1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_ext.h> 30 #include <linux/page_owner.h> 31 32 #include "internal.h" 33 34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2) 35 36 #ifdef CONFIG_NUMA 37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 38 39 /* zero numa counters within a zone */ 40 static void zero_zone_numa_counters(struct zone *zone) 41 { 42 int item, cpu; 43 44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) { 45 atomic_long_set(&zone->vm_numa_stat[item], 0); 46 for_each_online_cpu(cpu) 47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item] 48 = 0; 49 } 50 } 51 52 /* zero numa counters of all the populated zones */ 53 static void zero_zones_numa_counters(void) 54 { 55 struct zone *zone; 56 57 for_each_populated_zone(zone) 58 zero_zone_numa_counters(zone); 59 } 60 61 /* zero global numa counters */ 62 static void zero_global_numa_counters(void) 63 { 64 int item; 65 66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) 67 atomic_long_set(&vm_numa_stat[item], 0); 68 } 69 70 static void invalid_numa_statistics(void) 71 { 72 zero_zones_numa_counters(); 73 zero_global_numa_counters(); 74 } 75 76 static DEFINE_MUTEX(vm_numa_stat_lock); 77 78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 79 void __user *buffer, size_t *length, loff_t *ppos) 80 { 81 int ret, oldval; 82 83 mutex_lock(&vm_numa_stat_lock); 84 if (write) 85 oldval = sysctl_vm_numa_stat; 86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 87 if (ret || !write) 88 goto out; 89 90 if (oldval == sysctl_vm_numa_stat) 91 goto out; 92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 93 static_branch_enable(&vm_numa_stat_key); 94 pr_info("enable numa statistics\n"); 95 } else { 96 static_branch_disable(&vm_numa_stat_key); 97 invalid_numa_statistics(); 98 pr_info("disable numa statistics, and clear numa counters\n"); 99 } 100 101 out: 102 mutex_unlock(&vm_numa_stat_lock); 103 return ret; 104 } 105 #endif 106 107 #ifdef CONFIG_VM_EVENT_COUNTERS 108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 109 EXPORT_PER_CPU_SYMBOL(vm_event_states); 110 111 static void sum_vm_events(unsigned long *ret) 112 { 113 int cpu; 114 int i; 115 116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 117 118 for_each_online_cpu(cpu) { 119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 120 121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 122 ret[i] += this->event[i]; 123 } 124 } 125 126 /* 127 * Accumulate the vm event counters across all CPUs. 128 * The result is unavoidably approximate - it can change 129 * during and after execution of this function. 130 */ 131 void all_vm_events(unsigned long *ret) 132 { 133 get_online_cpus(); 134 sum_vm_events(ret); 135 put_online_cpus(); 136 } 137 EXPORT_SYMBOL_GPL(all_vm_events); 138 139 /* 140 * Fold the foreign cpu events into our own. 141 * 142 * This is adding to the events on one processor 143 * but keeps the global counts constant. 144 */ 145 void vm_events_fold_cpu(int cpu) 146 { 147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 148 int i; 149 150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 151 count_vm_events(i, fold_state->event[i]); 152 fold_state->event[i] = 0; 153 } 154 } 155 156 #endif /* CONFIG_VM_EVENT_COUNTERS */ 157 158 /* 159 * Manage combined zone based / global counters 160 * 161 * vm_stat contains the global counters 162 */ 163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; 165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 166 EXPORT_SYMBOL(vm_zone_stat); 167 EXPORT_SYMBOL(vm_numa_stat); 168 EXPORT_SYMBOL(vm_node_stat); 169 170 #ifdef CONFIG_SMP 171 172 int calculate_pressure_threshold(struct zone *zone) 173 { 174 int threshold; 175 int watermark_distance; 176 177 /* 178 * As vmstats are not up to date, there is drift between the estimated 179 * and real values. For high thresholds and a high number of CPUs, it 180 * is possible for the min watermark to be breached while the estimated 181 * value looks fine. The pressure threshold is a reduced value such 182 * that even the maximum amount of drift will not accidentally breach 183 * the min watermark 184 */ 185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 186 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 187 188 /* 189 * Maximum threshold is 125 190 */ 191 threshold = min(125, threshold); 192 193 return threshold; 194 } 195 196 int calculate_normal_threshold(struct zone *zone) 197 { 198 int threshold; 199 int mem; /* memory in 128 MB units */ 200 201 /* 202 * The threshold scales with the number of processors and the amount 203 * of memory per zone. More memory means that we can defer updates for 204 * longer, more processors could lead to more contention. 205 * fls() is used to have a cheap way of logarithmic scaling. 206 * 207 * Some sample thresholds: 208 * 209 * Threshold Processors (fls) Zonesize fls(mem+1) 210 * ------------------------------------------------------------------ 211 * 8 1 1 0.9-1 GB 4 212 * 16 2 2 0.9-1 GB 4 213 * 20 2 2 1-2 GB 5 214 * 24 2 2 2-4 GB 6 215 * 28 2 2 4-8 GB 7 216 * 32 2 2 8-16 GB 8 217 * 4 2 2 <128M 1 218 * 30 4 3 2-4 GB 5 219 * 48 4 3 8-16 GB 8 220 * 32 8 4 1-2 GB 4 221 * 32 8 4 0.9-1GB 4 222 * 10 16 5 <128M 1 223 * 40 16 5 900M 4 224 * 70 64 7 2-4 GB 5 225 * 84 64 7 4-8 GB 6 226 * 108 512 9 4-8 GB 6 227 * 125 1024 10 8-16 GB 8 228 * 125 1024 10 16-32 GB 9 229 */ 230 231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 232 233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 234 235 /* 236 * Maximum threshold is 125 237 */ 238 threshold = min(125, threshold); 239 240 return threshold; 241 } 242 243 /* 244 * Refresh the thresholds for each zone. 245 */ 246 void refresh_zone_stat_thresholds(void) 247 { 248 struct pglist_data *pgdat; 249 struct zone *zone; 250 int cpu; 251 int threshold; 252 253 /* Zero current pgdat thresholds */ 254 for_each_online_pgdat(pgdat) { 255 for_each_online_cpu(cpu) { 256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 257 } 258 } 259 260 for_each_populated_zone(zone) { 261 struct pglist_data *pgdat = zone->zone_pgdat; 262 unsigned long max_drift, tolerate_drift; 263 264 threshold = calculate_normal_threshold(zone); 265 266 for_each_online_cpu(cpu) { 267 int pgdat_threshold; 268 269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 270 = threshold; 271 272 /* Base nodestat threshold on the largest populated zone. */ 273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 275 = max(threshold, pgdat_threshold); 276 } 277 278 /* 279 * Only set percpu_drift_mark if there is a danger that 280 * NR_FREE_PAGES reports the low watermark is ok when in fact 281 * the min watermark could be breached by an allocation 282 */ 283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 284 max_drift = num_online_cpus() * threshold; 285 if (max_drift > tolerate_drift) 286 zone->percpu_drift_mark = high_wmark_pages(zone) + 287 max_drift; 288 } 289 } 290 291 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 292 int (*calculate_pressure)(struct zone *)) 293 { 294 struct zone *zone; 295 int cpu; 296 int threshold; 297 int i; 298 299 for (i = 0; i < pgdat->nr_zones; i++) { 300 zone = &pgdat->node_zones[i]; 301 if (!zone->percpu_drift_mark) 302 continue; 303 304 threshold = (*calculate_pressure)(zone); 305 for_each_online_cpu(cpu) 306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 307 = threshold; 308 } 309 } 310 311 /* 312 * For use when we know that interrupts are disabled, 313 * or when we know that preemption is disabled and that 314 * particular counter cannot be updated from interrupt context. 315 */ 316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 317 long delta) 318 { 319 struct per_cpu_pageset __percpu *pcp = zone->pageset; 320 s8 __percpu *p = pcp->vm_stat_diff + item; 321 long x; 322 long t; 323 324 x = delta + __this_cpu_read(*p); 325 326 t = __this_cpu_read(pcp->stat_threshold); 327 328 if (unlikely(x > t || x < -t)) { 329 zone_page_state_add(x, zone, item); 330 x = 0; 331 } 332 __this_cpu_write(*p, x); 333 } 334 EXPORT_SYMBOL(__mod_zone_page_state); 335 336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 337 long delta) 338 { 339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 340 s8 __percpu *p = pcp->vm_node_stat_diff + item; 341 long x; 342 long t; 343 344 x = delta + __this_cpu_read(*p); 345 346 t = __this_cpu_read(pcp->stat_threshold); 347 348 if (unlikely(x > t || x < -t)) { 349 node_page_state_add(x, pgdat, item); 350 x = 0; 351 } 352 __this_cpu_write(*p, x); 353 } 354 EXPORT_SYMBOL(__mod_node_page_state); 355 356 /* 357 * Optimized increment and decrement functions. 358 * 359 * These are only for a single page and therefore can take a struct page * 360 * argument instead of struct zone *. This allows the inclusion of the code 361 * generated for page_zone(page) into the optimized functions. 362 * 363 * No overflow check is necessary and therefore the differential can be 364 * incremented or decremented in place which may allow the compilers to 365 * generate better code. 366 * The increment or decrement is known and therefore one boundary check can 367 * be omitted. 368 * 369 * NOTE: These functions are very performance sensitive. Change only 370 * with care. 371 * 372 * Some processors have inc/dec instructions that are atomic vs an interrupt. 373 * However, the code must first determine the differential location in a zone 374 * based on the processor number and then inc/dec the counter. There is no 375 * guarantee without disabling preemption that the processor will not change 376 * in between and therefore the atomicity vs. interrupt cannot be exploited 377 * in a useful way here. 378 */ 379 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 380 { 381 struct per_cpu_pageset __percpu *pcp = zone->pageset; 382 s8 __percpu *p = pcp->vm_stat_diff + item; 383 s8 v, t; 384 385 v = __this_cpu_inc_return(*p); 386 t = __this_cpu_read(pcp->stat_threshold); 387 if (unlikely(v > t)) { 388 s8 overstep = t >> 1; 389 390 zone_page_state_add(v + overstep, zone, item); 391 __this_cpu_write(*p, -overstep); 392 } 393 } 394 395 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 396 { 397 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 398 s8 __percpu *p = pcp->vm_node_stat_diff + item; 399 s8 v, t; 400 401 v = __this_cpu_inc_return(*p); 402 t = __this_cpu_read(pcp->stat_threshold); 403 if (unlikely(v > t)) { 404 s8 overstep = t >> 1; 405 406 node_page_state_add(v + overstep, pgdat, item); 407 __this_cpu_write(*p, -overstep); 408 } 409 } 410 411 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 412 { 413 __inc_zone_state(page_zone(page), item); 414 } 415 EXPORT_SYMBOL(__inc_zone_page_state); 416 417 void __inc_node_page_state(struct page *page, enum node_stat_item item) 418 { 419 __inc_node_state(page_pgdat(page), item); 420 } 421 EXPORT_SYMBOL(__inc_node_page_state); 422 423 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 424 { 425 struct per_cpu_pageset __percpu *pcp = zone->pageset; 426 s8 __percpu *p = pcp->vm_stat_diff + item; 427 s8 v, t; 428 429 v = __this_cpu_dec_return(*p); 430 t = __this_cpu_read(pcp->stat_threshold); 431 if (unlikely(v < - t)) { 432 s8 overstep = t >> 1; 433 434 zone_page_state_add(v - overstep, zone, item); 435 __this_cpu_write(*p, overstep); 436 } 437 } 438 439 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 440 { 441 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 442 s8 __percpu *p = pcp->vm_node_stat_diff + item; 443 s8 v, t; 444 445 v = __this_cpu_dec_return(*p); 446 t = __this_cpu_read(pcp->stat_threshold); 447 if (unlikely(v < - t)) { 448 s8 overstep = t >> 1; 449 450 node_page_state_add(v - overstep, pgdat, item); 451 __this_cpu_write(*p, overstep); 452 } 453 } 454 455 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 456 { 457 __dec_zone_state(page_zone(page), item); 458 } 459 EXPORT_SYMBOL(__dec_zone_page_state); 460 461 void __dec_node_page_state(struct page *page, enum node_stat_item item) 462 { 463 __dec_node_state(page_pgdat(page), item); 464 } 465 EXPORT_SYMBOL(__dec_node_page_state); 466 467 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 468 /* 469 * If we have cmpxchg_local support then we do not need to incur the overhead 470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 471 * 472 * mod_state() modifies the zone counter state through atomic per cpu 473 * operations. 474 * 475 * Overstep mode specifies how overstep should handled: 476 * 0 No overstepping 477 * 1 Overstepping half of threshold 478 * -1 Overstepping minus half of threshold 479 */ 480 static inline void mod_zone_state(struct zone *zone, 481 enum zone_stat_item item, long delta, int overstep_mode) 482 { 483 struct per_cpu_pageset __percpu *pcp = zone->pageset; 484 s8 __percpu *p = pcp->vm_stat_diff + item; 485 long o, n, t, z; 486 487 do { 488 z = 0; /* overflow to zone counters */ 489 490 /* 491 * The fetching of the stat_threshold is racy. We may apply 492 * a counter threshold to the wrong the cpu if we get 493 * rescheduled while executing here. However, the next 494 * counter update will apply the threshold again and 495 * therefore bring the counter under the threshold again. 496 * 497 * Most of the time the thresholds are the same anyways 498 * for all cpus in a zone. 499 */ 500 t = this_cpu_read(pcp->stat_threshold); 501 502 o = this_cpu_read(*p); 503 n = delta + o; 504 505 if (n > t || n < -t) { 506 int os = overstep_mode * (t >> 1) ; 507 508 /* Overflow must be added to zone counters */ 509 z = n + os; 510 n = -os; 511 } 512 } while (this_cpu_cmpxchg(*p, o, n) != o); 513 514 if (z) 515 zone_page_state_add(z, zone, item); 516 } 517 518 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 519 long delta) 520 { 521 mod_zone_state(zone, item, delta, 0); 522 } 523 EXPORT_SYMBOL(mod_zone_page_state); 524 525 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 526 { 527 mod_zone_state(page_zone(page), item, 1, 1); 528 } 529 EXPORT_SYMBOL(inc_zone_page_state); 530 531 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 532 { 533 mod_zone_state(page_zone(page), item, -1, -1); 534 } 535 EXPORT_SYMBOL(dec_zone_page_state); 536 537 static inline void mod_node_state(struct pglist_data *pgdat, 538 enum node_stat_item item, int delta, int overstep_mode) 539 { 540 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 541 s8 __percpu *p = pcp->vm_node_stat_diff + item; 542 long o, n, t, z; 543 544 do { 545 z = 0; /* overflow to node counters */ 546 547 /* 548 * The fetching of the stat_threshold is racy. We may apply 549 * a counter threshold to the wrong the cpu if we get 550 * rescheduled while executing here. However, the next 551 * counter update will apply the threshold again and 552 * therefore bring the counter under the threshold again. 553 * 554 * Most of the time the thresholds are the same anyways 555 * for all cpus in a node. 556 */ 557 t = this_cpu_read(pcp->stat_threshold); 558 559 o = this_cpu_read(*p); 560 n = delta + o; 561 562 if (n > t || n < -t) { 563 int os = overstep_mode * (t >> 1) ; 564 565 /* Overflow must be added to node counters */ 566 z = n + os; 567 n = -os; 568 } 569 } while (this_cpu_cmpxchg(*p, o, n) != o); 570 571 if (z) 572 node_page_state_add(z, pgdat, item); 573 } 574 575 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 576 long delta) 577 { 578 mod_node_state(pgdat, item, delta, 0); 579 } 580 EXPORT_SYMBOL(mod_node_page_state); 581 582 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 583 { 584 mod_node_state(pgdat, item, 1, 1); 585 } 586 587 void inc_node_page_state(struct page *page, enum node_stat_item item) 588 { 589 mod_node_state(page_pgdat(page), item, 1, 1); 590 } 591 EXPORT_SYMBOL(inc_node_page_state); 592 593 void dec_node_page_state(struct page *page, enum node_stat_item item) 594 { 595 mod_node_state(page_pgdat(page), item, -1, -1); 596 } 597 EXPORT_SYMBOL(dec_node_page_state); 598 #else 599 /* 600 * Use interrupt disable to serialize counter updates 601 */ 602 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 603 long delta) 604 { 605 unsigned long flags; 606 607 local_irq_save(flags); 608 __mod_zone_page_state(zone, item, delta); 609 local_irq_restore(flags); 610 } 611 EXPORT_SYMBOL(mod_zone_page_state); 612 613 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 614 { 615 unsigned long flags; 616 struct zone *zone; 617 618 zone = page_zone(page); 619 local_irq_save(flags); 620 __inc_zone_state(zone, item); 621 local_irq_restore(flags); 622 } 623 EXPORT_SYMBOL(inc_zone_page_state); 624 625 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 626 { 627 unsigned long flags; 628 629 local_irq_save(flags); 630 __dec_zone_page_state(page, item); 631 local_irq_restore(flags); 632 } 633 EXPORT_SYMBOL(dec_zone_page_state); 634 635 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 636 { 637 unsigned long flags; 638 639 local_irq_save(flags); 640 __inc_node_state(pgdat, item); 641 local_irq_restore(flags); 642 } 643 EXPORT_SYMBOL(inc_node_state); 644 645 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 646 long delta) 647 { 648 unsigned long flags; 649 650 local_irq_save(flags); 651 __mod_node_page_state(pgdat, item, delta); 652 local_irq_restore(flags); 653 } 654 EXPORT_SYMBOL(mod_node_page_state); 655 656 void inc_node_page_state(struct page *page, enum node_stat_item item) 657 { 658 unsigned long flags; 659 struct pglist_data *pgdat; 660 661 pgdat = page_pgdat(page); 662 local_irq_save(flags); 663 __inc_node_state(pgdat, item); 664 local_irq_restore(flags); 665 } 666 EXPORT_SYMBOL(inc_node_page_state); 667 668 void dec_node_page_state(struct page *page, enum node_stat_item item) 669 { 670 unsigned long flags; 671 672 local_irq_save(flags); 673 __dec_node_page_state(page, item); 674 local_irq_restore(flags); 675 } 676 EXPORT_SYMBOL(dec_node_page_state); 677 #endif 678 679 /* 680 * Fold a differential into the global counters. 681 * Returns the number of counters updated. 682 */ 683 #ifdef CONFIG_NUMA 684 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) 685 { 686 int i; 687 int changes = 0; 688 689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 690 if (zone_diff[i]) { 691 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 692 changes++; 693 } 694 695 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 696 if (numa_diff[i]) { 697 atomic_long_add(numa_diff[i], &vm_numa_stat[i]); 698 changes++; 699 } 700 701 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 702 if (node_diff[i]) { 703 atomic_long_add(node_diff[i], &vm_node_stat[i]); 704 changes++; 705 } 706 return changes; 707 } 708 #else 709 static int fold_diff(int *zone_diff, int *node_diff) 710 { 711 int i; 712 int changes = 0; 713 714 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 715 if (zone_diff[i]) { 716 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 717 changes++; 718 } 719 720 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 721 if (node_diff[i]) { 722 atomic_long_add(node_diff[i], &vm_node_stat[i]); 723 changes++; 724 } 725 return changes; 726 } 727 #endif /* CONFIG_NUMA */ 728 729 /* 730 * Update the zone counters for the current cpu. 731 * 732 * Note that refresh_cpu_vm_stats strives to only access 733 * node local memory. The per cpu pagesets on remote zones are placed 734 * in the memory local to the processor using that pageset. So the 735 * loop over all zones will access a series of cachelines local to 736 * the processor. 737 * 738 * The call to zone_page_state_add updates the cachelines with the 739 * statistics in the remote zone struct as well as the global cachelines 740 * with the global counters. These could cause remote node cache line 741 * bouncing and will have to be only done when necessary. 742 * 743 * The function returns the number of global counters updated. 744 */ 745 static int refresh_cpu_vm_stats(bool do_pagesets) 746 { 747 struct pglist_data *pgdat; 748 struct zone *zone; 749 int i; 750 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 751 #ifdef CONFIG_NUMA 752 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 753 #endif 754 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 755 int changes = 0; 756 757 for_each_populated_zone(zone) { 758 struct per_cpu_pageset __percpu *p = zone->pageset; 759 760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 761 int v; 762 763 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 764 if (v) { 765 766 atomic_long_add(v, &zone->vm_stat[i]); 767 global_zone_diff[i] += v; 768 #ifdef CONFIG_NUMA 769 /* 3 seconds idle till flush */ 770 __this_cpu_write(p->expire, 3); 771 #endif 772 } 773 } 774 #ifdef CONFIG_NUMA 775 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 776 int v; 777 778 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); 779 if (v) { 780 781 atomic_long_add(v, &zone->vm_numa_stat[i]); 782 global_numa_diff[i] += v; 783 __this_cpu_write(p->expire, 3); 784 } 785 } 786 787 if (do_pagesets) { 788 cond_resched(); 789 /* 790 * Deal with draining the remote pageset of this 791 * processor 792 * 793 * Check if there are pages remaining in this pageset 794 * if not then there is nothing to expire. 795 */ 796 if (!__this_cpu_read(p->expire) || 797 !__this_cpu_read(p->pcp.count)) 798 continue; 799 800 /* 801 * We never drain zones local to this processor. 802 */ 803 if (zone_to_nid(zone) == numa_node_id()) { 804 __this_cpu_write(p->expire, 0); 805 continue; 806 } 807 808 if (__this_cpu_dec_return(p->expire)) 809 continue; 810 811 if (__this_cpu_read(p->pcp.count)) { 812 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 813 changes++; 814 } 815 } 816 #endif 817 } 818 819 for_each_online_pgdat(pgdat) { 820 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 821 822 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 823 int v; 824 825 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 826 if (v) { 827 atomic_long_add(v, &pgdat->vm_stat[i]); 828 global_node_diff[i] += v; 829 } 830 } 831 } 832 833 #ifdef CONFIG_NUMA 834 changes += fold_diff(global_zone_diff, global_numa_diff, 835 global_node_diff); 836 #else 837 changes += fold_diff(global_zone_diff, global_node_diff); 838 #endif 839 return changes; 840 } 841 842 /* 843 * Fold the data for an offline cpu into the global array. 844 * There cannot be any access by the offline cpu and therefore 845 * synchronization is simplified. 846 */ 847 void cpu_vm_stats_fold(int cpu) 848 { 849 struct pglist_data *pgdat; 850 struct zone *zone; 851 int i; 852 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 853 #ifdef CONFIG_NUMA 854 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 855 #endif 856 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 857 858 for_each_populated_zone(zone) { 859 struct per_cpu_pageset *p; 860 861 p = per_cpu_ptr(zone->pageset, cpu); 862 863 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 864 if (p->vm_stat_diff[i]) { 865 int v; 866 867 v = p->vm_stat_diff[i]; 868 p->vm_stat_diff[i] = 0; 869 atomic_long_add(v, &zone->vm_stat[i]); 870 global_zone_diff[i] += v; 871 } 872 873 #ifdef CONFIG_NUMA 874 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 875 if (p->vm_numa_stat_diff[i]) { 876 int v; 877 878 v = p->vm_numa_stat_diff[i]; 879 p->vm_numa_stat_diff[i] = 0; 880 atomic_long_add(v, &zone->vm_numa_stat[i]); 881 global_numa_diff[i] += v; 882 } 883 #endif 884 } 885 886 for_each_online_pgdat(pgdat) { 887 struct per_cpu_nodestat *p; 888 889 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 890 891 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 892 if (p->vm_node_stat_diff[i]) { 893 int v; 894 895 v = p->vm_node_stat_diff[i]; 896 p->vm_node_stat_diff[i] = 0; 897 atomic_long_add(v, &pgdat->vm_stat[i]); 898 global_node_diff[i] += v; 899 } 900 } 901 902 #ifdef CONFIG_NUMA 903 fold_diff(global_zone_diff, global_numa_diff, global_node_diff); 904 #else 905 fold_diff(global_zone_diff, global_node_diff); 906 #endif 907 } 908 909 /* 910 * this is only called if !populated_zone(zone), which implies no other users of 911 * pset->vm_stat_diff[] exsist. 912 */ 913 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 914 { 915 int i; 916 917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 918 if (pset->vm_stat_diff[i]) { 919 int v = pset->vm_stat_diff[i]; 920 pset->vm_stat_diff[i] = 0; 921 atomic_long_add(v, &zone->vm_stat[i]); 922 atomic_long_add(v, &vm_zone_stat[i]); 923 } 924 925 #ifdef CONFIG_NUMA 926 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 927 if (pset->vm_numa_stat_diff[i]) { 928 int v = pset->vm_numa_stat_diff[i]; 929 930 pset->vm_numa_stat_diff[i] = 0; 931 atomic_long_add(v, &zone->vm_numa_stat[i]); 932 atomic_long_add(v, &vm_numa_stat[i]); 933 } 934 #endif 935 } 936 #endif 937 938 #ifdef CONFIG_NUMA 939 void __inc_numa_state(struct zone *zone, 940 enum numa_stat_item item) 941 { 942 struct per_cpu_pageset __percpu *pcp = zone->pageset; 943 u16 __percpu *p = pcp->vm_numa_stat_diff + item; 944 u16 v; 945 946 v = __this_cpu_inc_return(*p); 947 948 if (unlikely(v > NUMA_STATS_THRESHOLD)) { 949 zone_numa_state_add(v, zone, item); 950 __this_cpu_write(*p, 0); 951 } 952 } 953 954 /* 955 * Determine the per node value of a stat item. This function 956 * is called frequently in a NUMA machine, so try to be as 957 * frugal as possible. 958 */ 959 unsigned long sum_zone_node_page_state(int node, 960 enum zone_stat_item item) 961 { 962 struct zone *zones = NODE_DATA(node)->node_zones; 963 int i; 964 unsigned long count = 0; 965 966 for (i = 0; i < MAX_NR_ZONES; i++) 967 count += zone_page_state(zones + i, item); 968 969 return count; 970 } 971 972 /* 973 * Determine the per node value of a numa stat item. To avoid deviation, 974 * the per cpu stat number in vm_numa_stat_diff[] is also included. 975 */ 976 unsigned long sum_zone_numa_state(int node, 977 enum numa_stat_item item) 978 { 979 struct zone *zones = NODE_DATA(node)->node_zones; 980 int i; 981 unsigned long count = 0; 982 983 for (i = 0; i < MAX_NR_ZONES; i++) 984 count += zone_numa_state_snapshot(zones + i, item); 985 986 return count; 987 } 988 989 /* 990 * Determine the per node value of a stat item. 991 */ 992 unsigned long node_page_state(struct pglist_data *pgdat, 993 enum node_stat_item item) 994 { 995 long x = atomic_long_read(&pgdat->vm_stat[item]); 996 #ifdef CONFIG_SMP 997 if (x < 0) 998 x = 0; 999 #endif 1000 return x; 1001 } 1002 #endif 1003 1004 #ifdef CONFIG_COMPACTION 1005 1006 struct contig_page_info { 1007 unsigned long free_pages; 1008 unsigned long free_blocks_total; 1009 unsigned long free_blocks_suitable; 1010 }; 1011 1012 /* 1013 * Calculate the number of free pages in a zone, how many contiguous 1014 * pages are free and how many are large enough to satisfy an allocation of 1015 * the target size. Note that this function makes no attempt to estimate 1016 * how many suitable free blocks there *might* be if MOVABLE pages were 1017 * migrated. Calculating that is possible, but expensive and can be 1018 * figured out from userspace 1019 */ 1020 static void fill_contig_page_info(struct zone *zone, 1021 unsigned int suitable_order, 1022 struct contig_page_info *info) 1023 { 1024 unsigned int order; 1025 1026 info->free_pages = 0; 1027 info->free_blocks_total = 0; 1028 info->free_blocks_suitable = 0; 1029 1030 for (order = 0; order < MAX_ORDER; order++) { 1031 unsigned long blocks; 1032 1033 /* Count number of free blocks */ 1034 blocks = zone->free_area[order].nr_free; 1035 info->free_blocks_total += blocks; 1036 1037 /* Count free base pages */ 1038 info->free_pages += blocks << order; 1039 1040 /* Count the suitable free blocks */ 1041 if (order >= suitable_order) 1042 info->free_blocks_suitable += blocks << 1043 (order - suitable_order); 1044 } 1045 } 1046 1047 /* 1048 * A fragmentation index only makes sense if an allocation of a requested 1049 * size would fail. If that is true, the fragmentation index indicates 1050 * whether external fragmentation or a lack of memory was the problem. 1051 * The value can be used to determine if page reclaim or compaction 1052 * should be used 1053 */ 1054 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1055 { 1056 unsigned long requested = 1UL << order; 1057 1058 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1059 return 0; 1060 1061 if (!info->free_blocks_total) 1062 return 0; 1063 1064 /* Fragmentation index only makes sense when a request would fail */ 1065 if (info->free_blocks_suitable) 1066 return -1000; 1067 1068 /* 1069 * Index is between 0 and 1 so return within 3 decimal places 1070 * 1071 * 0 => allocation would fail due to lack of memory 1072 * 1 => allocation would fail due to fragmentation 1073 */ 1074 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1075 } 1076 1077 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1078 int fragmentation_index(struct zone *zone, unsigned int order) 1079 { 1080 struct contig_page_info info; 1081 1082 fill_contig_page_info(zone, order, &info); 1083 return __fragmentation_index(order, &info); 1084 } 1085 #endif 1086 1087 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1088 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1089 #ifdef CONFIG_ZONE_DMA 1090 #define TEXT_FOR_DMA(xx) xx "_dma", 1091 #else 1092 #define TEXT_FOR_DMA(xx) 1093 #endif 1094 1095 #ifdef CONFIG_ZONE_DMA32 1096 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1097 #else 1098 #define TEXT_FOR_DMA32(xx) 1099 #endif 1100 1101 #ifdef CONFIG_HIGHMEM 1102 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1103 #else 1104 #define TEXT_FOR_HIGHMEM(xx) 1105 #endif 1106 1107 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1108 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1109 1110 const char * const vmstat_text[] = { 1111 /* enum zone_stat_item countes */ 1112 "nr_free_pages", 1113 "nr_zone_inactive_anon", 1114 "nr_zone_active_anon", 1115 "nr_zone_inactive_file", 1116 "nr_zone_active_file", 1117 "nr_zone_unevictable", 1118 "nr_zone_write_pending", 1119 "nr_mlock", 1120 "nr_page_table_pages", 1121 "nr_kernel_stack", 1122 "nr_bounce", 1123 #if IS_ENABLED(CONFIG_ZSMALLOC) 1124 "nr_zspages", 1125 #endif 1126 "nr_free_cma", 1127 1128 /* enum numa_stat_item counters */ 1129 #ifdef CONFIG_NUMA 1130 "numa_hit", 1131 "numa_miss", 1132 "numa_foreign", 1133 "numa_interleave", 1134 "numa_local", 1135 "numa_other", 1136 #endif 1137 1138 /* enum node_stat_item counters */ 1139 "nr_inactive_anon", 1140 "nr_active_anon", 1141 "nr_inactive_file", 1142 "nr_active_file", 1143 "nr_unevictable", 1144 "nr_slab_reclaimable", 1145 "nr_slab_unreclaimable", 1146 "nr_isolated_anon", 1147 "nr_isolated_file", 1148 "workingset_nodes", 1149 "workingset_refault", 1150 "workingset_activate", 1151 "workingset_restore", 1152 "workingset_nodereclaim", 1153 "nr_anon_pages", 1154 "nr_mapped", 1155 "nr_file_pages", 1156 "nr_dirty", 1157 "nr_writeback", 1158 "nr_writeback_temp", 1159 "nr_shmem", 1160 "nr_shmem_hugepages", 1161 "nr_shmem_pmdmapped", 1162 "nr_file_hugepages", 1163 "nr_file_pmdmapped", 1164 "nr_anon_transparent_hugepages", 1165 "nr_unstable", 1166 "nr_vmscan_write", 1167 "nr_vmscan_immediate_reclaim", 1168 "nr_dirtied", 1169 "nr_written", 1170 "nr_kernel_misc_reclaimable", 1171 "nr_foll_pin_acquired", 1172 "nr_foll_pin_released", 1173 1174 /* enum writeback_stat_item counters */ 1175 "nr_dirty_threshold", 1176 "nr_dirty_background_threshold", 1177 1178 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1179 /* enum vm_event_item counters */ 1180 "pgpgin", 1181 "pgpgout", 1182 "pswpin", 1183 "pswpout", 1184 1185 TEXTS_FOR_ZONES("pgalloc") 1186 TEXTS_FOR_ZONES("allocstall") 1187 TEXTS_FOR_ZONES("pgskip") 1188 1189 "pgfree", 1190 "pgactivate", 1191 "pgdeactivate", 1192 "pglazyfree", 1193 1194 "pgfault", 1195 "pgmajfault", 1196 "pglazyfreed", 1197 1198 "pgrefill", 1199 "pgsteal_kswapd", 1200 "pgsteal_direct", 1201 "pgscan_kswapd", 1202 "pgscan_direct", 1203 "pgscan_direct_throttle", 1204 1205 #ifdef CONFIG_NUMA 1206 "zone_reclaim_failed", 1207 #endif 1208 "pginodesteal", 1209 "slabs_scanned", 1210 "kswapd_inodesteal", 1211 "kswapd_low_wmark_hit_quickly", 1212 "kswapd_high_wmark_hit_quickly", 1213 "pageoutrun", 1214 1215 "pgrotated", 1216 1217 "drop_pagecache", 1218 "drop_slab", 1219 "oom_kill", 1220 1221 #ifdef CONFIG_NUMA_BALANCING 1222 "numa_pte_updates", 1223 "numa_huge_pte_updates", 1224 "numa_hint_faults", 1225 "numa_hint_faults_local", 1226 "numa_pages_migrated", 1227 #endif 1228 #ifdef CONFIG_MIGRATION 1229 "pgmigrate_success", 1230 "pgmigrate_fail", 1231 #endif 1232 #ifdef CONFIG_COMPACTION 1233 "compact_migrate_scanned", 1234 "compact_free_scanned", 1235 "compact_isolated", 1236 "compact_stall", 1237 "compact_fail", 1238 "compact_success", 1239 "compact_daemon_wake", 1240 "compact_daemon_migrate_scanned", 1241 "compact_daemon_free_scanned", 1242 #endif 1243 1244 #ifdef CONFIG_HUGETLB_PAGE 1245 "htlb_buddy_alloc_success", 1246 "htlb_buddy_alloc_fail", 1247 #endif 1248 "unevictable_pgs_culled", 1249 "unevictable_pgs_scanned", 1250 "unevictable_pgs_rescued", 1251 "unevictable_pgs_mlocked", 1252 "unevictable_pgs_munlocked", 1253 "unevictable_pgs_cleared", 1254 "unevictable_pgs_stranded", 1255 1256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1257 "thp_fault_alloc", 1258 "thp_fault_fallback", 1259 "thp_fault_fallback_charge", 1260 "thp_collapse_alloc", 1261 "thp_collapse_alloc_failed", 1262 "thp_file_alloc", 1263 "thp_file_fallback", 1264 "thp_file_fallback_charge", 1265 "thp_file_mapped", 1266 "thp_split_page", 1267 "thp_split_page_failed", 1268 "thp_deferred_split_page", 1269 "thp_split_pmd", 1270 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1271 "thp_split_pud", 1272 #endif 1273 "thp_zero_page_alloc", 1274 "thp_zero_page_alloc_failed", 1275 "thp_swpout", 1276 "thp_swpout_fallback", 1277 #endif 1278 #ifdef CONFIG_MEMORY_BALLOON 1279 "balloon_inflate", 1280 "balloon_deflate", 1281 #ifdef CONFIG_BALLOON_COMPACTION 1282 "balloon_migrate", 1283 #endif 1284 #endif /* CONFIG_MEMORY_BALLOON */ 1285 #ifdef CONFIG_DEBUG_TLBFLUSH 1286 "nr_tlb_remote_flush", 1287 "nr_tlb_remote_flush_received", 1288 "nr_tlb_local_flush_all", 1289 "nr_tlb_local_flush_one", 1290 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1291 1292 #ifdef CONFIG_DEBUG_VM_VMACACHE 1293 "vmacache_find_calls", 1294 "vmacache_find_hits", 1295 #endif 1296 #ifdef CONFIG_SWAP 1297 "swap_ra", 1298 "swap_ra_hit", 1299 #endif 1300 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1301 }; 1302 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1303 1304 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1305 defined(CONFIG_PROC_FS) 1306 static void *frag_start(struct seq_file *m, loff_t *pos) 1307 { 1308 pg_data_t *pgdat; 1309 loff_t node = *pos; 1310 1311 for (pgdat = first_online_pgdat(); 1312 pgdat && node; 1313 pgdat = next_online_pgdat(pgdat)) 1314 --node; 1315 1316 return pgdat; 1317 } 1318 1319 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1320 { 1321 pg_data_t *pgdat = (pg_data_t *)arg; 1322 1323 (*pos)++; 1324 return next_online_pgdat(pgdat); 1325 } 1326 1327 static void frag_stop(struct seq_file *m, void *arg) 1328 { 1329 } 1330 1331 /* 1332 * Walk zones in a node and print using a callback. 1333 * If @assert_populated is true, only use callback for zones that are populated. 1334 */ 1335 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1336 bool assert_populated, bool nolock, 1337 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1338 { 1339 struct zone *zone; 1340 struct zone *node_zones = pgdat->node_zones; 1341 unsigned long flags; 1342 1343 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1344 if (assert_populated && !populated_zone(zone)) 1345 continue; 1346 1347 if (!nolock) 1348 spin_lock_irqsave(&zone->lock, flags); 1349 print(m, pgdat, zone); 1350 if (!nolock) 1351 spin_unlock_irqrestore(&zone->lock, flags); 1352 } 1353 } 1354 #endif 1355 1356 #ifdef CONFIG_PROC_FS 1357 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1358 struct zone *zone) 1359 { 1360 int order; 1361 1362 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1363 for (order = 0; order < MAX_ORDER; ++order) 1364 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1365 seq_putc(m, '\n'); 1366 } 1367 1368 /* 1369 * This walks the free areas for each zone. 1370 */ 1371 static int frag_show(struct seq_file *m, void *arg) 1372 { 1373 pg_data_t *pgdat = (pg_data_t *)arg; 1374 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1375 return 0; 1376 } 1377 1378 static void pagetypeinfo_showfree_print(struct seq_file *m, 1379 pg_data_t *pgdat, struct zone *zone) 1380 { 1381 int order, mtype; 1382 1383 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1384 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1385 pgdat->node_id, 1386 zone->name, 1387 migratetype_names[mtype]); 1388 for (order = 0; order < MAX_ORDER; ++order) { 1389 unsigned long freecount = 0; 1390 struct free_area *area; 1391 struct list_head *curr; 1392 bool overflow = false; 1393 1394 area = &(zone->free_area[order]); 1395 1396 list_for_each(curr, &area->free_list[mtype]) { 1397 /* 1398 * Cap the free_list iteration because it might 1399 * be really large and we are under a spinlock 1400 * so a long time spent here could trigger a 1401 * hard lockup detector. Anyway this is a 1402 * debugging tool so knowing there is a handful 1403 * of pages of this order should be more than 1404 * sufficient. 1405 */ 1406 if (++freecount >= 100000) { 1407 overflow = true; 1408 break; 1409 } 1410 } 1411 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1412 spin_unlock_irq(&zone->lock); 1413 cond_resched(); 1414 spin_lock_irq(&zone->lock); 1415 } 1416 seq_putc(m, '\n'); 1417 } 1418 } 1419 1420 /* Print out the free pages at each order for each migatetype */ 1421 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1422 { 1423 int order; 1424 pg_data_t *pgdat = (pg_data_t *)arg; 1425 1426 /* Print header */ 1427 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1428 for (order = 0; order < MAX_ORDER; ++order) 1429 seq_printf(m, "%6d ", order); 1430 seq_putc(m, '\n'); 1431 1432 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1433 1434 return 0; 1435 } 1436 1437 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1438 pg_data_t *pgdat, struct zone *zone) 1439 { 1440 int mtype; 1441 unsigned long pfn; 1442 unsigned long start_pfn = zone->zone_start_pfn; 1443 unsigned long end_pfn = zone_end_pfn(zone); 1444 unsigned long count[MIGRATE_TYPES] = { 0, }; 1445 1446 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1447 struct page *page; 1448 1449 page = pfn_to_online_page(pfn); 1450 if (!page) 1451 continue; 1452 1453 /* Watch for unexpected holes punched in the memmap */ 1454 if (!memmap_valid_within(pfn, page, zone)) 1455 continue; 1456 1457 if (page_zone(page) != zone) 1458 continue; 1459 1460 mtype = get_pageblock_migratetype(page); 1461 1462 if (mtype < MIGRATE_TYPES) 1463 count[mtype]++; 1464 } 1465 1466 /* Print counts */ 1467 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1468 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1469 seq_printf(m, "%12lu ", count[mtype]); 1470 seq_putc(m, '\n'); 1471 } 1472 1473 /* Print out the number of pageblocks for each migratetype */ 1474 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1475 { 1476 int mtype; 1477 pg_data_t *pgdat = (pg_data_t *)arg; 1478 1479 seq_printf(m, "\n%-23s", "Number of blocks type "); 1480 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1481 seq_printf(m, "%12s ", migratetype_names[mtype]); 1482 seq_putc(m, '\n'); 1483 walk_zones_in_node(m, pgdat, true, false, 1484 pagetypeinfo_showblockcount_print); 1485 1486 return 0; 1487 } 1488 1489 /* 1490 * Print out the number of pageblocks for each migratetype that contain pages 1491 * of other types. This gives an indication of how well fallbacks are being 1492 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1493 * to determine what is going on 1494 */ 1495 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1496 { 1497 #ifdef CONFIG_PAGE_OWNER 1498 int mtype; 1499 1500 if (!static_branch_unlikely(&page_owner_inited)) 1501 return; 1502 1503 drain_all_pages(NULL); 1504 1505 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1506 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1507 seq_printf(m, "%12s ", migratetype_names[mtype]); 1508 seq_putc(m, '\n'); 1509 1510 walk_zones_in_node(m, pgdat, true, true, 1511 pagetypeinfo_showmixedcount_print); 1512 #endif /* CONFIG_PAGE_OWNER */ 1513 } 1514 1515 /* 1516 * This prints out statistics in relation to grouping pages by mobility. 1517 * It is expensive to collect so do not constantly read the file. 1518 */ 1519 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1520 { 1521 pg_data_t *pgdat = (pg_data_t *)arg; 1522 1523 /* check memoryless node */ 1524 if (!node_state(pgdat->node_id, N_MEMORY)) 1525 return 0; 1526 1527 seq_printf(m, "Page block order: %d\n", pageblock_order); 1528 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1529 seq_putc(m, '\n'); 1530 pagetypeinfo_showfree(m, pgdat); 1531 pagetypeinfo_showblockcount(m, pgdat); 1532 pagetypeinfo_showmixedcount(m, pgdat); 1533 1534 return 0; 1535 } 1536 1537 static const struct seq_operations fragmentation_op = { 1538 .start = frag_start, 1539 .next = frag_next, 1540 .stop = frag_stop, 1541 .show = frag_show, 1542 }; 1543 1544 static const struct seq_operations pagetypeinfo_op = { 1545 .start = frag_start, 1546 .next = frag_next, 1547 .stop = frag_stop, 1548 .show = pagetypeinfo_show, 1549 }; 1550 1551 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1552 { 1553 int zid; 1554 1555 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1556 struct zone *compare = &pgdat->node_zones[zid]; 1557 1558 if (populated_zone(compare)) 1559 return zone == compare; 1560 } 1561 1562 return false; 1563 } 1564 1565 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1566 struct zone *zone) 1567 { 1568 int i; 1569 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1570 if (is_zone_first_populated(pgdat, zone)) { 1571 seq_printf(m, "\n per-node stats"); 1572 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1573 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1574 node_page_state(pgdat, i)); 1575 } 1576 } 1577 seq_printf(m, 1578 "\n pages free %lu" 1579 "\n min %lu" 1580 "\n low %lu" 1581 "\n high %lu" 1582 "\n spanned %lu" 1583 "\n present %lu" 1584 "\n managed %lu", 1585 zone_page_state(zone, NR_FREE_PAGES), 1586 min_wmark_pages(zone), 1587 low_wmark_pages(zone), 1588 high_wmark_pages(zone), 1589 zone->spanned_pages, 1590 zone->present_pages, 1591 zone_managed_pages(zone)); 1592 1593 seq_printf(m, 1594 "\n protection: (%ld", 1595 zone->lowmem_reserve[0]); 1596 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1597 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1598 seq_putc(m, ')'); 1599 1600 /* If unpopulated, no other information is useful */ 1601 if (!populated_zone(zone)) { 1602 seq_putc(m, '\n'); 1603 return; 1604 } 1605 1606 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1607 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1608 zone_page_state(zone, i)); 1609 1610 #ifdef CONFIG_NUMA 1611 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1612 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1613 zone_numa_state_snapshot(zone, i)); 1614 #endif 1615 1616 seq_printf(m, "\n pagesets"); 1617 for_each_online_cpu(i) { 1618 struct per_cpu_pageset *pageset; 1619 1620 pageset = per_cpu_ptr(zone->pageset, i); 1621 seq_printf(m, 1622 "\n cpu: %i" 1623 "\n count: %i" 1624 "\n high: %i" 1625 "\n batch: %i", 1626 i, 1627 pageset->pcp.count, 1628 pageset->pcp.high, 1629 pageset->pcp.batch); 1630 #ifdef CONFIG_SMP 1631 seq_printf(m, "\n vm stats threshold: %d", 1632 pageset->stat_threshold); 1633 #endif 1634 } 1635 seq_printf(m, 1636 "\n node_unreclaimable: %u" 1637 "\n start_pfn: %lu", 1638 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1639 zone->zone_start_pfn); 1640 seq_putc(m, '\n'); 1641 } 1642 1643 /* 1644 * Output information about zones in @pgdat. All zones are printed regardless 1645 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1646 * set of all zones and userspace would not be aware of such zones if they are 1647 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1648 */ 1649 static int zoneinfo_show(struct seq_file *m, void *arg) 1650 { 1651 pg_data_t *pgdat = (pg_data_t *)arg; 1652 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1653 return 0; 1654 } 1655 1656 static const struct seq_operations zoneinfo_op = { 1657 .start = frag_start, /* iterate over all zones. The same as in 1658 * fragmentation. */ 1659 .next = frag_next, 1660 .stop = frag_stop, 1661 .show = zoneinfo_show, 1662 }; 1663 1664 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1665 NR_VM_NUMA_STAT_ITEMS + \ 1666 NR_VM_NODE_STAT_ITEMS + \ 1667 NR_VM_WRITEBACK_STAT_ITEMS + \ 1668 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1669 NR_VM_EVENT_ITEMS : 0)) 1670 1671 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1672 { 1673 unsigned long *v; 1674 int i; 1675 1676 if (*pos >= NR_VMSTAT_ITEMS) 1677 return NULL; 1678 1679 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1680 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1681 m->private = v; 1682 if (!v) 1683 return ERR_PTR(-ENOMEM); 1684 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1685 v[i] = global_zone_page_state(i); 1686 v += NR_VM_ZONE_STAT_ITEMS; 1687 1688 #ifdef CONFIG_NUMA 1689 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1690 v[i] = global_numa_state(i); 1691 v += NR_VM_NUMA_STAT_ITEMS; 1692 #endif 1693 1694 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1695 v[i] = global_node_page_state(i); 1696 v += NR_VM_NODE_STAT_ITEMS; 1697 1698 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1699 v + NR_DIRTY_THRESHOLD); 1700 v += NR_VM_WRITEBACK_STAT_ITEMS; 1701 1702 #ifdef CONFIG_VM_EVENT_COUNTERS 1703 all_vm_events(v); 1704 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1705 v[PGPGOUT] /= 2; 1706 #endif 1707 return (unsigned long *)m->private + *pos; 1708 } 1709 1710 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1711 { 1712 (*pos)++; 1713 if (*pos >= NR_VMSTAT_ITEMS) 1714 return NULL; 1715 return (unsigned long *)m->private + *pos; 1716 } 1717 1718 static int vmstat_show(struct seq_file *m, void *arg) 1719 { 1720 unsigned long *l = arg; 1721 unsigned long off = l - (unsigned long *)m->private; 1722 1723 seq_puts(m, vmstat_text[off]); 1724 seq_put_decimal_ull(m, " ", *l); 1725 seq_putc(m, '\n'); 1726 return 0; 1727 } 1728 1729 static void vmstat_stop(struct seq_file *m, void *arg) 1730 { 1731 kfree(m->private); 1732 m->private = NULL; 1733 } 1734 1735 static const struct seq_operations vmstat_op = { 1736 .start = vmstat_start, 1737 .next = vmstat_next, 1738 .stop = vmstat_stop, 1739 .show = vmstat_show, 1740 }; 1741 #endif /* CONFIG_PROC_FS */ 1742 1743 #ifdef CONFIG_SMP 1744 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1745 int sysctl_stat_interval __read_mostly = HZ; 1746 1747 #ifdef CONFIG_PROC_FS 1748 static void refresh_vm_stats(struct work_struct *work) 1749 { 1750 refresh_cpu_vm_stats(true); 1751 } 1752 1753 int vmstat_refresh(struct ctl_table *table, int write, 1754 void __user *buffer, size_t *lenp, loff_t *ppos) 1755 { 1756 long val; 1757 int err; 1758 int i; 1759 1760 /* 1761 * The regular update, every sysctl_stat_interval, may come later 1762 * than expected: leaving a significant amount in per_cpu buckets. 1763 * This is particularly misleading when checking a quantity of HUGE 1764 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1765 * which can equally be echo'ed to or cat'ted from (by root), 1766 * can be used to update the stats just before reading them. 1767 * 1768 * Oh, and since global_zone_page_state() etc. are so careful to hide 1769 * transiently negative values, report an error here if any of 1770 * the stats is negative, so we know to go looking for imbalance. 1771 */ 1772 err = schedule_on_each_cpu(refresh_vm_stats); 1773 if (err) 1774 return err; 1775 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1776 val = atomic_long_read(&vm_zone_stat[i]); 1777 if (val < 0) { 1778 pr_warn("%s: %s %ld\n", 1779 __func__, zone_stat_name(i), val); 1780 err = -EINVAL; 1781 } 1782 } 1783 #ifdef CONFIG_NUMA 1784 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 1785 val = atomic_long_read(&vm_numa_stat[i]); 1786 if (val < 0) { 1787 pr_warn("%s: %s %ld\n", 1788 __func__, numa_stat_name(i), val); 1789 err = -EINVAL; 1790 } 1791 } 1792 #endif 1793 if (err) 1794 return err; 1795 if (write) 1796 *ppos += *lenp; 1797 else 1798 *lenp = 0; 1799 return 0; 1800 } 1801 #endif /* CONFIG_PROC_FS */ 1802 1803 static void vmstat_update(struct work_struct *w) 1804 { 1805 if (refresh_cpu_vm_stats(true)) { 1806 /* 1807 * Counters were updated so we expect more updates 1808 * to occur in the future. Keep on running the 1809 * update worker thread. 1810 */ 1811 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1812 this_cpu_ptr(&vmstat_work), 1813 round_jiffies_relative(sysctl_stat_interval)); 1814 } 1815 } 1816 1817 /* 1818 * Switch off vmstat processing and then fold all the remaining differentials 1819 * until the diffs stay at zero. The function is used by NOHZ and can only be 1820 * invoked when tick processing is not active. 1821 */ 1822 /* 1823 * Check if the diffs for a certain cpu indicate that 1824 * an update is needed. 1825 */ 1826 static bool need_update(int cpu) 1827 { 1828 struct zone *zone; 1829 1830 for_each_populated_zone(zone) { 1831 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1832 1833 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1834 #ifdef CONFIG_NUMA 1835 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); 1836 #endif 1837 1838 /* 1839 * The fast way of checking if there are any vmstat diffs. 1840 */ 1841 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS * 1842 sizeof(p->vm_stat_diff[0]))) 1843 return true; 1844 #ifdef CONFIG_NUMA 1845 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS * 1846 sizeof(p->vm_numa_stat_diff[0]))) 1847 return true; 1848 #endif 1849 } 1850 return false; 1851 } 1852 1853 /* 1854 * Switch off vmstat processing and then fold all the remaining differentials 1855 * until the diffs stay at zero. The function is used by NOHZ and can only be 1856 * invoked when tick processing is not active. 1857 */ 1858 void quiet_vmstat(void) 1859 { 1860 if (system_state != SYSTEM_RUNNING) 1861 return; 1862 1863 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1864 return; 1865 1866 if (!need_update(smp_processor_id())) 1867 return; 1868 1869 /* 1870 * Just refresh counters and do not care about the pending delayed 1871 * vmstat_update. It doesn't fire that often to matter and canceling 1872 * it would be too expensive from this path. 1873 * vmstat_shepherd will take care about that for us. 1874 */ 1875 refresh_cpu_vm_stats(false); 1876 } 1877 1878 /* 1879 * Shepherd worker thread that checks the 1880 * differentials of processors that have their worker 1881 * threads for vm statistics updates disabled because of 1882 * inactivity. 1883 */ 1884 static void vmstat_shepherd(struct work_struct *w); 1885 1886 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1887 1888 static void vmstat_shepherd(struct work_struct *w) 1889 { 1890 int cpu; 1891 1892 get_online_cpus(); 1893 /* Check processors whose vmstat worker threads have been disabled */ 1894 for_each_online_cpu(cpu) { 1895 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1896 1897 if (!delayed_work_pending(dw) && need_update(cpu)) 1898 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1899 } 1900 put_online_cpus(); 1901 1902 schedule_delayed_work(&shepherd, 1903 round_jiffies_relative(sysctl_stat_interval)); 1904 } 1905 1906 static void __init start_shepherd_timer(void) 1907 { 1908 int cpu; 1909 1910 for_each_possible_cpu(cpu) 1911 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1912 vmstat_update); 1913 1914 schedule_delayed_work(&shepherd, 1915 round_jiffies_relative(sysctl_stat_interval)); 1916 } 1917 1918 static void __init init_cpu_node_state(void) 1919 { 1920 int node; 1921 1922 for_each_online_node(node) { 1923 if (cpumask_weight(cpumask_of_node(node)) > 0) 1924 node_set_state(node, N_CPU); 1925 } 1926 } 1927 1928 static int vmstat_cpu_online(unsigned int cpu) 1929 { 1930 refresh_zone_stat_thresholds(); 1931 node_set_state(cpu_to_node(cpu), N_CPU); 1932 return 0; 1933 } 1934 1935 static int vmstat_cpu_down_prep(unsigned int cpu) 1936 { 1937 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1938 return 0; 1939 } 1940 1941 static int vmstat_cpu_dead(unsigned int cpu) 1942 { 1943 const struct cpumask *node_cpus; 1944 int node; 1945 1946 node = cpu_to_node(cpu); 1947 1948 refresh_zone_stat_thresholds(); 1949 node_cpus = cpumask_of_node(node); 1950 if (cpumask_weight(node_cpus) > 0) 1951 return 0; 1952 1953 node_clear_state(node, N_CPU); 1954 return 0; 1955 } 1956 1957 #endif 1958 1959 struct workqueue_struct *mm_percpu_wq; 1960 1961 void __init init_mm_internals(void) 1962 { 1963 int ret __maybe_unused; 1964 1965 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 1966 1967 #ifdef CONFIG_SMP 1968 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 1969 NULL, vmstat_cpu_dead); 1970 if (ret < 0) 1971 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 1972 1973 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 1974 vmstat_cpu_online, 1975 vmstat_cpu_down_prep); 1976 if (ret < 0) 1977 pr_err("vmstat: failed to register 'online' hotplug state\n"); 1978 1979 get_online_cpus(); 1980 init_cpu_node_state(); 1981 put_online_cpus(); 1982 1983 start_shepherd_timer(); 1984 #endif 1985 #ifdef CONFIG_PROC_FS 1986 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 1987 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 1988 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 1989 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 1990 #endif 1991 } 1992 1993 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1994 1995 /* 1996 * Return an index indicating how much of the available free memory is 1997 * unusable for an allocation of the requested size. 1998 */ 1999 static int unusable_free_index(unsigned int order, 2000 struct contig_page_info *info) 2001 { 2002 /* No free memory is interpreted as all free memory is unusable */ 2003 if (info->free_pages == 0) 2004 return 1000; 2005 2006 /* 2007 * Index should be a value between 0 and 1. Return a value to 3 2008 * decimal places. 2009 * 2010 * 0 => no fragmentation 2011 * 1 => high fragmentation 2012 */ 2013 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2014 2015 } 2016 2017 static void unusable_show_print(struct seq_file *m, 2018 pg_data_t *pgdat, struct zone *zone) 2019 { 2020 unsigned int order; 2021 int index; 2022 struct contig_page_info info; 2023 2024 seq_printf(m, "Node %d, zone %8s ", 2025 pgdat->node_id, 2026 zone->name); 2027 for (order = 0; order < MAX_ORDER; ++order) { 2028 fill_contig_page_info(zone, order, &info); 2029 index = unusable_free_index(order, &info); 2030 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2031 } 2032 2033 seq_putc(m, '\n'); 2034 } 2035 2036 /* 2037 * Display unusable free space index 2038 * 2039 * The unusable free space index measures how much of the available free 2040 * memory cannot be used to satisfy an allocation of a given size and is a 2041 * value between 0 and 1. The higher the value, the more of free memory is 2042 * unusable and by implication, the worse the external fragmentation is. This 2043 * can be expressed as a percentage by multiplying by 100. 2044 */ 2045 static int unusable_show(struct seq_file *m, void *arg) 2046 { 2047 pg_data_t *pgdat = (pg_data_t *)arg; 2048 2049 /* check memoryless node */ 2050 if (!node_state(pgdat->node_id, N_MEMORY)) 2051 return 0; 2052 2053 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2054 2055 return 0; 2056 } 2057 2058 static const struct seq_operations unusable_op = { 2059 .start = frag_start, 2060 .next = frag_next, 2061 .stop = frag_stop, 2062 .show = unusable_show, 2063 }; 2064 2065 static int unusable_open(struct inode *inode, struct file *file) 2066 { 2067 return seq_open(file, &unusable_op); 2068 } 2069 2070 static const struct file_operations unusable_file_ops = { 2071 .open = unusable_open, 2072 .read = seq_read, 2073 .llseek = seq_lseek, 2074 .release = seq_release, 2075 }; 2076 2077 static void extfrag_show_print(struct seq_file *m, 2078 pg_data_t *pgdat, struct zone *zone) 2079 { 2080 unsigned int order; 2081 int index; 2082 2083 /* Alloc on stack as interrupts are disabled for zone walk */ 2084 struct contig_page_info info; 2085 2086 seq_printf(m, "Node %d, zone %8s ", 2087 pgdat->node_id, 2088 zone->name); 2089 for (order = 0; order < MAX_ORDER; ++order) { 2090 fill_contig_page_info(zone, order, &info); 2091 index = __fragmentation_index(order, &info); 2092 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2093 } 2094 2095 seq_putc(m, '\n'); 2096 } 2097 2098 /* 2099 * Display fragmentation index for orders that allocations would fail for 2100 */ 2101 static int extfrag_show(struct seq_file *m, void *arg) 2102 { 2103 pg_data_t *pgdat = (pg_data_t *)arg; 2104 2105 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2106 2107 return 0; 2108 } 2109 2110 static const struct seq_operations extfrag_op = { 2111 .start = frag_start, 2112 .next = frag_next, 2113 .stop = frag_stop, 2114 .show = extfrag_show, 2115 }; 2116 2117 static int extfrag_open(struct inode *inode, struct file *file) 2118 { 2119 return seq_open(file, &extfrag_op); 2120 } 2121 2122 static const struct file_operations extfrag_file_ops = { 2123 .open = extfrag_open, 2124 .read = seq_read, 2125 .llseek = seq_lseek, 2126 .release = seq_release, 2127 }; 2128 2129 static int __init extfrag_debug_init(void) 2130 { 2131 struct dentry *extfrag_debug_root; 2132 2133 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2134 2135 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2136 &unusable_file_ops); 2137 2138 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2139 &extfrag_file_ops); 2140 2141 return 0; 2142 } 2143 2144 module_init(extfrag_debug_init); 2145 #endif 2146