xref: /linux/mm/vmstat.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30 
31 #include "internal.h"
32 
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36 
37 static void sum_vm_events(unsigned long *ret)
38 {
39 	int cpu;
40 	int i;
41 
42 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43 
44 	for_each_online_cpu(cpu) {
45 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46 
47 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 			ret[i] += this->event[i];
49 	}
50 }
51 
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59 	get_online_cpus();
60 	sum_vm_events(ret);
61 	put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64 
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 	int i;
75 
76 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 		count_vm_events(i, fold_state->event[i]);
78 		fold_state->event[i] = 0;
79 	}
80 }
81 
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83 
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91 
92 #ifdef CONFIG_SMP
93 
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 	int threshold;
97 	int watermark_distance;
98 
99 	/*
100 	 * As vmstats are not up to date, there is drift between the estimated
101 	 * and real values. For high thresholds and a high number of CPUs, it
102 	 * is possible for the min watermark to be breached while the estimated
103 	 * value looks fine. The pressure threshold is a reduced value such
104 	 * that even the maximum amount of drift will not accidentally breach
105 	 * the min watermark
106 	 */
107 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109 
110 	/*
111 	 * Maximum threshold is 125
112 	 */
113 	threshold = min(125, threshold);
114 
115 	return threshold;
116 }
117 
118 int calculate_normal_threshold(struct zone *zone)
119 {
120 	int threshold;
121 	int mem;	/* memory in 128 MB units */
122 
123 	/*
124 	 * The threshold scales with the number of processors and the amount
125 	 * of memory per zone. More memory means that we can defer updates for
126 	 * longer, more processors could lead to more contention.
127  	 * fls() is used to have a cheap way of logarithmic scaling.
128 	 *
129 	 * Some sample thresholds:
130 	 *
131 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
132 	 * ------------------------------------------------------------------
133 	 * 8		1		1	0.9-1 GB	4
134 	 * 16		2		2	0.9-1 GB	4
135 	 * 20 		2		2	1-2 GB		5
136 	 * 24		2		2	2-4 GB		6
137 	 * 28		2		2	4-8 GB		7
138 	 * 32		2		2	8-16 GB		8
139 	 * 4		2		2	<128M		1
140 	 * 30		4		3	2-4 GB		5
141 	 * 48		4		3	8-16 GB		8
142 	 * 32		8		4	1-2 GB		4
143 	 * 32		8		4	0.9-1GB		4
144 	 * 10		16		5	<128M		1
145 	 * 40		16		5	900M		4
146 	 * 70		64		7	2-4 GB		5
147 	 * 84		64		7	4-8 GB		6
148 	 * 108		512		9	4-8 GB		6
149 	 * 125		1024		10	8-16 GB		8
150 	 * 125		1024		10	16-32 GB	9
151 	 */
152 
153 	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154 
155 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156 
157 	/*
158 	 * Maximum threshold is 125
159 	 */
160 	threshold = min(125, threshold);
161 
162 	return threshold;
163 }
164 
165 /*
166  * Refresh the thresholds for each zone.
167  */
168 void refresh_zone_stat_thresholds(void)
169 {
170 	struct zone *zone;
171 	int cpu;
172 	int threshold;
173 
174 	for_each_populated_zone(zone) {
175 		unsigned long max_drift, tolerate_drift;
176 
177 		threshold = calculate_normal_threshold(zone);
178 
179 		for_each_online_cpu(cpu)
180 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 							= threshold;
182 
183 		/*
184 		 * Only set percpu_drift_mark if there is a danger that
185 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 		 * the min watermark could be breached by an allocation
187 		 */
188 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 		max_drift = num_online_cpus() * threshold;
190 		if (max_drift > tolerate_drift)
191 			zone->percpu_drift_mark = high_wmark_pages(zone) +
192 					max_drift;
193 	}
194 }
195 
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 				int (*calculate_pressure)(struct zone *))
198 {
199 	struct zone *zone;
200 	int cpu;
201 	int threshold;
202 	int i;
203 
204 	for (i = 0; i < pgdat->nr_zones; i++) {
205 		zone = &pgdat->node_zones[i];
206 		if (!zone->percpu_drift_mark)
207 			continue;
208 
209 		threshold = (*calculate_pressure)(zone);
210 		for_each_online_cpu(cpu)
211 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 							= threshold;
213 	}
214 }
215 
216 /*
217  * For use when we know that interrupts are disabled,
218  * or when we know that preemption is disabled and that
219  * particular counter cannot be updated from interrupt context.
220  */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 			   long delta)
223 {
224 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 	s8 __percpu *p = pcp->vm_stat_diff + item;
226 	long x;
227 	long t;
228 
229 	x = delta + __this_cpu_read(*p);
230 
231 	t = __this_cpu_read(pcp->stat_threshold);
232 
233 	if (unlikely(x > t || x < -t)) {
234 		zone_page_state_add(x, zone, item);
235 		x = 0;
236 	}
237 	__this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240 
241 /*
242  * Optimized increment and decrement functions.
243  *
244  * These are only for a single page and therefore can take a struct page *
245  * argument instead of struct zone *. This allows the inclusion of the code
246  * generated for page_zone(page) into the optimized functions.
247  *
248  * No overflow check is necessary and therefore the differential can be
249  * incremented or decremented in place which may allow the compilers to
250  * generate better code.
251  * The increment or decrement is known and therefore one boundary check can
252  * be omitted.
253  *
254  * NOTE: These functions are very performance sensitive. Change only
255  * with care.
256  *
257  * Some processors have inc/dec instructions that are atomic vs an interrupt.
258  * However, the code must first determine the differential location in a zone
259  * based on the processor number and then inc/dec the counter. There is no
260  * guarantee without disabling preemption that the processor will not change
261  * in between and therefore the atomicity vs. interrupt cannot be exploited
262  * in a useful way here.
263  */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 	s8 __percpu *p = pcp->vm_stat_diff + item;
268 	s8 v, t;
269 
270 	v = __this_cpu_inc_return(*p);
271 	t = __this_cpu_read(pcp->stat_threshold);
272 	if (unlikely(v > t)) {
273 		s8 overstep = t >> 1;
274 
275 		zone_page_state_add(v + overstep, zone, item);
276 		__this_cpu_write(*p, -overstep);
277 	}
278 }
279 
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 	__inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285 
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 	s8 __percpu *p = pcp->vm_stat_diff + item;
290 	s8 v, t;
291 
292 	v = __this_cpu_dec_return(*p);
293 	t = __this_cpu_read(pcp->stat_threshold);
294 	if (unlikely(v < - t)) {
295 		s8 overstep = t >> 1;
296 
297 		zone_page_state_add(v - overstep, zone, item);
298 		__this_cpu_write(*p, overstep);
299 	}
300 }
301 
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 	__dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307 
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310  * If we have cmpxchg_local support then we do not need to incur the overhead
311  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312  *
313  * mod_state() modifies the zone counter state through atomic per cpu
314  * operations.
315  *
316  * Overstep mode specifies how overstep should handled:
317  *     0       No overstepping
318  *     1       Overstepping half of threshold
319  *     -1      Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 			     long delta, int overstep_mode)
323 {
324 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 	s8 __percpu *p = pcp->vm_stat_diff + item;
326 	long o, n, t, z;
327 
328 	do {
329 		z = 0;  /* overflow to zone counters */
330 
331 		/*
332 		 * The fetching of the stat_threshold is racy. We may apply
333 		 * a counter threshold to the wrong the cpu if we get
334 		 * rescheduled while executing here. However, the next
335 		 * counter update will apply the threshold again and
336 		 * therefore bring the counter under the threshold again.
337 		 *
338 		 * Most of the time the thresholds are the same anyways
339 		 * for all cpus in a zone.
340 		 */
341 		t = this_cpu_read(pcp->stat_threshold);
342 
343 		o = this_cpu_read(*p);
344 		n = delta + o;
345 
346 		if (n > t || n < -t) {
347 			int os = overstep_mode * (t >> 1) ;
348 
349 			/* Overflow must be added to zone counters */
350 			z = n + os;
351 			n = -os;
352 		}
353 	} while (this_cpu_cmpxchg(*p, o, n) != o);
354 
355 	if (z)
356 		zone_page_state_add(z, zone, item);
357 }
358 
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 			 long delta)
361 {
362 	mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365 
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 	mod_state(zone, item, 1, 1);
369 }
370 
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 	mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376 
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 	mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384  * Use interrupt disable to serialize counter updates
385  */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 			 long delta)
388 {
389 	unsigned long flags;
390 
391 	local_irq_save(flags);
392 	__mod_zone_page_state(zone, item, delta);
393 	local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396 
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 	unsigned long flags;
400 
401 	local_irq_save(flags);
402 	__inc_zone_state(zone, item);
403 	local_irq_restore(flags);
404 }
405 
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 	unsigned long flags;
409 	struct zone *zone;
410 
411 	zone = page_zone(page);
412 	local_irq_save(flags);
413 	__inc_zone_state(zone, item);
414 	local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417 
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 	unsigned long flags;
421 
422 	local_irq_save(flags);
423 	__dec_zone_page_state(page, item);
424 	local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428 
429 
430 /*
431  * Fold a differential into the global counters.
432  * Returns the number of counters updated.
433  */
434 static int fold_diff(int *diff)
435 {
436 	int i;
437 	int changes = 0;
438 
439 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 		if (diff[i]) {
441 			atomic_long_add(diff[i], &vm_stat[i]);
442 			changes++;
443 	}
444 	return changes;
445 }
446 
447 /*
448  * Update the zone counters for the current cpu.
449  *
450  * Note that refresh_cpu_vm_stats strives to only access
451  * node local memory. The per cpu pagesets on remote zones are placed
452  * in the memory local to the processor using that pageset. So the
453  * loop over all zones will access a series of cachelines local to
454  * the processor.
455  *
456  * The call to zone_page_state_add updates the cachelines with the
457  * statistics in the remote zone struct as well as the global cachelines
458  * with the global counters. These could cause remote node cache line
459  * bouncing and will have to be only done when necessary.
460  *
461  * The function returns the number of global counters updated.
462  */
463 static int refresh_cpu_vm_stats(bool do_pagesets)
464 {
465 	struct zone *zone;
466 	int i;
467 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 	int changes = 0;
469 
470 	for_each_populated_zone(zone) {
471 		struct per_cpu_pageset __percpu *p = zone->pageset;
472 
473 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 			int v;
475 
476 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 			if (v) {
478 
479 				atomic_long_add(v, &zone->vm_stat[i]);
480 				global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 				/* 3 seconds idle till flush */
483 				__this_cpu_write(p->expire, 3);
484 #endif
485 			}
486 		}
487 #ifdef CONFIG_NUMA
488 		if (do_pagesets) {
489 			cond_resched();
490 			/*
491 			 * Deal with draining the remote pageset of this
492 			 * processor
493 			 *
494 			 * Check if there are pages remaining in this pageset
495 			 * if not then there is nothing to expire.
496 			 */
497 			if (!__this_cpu_read(p->expire) ||
498 			       !__this_cpu_read(p->pcp.count))
499 				continue;
500 
501 			/*
502 			 * We never drain zones local to this processor.
503 			 */
504 			if (zone_to_nid(zone) == numa_node_id()) {
505 				__this_cpu_write(p->expire, 0);
506 				continue;
507 			}
508 
509 			if (__this_cpu_dec_return(p->expire))
510 				continue;
511 
512 			if (__this_cpu_read(p->pcp.count)) {
513 				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514 				changes++;
515 			}
516 		}
517 #endif
518 	}
519 	changes += fold_diff(global_diff);
520 	return changes;
521 }
522 
523 /*
524  * Fold the data for an offline cpu into the global array.
525  * There cannot be any access by the offline cpu and therefore
526  * synchronization is simplified.
527  */
528 void cpu_vm_stats_fold(int cpu)
529 {
530 	struct zone *zone;
531 	int i;
532 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533 
534 	for_each_populated_zone(zone) {
535 		struct per_cpu_pageset *p;
536 
537 		p = per_cpu_ptr(zone->pageset, cpu);
538 
539 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 			if (p->vm_stat_diff[i]) {
541 				int v;
542 
543 				v = p->vm_stat_diff[i];
544 				p->vm_stat_diff[i] = 0;
545 				atomic_long_add(v, &zone->vm_stat[i]);
546 				global_diff[i] += v;
547 			}
548 	}
549 
550 	fold_diff(global_diff);
551 }
552 
553 /*
554  * this is only called if !populated_zone(zone), which implies no other users of
555  * pset->vm_stat_diff[] exsist.
556  */
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558 {
559 	int i;
560 
561 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 		if (pset->vm_stat_diff[i]) {
563 			int v = pset->vm_stat_diff[i];
564 			pset->vm_stat_diff[i] = 0;
565 			atomic_long_add(v, &zone->vm_stat[i]);
566 			atomic_long_add(v, &vm_stat[i]);
567 		}
568 }
569 #endif
570 
571 #ifdef CONFIG_NUMA
572 /*
573  * zonelist = the list of zones passed to the allocator
574  * z 	    = the zone from which the allocation occurred.
575  *
576  * Must be called with interrupts disabled.
577  *
578  * When __GFP_OTHER_NODE is set assume the node of the preferred
579  * zone is the local node. This is useful for daemons who allocate
580  * memory on behalf of other processes.
581  */
582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
583 {
584 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585 		__inc_zone_state(z, NUMA_HIT);
586 	} else {
587 		__inc_zone_state(z, NUMA_MISS);
588 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
589 	}
590 	if (z->node == ((flags & __GFP_OTHER_NODE) ?
591 			preferred_zone->node : numa_node_id()))
592 		__inc_zone_state(z, NUMA_LOCAL);
593 	else
594 		__inc_zone_state(z, NUMA_OTHER);
595 }
596 
597 /*
598  * Determine the per node value of a stat item.
599  */
600 unsigned long node_page_state(int node, enum zone_stat_item item)
601 {
602 	struct zone *zones = NODE_DATA(node)->node_zones;
603 
604 	return
605 #ifdef CONFIG_ZONE_DMA
606 		zone_page_state(&zones[ZONE_DMA], item) +
607 #endif
608 #ifdef CONFIG_ZONE_DMA32
609 		zone_page_state(&zones[ZONE_DMA32], item) +
610 #endif
611 #ifdef CONFIG_HIGHMEM
612 		zone_page_state(&zones[ZONE_HIGHMEM], item) +
613 #endif
614 		zone_page_state(&zones[ZONE_NORMAL], item) +
615 		zone_page_state(&zones[ZONE_MOVABLE], item);
616 }
617 
618 #endif
619 
620 #ifdef CONFIG_COMPACTION
621 
622 struct contig_page_info {
623 	unsigned long free_pages;
624 	unsigned long free_blocks_total;
625 	unsigned long free_blocks_suitable;
626 };
627 
628 /*
629  * Calculate the number of free pages in a zone, how many contiguous
630  * pages are free and how many are large enough to satisfy an allocation of
631  * the target size. Note that this function makes no attempt to estimate
632  * how many suitable free blocks there *might* be if MOVABLE pages were
633  * migrated. Calculating that is possible, but expensive and can be
634  * figured out from userspace
635  */
636 static void fill_contig_page_info(struct zone *zone,
637 				unsigned int suitable_order,
638 				struct contig_page_info *info)
639 {
640 	unsigned int order;
641 
642 	info->free_pages = 0;
643 	info->free_blocks_total = 0;
644 	info->free_blocks_suitable = 0;
645 
646 	for (order = 0; order < MAX_ORDER; order++) {
647 		unsigned long blocks;
648 
649 		/* Count number of free blocks */
650 		blocks = zone->free_area[order].nr_free;
651 		info->free_blocks_total += blocks;
652 
653 		/* Count free base pages */
654 		info->free_pages += blocks << order;
655 
656 		/* Count the suitable free blocks */
657 		if (order >= suitable_order)
658 			info->free_blocks_suitable += blocks <<
659 						(order - suitable_order);
660 	}
661 }
662 
663 /*
664  * A fragmentation index only makes sense if an allocation of a requested
665  * size would fail. If that is true, the fragmentation index indicates
666  * whether external fragmentation or a lack of memory was the problem.
667  * The value can be used to determine if page reclaim or compaction
668  * should be used
669  */
670 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
671 {
672 	unsigned long requested = 1UL << order;
673 
674 	if (!info->free_blocks_total)
675 		return 0;
676 
677 	/* Fragmentation index only makes sense when a request would fail */
678 	if (info->free_blocks_suitable)
679 		return -1000;
680 
681 	/*
682 	 * Index is between 0 and 1 so return within 3 decimal places
683 	 *
684 	 * 0 => allocation would fail due to lack of memory
685 	 * 1 => allocation would fail due to fragmentation
686 	 */
687 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
688 }
689 
690 /* Same as __fragmentation index but allocs contig_page_info on stack */
691 int fragmentation_index(struct zone *zone, unsigned int order)
692 {
693 	struct contig_page_info info;
694 
695 	fill_contig_page_info(zone, order, &info);
696 	return __fragmentation_index(order, &info);
697 }
698 #endif
699 
700 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
701 #ifdef CONFIG_ZONE_DMA
702 #define TEXT_FOR_DMA(xx) xx "_dma",
703 #else
704 #define TEXT_FOR_DMA(xx)
705 #endif
706 
707 #ifdef CONFIG_ZONE_DMA32
708 #define TEXT_FOR_DMA32(xx) xx "_dma32",
709 #else
710 #define TEXT_FOR_DMA32(xx)
711 #endif
712 
713 #ifdef CONFIG_HIGHMEM
714 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
715 #else
716 #define TEXT_FOR_HIGHMEM(xx)
717 #endif
718 
719 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
720 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
721 
722 const char * const vmstat_text[] = {
723 	/* enum zone_stat_item countes */
724 	"nr_free_pages",
725 	"nr_alloc_batch",
726 	"nr_inactive_anon",
727 	"nr_active_anon",
728 	"nr_inactive_file",
729 	"nr_active_file",
730 	"nr_unevictable",
731 	"nr_mlock",
732 	"nr_anon_pages",
733 	"nr_mapped",
734 	"nr_file_pages",
735 	"nr_dirty",
736 	"nr_writeback",
737 	"nr_slab_reclaimable",
738 	"nr_slab_unreclaimable",
739 	"nr_page_table_pages",
740 	"nr_kernel_stack",
741 	"nr_unstable",
742 	"nr_bounce",
743 	"nr_vmscan_write",
744 	"nr_vmscan_immediate_reclaim",
745 	"nr_writeback_temp",
746 	"nr_isolated_anon",
747 	"nr_isolated_file",
748 	"nr_shmem",
749 	"nr_dirtied",
750 	"nr_written",
751 	"nr_pages_scanned",
752 
753 #ifdef CONFIG_NUMA
754 	"numa_hit",
755 	"numa_miss",
756 	"numa_foreign",
757 	"numa_interleave",
758 	"numa_local",
759 	"numa_other",
760 #endif
761 	"workingset_refault",
762 	"workingset_activate",
763 	"workingset_nodereclaim",
764 	"nr_anon_transparent_hugepages",
765 	"nr_free_cma",
766 
767 	/* enum writeback_stat_item counters */
768 	"nr_dirty_threshold",
769 	"nr_dirty_background_threshold",
770 
771 #ifdef CONFIG_VM_EVENT_COUNTERS
772 	/* enum vm_event_item counters */
773 	"pgpgin",
774 	"pgpgout",
775 	"pswpin",
776 	"pswpout",
777 
778 	TEXTS_FOR_ZONES("pgalloc")
779 
780 	"pgfree",
781 	"pgactivate",
782 	"pgdeactivate",
783 
784 	"pgfault",
785 	"pgmajfault",
786 	"pglazyfreed",
787 
788 	TEXTS_FOR_ZONES("pgrefill")
789 	TEXTS_FOR_ZONES("pgsteal_kswapd")
790 	TEXTS_FOR_ZONES("pgsteal_direct")
791 	TEXTS_FOR_ZONES("pgscan_kswapd")
792 	TEXTS_FOR_ZONES("pgscan_direct")
793 	"pgscan_direct_throttle",
794 
795 #ifdef CONFIG_NUMA
796 	"zone_reclaim_failed",
797 #endif
798 	"pginodesteal",
799 	"slabs_scanned",
800 	"kswapd_inodesteal",
801 	"kswapd_low_wmark_hit_quickly",
802 	"kswapd_high_wmark_hit_quickly",
803 	"pageoutrun",
804 	"allocstall",
805 
806 	"pgrotated",
807 
808 	"drop_pagecache",
809 	"drop_slab",
810 
811 #ifdef CONFIG_NUMA_BALANCING
812 	"numa_pte_updates",
813 	"numa_huge_pte_updates",
814 	"numa_hint_faults",
815 	"numa_hint_faults_local",
816 	"numa_pages_migrated",
817 #endif
818 #ifdef CONFIG_MIGRATION
819 	"pgmigrate_success",
820 	"pgmigrate_fail",
821 #endif
822 #ifdef CONFIG_COMPACTION
823 	"compact_migrate_scanned",
824 	"compact_free_scanned",
825 	"compact_isolated",
826 	"compact_stall",
827 	"compact_fail",
828 	"compact_success",
829 #endif
830 
831 #ifdef CONFIG_HUGETLB_PAGE
832 	"htlb_buddy_alloc_success",
833 	"htlb_buddy_alloc_fail",
834 #endif
835 	"unevictable_pgs_culled",
836 	"unevictable_pgs_scanned",
837 	"unevictable_pgs_rescued",
838 	"unevictable_pgs_mlocked",
839 	"unevictable_pgs_munlocked",
840 	"unevictable_pgs_cleared",
841 	"unevictable_pgs_stranded",
842 
843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
844 	"thp_fault_alloc",
845 	"thp_fault_fallback",
846 	"thp_collapse_alloc",
847 	"thp_collapse_alloc_failed",
848 	"thp_split_page",
849 	"thp_split_page_failed",
850 	"thp_split_pmd",
851 	"thp_zero_page_alloc",
852 	"thp_zero_page_alloc_failed",
853 #endif
854 #ifdef CONFIG_MEMORY_BALLOON
855 	"balloon_inflate",
856 	"balloon_deflate",
857 #ifdef CONFIG_BALLOON_COMPACTION
858 	"balloon_migrate",
859 #endif
860 #endif /* CONFIG_MEMORY_BALLOON */
861 #ifdef CONFIG_DEBUG_TLBFLUSH
862 #ifdef CONFIG_SMP
863 	"nr_tlb_remote_flush",
864 	"nr_tlb_remote_flush_received",
865 #endif /* CONFIG_SMP */
866 	"nr_tlb_local_flush_all",
867 	"nr_tlb_local_flush_one",
868 #endif /* CONFIG_DEBUG_TLBFLUSH */
869 
870 #ifdef CONFIG_DEBUG_VM_VMACACHE
871 	"vmacache_find_calls",
872 	"vmacache_find_hits",
873 	"vmacache_full_flushes",
874 #endif
875 #endif /* CONFIG_VM_EVENTS_COUNTERS */
876 };
877 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
878 
879 
880 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
881      defined(CONFIG_PROC_FS)
882 static void *frag_start(struct seq_file *m, loff_t *pos)
883 {
884 	pg_data_t *pgdat;
885 	loff_t node = *pos;
886 
887 	for (pgdat = first_online_pgdat();
888 	     pgdat && node;
889 	     pgdat = next_online_pgdat(pgdat))
890 		--node;
891 
892 	return pgdat;
893 }
894 
895 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
896 {
897 	pg_data_t *pgdat = (pg_data_t *)arg;
898 
899 	(*pos)++;
900 	return next_online_pgdat(pgdat);
901 }
902 
903 static void frag_stop(struct seq_file *m, void *arg)
904 {
905 }
906 
907 /* Walk all the zones in a node and print using a callback */
908 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
909 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
910 {
911 	struct zone *zone;
912 	struct zone *node_zones = pgdat->node_zones;
913 	unsigned long flags;
914 
915 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
916 		if (!populated_zone(zone))
917 			continue;
918 
919 		spin_lock_irqsave(&zone->lock, flags);
920 		print(m, pgdat, zone);
921 		spin_unlock_irqrestore(&zone->lock, flags);
922 	}
923 }
924 #endif
925 
926 #ifdef CONFIG_PROC_FS
927 static char * const migratetype_names[MIGRATE_TYPES] = {
928 	"Unmovable",
929 	"Movable",
930 	"Reclaimable",
931 	"HighAtomic",
932 #ifdef CONFIG_CMA
933 	"CMA",
934 #endif
935 #ifdef CONFIG_MEMORY_ISOLATION
936 	"Isolate",
937 #endif
938 };
939 
940 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
941 						struct zone *zone)
942 {
943 	int order;
944 
945 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
946 	for (order = 0; order < MAX_ORDER; ++order)
947 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
948 	seq_putc(m, '\n');
949 }
950 
951 /*
952  * This walks the free areas for each zone.
953  */
954 static int frag_show(struct seq_file *m, void *arg)
955 {
956 	pg_data_t *pgdat = (pg_data_t *)arg;
957 	walk_zones_in_node(m, pgdat, frag_show_print);
958 	return 0;
959 }
960 
961 static void pagetypeinfo_showfree_print(struct seq_file *m,
962 					pg_data_t *pgdat, struct zone *zone)
963 {
964 	int order, mtype;
965 
966 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
967 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
968 					pgdat->node_id,
969 					zone->name,
970 					migratetype_names[mtype]);
971 		for (order = 0; order < MAX_ORDER; ++order) {
972 			unsigned long freecount = 0;
973 			struct free_area *area;
974 			struct list_head *curr;
975 
976 			area = &(zone->free_area[order]);
977 
978 			list_for_each(curr, &area->free_list[mtype])
979 				freecount++;
980 			seq_printf(m, "%6lu ", freecount);
981 		}
982 		seq_putc(m, '\n');
983 	}
984 }
985 
986 /* Print out the free pages at each order for each migatetype */
987 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
988 {
989 	int order;
990 	pg_data_t *pgdat = (pg_data_t *)arg;
991 
992 	/* Print header */
993 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
994 	for (order = 0; order < MAX_ORDER; ++order)
995 		seq_printf(m, "%6d ", order);
996 	seq_putc(m, '\n');
997 
998 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
999 
1000 	return 0;
1001 }
1002 
1003 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1004 					pg_data_t *pgdat, struct zone *zone)
1005 {
1006 	int mtype;
1007 	unsigned long pfn;
1008 	unsigned long start_pfn = zone->zone_start_pfn;
1009 	unsigned long end_pfn = zone_end_pfn(zone);
1010 	unsigned long count[MIGRATE_TYPES] = { 0, };
1011 
1012 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1013 		struct page *page;
1014 
1015 		if (!pfn_valid(pfn))
1016 			continue;
1017 
1018 		page = pfn_to_page(pfn);
1019 
1020 		/* Watch for unexpected holes punched in the memmap */
1021 		if (!memmap_valid_within(pfn, page, zone))
1022 			continue;
1023 
1024 		mtype = get_pageblock_migratetype(page);
1025 
1026 		if (mtype < MIGRATE_TYPES)
1027 			count[mtype]++;
1028 	}
1029 
1030 	/* Print counts */
1031 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1032 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1033 		seq_printf(m, "%12lu ", count[mtype]);
1034 	seq_putc(m, '\n');
1035 }
1036 
1037 /* Print out the free pages at each order for each migratetype */
1038 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1039 {
1040 	int mtype;
1041 	pg_data_t *pgdat = (pg_data_t *)arg;
1042 
1043 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1044 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1045 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1046 	seq_putc(m, '\n');
1047 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1048 
1049 	return 0;
1050 }
1051 
1052 #ifdef CONFIG_PAGE_OWNER
1053 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1054 							pg_data_t *pgdat,
1055 							struct zone *zone)
1056 {
1057 	struct page *page;
1058 	struct page_ext *page_ext;
1059 	unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1060 	unsigned long end_pfn = pfn + zone->spanned_pages;
1061 	unsigned long count[MIGRATE_TYPES] = { 0, };
1062 	int pageblock_mt, page_mt;
1063 	int i;
1064 
1065 	/* Scan block by block. First and last block may be incomplete */
1066 	pfn = zone->zone_start_pfn;
1067 
1068 	/*
1069 	 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1070 	 * a zone boundary, it will be double counted between zones. This does
1071 	 * not matter as the mixed block count will still be correct
1072 	 */
1073 	for (; pfn < end_pfn; ) {
1074 		if (!pfn_valid(pfn)) {
1075 			pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1076 			continue;
1077 		}
1078 
1079 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1080 		block_end_pfn = min(block_end_pfn, end_pfn);
1081 
1082 		page = pfn_to_page(pfn);
1083 		pageblock_mt = get_pfnblock_migratetype(page, pfn);
1084 
1085 		for (; pfn < block_end_pfn; pfn++) {
1086 			if (!pfn_valid_within(pfn))
1087 				continue;
1088 
1089 			page = pfn_to_page(pfn);
1090 			if (PageBuddy(page)) {
1091 				pfn += (1UL << page_order(page)) - 1;
1092 				continue;
1093 			}
1094 
1095 			if (PageReserved(page))
1096 				continue;
1097 
1098 			page_ext = lookup_page_ext(page);
1099 
1100 			if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1101 				continue;
1102 
1103 			page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1104 			if (pageblock_mt != page_mt) {
1105 				if (is_migrate_cma(pageblock_mt))
1106 					count[MIGRATE_MOVABLE]++;
1107 				else
1108 					count[pageblock_mt]++;
1109 
1110 				pfn = block_end_pfn;
1111 				break;
1112 			}
1113 			pfn += (1UL << page_ext->order) - 1;
1114 		}
1115 	}
1116 
1117 	/* Print counts */
1118 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1119 	for (i = 0; i < MIGRATE_TYPES; i++)
1120 		seq_printf(m, "%12lu ", count[i]);
1121 	seq_putc(m, '\n');
1122 }
1123 #endif /* CONFIG_PAGE_OWNER */
1124 
1125 /*
1126  * Print out the number of pageblocks for each migratetype that contain pages
1127  * of other types. This gives an indication of how well fallbacks are being
1128  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1129  * to determine what is going on
1130  */
1131 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1132 {
1133 #ifdef CONFIG_PAGE_OWNER
1134 	int mtype;
1135 
1136 	if (!page_owner_inited)
1137 		return;
1138 
1139 	drain_all_pages(NULL);
1140 
1141 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1142 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1143 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1144 	seq_putc(m, '\n');
1145 
1146 	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1147 #endif /* CONFIG_PAGE_OWNER */
1148 }
1149 
1150 /*
1151  * This prints out statistics in relation to grouping pages by mobility.
1152  * It is expensive to collect so do not constantly read the file.
1153  */
1154 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1155 {
1156 	pg_data_t *pgdat = (pg_data_t *)arg;
1157 
1158 	/* check memoryless node */
1159 	if (!node_state(pgdat->node_id, N_MEMORY))
1160 		return 0;
1161 
1162 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1163 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1164 	seq_putc(m, '\n');
1165 	pagetypeinfo_showfree(m, pgdat);
1166 	pagetypeinfo_showblockcount(m, pgdat);
1167 	pagetypeinfo_showmixedcount(m, pgdat);
1168 
1169 	return 0;
1170 }
1171 
1172 static const struct seq_operations fragmentation_op = {
1173 	.start	= frag_start,
1174 	.next	= frag_next,
1175 	.stop	= frag_stop,
1176 	.show	= frag_show,
1177 };
1178 
1179 static int fragmentation_open(struct inode *inode, struct file *file)
1180 {
1181 	return seq_open(file, &fragmentation_op);
1182 }
1183 
1184 static const struct file_operations fragmentation_file_operations = {
1185 	.open		= fragmentation_open,
1186 	.read		= seq_read,
1187 	.llseek		= seq_lseek,
1188 	.release	= seq_release,
1189 };
1190 
1191 static const struct seq_operations pagetypeinfo_op = {
1192 	.start	= frag_start,
1193 	.next	= frag_next,
1194 	.stop	= frag_stop,
1195 	.show	= pagetypeinfo_show,
1196 };
1197 
1198 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1199 {
1200 	return seq_open(file, &pagetypeinfo_op);
1201 }
1202 
1203 static const struct file_operations pagetypeinfo_file_ops = {
1204 	.open		= pagetypeinfo_open,
1205 	.read		= seq_read,
1206 	.llseek		= seq_lseek,
1207 	.release	= seq_release,
1208 };
1209 
1210 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1211 							struct zone *zone)
1212 {
1213 	int i;
1214 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1215 	seq_printf(m,
1216 		   "\n  pages free     %lu"
1217 		   "\n        min      %lu"
1218 		   "\n        low      %lu"
1219 		   "\n        high     %lu"
1220 		   "\n        scanned  %lu"
1221 		   "\n        spanned  %lu"
1222 		   "\n        present  %lu"
1223 		   "\n        managed  %lu",
1224 		   zone_page_state(zone, NR_FREE_PAGES),
1225 		   min_wmark_pages(zone),
1226 		   low_wmark_pages(zone),
1227 		   high_wmark_pages(zone),
1228 		   zone_page_state(zone, NR_PAGES_SCANNED),
1229 		   zone->spanned_pages,
1230 		   zone->present_pages,
1231 		   zone->managed_pages);
1232 
1233 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1234 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1235 				zone_page_state(zone, i));
1236 
1237 	seq_printf(m,
1238 		   "\n        protection: (%ld",
1239 		   zone->lowmem_reserve[0]);
1240 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1241 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1242 	seq_printf(m,
1243 		   ")"
1244 		   "\n  pagesets");
1245 	for_each_online_cpu(i) {
1246 		struct per_cpu_pageset *pageset;
1247 
1248 		pageset = per_cpu_ptr(zone->pageset, i);
1249 		seq_printf(m,
1250 			   "\n    cpu: %i"
1251 			   "\n              count: %i"
1252 			   "\n              high:  %i"
1253 			   "\n              batch: %i",
1254 			   i,
1255 			   pageset->pcp.count,
1256 			   pageset->pcp.high,
1257 			   pageset->pcp.batch);
1258 #ifdef CONFIG_SMP
1259 		seq_printf(m, "\n  vm stats threshold: %d",
1260 				pageset->stat_threshold);
1261 #endif
1262 	}
1263 	seq_printf(m,
1264 		   "\n  all_unreclaimable: %u"
1265 		   "\n  start_pfn:         %lu"
1266 		   "\n  inactive_ratio:    %u",
1267 		   !zone_reclaimable(zone),
1268 		   zone->zone_start_pfn,
1269 		   zone->inactive_ratio);
1270 	seq_putc(m, '\n');
1271 }
1272 
1273 /*
1274  * Output information about zones in @pgdat.
1275  */
1276 static int zoneinfo_show(struct seq_file *m, void *arg)
1277 {
1278 	pg_data_t *pgdat = (pg_data_t *)arg;
1279 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1280 	return 0;
1281 }
1282 
1283 static const struct seq_operations zoneinfo_op = {
1284 	.start	= frag_start, /* iterate over all zones. The same as in
1285 			       * fragmentation. */
1286 	.next	= frag_next,
1287 	.stop	= frag_stop,
1288 	.show	= zoneinfo_show,
1289 };
1290 
1291 static int zoneinfo_open(struct inode *inode, struct file *file)
1292 {
1293 	return seq_open(file, &zoneinfo_op);
1294 }
1295 
1296 static const struct file_operations proc_zoneinfo_file_operations = {
1297 	.open		= zoneinfo_open,
1298 	.read		= seq_read,
1299 	.llseek		= seq_lseek,
1300 	.release	= seq_release,
1301 };
1302 
1303 enum writeback_stat_item {
1304 	NR_DIRTY_THRESHOLD,
1305 	NR_DIRTY_BG_THRESHOLD,
1306 	NR_VM_WRITEBACK_STAT_ITEMS,
1307 };
1308 
1309 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1310 {
1311 	unsigned long *v;
1312 	int i, stat_items_size;
1313 
1314 	if (*pos >= ARRAY_SIZE(vmstat_text))
1315 		return NULL;
1316 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1317 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1318 
1319 #ifdef CONFIG_VM_EVENT_COUNTERS
1320 	stat_items_size += sizeof(struct vm_event_state);
1321 #endif
1322 
1323 	v = kmalloc(stat_items_size, GFP_KERNEL);
1324 	m->private = v;
1325 	if (!v)
1326 		return ERR_PTR(-ENOMEM);
1327 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1328 		v[i] = global_page_state(i);
1329 	v += NR_VM_ZONE_STAT_ITEMS;
1330 
1331 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1332 			    v + NR_DIRTY_THRESHOLD);
1333 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1334 
1335 #ifdef CONFIG_VM_EVENT_COUNTERS
1336 	all_vm_events(v);
1337 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1338 	v[PGPGOUT] /= 2;
1339 #endif
1340 	return (unsigned long *)m->private + *pos;
1341 }
1342 
1343 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1344 {
1345 	(*pos)++;
1346 	if (*pos >= ARRAY_SIZE(vmstat_text))
1347 		return NULL;
1348 	return (unsigned long *)m->private + *pos;
1349 }
1350 
1351 static int vmstat_show(struct seq_file *m, void *arg)
1352 {
1353 	unsigned long *l = arg;
1354 	unsigned long off = l - (unsigned long *)m->private;
1355 
1356 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1357 	return 0;
1358 }
1359 
1360 static void vmstat_stop(struct seq_file *m, void *arg)
1361 {
1362 	kfree(m->private);
1363 	m->private = NULL;
1364 }
1365 
1366 static const struct seq_operations vmstat_op = {
1367 	.start	= vmstat_start,
1368 	.next	= vmstat_next,
1369 	.stop	= vmstat_stop,
1370 	.show	= vmstat_show,
1371 };
1372 
1373 static int vmstat_open(struct inode *inode, struct file *file)
1374 {
1375 	return seq_open(file, &vmstat_op);
1376 }
1377 
1378 static const struct file_operations proc_vmstat_file_operations = {
1379 	.open		= vmstat_open,
1380 	.read		= seq_read,
1381 	.llseek		= seq_lseek,
1382 	.release	= seq_release,
1383 };
1384 #endif /* CONFIG_PROC_FS */
1385 
1386 #ifdef CONFIG_SMP
1387 static struct workqueue_struct *vmstat_wq;
1388 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1389 int sysctl_stat_interval __read_mostly = HZ;
1390 static cpumask_var_t cpu_stat_off;
1391 
1392 static void vmstat_update(struct work_struct *w)
1393 {
1394 	if (refresh_cpu_vm_stats(true)) {
1395 		/*
1396 		 * Counters were updated so we expect more updates
1397 		 * to occur in the future. Keep on running the
1398 		 * update worker thread.
1399 		 * If we were marked on cpu_stat_off clear the flag
1400 		 * so that vmstat_shepherd doesn't schedule us again.
1401 		 */
1402 		if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1403 						cpu_stat_off)) {
1404 			queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1405 				this_cpu_ptr(&vmstat_work),
1406 				round_jiffies_relative(sysctl_stat_interval));
1407 		}
1408 	} else {
1409 		/*
1410 		 * We did not update any counters so the app may be in
1411 		 * a mode where it does not cause counter updates.
1412 		 * We may be uselessly running vmstat_update.
1413 		 * Defer the checking for differentials to the
1414 		 * shepherd thread on a different processor.
1415 		 */
1416 		cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1417 	}
1418 }
1419 
1420 /*
1421  * Switch off vmstat processing and then fold all the remaining differentials
1422  * until the diffs stay at zero. The function is used by NOHZ and can only be
1423  * invoked when tick processing is not active.
1424  */
1425 /*
1426  * Check if the diffs for a certain cpu indicate that
1427  * an update is needed.
1428  */
1429 static bool need_update(int cpu)
1430 {
1431 	struct zone *zone;
1432 
1433 	for_each_populated_zone(zone) {
1434 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1435 
1436 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1437 		/*
1438 		 * The fast way of checking if there are any vmstat diffs.
1439 		 * This works because the diffs are byte sized items.
1440 		 */
1441 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1442 			return true;
1443 
1444 	}
1445 	return false;
1446 }
1447 
1448 void quiet_vmstat(void)
1449 {
1450 	if (system_state != SYSTEM_RUNNING)
1451 		return;
1452 
1453 	/*
1454 	 * If we are already in hands of the shepherd then there
1455 	 * is nothing for us to do here.
1456 	 */
1457 	if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1458 		return;
1459 
1460 	if (!need_update(smp_processor_id()))
1461 		return;
1462 
1463 	/*
1464 	 * Just refresh counters and do not care about the pending delayed
1465 	 * vmstat_update. It doesn't fire that often to matter and canceling
1466 	 * it would be too expensive from this path.
1467 	 * vmstat_shepherd will take care about that for us.
1468 	 */
1469 	refresh_cpu_vm_stats(false);
1470 }
1471 
1472 
1473 /*
1474  * Shepherd worker thread that checks the
1475  * differentials of processors that have their worker
1476  * threads for vm statistics updates disabled because of
1477  * inactivity.
1478  */
1479 static void vmstat_shepherd(struct work_struct *w);
1480 
1481 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1482 
1483 static void vmstat_shepherd(struct work_struct *w)
1484 {
1485 	int cpu;
1486 
1487 	get_online_cpus();
1488 	/* Check processors whose vmstat worker threads have been disabled */
1489 	for_each_cpu(cpu, cpu_stat_off) {
1490 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1491 
1492 		if (need_update(cpu)) {
1493 			if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1494 				queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1495 		} else {
1496 			/*
1497 			 * Cancel the work if quiet_vmstat has put this
1498 			 * cpu on cpu_stat_off because the work item might
1499 			 * be still scheduled
1500 			 */
1501 			cancel_delayed_work(dw);
1502 		}
1503 	}
1504 	put_online_cpus();
1505 
1506 	schedule_delayed_work(&shepherd,
1507 		round_jiffies_relative(sysctl_stat_interval));
1508 }
1509 
1510 static void __init start_shepherd_timer(void)
1511 {
1512 	int cpu;
1513 
1514 	for_each_possible_cpu(cpu)
1515 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1516 			vmstat_update);
1517 
1518 	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1519 		BUG();
1520 	cpumask_copy(cpu_stat_off, cpu_online_mask);
1521 
1522 	vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1523 	schedule_delayed_work(&shepherd,
1524 		round_jiffies_relative(sysctl_stat_interval));
1525 }
1526 
1527 static void vmstat_cpu_dead(int node)
1528 {
1529 	int cpu;
1530 
1531 	get_online_cpus();
1532 	for_each_online_cpu(cpu)
1533 		if (cpu_to_node(cpu) == node)
1534 			goto end;
1535 
1536 	node_clear_state(node, N_CPU);
1537 end:
1538 	put_online_cpus();
1539 }
1540 
1541 /*
1542  * Use the cpu notifier to insure that the thresholds are recalculated
1543  * when necessary.
1544  */
1545 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1546 		unsigned long action,
1547 		void *hcpu)
1548 {
1549 	long cpu = (long)hcpu;
1550 
1551 	switch (action) {
1552 	case CPU_ONLINE:
1553 	case CPU_ONLINE_FROZEN:
1554 		refresh_zone_stat_thresholds();
1555 		node_set_state(cpu_to_node(cpu), N_CPU);
1556 		cpumask_set_cpu(cpu, cpu_stat_off);
1557 		break;
1558 	case CPU_DOWN_PREPARE:
1559 	case CPU_DOWN_PREPARE_FROZEN:
1560 		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1561 		cpumask_clear_cpu(cpu, cpu_stat_off);
1562 		break;
1563 	case CPU_DOWN_FAILED:
1564 	case CPU_DOWN_FAILED_FROZEN:
1565 		cpumask_set_cpu(cpu, cpu_stat_off);
1566 		break;
1567 	case CPU_DEAD:
1568 	case CPU_DEAD_FROZEN:
1569 		refresh_zone_stat_thresholds();
1570 		vmstat_cpu_dead(cpu_to_node(cpu));
1571 		break;
1572 	default:
1573 		break;
1574 	}
1575 	return NOTIFY_OK;
1576 }
1577 
1578 static struct notifier_block vmstat_notifier =
1579 	{ &vmstat_cpuup_callback, NULL, 0 };
1580 #endif
1581 
1582 static int __init setup_vmstat(void)
1583 {
1584 #ifdef CONFIG_SMP
1585 	cpu_notifier_register_begin();
1586 	__register_cpu_notifier(&vmstat_notifier);
1587 
1588 	start_shepherd_timer();
1589 	cpu_notifier_register_done();
1590 #endif
1591 #ifdef CONFIG_PROC_FS
1592 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1593 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1594 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1595 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1596 #endif
1597 	return 0;
1598 }
1599 module_init(setup_vmstat)
1600 
1601 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1602 
1603 /*
1604  * Return an index indicating how much of the available free memory is
1605  * unusable for an allocation of the requested size.
1606  */
1607 static int unusable_free_index(unsigned int order,
1608 				struct contig_page_info *info)
1609 {
1610 	/* No free memory is interpreted as all free memory is unusable */
1611 	if (info->free_pages == 0)
1612 		return 1000;
1613 
1614 	/*
1615 	 * Index should be a value between 0 and 1. Return a value to 3
1616 	 * decimal places.
1617 	 *
1618 	 * 0 => no fragmentation
1619 	 * 1 => high fragmentation
1620 	 */
1621 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1622 
1623 }
1624 
1625 static void unusable_show_print(struct seq_file *m,
1626 					pg_data_t *pgdat, struct zone *zone)
1627 {
1628 	unsigned int order;
1629 	int index;
1630 	struct contig_page_info info;
1631 
1632 	seq_printf(m, "Node %d, zone %8s ",
1633 				pgdat->node_id,
1634 				zone->name);
1635 	for (order = 0; order < MAX_ORDER; ++order) {
1636 		fill_contig_page_info(zone, order, &info);
1637 		index = unusable_free_index(order, &info);
1638 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1639 	}
1640 
1641 	seq_putc(m, '\n');
1642 }
1643 
1644 /*
1645  * Display unusable free space index
1646  *
1647  * The unusable free space index measures how much of the available free
1648  * memory cannot be used to satisfy an allocation of a given size and is a
1649  * value between 0 and 1. The higher the value, the more of free memory is
1650  * unusable and by implication, the worse the external fragmentation is. This
1651  * can be expressed as a percentage by multiplying by 100.
1652  */
1653 static int unusable_show(struct seq_file *m, void *arg)
1654 {
1655 	pg_data_t *pgdat = (pg_data_t *)arg;
1656 
1657 	/* check memoryless node */
1658 	if (!node_state(pgdat->node_id, N_MEMORY))
1659 		return 0;
1660 
1661 	walk_zones_in_node(m, pgdat, unusable_show_print);
1662 
1663 	return 0;
1664 }
1665 
1666 static const struct seq_operations unusable_op = {
1667 	.start	= frag_start,
1668 	.next	= frag_next,
1669 	.stop	= frag_stop,
1670 	.show	= unusable_show,
1671 };
1672 
1673 static int unusable_open(struct inode *inode, struct file *file)
1674 {
1675 	return seq_open(file, &unusable_op);
1676 }
1677 
1678 static const struct file_operations unusable_file_ops = {
1679 	.open		= unusable_open,
1680 	.read		= seq_read,
1681 	.llseek		= seq_lseek,
1682 	.release	= seq_release,
1683 };
1684 
1685 static void extfrag_show_print(struct seq_file *m,
1686 					pg_data_t *pgdat, struct zone *zone)
1687 {
1688 	unsigned int order;
1689 	int index;
1690 
1691 	/* Alloc on stack as interrupts are disabled for zone walk */
1692 	struct contig_page_info info;
1693 
1694 	seq_printf(m, "Node %d, zone %8s ",
1695 				pgdat->node_id,
1696 				zone->name);
1697 	for (order = 0; order < MAX_ORDER; ++order) {
1698 		fill_contig_page_info(zone, order, &info);
1699 		index = __fragmentation_index(order, &info);
1700 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1701 	}
1702 
1703 	seq_putc(m, '\n');
1704 }
1705 
1706 /*
1707  * Display fragmentation index for orders that allocations would fail for
1708  */
1709 static int extfrag_show(struct seq_file *m, void *arg)
1710 {
1711 	pg_data_t *pgdat = (pg_data_t *)arg;
1712 
1713 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1714 
1715 	return 0;
1716 }
1717 
1718 static const struct seq_operations extfrag_op = {
1719 	.start	= frag_start,
1720 	.next	= frag_next,
1721 	.stop	= frag_stop,
1722 	.show	= extfrag_show,
1723 };
1724 
1725 static int extfrag_open(struct inode *inode, struct file *file)
1726 {
1727 	return seq_open(file, &extfrag_op);
1728 }
1729 
1730 static const struct file_operations extfrag_file_ops = {
1731 	.open		= extfrag_open,
1732 	.read		= seq_read,
1733 	.llseek		= seq_lseek,
1734 	.release	= seq_release,
1735 };
1736 
1737 static int __init extfrag_debug_init(void)
1738 {
1739 	struct dentry *extfrag_debug_root;
1740 
1741 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1742 	if (!extfrag_debug_root)
1743 		return -ENOMEM;
1744 
1745 	if (!debugfs_create_file("unusable_index", 0444,
1746 			extfrag_debug_root, NULL, &unusable_file_ops))
1747 		goto fail;
1748 
1749 	if (!debugfs_create_file("extfrag_index", 0444,
1750 			extfrag_debug_root, NULL, &extfrag_file_ops))
1751 		goto fail;
1752 
1753 	return 0;
1754 fail:
1755 	debugfs_remove_recursive(extfrag_debug_root);
1756 	return -ENOMEM;
1757 }
1758 
1759 module_init(extfrag_debug_init);
1760 #endif
1761