if (!extfrag_debug_root)
1343 		return -ENOMEM;
1344 
1345 	if (!debugfs_create_file("unusable_index", 0444,
1346 			extfrag_debug_root, NULL, &unusable_file_ops))
1347 		return -ENOMEM;
1348 
1349 	if (!debugfs_create_file("extfrag_index", 0444,
1350 			extfrag_debug_root, NULL, &extfrag_file_ops))
1351 		return -ENOMEM;
1352 
1353 	return 0;
1354 }
1355 
1356 module_init(extfrag_debug_init);
1357 #endif
1358