1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_ext.h> 30 #include <linux/page_owner.h> 31 32 #include "internal.h" 33 34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2) 35 36 #ifdef CONFIG_NUMA 37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 38 39 /* zero numa counters within a zone */ 40 static void zero_zone_numa_counters(struct zone *zone) 41 { 42 int item, cpu; 43 44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) { 45 atomic_long_set(&zone->vm_numa_stat[item], 0); 46 for_each_online_cpu(cpu) 47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item] 48 = 0; 49 } 50 } 51 52 /* zero numa counters of all the populated zones */ 53 static void zero_zones_numa_counters(void) 54 { 55 struct zone *zone; 56 57 for_each_populated_zone(zone) 58 zero_zone_numa_counters(zone); 59 } 60 61 /* zero global numa counters */ 62 static void zero_global_numa_counters(void) 63 { 64 int item; 65 66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) 67 atomic_long_set(&vm_numa_stat[item], 0); 68 } 69 70 static void invalid_numa_statistics(void) 71 { 72 zero_zones_numa_counters(); 73 zero_global_numa_counters(); 74 } 75 76 static DEFINE_MUTEX(vm_numa_stat_lock); 77 78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 79 void *buffer, size_t *length, loff_t *ppos) 80 { 81 int ret, oldval; 82 83 mutex_lock(&vm_numa_stat_lock); 84 if (write) 85 oldval = sysctl_vm_numa_stat; 86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 87 if (ret || !write) 88 goto out; 89 90 if (oldval == sysctl_vm_numa_stat) 91 goto out; 92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 93 static_branch_enable(&vm_numa_stat_key); 94 pr_info("enable numa statistics\n"); 95 } else { 96 static_branch_disable(&vm_numa_stat_key); 97 invalid_numa_statistics(); 98 pr_info("disable numa statistics, and clear numa counters\n"); 99 } 100 101 out: 102 mutex_unlock(&vm_numa_stat_lock); 103 return ret; 104 } 105 #endif 106 107 #ifdef CONFIG_VM_EVENT_COUNTERS 108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 109 EXPORT_PER_CPU_SYMBOL(vm_event_states); 110 111 static void sum_vm_events(unsigned long *ret) 112 { 113 int cpu; 114 int i; 115 116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 117 118 for_each_online_cpu(cpu) { 119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 120 121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 122 ret[i] += this->event[i]; 123 } 124 } 125 126 /* 127 * Accumulate the vm event counters across all CPUs. 128 * The result is unavoidably approximate - it can change 129 * during and after execution of this function. 130 */ 131 void all_vm_events(unsigned long *ret) 132 { 133 get_online_cpus(); 134 sum_vm_events(ret); 135 put_online_cpus(); 136 } 137 EXPORT_SYMBOL_GPL(all_vm_events); 138 139 /* 140 * Fold the foreign cpu events into our own. 141 * 142 * This is adding to the events on one processor 143 * but keeps the global counts constant. 144 */ 145 void vm_events_fold_cpu(int cpu) 146 { 147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 148 int i; 149 150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 151 count_vm_events(i, fold_state->event[i]); 152 fold_state->event[i] = 0; 153 } 154 } 155 156 #endif /* CONFIG_VM_EVENT_COUNTERS */ 157 158 /* 159 * Manage combined zone based / global counters 160 * 161 * vm_stat contains the global counters 162 */ 163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; 165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 166 EXPORT_SYMBOL(vm_zone_stat); 167 EXPORT_SYMBOL(vm_numa_stat); 168 EXPORT_SYMBOL(vm_node_stat); 169 170 #ifdef CONFIG_SMP 171 172 int calculate_pressure_threshold(struct zone *zone) 173 { 174 int threshold; 175 int watermark_distance; 176 177 /* 178 * As vmstats are not up to date, there is drift between the estimated 179 * and real values. For high thresholds and a high number of CPUs, it 180 * is possible for the min watermark to be breached while the estimated 181 * value looks fine. The pressure threshold is a reduced value such 182 * that even the maximum amount of drift will not accidentally breach 183 * the min watermark 184 */ 185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 186 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 187 188 /* 189 * Maximum threshold is 125 190 */ 191 threshold = min(125, threshold); 192 193 return threshold; 194 } 195 196 int calculate_normal_threshold(struct zone *zone) 197 { 198 int threshold; 199 int mem; /* memory in 128 MB units */ 200 201 /* 202 * The threshold scales with the number of processors and the amount 203 * of memory per zone. More memory means that we can defer updates for 204 * longer, more processors could lead to more contention. 205 * fls() is used to have a cheap way of logarithmic scaling. 206 * 207 * Some sample thresholds: 208 * 209 * Threshold Processors (fls) Zonesize fls(mem+1) 210 * ------------------------------------------------------------------ 211 * 8 1 1 0.9-1 GB 4 212 * 16 2 2 0.9-1 GB 4 213 * 20 2 2 1-2 GB 5 214 * 24 2 2 2-4 GB 6 215 * 28 2 2 4-8 GB 7 216 * 32 2 2 8-16 GB 8 217 * 4 2 2 <128M 1 218 * 30 4 3 2-4 GB 5 219 * 48 4 3 8-16 GB 8 220 * 32 8 4 1-2 GB 4 221 * 32 8 4 0.9-1GB 4 222 * 10 16 5 <128M 1 223 * 40 16 5 900M 4 224 * 70 64 7 2-4 GB 5 225 * 84 64 7 4-8 GB 6 226 * 108 512 9 4-8 GB 6 227 * 125 1024 10 8-16 GB 8 228 * 125 1024 10 16-32 GB 9 229 */ 230 231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 232 233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 234 235 /* 236 * Maximum threshold is 125 237 */ 238 threshold = min(125, threshold); 239 240 return threshold; 241 } 242 243 /* 244 * Refresh the thresholds for each zone. 245 */ 246 void refresh_zone_stat_thresholds(void) 247 { 248 struct pglist_data *pgdat; 249 struct zone *zone; 250 int cpu; 251 int threshold; 252 253 /* Zero current pgdat thresholds */ 254 for_each_online_pgdat(pgdat) { 255 for_each_online_cpu(cpu) { 256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 257 } 258 } 259 260 for_each_populated_zone(zone) { 261 struct pglist_data *pgdat = zone->zone_pgdat; 262 unsigned long max_drift, tolerate_drift; 263 264 threshold = calculate_normal_threshold(zone); 265 266 for_each_online_cpu(cpu) { 267 int pgdat_threshold; 268 269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 270 = threshold; 271 272 /* Base nodestat threshold on the largest populated zone. */ 273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 275 = max(threshold, pgdat_threshold); 276 } 277 278 /* 279 * Only set percpu_drift_mark if there is a danger that 280 * NR_FREE_PAGES reports the low watermark is ok when in fact 281 * the min watermark could be breached by an allocation 282 */ 283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 284 max_drift = num_online_cpus() * threshold; 285 if (max_drift > tolerate_drift) 286 zone->percpu_drift_mark = high_wmark_pages(zone) + 287 max_drift; 288 } 289 } 290 291 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 292 int (*calculate_pressure)(struct zone *)) 293 { 294 struct zone *zone; 295 int cpu; 296 int threshold; 297 int i; 298 299 for (i = 0; i < pgdat->nr_zones; i++) { 300 zone = &pgdat->node_zones[i]; 301 if (!zone->percpu_drift_mark) 302 continue; 303 304 threshold = (*calculate_pressure)(zone); 305 for_each_online_cpu(cpu) 306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 307 = threshold; 308 } 309 } 310 311 /* 312 * For use when we know that interrupts are disabled, 313 * or when we know that preemption is disabled and that 314 * particular counter cannot be updated from interrupt context. 315 */ 316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 317 long delta) 318 { 319 struct per_cpu_pageset __percpu *pcp = zone->pageset; 320 s8 __percpu *p = pcp->vm_stat_diff + item; 321 long x; 322 long t; 323 324 x = delta + __this_cpu_read(*p); 325 326 t = __this_cpu_read(pcp->stat_threshold); 327 328 if (unlikely(abs(x) > t)) { 329 zone_page_state_add(x, zone, item); 330 x = 0; 331 } 332 __this_cpu_write(*p, x); 333 } 334 EXPORT_SYMBOL(__mod_zone_page_state); 335 336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 337 long delta) 338 { 339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 340 s8 __percpu *p = pcp->vm_node_stat_diff + item; 341 long x; 342 long t; 343 344 if (vmstat_item_in_bytes(item)) { 345 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 346 delta >>= PAGE_SHIFT; 347 } 348 349 x = delta + __this_cpu_read(*p); 350 351 t = __this_cpu_read(pcp->stat_threshold); 352 353 if (unlikely(abs(x) > t)) { 354 node_page_state_add(x, pgdat, item); 355 x = 0; 356 } 357 __this_cpu_write(*p, x); 358 } 359 EXPORT_SYMBOL(__mod_node_page_state); 360 361 /* 362 * Optimized increment and decrement functions. 363 * 364 * These are only for a single page and therefore can take a struct page * 365 * argument instead of struct zone *. This allows the inclusion of the code 366 * generated for page_zone(page) into the optimized functions. 367 * 368 * No overflow check is necessary and therefore the differential can be 369 * incremented or decremented in place which may allow the compilers to 370 * generate better code. 371 * The increment or decrement is known and therefore one boundary check can 372 * be omitted. 373 * 374 * NOTE: These functions are very performance sensitive. Change only 375 * with care. 376 * 377 * Some processors have inc/dec instructions that are atomic vs an interrupt. 378 * However, the code must first determine the differential location in a zone 379 * based on the processor number and then inc/dec the counter. There is no 380 * guarantee without disabling preemption that the processor will not change 381 * in between and therefore the atomicity vs. interrupt cannot be exploited 382 * in a useful way here. 383 */ 384 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 385 { 386 struct per_cpu_pageset __percpu *pcp = zone->pageset; 387 s8 __percpu *p = pcp->vm_stat_diff + item; 388 s8 v, t; 389 390 v = __this_cpu_inc_return(*p); 391 t = __this_cpu_read(pcp->stat_threshold); 392 if (unlikely(v > t)) { 393 s8 overstep = t >> 1; 394 395 zone_page_state_add(v + overstep, zone, item); 396 __this_cpu_write(*p, -overstep); 397 } 398 } 399 400 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 401 { 402 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 403 s8 __percpu *p = pcp->vm_node_stat_diff + item; 404 s8 v, t; 405 406 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 407 408 v = __this_cpu_inc_return(*p); 409 t = __this_cpu_read(pcp->stat_threshold); 410 if (unlikely(v > t)) { 411 s8 overstep = t >> 1; 412 413 node_page_state_add(v + overstep, pgdat, item); 414 __this_cpu_write(*p, -overstep); 415 } 416 } 417 418 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 419 { 420 __inc_zone_state(page_zone(page), item); 421 } 422 EXPORT_SYMBOL(__inc_zone_page_state); 423 424 void __inc_node_page_state(struct page *page, enum node_stat_item item) 425 { 426 __inc_node_state(page_pgdat(page), item); 427 } 428 EXPORT_SYMBOL(__inc_node_page_state); 429 430 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 431 { 432 struct per_cpu_pageset __percpu *pcp = zone->pageset; 433 s8 __percpu *p = pcp->vm_stat_diff + item; 434 s8 v, t; 435 436 v = __this_cpu_dec_return(*p); 437 t = __this_cpu_read(pcp->stat_threshold); 438 if (unlikely(v < - t)) { 439 s8 overstep = t >> 1; 440 441 zone_page_state_add(v - overstep, zone, item); 442 __this_cpu_write(*p, overstep); 443 } 444 } 445 446 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 447 { 448 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 449 s8 __percpu *p = pcp->vm_node_stat_diff + item; 450 s8 v, t; 451 452 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 453 454 v = __this_cpu_dec_return(*p); 455 t = __this_cpu_read(pcp->stat_threshold); 456 if (unlikely(v < - t)) { 457 s8 overstep = t >> 1; 458 459 node_page_state_add(v - overstep, pgdat, item); 460 __this_cpu_write(*p, overstep); 461 } 462 } 463 464 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 465 { 466 __dec_zone_state(page_zone(page), item); 467 } 468 EXPORT_SYMBOL(__dec_zone_page_state); 469 470 void __dec_node_page_state(struct page *page, enum node_stat_item item) 471 { 472 __dec_node_state(page_pgdat(page), item); 473 } 474 EXPORT_SYMBOL(__dec_node_page_state); 475 476 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 477 /* 478 * If we have cmpxchg_local support then we do not need to incur the overhead 479 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 480 * 481 * mod_state() modifies the zone counter state through atomic per cpu 482 * operations. 483 * 484 * Overstep mode specifies how overstep should handled: 485 * 0 No overstepping 486 * 1 Overstepping half of threshold 487 * -1 Overstepping minus half of threshold 488 */ 489 static inline void mod_zone_state(struct zone *zone, 490 enum zone_stat_item item, long delta, int overstep_mode) 491 { 492 struct per_cpu_pageset __percpu *pcp = zone->pageset; 493 s8 __percpu *p = pcp->vm_stat_diff + item; 494 long o, n, t, z; 495 496 do { 497 z = 0; /* overflow to zone counters */ 498 499 /* 500 * The fetching of the stat_threshold is racy. We may apply 501 * a counter threshold to the wrong the cpu if we get 502 * rescheduled while executing here. However, the next 503 * counter update will apply the threshold again and 504 * therefore bring the counter under the threshold again. 505 * 506 * Most of the time the thresholds are the same anyways 507 * for all cpus in a zone. 508 */ 509 t = this_cpu_read(pcp->stat_threshold); 510 511 o = this_cpu_read(*p); 512 n = delta + o; 513 514 if (abs(n) > t) { 515 int os = overstep_mode * (t >> 1) ; 516 517 /* Overflow must be added to zone counters */ 518 z = n + os; 519 n = -os; 520 } 521 } while (this_cpu_cmpxchg(*p, o, n) != o); 522 523 if (z) 524 zone_page_state_add(z, zone, item); 525 } 526 527 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 528 long delta) 529 { 530 mod_zone_state(zone, item, delta, 0); 531 } 532 EXPORT_SYMBOL(mod_zone_page_state); 533 534 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 535 { 536 mod_zone_state(page_zone(page), item, 1, 1); 537 } 538 EXPORT_SYMBOL(inc_zone_page_state); 539 540 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 541 { 542 mod_zone_state(page_zone(page), item, -1, -1); 543 } 544 EXPORT_SYMBOL(dec_zone_page_state); 545 546 static inline void mod_node_state(struct pglist_data *pgdat, 547 enum node_stat_item item, int delta, int overstep_mode) 548 { 549 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 550 s8 __percpu *p = pcp->vm_node_stat_diff + item; 551 long o, n, t, z; 552 553 if (vmstat_item_in_bytes(item)) { 554 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 555 delta >>= PAGE_SHIFT; 556 } 557 558 do { 559 z = 0; /* overflow to node counters */ 560 561 /* 562 * The fetching of the stat_threshold is racy. We may apply 563 * a counter threshold to the wrong the cpu if we get 564 * rescheduled while executing here. However, the next 565 * counter update will apply the threshold again and 566 * therefore bring the counter under the threshold again. 567 * 568 * Most of the time the thresholds are the same anyways 569 * for all cpus in a node. 570 */ 571 t = this_cpu_read(pcp->stat_threshold); 572 573 o = this_cpu_read(*p); 574 n = delta + o; 575 576 if (abs(n) > t) { 577 int os = overstep_mode * (t >> 1) ; 578 579 /* Overflow must be added to node counters */ 580 z = n + os; 581 n = -os; 582 } 583 } while (this_cpu_cmpxchg(*p, o, n) != o); 584 585 if (z) 586 node_page_state_add(z, pgdat, item); 587 } 588 589 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 590 long delta) 591 { 592 mod_node_state(pgdat, item, delta, 0); 593 } 594 EXPORT_SYMBOL(mod_node_page_state); 595 596 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 597 { 598 mod_node_state(pgdat, item, 1, 1); 599 } 600 601 void inc_node_page_state(struct page *page, enum node_stat_item item) 602 { 603 mod_node_state(page_pgdat(page), item, 1, 1); 604 } 605 EXPORT_SYMBOL(inc_node_page_state); 606 607 void dec_node_page_state(struct page *page, enum node_stat_item item) 608 { 609 mod_node_state(page_pgdat(page), item, -1, -1); 610 } 611 EXPORT_SYMBOL(dec_node_page_state); 612 #else 613 /* 614 * Use interrupt disable to serialize counter updates 615 */ 616 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 617 long delta) 618 { 619 unsigned long flags; 620 621 local_irq_save(flags); 622 __mod_zone_page_state(zone, item, delta); 623 local_irq_restore(flags); 624 } 625 EXPORT_SYMBOL(mod_zone_page_state); 626 627 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 628 { 629 unsigned long flags; 630 struct zone *zone; 631 632 zone = page_zone(page); 633 local_irq_save(flags); 634 __inc_zone_state(zone, item); 635 local_irq_restore(flags); 636 } 637 EXPORT_SYMBOL(inc_zone_page_state); 638 639 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 640 { 641 unsigned long flags; 642 643 local_irq_save(flags); 644 __dec_zone_page_state(page, item); 645 local_irq_restore(flags); 646 } 647 EXPORT_SYMBOL(dec_zone_page_state); 648 649 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 650 { 651 unsigned long flags; 652 653 local_irq_save(flags); 654 __inc_node_state(pgdat, item); 655 local_irq_restore(flags); 656 } 657 EXPORT_SYMBOL(inc_node_state); 658 659 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 660 long delta) 661 { 662 unsigned long flags; 663 664 local_irq_save(flags); 665 __mod_node_page_state(pgdat, item, delta); 666 local_irq_restore(flags); 667 } 668 EXPORT_SYMBOL(mod_node_page_state); 669 670 void inc_node_page_state(struct page *page, enum node_stat_item item) 671 { 672 unsigned long flags; 673 struct pglist_data *pgdat; 674 675 pgdat = page_pgdat(page); 676 local_irq_save(flags); 677 __inc_node_state(pgdat, item); 678 local_irq_restore(flags); 679 } 680 EXPORT_SYMBOL(inc_node_page_state); 681 682 void dec_node_page_state(struct page *page, enum node_stat_item item) 683 { 684 unsigned long flags; 685 686 local_irq_save(flags); 687 __dec_node_page_state(page, item); 688 local_irq_restore(flags); 689 } 690 EXPORT_SYMBOL(dec_node_page_state); 691 #endif 692 693 /* 694 * Fold a differential into the global counters. 695 * Returns the number of counters updated. 696 */ 697 #ifdef CONFIG_NUMA 698 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) 699 { 700 int i; 701 int changes = 0; 702 703 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 704 if (zone_diff[i]) { 705 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 706 changes++; 707 } 708 709 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 710 if (numa_diff[i]) { 711 atomic_long_add(numa_diff[i], &vm_numa_stat[i]); 712 changes++; 713 } 714 715 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 716 if (node_diff[i]) { 717 atomic_long_add(node_diff[i], &vm_node_stat[i]); 718 changes++; 719 } 720 return changes; 721 } 722 #else 723 static int fold_diff(int *zone_diff, int *node_diff) 724 { 725 int i; 726 int changes = 0; 727 728 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 729 if (zone_diff[i]) { 730 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 731 changes++; 732 } 733 734 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 735 if (node_diff[i]) { 736 atomic_long_add(node_diff[i], &vm_node_stat[i]); 737 changes++; 738 } 739 return changes; 740 } 741 #endif /* CONFIG_NUMA */ 742 743 /* 744 * Update the zone counters for the current cpu. 745 * 746 * Note that refresh_cpu_vm_stats strives to only access 747 * node local memory. The per cpu pagesets on remote zones are placed 748 * in the memory local to the processor using that pageset. So the 749 * loop over all zones will access a series of cachelines local to 750 * the processor. 751 * 752 * The call to zone_page_state_add updates the cachelines with the 753 * statistics in the remote zone struct as well as the global cachelines 754 * with the global counters. These could cause remote node cache line 755 * bouncing and will have to be only done when necessary. 756 * 757 * The function returns the number of global counters updated. 758 */ 759 static int refresh_cpu_vm_stats(bool do_pagesets) 760 { 761 struct pglist_data *pgdat; 762 struct zone *zone; 763 int i; 764 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 765 #ifdef CONFIG_NUMA 766 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 767 #endif 768 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 769 int changes = 0; 770 771 for_each_populated_zone(zone) { 772 struct per_cpu_pageset __percpu *p = zone->pageset; 773 774 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 775 int v; 776 777 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 778 if (v) { 779 780 atomic_long_add(v, &zone->vm_stat[i]); 781 global_zone_diff[i] += v; 782 #ifdef CONFIG_NUMA 783 /* 3 seconds idle till flush */ 784 __this_cpu_write(p->expire, 3); 785 #endif 786 } 787 } 788 #ifdef CONFIG_NUMA 789 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 790 int v; 791 792 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); 793 if (v) { 794 795 atomic_long_add(v, &zone->vm_numa_stat[i]); 796 global_numa_diff[i] += v; 797 __this_cpu_write(p->expire, 3); 798 } 799 } 800 801 if (do_pagesets) { 802 cond_resched(); 803 /* 804 * Deal with draining the remote pageset of this 805 * processor 806 * 807 * Check if there are pages remaining in this pageset 808 * if not then there is nothing to expire. 809 */ 810 if (!__this_cpu_read(p->expire) || 811 !__this_cpu_read(p->pcp.count)) 812 continue; 813 814 /* 815 * We never drain zones local to this processor. 816 */ 817 if (zone_to_nid(zone) == numa_node_id()) { 818 __this_cpu_write(p->expire, 0); 819 continue; 820 } 821 822 if (__this_cpu_dec_return(p->expire)) 823 continue; 824 825 if (__this_cpu_read(p->pcp.count)) { 826 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 827 changes++; 828 } 829 } 830 #endif 831 } 832 833 for_each_online_pgdat(pgdat) { 834 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 835 836 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 837 int v; 838 839 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 840 if (v) { 841 atomic_long_add(v, &pgdat->vm_stat[i]); 842 global_node_diff[i] += v; 843 } 844 } 845 } 846 847 #ifdef CONFIG_NUMA 848 changes += fold_diff(global_zone_diff, global_numa_diff, 849 global_node_diff); 850 #else 851 changes += fold_diff(global_zone_diff, global_node_diff); 852 #endif 853 return changes; 854 } 855 856 /* 857 * Fold the data for an offline cpu into the global array. 858 * There cannot be any access by the offline cpu and therefore 859 * synchronization is simplified. 860 */ 861 void cpu_vm_stats_fold(int cpu) 862 { 863 struct pglist_data *pgdat; 864 struct zone *zone; 865 int i; 866 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 867 #ifdef CONFIG_NUMA 868 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 869 #endif 870 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 871 872 for_each_populated_zone(zone) { 873 struct per_cpu_pageset *p; 874 875 p = per_cpu_ptr(zone->pageset, cpu); 876 877 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 878 if (p->vm_stat_diff[i]) { 879 int v; 880 881 v = p->vm_stat_diff[i]; 882 p->vm_stat_diff[i] = 0; 883 atomic_long_add(v, &zone->vm_stat[i]); 884 global_zone_diff[i] += v; 885 } 886 887 #ifdef CONFIG_NUMA 888 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 889 if (p->vm_numa_stat_diff[i]) { 890 int v; 891 892 v = p->vm_numa_stat_diff[i]; 893 p->vm_numa_stat_diff[i] = 0; 894 atomic_long_add(v, &zone->vm_numa_stat[i]); 895 global_numa_diff[i] += v; 896 } 897 #endif 898 } 899 900 for_each_online_pgdat(pgdat) { 901 struct per_cpu_nodestat *p; 902 903 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 904 905 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 906 if (p->vm_node_stat_diff[i]) { 907 int v; 908 909 v = p->vm_node_stat_diff[i]; 910 p->vm_node_stat_diff[i] = 0; 911 atomic_long_add(v, &pgdat->vm_stat[i]); 912 global_node_diff[i] += v; 913 } 914 } 915 916 #ifdef CONFIG_NUMA 917 fold_diff(global_zone_diff, global_numa_diff, global_node_diff); 918 #else 919 fold_diff(global_zone_diff, global_node_diff); 920 #endif 921 } 922 923 /* 924 * this is only called if !populated_zone(zone), which implies no other users of 925 * pset->vm_stat_diff[] exsist. 926 */ 927 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 928 { 929 int i; 930 931 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 932 if (pset->vm_stat_diff[i]) { 933 int v = pset->vm_stat_diff[i]; 934 pset->vm_stat_diff[i] = 0; 935 atomic_long_add(v, &zone->vm_stat[i]); 936 atomic_long_add(v, &vm_zone_stat[i]); 937 } 938 939 #ifdef CONFIG_NUMA 940 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 941 if (pset->vm_numa_stat_diff[i]) { 942 int v = pset->vm_numa_stat_diff[i]; 943 944 pset->vm_numa_stat_diff[i] = 0; 945 atomic_long_add(v, &zone->vm_numa_stat[i]); 946 atomic_long_add(v, &vm_numa_stat[i]); 947 } 948 #endif 949 } 950 #endif 951 952 #ifdef CONFIG_NUMA 953 void __inc_numa_state(struct zone *zone, 954 enum numa_stat_item item) 955 { 956 struct per_cpu_pageset __percpu *pcp = zone->pageset; 957 u16 __percpu *p = pcp->vm_numa_stat_diff + item; 958 u16 v; 959 960 v = __this_cpu_inc_return(*p); 961 962 if (unlikely(v > NUMA_STATS_THRESHOLD)) { 963 zone_numa_state_add(v, zone, item); 964 __this_cpu_write(*p, 0); 965 } 966 } 967 968 /* 969 * Determine the per node value of a stat item. This function 970 * is called frequently in a NUMA machine, so try to be as 971 * frugal as possible. 972 */ 973 unsigned long sum_zone_node_page_state(int node, 974 enum zone_stat_item item) 975 { 976 struct zone *zones = NODE_DATA(node)->node_zones; 977 int i; 978 unsigned long count = 0; 979 980 for (i = 0; i < MAX_NR_ZONES; i++) 981 count += zone_page_state(zones + i, item); 982 983 return count; 984 } 985 986 /* 987 * Determine the per node value of a numa stat item. To avoid deviation, 988 * the per cpu stat number in vm_numa_stat_diff[] is also included. 989 */ 990 unsigned long sum_zone_numa_state(int node, 991 enum numa_stat_item item) 992 { 993 struct zone *zones = NODE_DATA(node)->node_zones; 994 int i; 995 unsigned long count = 0; 996 997 for (i = 0; i < MAX_NR_ZONES; i++) 998 count += zone_numa_state_snapshot(zones + i, item); 999 1000 return count; 1001 } 1002 1003 /* 1004 * Determine the per node value of a stat item. 1005 */ 1006 unsigned long node_page_state_pages(struct pglist_data *pgdat, 1007 enum node_stat_item item) 1008 { 1009 long x = atomic_long_read(&pgdat->vm_stat[item]); 1010 #ifdef CONFIG_SMP 1011 if (x < 0) 1012 x = 0; 1013 #endif 1014 return x; 1015 } 1016 1017 unsigned long node_page_state(struct pglist_data *pgdat, 1018 enum node_stat_item item) 1019 { 1020 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1021 1022 return node_page_state_pages(pgdat, item); 1023 } 1024 #endif 1025 1026 #ifdef CONFIG_COMPACTION 1027 1028 struct contig_page_info { 1029 unsigned long free_pages; 1030 unsigned long free_blocks_total; 1031 unsigned long free_blocks_suitable; 1032 }; 1033 1034 /* 1035 * Calculate the number of free pages in a zone, how many contiguous 1036 * pages are free and how many are large enough to satisfy an allocation of 1037 * the target size. Note that this function makes no attempt to estimate 1038 * how many suitable free blocks there *might* be if MOVABLE pages were 1039 * migrated. Calculating that is possible, but expensive and can be 1040 * figured out from userspace 1041 */ 1042 static void fill_contig_page_info(struct zone *zone, 1043 unsigned int suitable_order, 1044 struct contig_page_info *info) 1045 { 1046 unsigned int order; 1047 1048 info->free_pages = 0; 1049 info->free_blocks_total = 0; 1050 info->free_blocks_suitable = 0; 1051 1052 for (order = 0; order < MAX_ORDER; order++) { 1053 unsigned long blocks; 1054 1055 /* Count number of free blocks */ 1056 blocks = zone->free_area[order].nr_free; 1057 info->free_blocks_total += blocks; 1058 1059 /* Count free base pages */ 1060 info->free_pages += blocks << order; 1061 1062 /* Count the suitable free blocks */ 1063 if (order >= suitable_order) 1064 info->free_blocks_suitable += blocks << 1065 (order - suitable_order); 1066 } 1067 } 1068 1069 /* 1070 * A fragmentation index only makes sense if an allocation of a requested 1071 * size would fail. If that is true, the fragmentation index indicates 1072 * whether external fragmentation or a lack of memory was the problem. 1073 * The value can be used to determine if page reclaim or compaction 1074 * should be used 1075 */ 1076 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1077 { 1078 unsigned long requested = 1UL << order; 1079 1080 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1081 return 0; 1082 1083 if (!info->free_blocks_total) 1084 return 0; 1085 1086 /* Fragmentation index only makes sense when a request would fail */ 1087 if (info->free_blocks_suitable) 1088 return -1000; 1089 1090 /* 1091 * Index is between 0 and 1 so return within 3 decimal places 1092 * 1093 * 0 => allocation would fail due to lack of memory 1094 * 1 => allocation would fail due to fragmentation 1095 */ 1096 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1097 } 1098 1099 /* 1100 * Calculates external fragmentation within a zone wrt the given order. 1101 * It is defined as the percentage of pages found in blocks of size 1102 * less than 1 << order. It returns values in range [0, 100]. 1103 */ 1104 unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1105 { 1106 struct contig_page_info info; 1107 1108 fill_contig_page_info(zone, order, &info); 1109 if (info.free_pages == 0) 1110 return 0; 1111 1112 return div_u64((info.free_pages - 1113 (info.free_blocks_suitable << order)) * 100, 1114 info.free_pages); 1115 } 1116 1117 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1118 int fragmentation_index(struct zone *zone, unsigned int order) 1119 { 1120 struct contig_page_info info; 1121 1122 fill_contig_page_info(zone, order, &info); 1123 return __fragmentation_index(order, &info); 1124 } 1125 #endif 1126 1127 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1128 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1129 #ifdef CONFIG_ZONE_DMA 1130 #define TEXT_FOR_DMA(xx) xx "_dma", 1131 #else 1132 #define TEXT_FOR_DMA(xx) 1133 #endif 1134 1135 #ifdef CONFIG_ZONE_DMA32 1136 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1137 #else 1138 #define TEXT_FOR_DMA32(xx) 1139 #endif 1140 1141 #ifdef CONFIG_HIGHMEM 1142 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1143 #else 1144 #define TEXT_FOR_HIGHMEM(xx) 1145 #endif 1146 1147 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1148 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1149 1150 const char * const vmstat_text[] = { 1151 /* enum zone_stat_item counters */ 1152 "nr_free_pages", 1153 "nr_zone_inactive_anon", 1154 "nr_zone_active_anon", 1155 "nr_zone_inactive_file", 1156 "nr_zone_active_file", 1157 "nr_zone_unevictable", 1158 "nr_zone_write_pending", 1159 "nr_mlock", 1160 "nr_bounce", 1161 #if IS_ENABLED(CONFIG_ZSMALLOC) 1162 "nr_zspages", 1163 #endif 1164 "nr_free_cma", 1165 1166 /* enum numa_stat_item counters */ 1167 #ifdef CONFIG_NUMA 1168 "numa_hit", 1169 "numa_miss", 1170 "numa_foreign", 1171 "numa_interleave", 1172 "numa_local", 1173 "numa_other", 1174 #endif 1175 1176 /* enum node_stat_item counters */ 1177 "nr_inactive_anon", 1178 "nr_active_anon", 1179 "nr_inactive_file", 1180 "nr_active_file", 1181 "nr_unevictable", 1182 "nr_slab_reclaimable", 1183 "nr_slab_unreclaimable", 1184 "nr_isolated_anon", 1185 "nr_isolated_file", 1186 "workingset_nodes", 1187 "workingset_refault_anon", 1188 "workingset_refault_file", 1189 "workingset_activate_anon", 1190 "workingset_activate_file", 1191 "workingset_restore_anon", 1192 "workingset_restore_file", 1193 "workingset_nodereclaim", 1194 "nr_anon_pages", 1195 "nr_mapped", 1196 "nr_file_pages", 1197 "nr_dirty", 1198 "nr_writeback", 1199 "nr_writeback_temp", 1200 "nr_shmem", 1201 "nr_shmem_hugepages", 1202 "nr_shmem_pmdmapped", 1203 "nr_file_hugepages", 1204 "nr_file_pmdmapped", 1205 "nr_anon_transparent_hugepages", 1206 "nr_vmscan_write", 1207 "nr_vmscan_immediate_reclaim", 1208 "nr_dirtied", 1209 "nr_written", 1210 "nr_kernel_misc_reclaimable", 1211 "nr_foll_pin_acquired", 1212 "nr_foll_pin_released", 1213 "nr_kernel_stack", 1214 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1215 "nr_shadow_call_stack", 1216 #endif 1217 "nr_page_table_pages", 1218 1219 /* enum writeback_stat_item counters */ 1220 "nr_dirty_threshold", 1221 "nr_dirty_background_threshold", 1222 1223 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1224 /* enum vm_event_item counters */ 1225 "pgpgin", 1226 "pgpgout", 1227 "pswpin", 1228 "pswpout", 1229 1230 TEXTS_FOR_ZONES("pgalloc") 1231 TEXTS_FOR_ZONES("allocstall") 1232 TEXTS_FOR_ZONES("pgskip") 1233 1234 "pgfree", 1235 "pgactivate", 1236 "pgdeactivate", 1237 "pglazyfree", 1238 1239 "pgfault", 1240 "pgmajfault", 1241 "pglazyfreed", 1242 1243 "pgrefill", 1244 "pgreuse", 1245 "pgsteal_kswapd", 1246 "pgsteal_direct", 1247 "pgscan_kswapd", 1248 "pgscan_direct", 1249 "pgscan_direct_throttle", 1250 "pgscan_anon", 1251 "pgscan_file", 1252 "pgsteal_anon", 1253 "pgsteal_file", 1254 1255 #ifdef CONFIG_NUMA 1256 "zone_reclaim_failed", 1257 #endif 1258 "pginodesteal", 1259 "slabs_scanned", 1260 "kswapd_inodesteal", 1261 "kswapd_low_wmark_hit_quickly", 1262 "kswapd_high_wmark_hit_quickly", 1263 "pageoutrun", 1264 1265 "pgrotated", 1266 1267 "drop_pagecache", 1268 "drop_slab", 1269 "oom_kill", 1270 1271 #ifdef CONFIG_NUMA_BALANCING 1272 "numa_pte_updates", 1273 "numa_huge_pte_updates", 1274 "numa_hint_faults", 1275 "numa_hint_faults_local", 1276 "numa_pages_migrated", 1277 #endif 1278 #ifdef CONFIG_MIGRATION 1279 "pgmigrate_success", 1280 "pgmigrate_fail", 1281 "thp_migration_success", 1282 "thp_migration_fail", 1283 "thp_migration_split", 1284 #endif 1285 #ifdef CONFIG_COMPACTION 1286 "compact_migrate_scanned", 1287 "compact_free_scanned", 1288 "compact_isolated", 1289 "compact_stall", 1290 "compact_fail", 1291 "compact_success", 1292 "compact_daemon_wake", 1293 "compact_daemon_migrate_scanned", 1294 "compact_daemon_free_scanned", 1295 #endif 1296 1297 #ifdef CONFIG_HUGETLB_PAGE 1298 "htlb_buddy_alloc_success", 1299 "htlb_buddy_alloc_fail", 1300 #endif 1301 "unevictable_pgs_culled", 1302 "unevictable_pgs_scanned", 1303 "unevictable_pgs_rescued", 1304 "unevictable_pgs_mlocked", 1305 "unevictable_pgs_munlocked", 1306 "unevictable_pgs_cleared", 1307 "unevictable_pgs_stranded", 1308 1309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1310 "thp_fault_alloc", 1311 "thp_fault_fallback", 1312 "thp_fault_fallback_charge", 1313 "thp_collapse_alloc", 1314 "thp_collapse_alloc_failed", 1315 "thp_file_alloc", 1316 "thp_file_fallback", 1317 "thp_file_fallback_charge", 1318 "thp_file_mapped", 1319 "thp_split_page", 1320 "thp_split_page_failed", 1321 "thp_deferred_split_page", 1322 "thp_split_pmd", 1323 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1324 "thp_split_pud", 1325 #endif 1326 "thp_zero_page_alloc", 1327 "thp_zero_page_alloc_failed", 1328 "thp_swpout", 1329 "thp_swpout_fallback", 1330 #endif 1331 #ifdef CONFIG_MEMORY_BALLOON 1332 "balloon_inflate", 1333 "balloon_deflate", 1334 #ifdef CONFIG_BALLOON_COMPACTION 1335 "balloon_migrate", 1336 #endif 1337 #endif /* CONFIG_MEMORY_BALLOON */ 1338 #ifdef CONFIG_DEBUG_TLBFLUSH 1339 "nr_tlb_remote_flush", 1340 "nr_tlb_remote_flush_received", 1341 "nr_tlb_local_flush_all", 1342 "nr_tlb_local_flush_one", 1343 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1344 1345 #ifdef CONFIG_DEBUG_VM_VMACACHE 1346 "vmacache_find_calls", 1347 "vmacache_find_hits", 1348 #endif 1349 #ifdef CONFIG_SWAP 1350 "swap_ra", 1351 "swap_ra_hit", 1352 #endif 1353 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1354 }; 1355 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1356 1357 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1358 defined(CONFIG_PROC_FS) 1359 static void *frag_start(struct seq_file *m, loff_t *pos) 1360 { 1361 pg_data_t *pgdat; 1362 loff_t node = *pos; 1363 1364 for (pgdat = first_online_pgdat(); 1365 pgdat && node; 1366 pgdat = next_online_pgdat(pgdat)) 1367 --node; 1368 1369 return pgdat; 1370 } 1371 1372 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1373 { 1374 pg_data_t *pgdat = (pg_data_t *)arg; 1375 1376 (*pos)++; 1377 return next_online_pgdat(pgdat); 1378 } 1379 1380 static void frag_stop(struct seq_file *m, void *arg) 1381 { 1382 } 1383 1384 /* 1385 * Walk zones in a node and print using a callback. 1386 * If @assert_populated is true, only use callback for zones that are populated. 1387 */ 1388 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1389 bool assert_populated, bool nolock, 1390 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1391 { 1392 struct zone *zone; 1393 struct zone *node_zones = pgdat->node_zones; 1394 unsigned long flags; 1395 1396 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1397 if (assert_populated && !populated_zone(zone)) 1398 continue; 1399 1400 if (!nolock) 1401 spin_lock_irqsave(&zone->lock, flags); 1402 print(m, pgdat, zone); 1403 if (!nolock) 1404 spin_unlock_irqrestore(&zone->lock, flags); 1405 } 1406 } 1407 #endif 1408 1409 #ifdef CONFIG_PROC_FS 1410 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1411 struct zone *zone) 1412 { 1413 int order; 1414 1415 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1416 for (order = 0; order < MAX_ORDER; ++order) 1417 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1418 seq_putc(m, '\n'); 1419 } 1420 1421 /* 1422 * This walks the free areas for each zone. 1423 */ 1424 static int frag_show(struct seq_file *m, void *arg) 1425 { 1426 pg_data_t *pgdat = (pg_data_t *)arg; 1427 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1428 return 0; 1429 } 1430 1431 static void pagetypeinfo_showfree_print(struct seq_file *m, 1432 pg_data_t *pgdat, struct zone *zone) 1433 { 1434 int order, mtype; 1435 1436 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1437 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1438 pgdat->node_id, 1439 zone->name, 1440 migratetype_names[mtype]); 1441 for (order = 0; order < MAX_ORDER; ++order) { 1442 unsigned long freecount = 0; 1443 struct free_area *area; 1444 struct list_head *curr; 1445 bool overflow = false; 1446 1447 area = &(zone->free_area[order]); 1448 1449 list_for_each(curr, &area->free_list[mtype]) { 1450 /* 1451 * Cap the free_list iteration because it might 1452 * be really large and we are under a spinlock 1453 * so a long time spent here could trigger a 1454 * hard lockup detector. Anyway this is a 1455 * debugging tool so knowing there is a handful 1456 * of pages of this order should be more than 1457 * sufficient. 1458 */ 1459 if (++freecount >= 100000) { 1460 overflow = true; 1461 break; 1462 } 1463 } 1464 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1465 spin_unlock_irq(&zone->lock); 1466 cond_resched(); 1467 spin_lock_irq(&zone->lock); 1468 } 1469 seq_putc(m, '\n'); 1470 } 1471 } 1472 1473 /* Print out the free pages at each order for each migatetype */ 1474 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1475 { 1476 int order; 1477 pg_data_t *pgdat = (pg_data_t *)arg; 1478 1479 /* Print header */ 1480 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1481 for (order = 0; order < MAX_ORDER; ++order) 1482 seq_printf(m, "%6d ", order); 1483 seq_putc(m, '\n'); 1484 1485 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1486 1487 return 0; 1488 } 1489 1490 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1491 pg_data_t *pgdat, struct zone *zone) 1492 { 1493 int mtype; 1494 unsigned long pfn; 1495 unsigned long start_pfn = zone->zone_start_pfn; 1496 unsigned long end_pfn = zone_end_pfn(zone); 1497 unsigned long count[MIGRATE_TYPES] = { 0, }; 1498 1499 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1500 struct page *page; 1501 1502 page = pfn_to_online_page(pfn); 1503 if (!page) 1504 continue; 1505 1506 if (page_zone(page) != zone) 1507 continue; 1508 1509 mtype = get_pageblock_migratetype(page); 1510 1511 if (mtype < MIGRATE_TYPES) 1512 count[mtype]++; 1513 } 1514 1515 /* Print counts */ 1516 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1517 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1518 seq_printf(m, "%12lu ", count[mtype]); 1519 seq_putc(m, '\n'); 1520 } 1521 1522 /* Print out the number of pageblocks for each migratetype */ 1523 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1524 { 1525 int mtype; 1526 pg_data_t *pgdat = (pg_data_t *)arg; 1527 1528 seq_printf(m, "\n%-23s", "Number of blocks type "); 1529 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1530 seq_printf(m, "%12s ", migratetype_names[mtype]); 1531 seq_putc(m, '\n'); 1532 walk_zones_in_node(m, pgdat, true, false, 1533 pagetypeinfo_showblockcount_print); 1534 1535 return 0; 1536 } 1537 1538 /* 1539 * Print out the number of pageblocks for each migratetype that contain pages 1540 * of other types. This gives an indication of how well fallbacks are being 1541 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1542 * to determine what is going on 1543 */ 1544 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1545 { 1546 #ifdef CONFIG_PAGE_OWNER 1547 int mtype; 1548 1549 if (!static_branch_unlikely(&page_owner_inited)) 1550 return; 1551 1552 drain_all_pages(NULL); 1553 1554 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1555 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1556 seq_printf(m, "%12s ", migratetype_names[mtype]); 1557 seq_putc(m, '\n'); 1558 1559 walk_zones_in_node(m, pgdat, true, true, 1560 pagetypeinfo_showmixedcount_print); 1561 #endif /* CONFIG_PAGE_OWNER */ 1562 } 1563 1564 /* 1565 * This prints out statistics in relation to grouping pages by mobility. 1566 * It is expensive to collect so do not constantly read the file. 1567 */ 1568 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1569 { 1570 pg_data_t *pgdat = (pg_data_t *)arg; 1571 1572 /* check memoryless node */ 1573 if (!node_state(pgdat->node_id, N_MEMORY)) 1574 return 0; 1575 1576 seq_printf(m, "Page block order: %d\n", pageblock_order); 1577 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1578 seq_putc(m, '\n'); 1579 pagetypeinfo_showfree(m, pgdat); 1580 pagetypeinfo_showblockcount(m, pgdat); 1581 pagetypeinfo_showmixedcount(m, pgdat); 1582 1583 return 0; 1584 } 1585 1586 static const struct seq_operations fragmentation_op = { 1587 .start = frag_start, 1588 .next = frag_next, 1589 .stop = frag_stop, 1590 .show = frag_show, 1591 }; 1592 1593 static const struct seq_operations pagetypeinfo_op = { 1594 .start = frag_start, 1595 .next = frag_next, 1596 .stop = frag_stop, 1597 .show = pagetypeinfo_show, 1598 }; 1599 1600 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1601 { 1602 int zid; 1603 1604 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1605 struct zone *compare = &pgdat->node_zones[zid]; 1606 1607 if (populated_zone(compare)) 1608 return zone == compare; 1609 } 1610 1611 return false; 1612 } 1613 1614 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1615 struct zone *zone) 1616 { 1617 int i; 1618 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1619 if (is_zone_first_populated(pgdat, zone)) { 1620 seq_printf(m, "\n per-node stats"); 1621 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1622 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1623 node_page_state_pages(pgdat, i)); 1624 } 1625 } 1626 seq_printf(m, 1627 "\n pages free %lu" 1628 "\n min %lu" 1629 "\n low %lu" 1630 "\n high %lu" 1631 "\n spanned %lu" 1632 "\n present %lu" 1633 "\n managed %lu", 1634 zone_page_state(zone, NR_FREE_PAGES), 1635 min_wmark_pages(zone), 1636 low_wmark_pages(zone), 1637 high_wmark_pages(zone), 1638 zone->spanned_pages, 1639 zone->present_pages, 1640 zone_managed_pages(zone)); 1641 1642 seq_printf(m, 1643 "\n protection: (%ld", 1644 zone->lowmem_reserve[0]); 1645 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1646 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1647 seq_putc(m, ')'); 1648 1649 /* If unpopulated, no other information is useful */ 1650 if (!populated_zone(zone)) { 1651 seq_putc(m, '\n'); 1652 return; 1653 } 1654 1655 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1656 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1657 zone_page_state(zone, i)); 1658 1659 #ifdef CONFIG_NUMA 1660 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1661 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1662 zone_numa_state_snapshot(zone, i)); 1663 #endif 1664 1665 seq_printf(m, "\n pagesets"); 1666 for_each_online_cpu(i) { 1667 struct per_cpu_pageset *pageset; 1668 1669 pageset = per_cpu_ptr(zone->pageset, i); 1670 seq_printf(m, 1671 "\n cpu: %i" 1672 "\n count: %i" 1673 "\n high: %i" 1674 "\n batch: %i", 1675 i, 1676 pageset->pcp.count, 1677 pageset->pcp.high, 1678 pageset->pcp.batch); 1679 #ifdef CONFIG_SMP 1680 seq_printf(m, "\n vm stats threshold: %d", 1681 pageset->stat_threshold); 1682 #endif 1683 } 1684 seq_printf(m, 1685 "\n node_unreclaimable: %u" 1686 "\n start_pfn: %lu", 1687 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1688 zone->zone_start_pfn); 1689 seq_putc(m, '\n'); 1690 } 1691 1692 /* 1693 * Output information about zones in @pgdat. All zones are printed regardless 1694 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1695 * set of all zones and userspace would not be aware of such zones if they are 1696 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1697 */ 1698 static int zoneinfo_show(struct seq_file *m, void *arg) 1699 { 1700 pg_data_t *pgdat = (pg_data_t *)arg; 1701 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1702 return 0; 1703 } 1704 1705 static const struct seq_operations zoneinfo_op = { 1706 .start = frag_start, /* iterate over all zones. The same as in 1707 * fragmentation. */ 1708 .next = frag_next, 1709 .stop = frag_stop, 1710 .show = zoneinfo_show, 1711 }; 1712 1713 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1714 NR_VM_NUMA_STAT_ITEMS + \ 1715 NR_VM_NODE_STAT_ITEMS + \ 1716 NR_VM_WRITEBACK_STAT_ITEMS + \ 1717 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1718 NR_VM_EVENT_ITEMS : 0)) 1719 1720 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1721 { 1722 unsigned long *v; 1723 int i; 1724 1725 if (*pos >= NR_VMSTAT_ITEMS) 1726 return NULL; 1727 1728 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1729 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1730 m->private = v; 1731 if (!v) 1732 return ERR_PTR(-ENOMEM); 1733 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1734 v[i] = global_zone_page_state(i); 1735 v += NR_VM_ZONE_STAT_ITEMS; 1736 1737 #ifdef CONFIG_NUMA 1738 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1739 v[i] = global_numa_state(i); 1740 v += NR_VM_NUMA_STAT_ITEMS; 1741 #endif 1742 1743 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1744 v[i] = global_node_page_state_pages(i); 1745 v += NR_VM_NODE_STAT_ITEMS; 1746 1747 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1748 v + NR_DIRTY_THRESHOLD); 1749 v += NR_VM_WRITEBACK_STAT_ITEMS; 1750 1751 #ifdef CONFIG_VM_EVENT_COUNTERS 1752 all_vm_events(v); 1753 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1754 v[PGPGOUT] /= 2; 1755 #endif 1756 return (unsigned long *)m->private + *pos; 1757 } 1758 1759 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1760 { 1761 (*pos)++; 1762 if (*pos >= NR_VMSTAT_ITEMS) 1763 return NULL; 1764 return (unsigned long *)m->private + *pos; 1765 } 1766 1767 static int vmstat_show(struct seq_file *m, void *arg) 1768 { 1769 unsigned long *l = arg; 1770 unsigned long off = l - (unsigned long *)m->private; 1771 1772 seq_puts(m, vmstat_text[off]); 1773 seq_put_decimal_ull(m, " ", *l); 1774 seq_putc(m, '\n'); 1775 1776 if (off == NR_VMSTAT_ITEMS - 1) { 1777 /* 1778 * We've come to the end - add any deprecated counters to avoid 1779 * breaking userspace which might depend on them being present. 1780 */ 1781 seq_puts(m, "nr_unstable 0\n"); 1782 } 1783 return 0; 1784 } 1785 1786 static void vmstat_stop(struct seq_file *m, void *arg) 1787 { 1788 kfree(m->private); 1789 m->private = NULL; 1790 } 1791 1792 static const struct seq_operations vmstat_op = { 1793 .start = vmstat_start, 1794 .next = vmstat_next, 1795 .stop = vmstat_stop, 1796 .show = vmstat_show, 1797 }; 1798 #endif /* CONFIG_PROC_FS */ 1799 1800 #ifdef CONFIG_SMP 1801 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1802 int sysctl_stat_interval __read_mostly = HZ; 1803 1804 #ifdef CONFIG_PROC_FS 1805 static void refresh_vm_stats(struct work_struct *work) 1806 { 1807 refresh_cpu_vm_stats(true); 1808 } 1809 1810 int vmstat_refresh(struct ctl_table *table, int write, 1811 void *buffer, size_t *lenp, loff_t *ppos) 1812 { 1813 long val; 1814 int err; 1815 int i; 1816 1817 /* 1818 * The regular update, every sysctl_stat_interval, may come later 1819 * than expected: leaving a significant amount in per_cpu buckets. 1820 * This is particularly misleading when checking a quantity of HUGE 1821 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1822 * which can equally be echo'ed to or cat'ted from (by root), 1823 * can be used to update the stats just before reading them. 1824 * 1825 * Oh, and since global_zone_page_state() etc. are so careful to hide 1826 * transiently negative values, report an error here if any of 1827 * the stats is negative, so we know to go looking for imbalance. 1828 */ 1829 err = schedule_on_each_cpu(refresh_vm_stats); 1830 if (err) 1831 return err; 1832 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1833 val = atomic_long_read(&vm_zone_stat[i]); 1834 if (val < 0) { 1835 pr_warn("%s: %s %ld\n", 1836 __func__, zone_stat_name(i), val); 1837 err = -EINVAL; 1838 } 1839 } 1840 #ifdef CONFIG_NUMA 1841 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 1842 val = atomic_long_read(&vm_numa_stat[i]); 1843 if (val < 0) { 1844 pr_warn("%s: %s %ld\n", 1845 __func__, numa_stat_name(i), val); 1846 err = -EINVAL; 1847 } 1848 } 1849 #endif 1850 if (err) 1851 return err; 1852 if (write) 1853 *ppos += *lenp; 1854 else 1855 *lenp = 0; 1856 return 0; 1857 } 1858 #endif /* CONFIG_PROC_FS */ 1859 1860 static void vmstat_update(struct work_struct *w) 1861 { 1862 if (refresh_cpu_vm_stats(true)) { 1863 /* 1864 * Counters were updated so we expect more updates 1865 * to occur in the future. Keep on running the 1866 * update worker thread. 1867 */ 1868 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1869 this_cpu_ptr(&vmstat_work), 1870 round_jiffies_relative(sysctl_stat_interval)); 1871 } 1872 } 1873 1874 /* 1875 * Switch off vmstat processing and then fold all the remaining differentials 1876 * until the diffs stay at zero. The function is used by NOHZ and can only be 1877 * invoked when tick processing is not active. 1878 */ 1879 /* 1880 * Check if the diffs for a certain cpu indicate that 1881 * an update is needed. 1882 */ 1883 static bool need_update(int cpu) 1884 { 1885 struct zone *zone; 1886 1887 for_each_populated_zone(zone) { 1888 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1889 1890 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1891 #ifdef CONFIG_NUMA 1892 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); 1893 #endif 1894 1895 /* 1896 * The fast way of checking if there are any vmstat diffs. 1897 */ 1898 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS * 1899 sizeof(p->vm_stat_diff[0]))) 1900 return true; 1901 #ifdef CONFIG_NUMA 1902 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS * 1903 sizeof(p->vm_numa_stat_diff[0]))) 1904 return true; 1905 #endif 1906 } 1907 return false; 1908 } 1909 1910 /* 1911 * Switch off vmstat processing and then fold all the remaining differentials 1912 * until the diffs stay at zero. The function is used by NOHZ and can only be 1913 * invoked when tick processing is not active. 1914 */ 1915 void quiet_vmstat(void) 1916 { 1917 if (system_state != SYSTEM_RUNNING) 1918 return; 1919 1920 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1921 return; 1922 1923 if (!need_update(smp_processor_id())) 1924 return; 1925 1926 /* 1927 * Just refresh counters and do not care about the pending delayed 1928 * vmstat_update. It doesn't fire that often to matter and canceling 1929 * it would be too expensive from this path. 1930 * vmstat_shepherd will take care about that for us. 1931 */ 1932 refresh_cpu_vm_stats(false); 1933 } 1934 1935 /* 1936 * Shepherd worker thread that checks the 1937 * differentials of processors that have their worker 1938 * threads for vm statistics updates disabled because of 1939 * inactivity. 1940 */ 1941 static void vmstat_shepherd(struct work_struct *w); 1942 1943 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1944 1945 static void vmstat_shepherd(struct work_struct *w) 1946 { 1947 int cpu; 1948 1949 get_online_cpus(); 1950 /* Check processors whose vmstat worker threads have been disabled */ 1951 for_each_online_cpu(cpu) { 1952 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1953 1954 if (!delayed_work_pending(dw) && need_update(cpu)) 1955 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1956 } 1957 put_online_cpus(); 1958 1959 schedule_delayed_work(&shepherd, 1960 round_jiffies_relative(sysctl_stat_interval)); 1961 } 1962 1963 static void __init start_shepherd_timer(void) 1964 { 1965 int cpu; 1966 1967 for_each_possible_cpu(cpu) 1968 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1969 vmstat_update); 1970 1971 schedule_delayed_work(&shepherd, 1972 round_jiffies_relative(sysctl_stat_interval)); 1973 } 1974 1975 static void __init init_cpu_node_state(void) 1976 { 1977 int node; 1978 1979 for_each_online_node(node) { 1980 if (cpumask_weight(cpumask_of_node(node)) > 0) 1981 node_set_state(node, N_CPU); 1982 } 1983 } 1984 1985 static int vmstat_cpu_online(unsigned int cpu) 1986 { 1987 refresh_zone_stat_thresholds(); 1988 node_set_state(cpu_to_node(cpu), N_CPU); 1989 return 0; 1990 } 1991 1992 static int vmstat_cpu_down_prep(unsigned int cpu) 1993 { 1994 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1995 return 0; 1996 } 1997 1998 static int vmstat_cpu_dead(unsigned int cpu) 1999 { 2000 const struct cpumask *node_cpus; 2001 int node; 2002 2003 node = cpu_to_node(cpu); 2004 2005 refresh_zone_stat_thresholds(); 2006 node_cpus = cpumask_of_node(node); 2007 if (cpumask_weight(node_cpus) > 0) 2008 return 0; 2009 2010 node_clear_state(node, N_CPU); 2011 return 0; 2012 } 2013 2014 #endif 2015 2016 struct workqueue_struct *mm_percpu_wq; 2017 2018 void __init init_mm_internals(void) 2019 { 2020 int ret __maybe_unused; 2021 2022 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2023 2024 #ifdef CONFIG_SMP 2025 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2026 NULL, vmstat_cpu_dead); 2027 if (ret < 0) 2028 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2029 2030 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2031 vmstat_cpu_online, 2032 vmstat_cpu_down_prep); 2033 if (ret < 0) 2034 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2035 2036 get_online_cpus(); 2037 init_cpu_node_state(); 2038 put_online_cpus(); 2039 2040 start_shepherd_timer(); 2041 #endif 2042 #ifdef CONFIG_PROC_FS 2043 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2044 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2045 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2046 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2047 #endif 2048 } 2049 2050 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2051 2052 /* 2053 * Return an index indicating how much of the available free memory is 2054 * unusable for an allocation of the requested size. 2055 */ 2056 static int unusable_free_index(unsigned int order, 2057 struct contig_page_info *info) 2058 { 2059 /* No free memory is interpreted as all free memory is unusable */ 2060 if (info->free_pages == 0) 2061 return 1000; 2062 2063 /* 2064 * Index should be a value between 0 and 1. Return a value to 3 2065 * decimal places. 2066 * 2067 * 0 => no fragmentation 2068 * 1 => high fragmentation 2069 */ 2070 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2071 2072 } 2073 2074 static void unusable_show_print(struct seq_file *m, 2075 pg_data_t *pgdat, struct zone *zone) 2076 { 2077 unsigned int order; 2078 int index; 2079 struct contig_page_info info; 2080 2081 seq_printf(m, "Node %d, zone %8s ", 2082 pgdat->node_id, 2083 zone->name); 2084 for (order = 0; order < MAX_ORDER; ++order) { 2085 fill_contig_page_info(zone, order, &info); 2086 index = unusable_free_index(order, &info); 2087 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2088 } 2089 2090 seq_putc(m, '\n'); 2091 } 2092 2093 /* 2094 * Display unusable free space index 2095 * 2096 * The unusable free space index measures how much of the available free 2097 * memory cannot be used to satisfy an allocation of a given size and is a 2098 * value between 0 and 1. The higher the value, the more of free memory is 2099 * unusable and by implication, the worse the external fragmentation is. This 2100 * can be expressed as a percentage by multiplying by 100. 2101 */ 2102 static int unusable_show(struct seq_file *m, void *arg) 2103 { 2104 pg_data_t *pgdat = (pg_data_t *)arg; 2105 2106 /* check memoryless node */ 2107 if (!node_state(pgdat->node_id, N_MEMORY)) 2108 return 0; 2109 2110 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2111 2112 return 0; 2113 } 2114 2115 static const struct seq_operations unusable_sops = { 2116 .start = frag_start, 2117 .next = frag_next, 2118 .stop = frag_stop, 2119 .show = unusable_show, 2120 }; 2121 2122 DEFINE_SEQ_ATTRIBUTE(unusable); 2123 2124 static void extfrag_show_print(struct seq_file *m, 2125 pg_data_t *pgdat, struct zone *zone) 2126 { 2127 unsigned int order; 2128 int index; 2129 2130 /* Alloc on stack as interrupts are disabled for zone walk */ 2131 struct contig_page_info info; 2132 2133 seq_printf(m, "Node %d, zone %8s ", 2134 pgdat->node_id, 2135 zone->name); 2136 for (order = 0; order < MAX_ORDER; ++order) { 2137 fill_contig_page_info(zone, order, &info); 2138 index = __fragmentation_index(order, &info); 2139 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2140 } 2141 2142 seq_putc(m, '\n'); 2143 } 2144 2145 /* 2146 * Display fragmentation index for orders that allocations would fail for 2147 */ 2148 static int extfrag_show(struct seq_file *m, void *arg) 2149 { 2150 pg_data_t *pgdat = (pg_data_t *)arg; 2151 2152 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2153 2154 return 0; 2155 } 2156 2157 static const struct seq_operations extfrag_sops = { 2158 .start = frag_start, 2159 .next = frag_next, 2160 .stop = frag_stop, 2161 .show = extfrag_show, 2162 }; 2163 2164 DEFINE_SEQ_ATTRIBUTE(extfrag); 2165 2166 static int __init extfrag_debug_init(void) 2167 { 2168 struct dentry *extfrag_debug_root; 2169 2170 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2171 2172 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2173 &unusable_fops); 2174 2175 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2176 &extfrag_fops); 2177 2178 return 0; 2179 } 2180 2181 module_init(extfrag_debug_init); 2182 #endif 2183