1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/debugfs.h> 23 #include <linux/sched.h> 24 #include <linux/math64.h> 25 #include <linux/writeback.h> 26 #include <linux/compaction.h> 27 #include <linux/mm_inline.h> 28 #include <linux/page_ext.h> 29 #include <linux/page_owner.h> 30 31 #include "internal.h" 32 33 #ifdef CONFIG_VM_EVENT_COUNTERS 34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 35 EXPORT_PER_CPU_SYMBOL(vm_event_states); 36 37 static void sum_vm_events(unsigned long *ret) 38 { 39 int cpu; 40 int i; 41 42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 43 44 for_each_online_cpu(cpu) { 45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 46 47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 48 ret[i] += this->event[i]; 49 } 50 } 51 52 /* 53 * Accumulate the vm event counters across all CPUs. 54 * The result is unavoidably approximate - it can change 55 * during and after execution of this function. 56 */ 57 void all_vm_events(unsigned long *ret) 58 { 59 get_online_cpus(); 60 sum_vm_events(ret); 61 put_online_cpus(); 62 } 63 EXPORT_SYMBOL_GPL(all_vm_events); 64 65 /* 66 * Fold the foreign cpu events into our own. 67 * 68 * This is adding to the events on one processor 69 * but keeps the global counts constant. 70 */ 71 void vm_events_fold_cpu(int cpu) 72 { 73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 74 int i; 75 76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 77 count_vm_events(i, fold_state->event[i]); 78 fold_state->event[i] = 0; 79 } 80 } 81 82 #endif /* CONFIG_VM_EVENT_COUNTERS */ 83 84 /* 85 * Manage combined zone based / global counters 86 * 87 * vm_stat contains the global counters 88 */ 89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 90 EXPORT_SYMBOL(vm_stat); 91 92 #ifdef CONFIG_SMP 93 94 int calculate_pressure_threshold(struct zone *zone) 95 { 96 int threshold; 97 int watermark_distance; 98 99 /* 100 * As vmstats are not up to date, there is drift between the estimated 101 * and real values. For high thresholds and a high number of CPUs, it 102 * is possible for the min watermark to be breached while the estimated 103 * value looks fine. The pressure threshold is a reduced value such 104 * that even the maximum amount of drift will not accidentally breach 105 * the min watermark 106 */ 107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 108 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 109 110 /* 111 * Maximum threshold is 125 112 */ 113 threshold = min(125, threshold); 114 115 return threshold; 116 } 117 118 int calculate_normal_threshold(struct zone *zone) 119 { 120 int threshold; 121 int mem; /* memory in 128 MB units */ 122 123 /* 124 * The threshold scales with the number of processors and the amount 125 * of memory per zone. More memory means that we can defer updates for 126 * longer, more processors could lead to more contention. 127 * fls() is used to have a cheap way of logarithmic scaling. 128 * 129 * Some sample thresholds: 130 * 131 * Threshold Processors (fls) Zonesize fls(mem+1) 132 * ------------------------------------------------------------------ 133 * 8 1 1 0.9-1 GB 4 134 * 16 2 2 0.9-1 GB 4 135 * 20 2 2 1-2 GB 5 136 * 24 2 2 2-4 GB 6 137 * 28 2 2 4-8 GB 7 138 * 32 2 2 8-16 GB 8 139 * 4 2 2 <128M 1 140 * 30 4 3 2-4 GB 5 141 * 48 4 3 8-16 GB 8 142 * 32 8 4 1-2 GB 4 143 * 32 8 4 0.9-1GB 4 144 * 10 16 5 <128M 1 145 * 40 16 5 900M 4 146 * 70 64 7 2-4 GB 5 147 * 84 64 7 4-8 GB 6 148 * 108 512 9 4-8 GB 6 149 * 125 1024 10 8-16 GB 8 150 * 125 1024 10 16-32 GB 9 151 */ 152 153 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 154 155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 156 157 /* 158 * Maximum threshold is 125 159 */ 160 threshold = min(125, threshold); 161 162 return threshold; 163 } 164 165 /* 166 * Refresh the thresholds for each zone. 167 */ 168 void refresh_zone_stat_thresholds(void) 169 { 170 struct zone *zone; 171 int cpu; 172 int threshold; 173 174 for_each_populated_zone(zone) { 175 unsigned long max_drift, tolerate_drift; 176 177 threshold = calculate_normal_threshold(zone); 178 179 for_each_online_cpu(cpu) 180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 181 = threshold; 182 183 /* 184 * Only set percpu_drift_mark if there is a danger that 185 * NR_FREE_PAGES reports the low watermark is ok when in fact 186 * the min watermark could be breached by an allocation 187 */ 188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 189 max_drift = num_online_cpus() * threshold; 190 if (max_drift > tolerate_drift) 191 zone->percpu_drift_mark = high_wmark_pages(zone) + 192 max_drift; 193 } 194 } 195 196 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 197 int (*calculate_pressure)(struct zone *)) 198 { 199 struct zone *zone; 200 int cpu; 201 int threshold; 202 int i; 203 204 for (i = 0; i < pgdat->nr_zones; i++) { 205 zone = &pgdat->node_zones[i]; 206 if (!zone->percpu_drift_mark) 207 continue; 208 209 threshold = (*calculate_pressure)(zone); 210 for_each_online_cpu(cpu) 211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 212 = threshold; 213 } 214 } 215 216 /* 217 * For use when we know that interrupts are disabled, 218 * or when we know that preemption is disabled and that 219 * particular counter cannot be updated from interrupt context. 220 */ 221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 222 long delta) 223 { 224 struct per_cpu_pageset __percpu *pcp = zone->pageset; 225 s8 __percpu *p = pcp->vm_stat_diff + item; 226 long x; 227 long t; 228 229 x = delta + __this_cpu_read(*p); 230 231 t = __this_cpu_read(pcp->stat_threshold); 232 233 if (unlikely(x > t || x < -t)) { 234 zone_page_state_add(x, zone, item); 235 x = 0; 236 } 237 __this_cpu_write(*p, x); 238 } 239 EXPORT_SYMBOL(__mod_zone_page_state); 240 241 /* 242 * Optimized increment and decrement functions. 243 * 244 * These are only for a single page and therefore can take a struct page * 245 * argument instead of struct zone *. This allows the inclusion of the code 246 * generated for page_zone(page) into the optimized functions. 247 * 248 * No overflow check is necessary and therefore the differential can be 249 * incremented or decremented in place which may allow the compilers to 250 * generate better code. 251 * The increment or decrement is known and therefore one boundary check can 252 * be omitted. 253 * 254 * NOTE: These functions are very performance sensitive. Change only 255 * with care. 256 * 257 * Some processors have inc/dec instructions that are atomic vs an interrupt. 258 * However, the code must first determine the differential location in a zone 259 * based on the processor number and then inc/dec the counter. There is no 260 * guarantee without disabling preemption that the processor will not change 261 * in between and therefore the atomicity vs. interrupt cannot be exploited 262 * in a useful way here. 263 */ 264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 265 { 266 struct per_cpu_pageset __percpu *pcp = zone->pageset; 267 s8 __percpu *p = pcp->vm_stat_diff + item; 268 s8 v, t; 269 270 v = __this_cpu_inc_return(*p); 271 t = __this_cpu_read(pcp->stat_threshold); 272 if (unlikely(v > t)) { 273 s8 overstep = t >> 1; 274 275 zone_page_state_add(v + overstep, zone, item); 276 __this_cpu_write(*p, -overstep); 277 } 278 } 279 280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 281 { 282 __inc_zone_state(page_zone(page), item); 283 } 284 EXPORT_SYMBOL(__inc_zone_page_state); 285 286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 287 { 288 struct per_cpu_pageset __percpu *pcp = zone->pageset; 289 s8 __percpu *p = pcp->vm_stat_diff + item; 290 s8 v, t; 291 292 v = __this_cpu_dec_return(*p); 293 t = __this_cpu_read(pcp->stat_threshold); 294 if (unlikely(v < - t)) { 295 s8 overstep = t >> 1; 296 297 zone_page_state_add(v - overstep, zone, item); 298 __this_cpu_write(*p, overstep); 299 } 300 } 301 302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 303 { 304 __dec_zone_state(page_zone(page), item); 305 } 306 EXPORT_SYMBOL(__dec_zone_page_state); 307 308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 309 /* 310 * If we have cmpxchg_local support then we do not need to incur the overhead 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 312 * 313 * mod_state() modifies the zone counter state through atomic per cpu 314 * operations. 315 * 316 * Overstep mode specifies how overstep should handled: 317 * 0 No overstepping 318 * 1 Overstepping half of threshold 319 * -1 Overstepping minus half of threshold 320 */ 321 static inline void mod_state(struct zone *zone, enum zone_stat_item item, 322 long delta, int overstep_mode) 323 { 324 struct per_cpu_pageset __percpu *pcp = zone->pageset; 325 s8 __percpu *p = pcp->vm_stat_diff + item; 326 long o, n, t, z; 327 328 do { 329 z = 0; /* overflow to zone counters */ 330 331 /* 332 * The fetching of the stat_threshold is racy. We may apply 333 * a counter threshold to the wrong the cpu if we get 334 * rescheduled while executing here. However, the next 335 * counter update will apply the threshold again and 336 * therefore bring the counter under the threshold again. 337 * 338 * Most of the time the thresholds are the same anyways 339 * for all cpus in a zone. 340 */ 341 t = this_cpu_read(pcp->stat_threshold); 342 343 o = this_cpu_read(*p); 344 n = delta + o; 345 346 if (n > t || n < -t) { 347 int os = overstep_mode * (t >> 1) ; 348 349 /* Overflow must be added to zone counters */ 350 z = n + os; 351 n = -os; 352 } 353 } while (this_cpu_cmpxchg(*p, o, n) != o); 354 355 if (z) 356 zone_page_state_add(z, zone, item); 357 } 358 359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 360 long delta) 361 { 362 mod_state(zone, item, delta, 0); 363 } 364 EXPORT_SYMBOL(mod_zone_page_state); 365 366 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 367 { 368 mod_state(zone, item, 1, 1); 369 } 370 371 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 372 { 373 mod_state(page_zone(page), item, 1, 1); 374 } 375 EXPORT_SYMBOL(inc_zone_page_state); 376 377 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 378 { 379 mod_state(page_zone(page), item, -1, -1); 380 } 381 EXPORT_SYMBOL(dec_zone_page_state); 382 #else 383 /* 384 * Use interrupt disable to serialize counter updates 385 */ 386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 387 long delta) 388 { 389 unsigned long flags; 390 391 local_irq_save(flags); 392 __mod_zone_page_state(zone, item, delta); 393 local_irq_restore(flags); 394 } 395 EXPORT_SYMBOL(mod_zone_page_state); 396 397 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 398 { 399 unsigned long flags; 400 401 local_irq_save(flags); 402 __inc_zone_state(zone, item); 403 local_irq_restore(flags); 404 } 405 406 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 407 { 408 unsigned long flags; 409 struct zone *zone; 410 411 zone = page_zone(page); 412 local_irq_save(flags); 413 __inc_zone_state(zone, item); 414 local_irq_restore(flags); 415 } 416 EXPORT_SYMBOL(inc_zone_page_state); 417 418 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 419 { 420 unsigned long flags; 421 422 local_irq_save(flags); 423 __dec_zone_page_state(page, item); 424 local_irq_restore(flags); 425 } 426 EXPORT_SYMBOL(dec_zone_page_state); 427 #endif 428 429 430 /* 431 * Fold a differential into the global counters. 432 * Returns the number of counters updated. 433 */ 434 static int fold_diff(int *diff) 435 { 436 int i; 437 int changes = 0; 438 439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 440 if (diff[i]) { 441 atomic_long_add(diff[i], &vm_stat[i]); 442 changes++; 443 } 444 return changes; 445 } 446 447 /* 448 * Update the zone counters for the current cpu. 449 * 450 * Note that refresh_cpu_vm_stats strives to only access 451 * node local memory. The per cpu pagesets on remote zones are placed 452 * in the memory local to the processor using that pageset. So the 453 * loop over all zones will access a series of cachelines local to 454 * the processor. 455 * 456 * The call to zone_page_state_add updates the cachelines with the 457 * statistics in the remote zone struct as well as the global cachelines 458 * with the global counters. These could cause remote node cache line 459 * bouncing and will have to be only done when necessary. 460 * 461 * The function returns the number of global counters updated. 462 */ 463 static int refresh_cpu_vm_stats(bool do_pagesets) 464 { 465 struct zone *zone; 466 int i; 467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 468 int changes = 0; 469 470 for_each_populated_zone(zone) { 471 struct per_cpu_pageset __percpu *p = zone->pageset; 472 473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 474 int v; 475 476 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 477 if (v) { 478 479 atomic_long_add(v, &zone->vm_stat[i]); 480 global_diff[i] += v; 481 #ifdef CONFIG_NUMA 482 /* 3 seconds idle till flush */ 483 __this_cpu_write(p->expire, 3); 484 #endif 485 } 486 } 487 #ifdef CONFIG_NUMA 488 if (do_pagesets) { 489 cond_resched(); 490 /* 491 * Deal with draining the remote pageset of this 492 * processor 493 * 494 * Check if there are pages remaining in this pageset 495 * if not then there is nothing to expire. 496 */ 497 if (!__this_cpu_read(p->expire) || 498 !__this_cpu_read(p->pcp.count)) 499 continue; 500 501 /* 502 * We never drain zones local to this processor. 503 */ 504 if (zone_to_nid(zone) == numa_node_id()) { 505 __this_cpu_write(p->expire, 0); 506 continue; 507 } 508 509 if (__this_cpu_dec_return(p->expire)) 510 continue; 511 512 if (__this_cpu_read(p->pcp.count)) { 513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 514 changes++; 515 } 516 } 517 #endif 518 } 519 changes += fold_diff(global_diff); 520 return changes; 521 } 522 523 /* 524 * Fold the data for an offline cpu into the global array. 525 * There cannot be any access by the offline cpu and therefore 526 * synchronization is simplified. 527 */ 528 void cpu_vm_stats_fold(int cpu) 529 { 530 struct zone *zone; 531 int i; 532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 533 534 for_each_populated_zone(zone) { 535 struct per_cpu_pageset *p; 536 537 p = per_cpu_ptr(zone->pageset, cpu); 538 539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 540 if (p->vm_stat_diff[i]) { 541 int v; 542 543 v = p->vm_stat_diff[i]; 544 p->vm_stat_diff[i] = 0; 545 atomic_long_add(v, &zone->vm_stat[i]); 546 global_diff[i] += v; 547 } 548 } 549 550 fold_diff(global_diff); 551 } 552 553 /* 554 * this is only called if !populated_zone(zone), which implies no other users of 555 * pset->vm_stat_diff[] exsist. 556 */ 557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 558 { 559 int i; 560 561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 562 if (pset->vm_stat_diff[i]) { 563 int v = pset->vm_stat_diff[i]; 564 pset->vm_stat_diff[i] = 0; 565 atomic_long_add(v, &zone->vm_stat[i]); 566 atomic_long_add(v, &vm_stat[i]); 567 } 568 } 569 #endif 570 571 #ifdef CONFIG_NUMA 572 /* 573 * zonelist = the list of zones passed to the allocator 574 * z = the zone from which the allocation occurred. 575 * 576 * Must be called with interrupts disabled. 577 * 578 * When __GFP_OTHER_NODE is set assume the node of the preferred 579 * zone is the local node. This is useful for daemons who allocate 580 * memory on behalf of other processes. 581 */ 582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 583 { 584 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 585 __inc_zone_state(z, NUMA_HIT); 586 } else { 587 __inc_zone_state(z, NUMA_MISS); 588 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 589 } 590 if (z->node == ((flags & __GFP_OTHER_NODE) ? 591 preferred_zone->node : numa_node_id())) 592 __inc_zone_state(z, NUMA_LOCAL); 593 else 594 __inc_zone_state(z, NUMA_OTHER); 595 } 596 597 /* 598 * Determine the per node value of a stat item. 599 */ 600 unsigned long node_page_state(int node, enum zone_stat_item item) 601 { 602 struct zone *zones = NODE_DATA(node)->node_zones; 603 604 return 605 #ifdef CONFIG_ZONE_DMA 606 zone_page_state(&zones[ZONE_DMA], item) + 607 #endif 608 #ifdef CONFIG_ZONE_DMA32 609 zone_page_state(&zones[ZONE_DMA32], item) + 610 #endif 611 #ifdef CONFIG_HIGHMEM 612 zone_page_state(&zones[ZONE_HIGHMEM], item) + 613 #endif 614 zone_page_state(&zones[ZONE_NORMAL], item) + 615 zone_page_state(&zones[ZONE_MOVABLE], item); 616 } 617 618 #endif 619 620 #ifdef CONFIG_COMPACTION 621 622 struct contig_page_info { 623 unsigned long free_pages; 624 unsigned long free_blocks_total; 625 unsigned long free_blocks_suitable; 626 }; 627 628 /* 629 * Calculate the number of free pages in a zone, how many contiguous 630 * pages are free and how many are large enough to satisfy an allocation of 631 * the target size. Note that this function makes no attempt to estimate 632 * how many suitable free blocks there *might* be if MOVABLE pages were 633 * migrated. Calculating that is possible, but expensive and can be 634 * figured out from userspace 635 */ 636 static void fill_contig_page_info(struct zone *zone, 637 unsigned int suitable_order, 638 struct contig_page_info *info) 639 { 640 unsigned int order; 641 642 info->free_pages = 0; 643 info->free_blocks_total = 0; 644 info->free_blocks_suitable = 0; 645 646 for (order = 0; order < MAX_ORDER; order++) { 647 unsigned long blocks; 648 649 /* Count number of free blocks */ 650 blocks = zone->free_area[order].nr_free; 651 info->free_blocks_total += blocks; 652 653 /* Count free base pages */ 654 info->free_pages += blocks << order; 655 656 /* Count the suitable free blocks */ 657 if (order >= suitable_order) 658 info->free_blocks_suitable += blocks << 659 (order - suitable_order); 660 } 661 } 662 663 /* 664 * A fragmentation index only makes sense if an allocation of a requested 665 * size would fail. If that is true, the fragmentation index indicates 666 * whether external fragmentation or a lack of memory was the problem. 667 * The value can be used to determine if page reclaim or compaction 668 * should be used 669 */ 670 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 671 { 672 unsigned long requested = 1UL << order; 673 674 if (!info->free_blocks_total) 675 return 0; 676 677 /* Fragmentation index only makes sense when a request would fail */ 678 if (info->free_blocks_suitable) 679 return -1000; 680 681 /* 682 * Index is between 0 and 1 so return within 3 decimal places 683 * 684 * 0 => allocation would fail due to lack of memory 685 * 1 => allocation would fail due to fragmentation 686 */ 687 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 688 } 689 690 /* Same as __fragmentation index but allocs contig_page_info on stack */ 691 int fragmentation_index(struct zone *zone, unsigned int order) 692 { 693 struct contig_page_info info; 694 695 fill_contig_page_info(zone, order, &info); 696 return __fragmentation_index(order, &info); 697 } 698 #endif 699 700 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 701 #ifdef CONFIG_ZONE_DMA 702 #define TEXT_FOR_DMA(xx) xx "_dma", 703 #else 704 #define TEXT_FOR_DMA(xx) 705 #endif 706 707 #ifdef CONFIG_ZONE_DMA32 708 #define TEXT_FOR_DMA32(xx) xx "_dma32", 709 #else 710 #define TEXT_FOR_DMA32(xx) 711 #endif 712 713 #ifdef CONFIG_HIGHMEM 714 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 715 #else 716 #define TEXT_FOR_HIGHMEM(xx) 717 #endif 718 719 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 720 TEXT_FOR_HIGHMEM(xx) xx "_movable", 721 722 const char * const vmstat_text[] = { 723 /* enum zone_stat_item countes */ 724 "nr_free_pages", 725 "nr_alloc_batch", 726 "nr_inactive_anon", 727 "nr_active_anon", 728 "nr_inactive_file", 729 "nr_active_file", 730 "nr_unevictable", 731 "nr_mlock", 732 "nr_anon_pages", 733 "nr_mapped", 734 "nr_file_pages", 735 "nr_dirty", 736 "nr_writeback", 737 "nr_slab_reclaimable", 738 "nr_slab_unreclaimable", 739 "nr_page_table_pages", 740 "nr_kernel_stack", 741 "nr_unstable", 742 "nr_bounce", 743 "nr_vmscan_write", 744 "nr_vmscan_immediate_reclaim", 745 "nr_writeback_temp", 746 "nr_isolated_anon", 747 "nr_isolated_file", 748 "nr_shmem", 749 "nr_dirtied", 750 "nr_written", 751 "nr_pages_scanned", 752 753 #ifdef CONFIG_NUMA 754 "numa_hit", 755 "numa_miss", 756 "numa_foreign", 757 "numa_interleave", 758 "numa_local", 759 "numa_other", 760 #endif 761 "workingset_refault", 762 "workingset_activate", 763 "workingset_nodereclaim", 764 "nr_anon_transparent_hugepages", 765 "nr_free_cma", 766 767 /* enum writeback_stat_item counters */ 768 "nr_dirty_threshold", 769 "nr_dirty_background_threshold", 770 771 #ifdef CONFIG_VM_EVENT_COUNTERS 772 /* enum vm_event_item counters */ 773 "pgpgin", 774 "pgpgout", 775 "pswpin", 776 "pswpout", 777 778 TEXTS_FOR_ZONES("pgalloc") 779 780 "pgfree", 781 "pgactivate", 782 "pgdeactivate", 783 784 "pgfault", 785 "pgmajfault", 786 "pglazyfreed", 787 788 TEXTS_FOR_ZONES("pgrefill") 789 TEXTS_FOR_ZONES("pgsteal_kswapd") 790 TEXTS_FOR_ZONES("pgsteal_direct") 791 TEXTS_FOR_ZONES("pgscan_kswapd") 792 TEXTS_FOR_ZONES("pgscan_direct") 793 "pgscan_direct_throttle", 794 795 #ifdef CONFIG_NUMA 796 "zone_reclaim_failed", 797 #endif 798 "pginodesteal", 799 "slabs_scanned", 800 "kswapd_inodesteal", 801 "kswapd_low_wmark_hit_quickly", 802 "kswapd_high_wmark_hit_quickly", 803 "pageoutrun", 804 "allocstall", 805 806 "pgrotated", 807 808 "drop_pagecache", 809 "drop_slab", 810 811 #ifdef CONFIG_NUMA_BALANCING 812 "numa_pte_updates", 813 "numa_huge_pte_updates", 814 "numa_hint_faults", 815 "numa_hint_faults_local", 816 "numa_pages_migrated", 817 #endif 818 #ifdef CONFIG_MIGRATION 819 "pgmigrate_success", 820 "pgmigrate_fail", 821 #endif 822 #ifdef CONFIG_COMPACTION 823 "compact_migrate_scanned", 824 "compact_free_scanned", 825 "compact_isolated", 826 "compact_stall", 827 "compact_fail", 828 "compact_success", 829 #endif 830 831 #ifdef CONFIG_HUGETLB_PAGE 832 "htlb_buddy_alloc_success", 833 "htlb_buddy_alloc_fail", 834 #endif 835 "unevictable_pgs_culled", 836 "unevictable_pgs_scanned", 837 "unevictable_pgs_rescued", 838 "unevictable_pgs_mlocked", 839 "unevictable_pgs_munlocked", 840 "unevictable_pgs_cleared", 841 "unevictable_pgs_stranded", 842 843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 844 "thp_fault_alloc", 845 "thp_fault_fallback", 846 "thp_collapse_alloc", 847 "thp_collapse_alloc_failed", 848 "thp_split_page", 849 "thp_split_page_failed", 850 "thp_split_pmd", 851 "thp_zero_page_alloc", 852 "thp_zero_page_alloc_failed", 853 #endif 854 #ifdef CONFIG_MEMORY_BALLOON 855 "balloon_inflate", 856 "balloon_deflate", 857 #ifdef CONFIG_BALLOON_COMPACTION 858 "balloon_migrate", 859 #endif 860 #endif /* CONFIG_MEMORY_BALLOON */ 861 #ifdef CONFIG_DEBUG_TLBFLUSH 862 #ifdef CONFIG_SMP 863 "nr_tlb_remote_flush", 864 "nr_tlb_remote_flush_received", 865 #endif /* CONFIG_SMP */ 866 "nr_tlb_local_flush_all", 867 "nr_tlb_local_flush_one", 868 #endif /* CONFIG_DEBUG_TLBFLUSH */ 869 870 #ifdef CONFIG_DEBUG_VM_VMACACHE 871 "vmacache_find_calls", 872 "vmacache_find_hits", 873 "vmacache_full_flushes", 874 #endif 875 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 876 }; 877 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 878 879 880 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 881 defined(CONFIG_PROC_FS) 882 static void *frag_start(struct seq_file *m, loff_t *pos) 883 { 884 pg_data_t *pgdat; 885 loff_t node = *pos; 886 887 for (pgdat = first_online_pgdat(); 888 pgdat && node; 889 pgdat = next_online_pgdat(pgdat)) 890 --node; 891 892 return pgdat; 893 } 894 895 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 896 { 897 pg_data_t *pgdat = (pg_data_t *)arg; 898 899 (*pos)++; 900 return next_online_pgdat(pgdat); 901 } 902 903 static void frag_stop(struct seq_file *m, void *arg) 904 { 905 } 906 907 /* Walk all the zones in a node and print using a callback */ 908 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 909 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 910 { 911 struct zone *zone; 912 struct zone *node_zones = pgdat->node_zones; 913 unsigned long flags; 914 915 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 916 if (!populated_zone(zone)) 917 continue; 918 919 spin_lock_irqsave(&zone->lock, flags); 920 print(m, pgdat, zone); 921 spin_unlock_irqrestore(&zone->lock, flags); 922 } 923 } 924 #endif 925 926 #ifdef CONFIG_PROC_FS 927 static char * const migratetype_names[MIGRATE_TYPES] = { 928 "Unmovable", 929 "Movable", 930 "Reclaimable", 931 "HighAtomic", 932 #ifdef CONFIG_CMA 933 "CMA", 934 #endif 935 #ifdef CONFIG_MEMORY_ISOLATION 936 "Isolate", 937 #endif 938 }; 939 940 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 941 struct zone *zone) 942 { 943 int order; 944 945 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 946 for (order = 0; order < MAX_ORDER; ++order) 947 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 948 seq_putc(m, '\n'); 949 } 950 951 /* 952 * This walks the free areas for each zone. 953 */ 954 static int frag_show(struct seq_file *m, void *arg) 955 { 956 pg_data_t *pgdat = (pg_data_t *)arg; 957 walk_zones_in_node(m, pgdat, frag_show_print); 958 return 0; 959 } 960 961 static void pagetypeinfo_showfree_print(struct seq_file *m, 962 pg_data_t *pgdat, struct zone *zone) 963 { 964 int order, mtype; 965 966 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 967 seq_printf(m, "Node %4d, zone %8s, type %12s ", 968 pgdat->node_id, 969 zone->name, 970 migratetype_names[mtype]); 971 for (order = 0; order < MAX_ORDER; ++order) { 972 unsigned long freecount = 0; 973 struct free_area *area; 974 struct list_head *curr; 975 976 area = &(zone->free_area[order]); 977 978 list_for_each(curr, &area->free_list[mtype]) 979 freecount++; 980 seq_printf(m, "%6lu ", freecount); 981 } 982 seq_putc(m, '\n'); 983 } 984 } 985 986 /* Print out the free pages at each order for each migatetype */ 987 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 988 { 989 int order; 990 pg_data_t *pgdat = (pg_data_t *)arg; 991 992 /* Print header */ 993 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 994 for (order = 0; order < MAX_ORDER; ++order) 995 seq_printf(m, "%6d ", order); 996 seq_putc(m, '\n'); 997 998 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 999 1000 return 0; 1001 } 1002 1003 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1004 pg_data_t *pgdat, struct zone *zone) 1005 { 1006 int mtype; 1007 unsigned long pfn; 1008 unsigned long start_pfn = zone->zone_start_pfn; 1009 unsigned long end_pfn = zone_end_pfn(zone); 1010 unsigned long count[MIGRATE_TYPES] = { 0, }; 1011 1012 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1013 struct page *page; 1014 1015 if (!pfn_valid(pfn)) 1016 continue; 1017 1018 page = pfn_to_page(pfn); 1019 1020 /* Watch for unexpected holes punched in the memmap */ 1021 if (!memmap_valid_within(pfn, page, zone)) 1022 continue; 1023 1024 mtype = get_pageblock_migratetype(page); 1025 1026 if (mtype < MIGRATE_TYPES) 1027 count[mtype]++; 1028 } 1029 1030 /* Print counts */ 1031 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1032 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1033 seq_printf(m, "%12lu ", count[mtype]); 1034 seq_putc(m, '\n'); 1035 } 1036 1037 /* Print out the free pages at each order for each migratetype */ 1038 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1039 { 1040 int mtype; 1041 pg_data_t *pgdat = (pg_data_t *)arg; 1042 1043 seq_printf(m, "\n%-23s", "Number of blocks type "); 1044 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1045 seq_printf(m, "%12s ", migratetype_names[mtype]); 1046 seq_putc(m, '\n'); 1047 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 1048 1049 return 0; 1050 } 1051 1052 #ifdef CONFIG_PAGE_OWNER 1053 static void pagetypeinfo_showmixedcount_print(struct seq_file *m, 1054 pg_data_t *pgdat, 1055 struct zone *zone) 1056 { 1057 struct page *page; 1058 struct page_ext *page_ext; 1059 unsigned long pfn = zone->zone_start_pfn, block_end_pfn; 1060 unsigned long end_pfn = pfn + zone->spanned_pages; 1061 unsigned long count[MIGRATE_TYPES] = { 0, }; 1062 int pageblock_mt, page_mt; 1063 int i; 1064 1065 /* Scan block by block. First and last block may be incomplete */ 1066 pfn = zone->zone_start_pfn; 1067 1068 /* 1069 * Walk the zone in pageblock_nr_pages steps. If a page block spans 1070 * a zone boundary, it will be double counted between zones. This does 1071 * not matter as the mixed block count will still be correct 1072 */ 1073 for (; pfn < end_pfn; ) { 1074 if (!pfn_valid(pfn)) { 1075 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES); 1076 continue; 1077 } 1078 1079 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 1080 block_end_pfn = min(block_end_pfn, end_pfn); 1081 1082 page = pfn_to_page(pfn); 1083 pageblock_mt = get_pfnblock_migratetype(page, pfn); 1084 1085 for (; pfn < block_end_pfn; pfn++) { 1086 if (!pfn_valid_within(pfn)) 1087 continue; 1088 1089 page = pfn_to_page(pfn); 1090 if (PageBuddy(page)) { 1091 pfn += (1UL << page_order(page)) - 1; 1092 continue; 1093 } 1094 1095 if (PageReserved(page)) 1096 continue; 1097 1098 page_ext = lookup_page_ext(page); 1099 1100 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) 1101 continue; 1102 1103 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask); 1104 if (pageblock_mt != page_mt) { 1105 if (is_migrate_cma(pageblock_mt)) 1106 count[MIGRATE_MOVABLE]++; 1107 else 1108 count[pageblock_mt]++; 1109 1110 pfn = block_end_pfn; 1111 break; 1112 } 1113 pfn += (1UL << page_ext->order) - 1; 1114 } 1115 } 1116 1117 /* Print counts */ 1118 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1119 for (i = 0; i < MIGRATE_TYPES; i++) 1120 seq_printf(m, "%12lu ", count[i]); 1121 seq_putc(m, '\n'); 1122 } 1123 #endif /* CONFIG_PAGE_OWNER */ 1124 1125 /* 1126 * Print out the number of pageblocks for each migratetype that contain pages 1127 * of other types. This gives an indication of how well fallbacks are being 1128 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1129 * to determine what is going on 1130 */ 1131 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1132 { 1133 #ifdef CONFIG_PAGE_OWNER 1134 int mtype; 1135 1136 if (!page_owner_inited) 1137 return; 1138 1139 drain_all_pages(NULL); 1140 1141 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1142 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1143 seq_printf(m, "%12s ", migratetype_names[mtype]); 1144 seq_putc(m, '\n'); 1145 1146 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print); 1147 #endif /* CONFIG_PAGE_OWNER */ 1148 } 1149 1150 /* 1151 * This prints out statistics in relation to grouping pages by mobility. 1152 * It is expensive to collect so do not constantly read the file. 1153 */ 1154 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1155 { 1156 pg_data_t *pgdat = (pg_data_t *)arg; 1157 1158 /* check memoryless node */ 1159 if (!node_state(pgdat->node_id, N_MEMORY)) 1160 return 0; 1161 1162 seq_printf(m, "Page block order: %d\n", pageblock_order); 1163 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1164 seq_putc(m, '\n'); 1165 pagetypeinfo_showfree(m, pgdat); 1166 pagetypeinfo_showblockcount(m, pgdat); 1167 pagetypeinfo_showmixedcount(m, pgdat); 1168 1169 return 0; 1170 } 1171 1172 static const struct seq_operations fragmentation_op = { 1173 .start = frag_start, 1174 .next = frag_next, 1175 .stop = frag_stop, 1176 .show = frag_show, 1177 }; 1178 1179 static int fragmentation_open(struct inode *inode, struct file *file) 1180 { 1181 return seq_open(file, &fragmentation_op); 1182 } 1183 1184 static const struct file_operations fragmentation_file_operations = { 1185 .open = fragmentation_open, 1186 .read = seq_read, 1187 .llseek = seq_lseek, 1188 .release = seq_release, 1189 }; 1190 1191 static const struct seq_operations pagetypeinfo_op = { 1192 .start = frag_start, 1193 .next = frag_next, 1194 .stop = frag_stop, 1195 .show = pagetypeinfo_show, 1196 }; 1197 1198 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1199 { 1200 return seq_open(file, &pagetypeinfo_op); 1201 } 1202 1203 static const struct file_operations pagetypeinfo_file_ops = { 1204 .open = pagetypeinfo_open, 1205 .read = seq_read, 1206 .llseek = seq_lseek, 1207 .release = seq_release, 1208 }; 1209 1210 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1211 struct zone *zone) 1212 { 1213 int i; 1214 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1215 seq_printf(m, 1216 "\n pages free %lu" 1217 "\n min %lu" 1218 "\n low %lu" 1219 "\n high %lu" 1220 "\n scanned %lu" 1221 "\n spanned %lu" 1222 "\n present %lu" 1223 "\n managed %lu", 1224 zone_page_state(zone, NR_FREE_PAGES), 1225 min_wmark_pages(zone), 1226 low_wmark_pages(zone), 1227 high_wmark_pages(zone), 1228 zone_page_state(zone, NR_PAGES_SCANNED), 1229 zone->spanned_pages, 1230 zone->present_pages, 1231 zone->managed_pages); 1232 1233 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1234 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1235 zone_page_state(zone, i)); 1236 1237 seq_printf(m, 1238 "\n protection: (%ld", 1239 zone->lowmem_reserve[0]); 1240 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1241 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1242 seq_printf(m, 1243 ")" 1244 "\n pagesets"); 1245 for_each_online_cpu(i) { 1246 struct per_cpu_pageset *pageset; 1247 1248 pageset = per_cpu_ptr(zone->pageset, i); 1249 seq_printf(m, 1250 "\n cpu: %i" 1251 "\n count: %i" 1252 "\n high: %i" 1253 "\n batch: %i", 1254 i, 1255 pageset->pcp.count, 1256 pageset->pcp.high, 1257 pageset->pcp.batch); 1258 #ifdef CONFIG_SMP 1259 seq_printf(m, "\n vm stats threshold: %d", 1260 pageset->stat_threshold); 1261 #endif 1262 } 1263 seq_printf(m, 1264 "\n all_unreclaimable: %u" 1265 "\n start_pfn: %lu" 1266 "\n inactive_ratio: %u", 1267 !zone_reclaimable(zone), 1268 zone->zone_start_pfn, 1269 zone->inactive_ratio); 1270 seq_putc(m, '\n'); 1271 } 1272 1273 /* 1274 * Output information about zones in @pgdat. 1275 */ 1276 static int zoneinfo_show(struct seq_file *m, void *arg) 1277 { 1278 pg_data_t *pgdat = (pg_data_t *)arg; 1279 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1280 return 0; 1281 } 1282 1283 static const struct seq_operations zoneinfo_op = { 1284 .start = frag_start, /* iterate over all zones. The same as in 1285 * fragmentation. */ 1286 .next = frag_next, 1287 .stop = frag_stop, 1288 .show = zoneinfo_show, 1289 }; 1290 1291 static int zoneinfo_open(struct inode *inode, struct file *file) 1292 { 1293 return seq_open(file, &zoneinfo_op); 1294 } 1295 1296 static const struct file_operations proc_zoneinfo_file_operations = { 1297 .open = zoneinfo_open, 1298 .read = seq_read, 1299 .llseek = seq_lseek, 1300 .release = seq_release, 1301 }; 1302 1303 enum writeback_stat_item { 1304 NR_DIRTY_THRESHOLD, 1305 NR_DIRTY_BG_THRESHOLD, 1306 NR_VM_WRITEBACK_STAT_ITEMS, 1307 }; 1308 1309 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1310 { 1311 unsigned long *v; 1312 int i, stat_items_size; 1313 1314 if (*pos >= ARRAY_SIZE(vmstat_text)) 1315 return NULL; 1316 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1317 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1318 1319 #ifdef CONFIG_VM_EVENT_COUNTERS 1320 stat_items_size += sizeof(struct vm_event_state); 1321 #endif 1322 1323 v = kmalloc(stat_items_size, GFP_KERNEL); 1324 m->private = v; 1325 if (!v) 1326 return ERR_PTR(-ENOMEM); 1327 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1328 v[i] = global_page_state(i); 1329 v += NR_VM_ZONE_STAT_ITEMS; 1330 1331 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1332 v + NR_DIRTY_THRESHOLD); 1333 v += NR_VM_WRITEBACK_STAT_ITEMS; 1334 1335 #ifdef CONFIG_VM_EVENT_COUNTERS 1336 all_vm_events(v); 1337 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1338 v[PGPGOUT] /= 2; 1339 #endif 1340 return (unsigned long *)m->private + *pos; 1341 } 1342 1343 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1344 { 1345 (*pos)++; 1346 if (*pos >= ARRAY_SIZE(vmstat_text)) 1347 return NULL; 1348 return (unsigned long *)m->private + *pos; 1349 } 1350 1351 static int vmstat_show(struct seq_file *m, void *arg) 1352 { 1353 unsigned long *l = arg; 1354 unsigned long off = l - (unsigned long *)m->private; 1355 1356 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1357 return 0; 1358 } 1359 1360 static void vmstat_stop(struct seq_file *m, void *arg) 1361 { 1362 kfree(m->private); 1363 m->private = NULL; 1364 } 1365 1366 static const struct seq_operations vmstat_op = { 1367 .start = vmstat_start, 1368 .next = vmstat_next, 1369 .stop = vmstat_stop, 1370 .show = vmstat_show, 1371 }; 1372 1373 static int vmstat_open(struct inode *inode, struct file *file) 1374 { 1375 return seq_open(file, &vmstat_op); 1376 } 1377 1378 static const struct file_operations proc_vmstat_file_operations = { 1379 .open = vmstat_open, 1380 .read = seq_read, 1381 .llseek = seq_lseek, 1382 .release = seq_release, 1383 }; 1384 #endif /* CONFIG_PROC_FS */ 1385 1386 #ifdef CONFIG_SMP 1387 static struct workqueue_struct *vmstat_wq; 1388 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1389 int sysctl_stat_interval __read_mostly = HZ; 1390 static cpumask_var_t cpu_stat_off; 1391 1392 static void vmstat_update(struct work_struct *w) 1393 { 1394 if (refresh_cpu_vm_stats(true)) { 1395 /* 1396 * Counters were updated so we expect more updates 1397 * to occur in the future. Keep on running the 1398 * update worker thread. 1399 * If we were marked on cpu_stat_off clear the flag 1400 * so that vmstat_shepherd doesn't schedule us again. 1401 */ 1402 if (!cpumask_test_and_clear_cpu(smp_processor_id(), 1403 cpu_stat_off)) { 1404 queue_delayed_work_on(smp_processor_id(), vmstat_wq, 1405 this_cpu_ptr(&vmstat_work), 1406 round_jiffies_relative(sysctl_stat_interval)); 1407 } 1408 } else { 1409 /* 1410 * We did not update any counters so the app may be in 1411 * a mode where it does not cause counter updates. 1412 * We may be uselessly running vmstat_update. 1413 * Defer the checking for differentials to the 1414 * shepherd thread on a different processor. 1415 */ 1416 cpumask_set_cpu(smp_processor_id(), cpu_stat_off); 1417 } 1418 } 1419 1420 /* 1421 * Switch off vmstat processing and then fold all the remaining differentials 1422 * until the diffs stay at zero. The function is used by NOHZ and can only be 1423 * invoked when tick processing is not active. 1424 */ 1425 /* 1426 * Check if the diffs for a certain cpu indicate that 1427 * an update is needed. 1428 */ 1429 static bool need_update(int cpu) 1430 { 1431 struct zone *zone; 1432 1433 for_each_populated_zone(zone) { 1434 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1435 1436 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1437 /* 1438 * The fast way of checking if there are any vmstat diffs. 1439 * This works because the diffs are byte sized items. 1440 */ 1441 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1442 return true; 1443 1444 } 1445 return false; 1446 } 1447 1448 void quiet_vmstat(void) 1449 { 1450 if (system_state != SYSTEM_RUNNING) 1451 return; 1452 1453 /* 1454 * If we are already in hands of the shepherd then there 1455 * is nothing for us to do here. 1456 */ 1457 if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off)) 1458 return; 1459 1460 if (!need_update(smp_processor_id())) 1461 return; 1462 1463 /* 1464 * Just refresh counters and do not care about the pending delayed 1465 * vmstat_update. It doesn't fire that often to matter and canceling 1466 * it would be too expensive from this path. 1467 * vmstat_shepherd will take care about that for us. 1468 */ 1469 refresh_cpu_vm_stats(false); 1470 } 1471 1472 1473 /* 1474 * Shepherd worker thread that checks the 1475 * differentials of processors that have their worker 1476 * threads for vm statistics updates disabled because of 1477 * inactivity. 1478 */ 1479 static void vmstat_shepherd(struct work_struct *w); 1480 1481 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1482 1483 static void vmstat_shepherd(struct work_struct *w) 1484 { 1485 int cpu; 1486 1487 get_online_cpus(); 1488 /* Check processors whose vmstat worker threads have been disabled */ 1489 for_each_cpu(cpu, cpu_stat_off) { 1490 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1491 1492 if (need_update(cpu)) { 1493 if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off)) 1494 queue_delayed_work_on(cpu, vmstat_wq, dw, 0); 1495 } else { 1496 /* 1497 * Cancel the work if quiet_vmstat has put this 1498 * cpu on cpu_stat_off because the work item might 1499 * be still scheduled 1500 */ 1501 cancel_delayed_work(dw); 1502 } 1503 } 1504 put_online_cpus(); 1505 1506 schedule_delayed_work(&shepherd, 1507 round_jiffies_relative(sysctl_stat_interval)); 1508 } 1509 1510 static void __init start_shepherd_timer(void) 1511 { 1512 int cpu; 1513 1514 for_each_possible_cpu(cpu) 1515 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1516 vmstat_update); 1517 1518 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL)) 1519 BUG(); 1520 cpumask_copy(cpu_stat_off, cpu_online_mask); 1521 1522 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0); 1523 schedule_delayed_work(&shepherd, 1524 round_jiffies_relative(sysctl_stat_interval)); 1525 } 1526 1527 static void vmstat_cpu_dead(int node) 1528 { 1529 int cpu; 1530 1531 get_online_cpus(); 1532 for_each_online_cpu(cpu) 1533 if (cpu_to_node(cpu) == node) 1534 goto end; 1535 1536 node_clear_state(node, N_CPU); 1537 end: 1538 put_online_cpus(); 1539 } 1540 1541 /* 1542 * Use the cpu notifier to insure that the thresholds are recalculated 1543 * when necessary. 1544 */ 1545 static int vmstat_cpuup_callback(struct notifier_block *nfb, 1546 unsigned long action, 1547 void *hcpu) 1548 { 1549 long cpu = (long)hcpu; 1550 1551 switch (action) { 1552 case CPU_ONLINE: 1553 case CPU_ONLINE_FROZEN: 1554 refresh_zone_stat_thresholds(); 1555 node_set_state(cpu_to_node(cpu), N_CPU); 1556 cpumask_set_cpu(cpu, cpu_stat_off); 1557 break; 1558 case CPU_DOWN_PREPARE: 1559 case CPU_DOWN_PREPARE_FROZEN: 1560 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1561 cpumask_clear_cpu(cpu, cpu_stat_off); 1562 break; 1563 case CPU_DOWN_FAILED: 1564 case CPU_DOWN_FAILED_FROZEN: 1565 cpumask_set_cpu(cpu, cpu_stat_off); 1566 break; 1567 case CPU_DEAD: 1568 case CPU_DEAD_FROZEN: 1569 refresh_zone_stat_thresholds(); 1570 vmstat_cpu_dead(cpu_to_node(cpu)); 1571 break; 1572 default: 1573 break; 1574 } 1575 return NOTIFY_OK; 1576 } 1577 1578 static struct notifier_block vmstat_notifier = 1579 { &vmstat_cpuup_callback, NULL, 0 }; 1580 #endif 1581 1582 static int __init setup_vmstat(void) 1583 { 1584 #ifdef CONFIG_SMP 1585 cpu_notifier_register_begin(); 1586 __register_cpu_notifier(&vmstat_notifier); 1587 1588 start_shepherd_timer(); 1589 cpu_notifier_register_done(); 1590 #endif 1591 #ifdef CONFIG_PROC_FS 1592 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1593 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1594 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1595 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1596 #endif 1597 return 0; 1598 } 1599 module_init(setup_vmstat) 1600 1601 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1602 1603 /* 1604 * Return an index indicating how much of the available free memory is 1605 * unusable for an allocation of the requested size. 1606 */ 1607 static int unusable_free_index(unsigned int order, 1608 struct contig_page_info *info) 1609 { 1610 /* No free memory is interpreted as all free memory is unusable */ 1611 if (info->free_pages == 0) 1612 return 1000; 1613 1614 /* 1615 * Index should be a value between 0 and 1. Return a value to 3 1616 * decimal places. 1617 * 1618 * 0 => no fragmentation 1619 * 1 => high fragmentation 1620 */ 1621 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1622 1623 } 1624 1625 static void unusable_show_print(struct seq_file *m, 1626 pg_data_t *pgdat, struct zone *zone) 1627 { 1628 unsigned int order; 1629 int index; 1630 struct contig_page_info info; 1631 1632 seq_printf(m, "Node %d, zone %8s ", 1633 pgdat->node_id, 1634 zone->name); 1635 for (order = 0; order < MAX_ORDER; ++order) { 1636 fill_contig_page_info(zone, order, &info); 1637 index = unusable_free_index(order, &info); 1638 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1639 } 1640 1641 seq_putc(m, '\n'); 1642 } 1643 1644 /* 1645 * Display unusable free space index 1646 * 1647 * The unusable free space index measures how much of the available free 1648 * memory cannot be used to satisfy an allocation of a given size and is a 1649 * value between 0 and 1. The higher the value, the more of free memory is 1650 * unusable and by implication, the worse the external fragmentation is. This 1651 * can be expressed as a percentage by multiplying by 100. 1652 */ 1653 static int unusable_show(struct seq_file *m, void *arg) 1654 { 1655 pg_data_t *pgdat = (pg_data_t *)arg; 1656 1657 /* check memoryless node */ 1658 if (!node_state(pgdat->node_id, N_MEMORY)) 1659 return 0; 1660 1661 walk_zones_in_node(m, pgdat, unusable_show_print); 1662 1663 return 0; 1664 } 1665 1666 static const struct seq_operations unusable_op = { 1667 .start = frag_start, 1668 .next = frag_next, 1669 .stop = frag_stop, 1670 .show = unusable_show, 1671 }; 1672 1673 static int unusable_open(struct inode *inode, struct file *file) 1674 { 1675 return seq_open(file, &unusable_op); 1676 } 1677 1678 static const struct file_operations unusable_file_ops = { 1679 .open = unusable_open, 1680 .read = seq_read, 1681 .llseek = seq_lseek, 1682 .release = seq_release, 1683 }; 1684 1685 static void extfrag_show_print(struct seq_file *m, 1686 pg_data_t *pgdat, struct zone *zone) 1687 { 1688 unsigned int order; 1689 int index; 1690 1691 /* Alloc on stack as interrupts are disabled for zone walk */ 1692 struct contig_page_info info; 1693 1694 seq_printf(m, "Node %d, zone %8s ", 1695 pgdat->node_id, 1696 zone->name); 1697 for (order = 0; order < MAX_ORDER; ++order) { 1698 fill_contig_page_info(zone, order, &info); 1699 index = __fragmentation_index(order, &info); 1700 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1701 } 1702 1703 seq_putc(m, '\n'); 1704 } 1705 1706 /* 1707 * Display fragmentation index for orders that allocations would fail for 1708 */ 1709 static int extfrag_show(struct seq_file *m, void *arg) 1710 { 1711 pg_data_t *pgdat = (pg_data_t *)arg; 1712 1713 walk_zones_in_node(m, pgdat, extfrag_show_print); 1714 1715 return 0; 1716 } 1717 1718 static const struct seq_operations extfrag_op = { 1719 .start = frag_start, 1720 .next = frag_next, 1721 .stop = frag_stop, 1722 .show = extfrag_show, 1723 }; 1724 1725 static int extfrag_open(struct inode *inode, struct file *file) 1726 { 1727 return seq_open(file, &extfrag_op); 1728 } 1729 1730 static const struct file_operations extfrag_file_ops = { 1731 .open = extfrag_open, 1732 .read = seq_read, 1733 .llseek = seq_lseek, 1734 .release = seq_release, 1735 }; 1736 1737 static int __init extfrag_debug_init(void) 1738 { 1739 struct dentry *extfrag_debug_root; 1740 1741 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1742 if (!extfrag_debug_root) 1743 return -ENOMEM; 1744 1745 if (!debugfs_create_file("unusable_index", 0444, 1746 extfrag_debug_root, NULL, &unusable_file_ops)) 1747 goto fail; 1748 1749 if (!debugfs_create_file("extfrag_index", 0444, 1750 extfrag_debug_root, NULL, &extfrag_file_ops)) 1751 goto fail; 1752 1753 return 0; 1754 fail: 1755 debugfs_remove_recursive(extfrag_debug_root); 1756 return -ENOMEM; 1757 } 1758 1759 module_init(extfrag_debug_init); 1760 #endif 1761