xref: /linux/mm/vmstat.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 
21 #ifdef CONFIG_VM_EVENT_COUNTERS
22 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
23 EXPORT_PER_CPU_SYMBOL(vm_event_states);
24 
25 static void sum_vm_events(unsigned long *ret)
26 {
27 	int cpu;
28 	int i;
29 
30 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
31 
32 	for_each_online_cpu(cpu) {
33 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
34 
35 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
36 			ret[i] += this->event[i];
37 	}
38 }
39 
40 /*
41  * Accumulate the vm event counters across all CPUs.
42  * The result is unavoidably approximate - it can change
43  * during and after execution of this function.
44 */
45 void all_vm_events(unsigned long *ret)
46 {
47 	get_online_cpus();
48 	sum_vm_events(ret);
49 	put_online_cpus();
50 }
51 EXPORT_SYMBOL_GPL(all_vm_events);
52 
53 #ifdef CONFIG_HOTPLUG
54 /*
55  * Fold the foreign cpu events into our own.
56  *
57  * This is adding to the events on one processor
58  * but keeps the global counts constant.
59  */
60 void vm_events_fold_cpu(int cpu)
61 {
62 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
63 	int i;
64 
65 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
66 		count_vm_events(i, fold_state->event[i]);
67 		fold_state->event[i] = 0;
68 	}
69 }
70 #endif /* CONFIG_HOTPLUG */
71 
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73 
74 /*
75  * Manage combined zone based / global counters
76  *
77  * vm_stat contains the global counters
78  */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
80 EXPORT_SYMBOL(vm_stat);
81 
82 #ifdef CONFIG_SMP
83 
84 static int calculate_threshold(struct zone *zone)
85 {
86 	int threshold;
87 	int mem;	/* memory in 128 MB units */
88 
89 	/*
90 	 * The threshold scales with the number of processors and the amount
91 	 * of memory per zone. More memory means that we can defer updates for
92 	 * longer, more processors could lead to more contention.
93  	 * fls() is used to have a cheap way of logarithmic scaling.
94 	 *
95 	 * Some sample thresholds:
96 	 *
97 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
98 	 * ------------------------------------------------------------------
99 	 * 8		1		1	0.9-1 GB	4
100 	 * 16		2		2	0.9-1 GB	4
101 	 * 20 		2		2	1-2 GB		5
102 	 * 24		2		2	2-4 GB		6
103 	 * 28		2		2	4-8 GB		7
104 	 * 32		2		2	8-16 GB		8
105 	 * 4		2		2	<128M		1
106 	 * 30		4		3	2-4 GB		5
107 	 * 48		4		3	8-16 GB		8
108 	 * 32		8		4	1-2 GB		4
109 	 * 32		8		4	0.9-1GB		4
110 	 * 10		16		5	<128M		1
111 	 * 40		16		5	900M		4
112 	 * 70		64		7	2-4 GB		5
113 	 * 84		64		7	4-8 GB		6
114 	 * 108		512		9	4-8 GB		6
115 	 * 125		1024		10	8-16 GB		8
116 	 * 125		1024		10	16-32 GB	9
117 	 */
118 
119 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
120 
121 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
122 
123 	/*
124 	 * Maximum threshold is 125
125 	 */
126 	threshold = min(125, threshold);
127 
128 	return threshold;
129 }
130 
131 /*
132  * Refresh the thresholds for each zone.
133  */
134 static void refresh_zone_stat_thresholds(void)
135 {
136 	struct zone *zone;
137 	int cpu;
138 	int threshold;
139 
140 	for_each_populated_zone(zone) {
141 		unsigned long max_drift, tolerate_drift;
142 
143 		threshold = calculate_threshold(zone);
144 
145 		for_each_online_cpu(cpu)
146 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
147 							= threshold;
148 
149 		/*
150 		 * Only set percpu_drift_mark if there is a danger that
151 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
152 		 * the min watermark could be breached by an allocation
153 		 */
154 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
155 		max_drift = num_online_cpus() * threshold;
156 		if (max_drift > tolerate_drift)
157 			zone->percpu_drift_mark = high_wmark_pages(zone) +
158 					max_drift;
159 	}
160 }
161 
162 /*
163  * For use when we know that interrupts are disabled.
164  */
165 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
166 				int delta)
167 {
168 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
169 
170 	s8 *p = pcp->vm_stat_diff + item;
171 	long x;
172 
173 	x = delta + *p;
174 
175 	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
176 		zone_page_state_add(x, zone, item);
177 		x = 0;
178 	}
179 	*p = x;
180 }
181 EXPORT_SYMBOL(__mod_zone_page_state);
182 
183 /*
184  * For an unknown interrupt state
185  */
186 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
187 					int delta)
188 {
189 	unsigned long flags;
190 
191 	local_irq_save(flags);
192 	__mod_zone_page_state(zone, item, delta);
193 	local_irq_restore(flags);
194 }
195 EXPORT_SYMBOL(mod_zone_page_state);
196 
197 /*
198  * Optimized increment and decrement functions.
199  *
200  * These are only for a single page and therefore can take a struct page *
201  * argument instead of struct zone *. This allows the inclusion of the code
202  * generated for page_zone(page) into the optimized functions.
203  *
204  * No overflow check is necessary and therefore the differential can be
205  * incremented or decremented in place which may allow the compilers to
206  * generate better code.
207  * The increment or decrement is known and therefore one boundary check can
208  * be omitted.
209  *
210  * NOTE: These functions are very performance sensitive. Change only
211  * with care.
212  *
213  * Some processors have inc/dec instructions that are atomic vs an interrupt.
214  * However, the code must first determine the differential location in a zone
215  * based on the processor number and then inc/dec the counter. There is no
216  * guarantee without disabling preemption that the processor will not change
217  * in between and therefore the atomicity vs. interrupt cannot be exploited
218  * in a useful way here.
219  */
220 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
221 {
222 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
223 	s8 *p = pcp->vm_stat_diff + item;
224 
225 	(*p)++;
226 
227 	if (unlikely(*p > pcp->stat_threshold)) {
228 		int overstep = pcp->stat_threshold / 2;
229 
230 		zone_page_state_add(*p + overstep, zone, item);
231 		*p = -overstep;
232 	}
233 }
234 
235 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
236 {
237 	__inc_zone_state(page_zone(page), item);
238 }
239 EXPORT_SYMBOL(__inc_zone_page_state);
240 
241 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
242 {
243 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
244 	s8 *p = pcp->vm_stat_diff + item;
245 
246 	(*p)--;
247 
248 	if (unlikely(*p < - pcp->stat_threshold)) {
249 		int overstep = pcp->stat_threshold / 2;
250 
251 		zone_page_state_add(*p - overstep, zone, item);
252 		*p = overstep;
253 	}
254 }
255 
256 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
257 {
258 	__dec_zone_state(page_zone(page), item);
259 }
260 EXPORT_SYMBOL(__dec_zone_page_state);
261 
262 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
263 {
264 	unsigned long flags;
265 
266 	local_irq_save(flags);
267 	__inc_zone_state(zone, item);
268 	local_irq_restore(flags);
269 }
270 
271 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
272 {
273 	unsigned long flags;
274 	struct zone *zone;
275 
276 	zone = page_zone(page);
277 	local_irq_save(flags);
278 	__inc_zone_state(zone, item);
279 	local_irq_restore(flags);
280 }
281 EXPORT_SYMBOL(inc_zone_page_state);
282 
283 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
284 {
285 	unsigned long flags;
286 
287 	local_irq_save(flags);
288 	__dec_zone_page_state(page, item);
289 	local_irq_restore(flags);
290 }
291 EXPORT_SYMBOL(dec_zone_page_state);
292 
293 /*
294  * Update the zone counters for one cpu.
295  *
296  * The cpu specified must be either the current cpu or a processor that
297  * is not online. If it is the current cpu then the execution thread must
298  * be pinned to the current cpu.
299  *
300  * Note that refresh_cpu_vm_stats strives to only access
301  * node local memory. The per cpu pagesets on remote zones are placed
302  * in the memory local to the processor using that pageset. So the
303  * loop over all zones will access a series of cachelines local to
304  * the processor.
305  *
306  * The call to zone_page_state_add updates the cachelines with the
307  * statistics in the remote zone struct as well as the global cachelines
308  * with the global counters. These could cause remote node cache line
309  * bouncing and will have to be only done when necessary.
310  */
311 void refresh_cpu_vm_stats(int cpu)
312 {
313 	struct zone *zone;
314 	int i;
315 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
316 
317 	for_each_populated_zone(zone) {
318 		struct per_cpu_pageset *p;
319 
320 		p = per_cpu_ptr(zone->pageset, cpu);
321 
322 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
323 			if (p->vm_stat_diff[i]) {
324 				unsigned long flags;
325 				int v;
326 
327 				local_irq_save(flags);
328 				v = p->vm_stat_diff[i];
329 				p->vm_stat_diff[i] = 0;
330 				local_irq_restore(flags);
331 				atomic_long_add(v, &zone->vm_stat[i]);
332 				global_diff[i] += v;
333 #ifdef CONFIG_NUMA
334 				/* 3 seconds idle till flush */
335 				p->expire = 3;
336 #endif
337 			}
338 		cond_resched();
339 #ifdef CONFIG_NUMA
340 		/*
341 		 * Deal with draining the remote pageset of this
342 		 * processor
343 		 *
344 		 * Check if there are pages remaining in this pageset
345 		 * if not then there is nothing to expire.
346 		 */
347 		if (!p->expire || !p->pcp.count)
348 			continue;
349 
350 		/*
351 		 * We never drain zones local to this processor.
352 		 */
353 		if (zone_to_nid(zone) == numa_node_id()) {
354 			p->expire = 0;
355 			continue;
356 		}
357 
358 		p->expire--;
359 		if (p->expire)
360 			continue;
361 
362 		if (p->pcp.count)
363 			drain_zone_pages(zone, &p->pcp);
364 #endif
365 	}
366 
367 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
368 		if (global_diff[i])
369 			atomic_long_add(global_diff[i], &vm_stat[i]);
370 }
371 
372 #endif
373 
374 #ifdef CONFIG_NUMA
375 /*
376  * zonelist = the list of zones passed to the allocator
377  * z 	    = the zone from which the allocation occurred.
378  *
379  * Must be called with interrupts disabled.
380  */
381 void zone_statistics(struct zone *preferred_zone, struct zone *z)
382 {
383 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
384 		__inc_zone_state(z, NUMA_HIT);
385 	} else {
386 		__inc_zone_state(z, NUMA_MISS);
387 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
388 	}
389 	if (z->node == numa_node_id())
390 		__inc_zone_state(z, NUMA_LOCAL);
391 	else
392 		__inc_zone_state(z, NUMA_OTHER);
393 }
394 #endif
395 
396 #ifdef CONFIG_COMPACTION
397 struct contig_page_info {
398 	unsigned long free_pages;
399 	unsigned long free_blocks_total;
400 	unsigned long free_blocks_suitable;
401 };
402 
403 /*
404  * Calculate the number of free pages in a zone, how many contiguous
405  * pages are free and how many are large enough to satisfy an allocation of
406  * the target size. Note that this function makes no attempt to estimate
407  * how many suitable free blocks there *might* be if MOVABLE pages were
408  * migrated. Calculating that is possible, but expensive and can be
409  * figured out from userspace
410  */
411 static void fill_contig_page_info(struct zone *zone,
412 				unsigned int suitable_order,
413 				struct contig_page_info *info)
414 {
415 	unsigned int order;
416 
417 	info->free_pages = 0;
418 	info->free_blocks_total = 0;
419 	info->free_blocks_suitable = 0;
420 
421 	for (order = 0; order < MAX_ORDER; order++) {
422 		unsigned long blocks;
423 
424 		/* Count number of free blocks */
425 		blocks = zone->free_area[order].nr_free;
426 		info->free_blocks_total += blocks;
427 
428 		/* Count free base pages */
429 		info->free_pages += blocks << order;
430 
431 		/* Count the suitable free blocks */
432 		if (order >= suitable_order)
433 			info->free_blocks_suitable += blocks <<
434 						(order - suitable_order);
435 	}
436 }
437 
438 /*
439  * A fragmentation index only makes sense if an allocation of a requested
440  * size would fail. If that is true, the fragmentation index indicates
441  * whether external fragmentation or a lack of memory was the problem.
442  * The value can be used to determine if page reclaim or compaction
443  * should be used
444  */
445 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
446 {
447 	unsigned long requested = 1UL << order;
448 
449 	if (!info->free_blocks_total)
450 		return 0;
451 
452 	/* Fragmentation index only makes sense when a request would fail */
453 	if (info->free_blocks_suitable)
454 		return -1000;
455 
456 	/*
457 	 * Index is between 0 and 1 so return within 3 decimal places
458 	 *
459 	 * 0 => allocation would fail due to lack of memory
460 	 * 1 => allocation would fail due to fragmentation
461 	 */
462 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
463 }
464 
465 /* Same as __fragmentation index but allocs contig_page_info on stack */
466 int fragmentation_index(struct zone *zone, unsigned int order)
467 {
468 	struct contig_page_info info;
469 
470 	fill_contig_page_info(zone, order, &info);
471 	return __fragmentation_index(order, &info);
472 }
473 #endif
474 
475 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
476 #include <linux/proc_fs.h>
477 #include <linux/seq_file.h>
478 
479 static char * const migratetype_names[MIGRATE_TYPES] = {
480 	"Unmovable",
481 	"Reclaimable",
482 	"Movable",
483 	"Reserve",
484 	"Isolate",
485 };
486 
487 static void *frag_start(struct seq_file *m, loff_t *pos)
488 {
489 	pg_data_t *pgdat;
490 	loff_t node = *pos;
491 	for (pgdat = first_online_pgdat();
492 	     pgdat && node;
493 	     pgdat = next_online_pgdat(pgdat))
494 		--node;
495 
496 	return pgdat;
497 }
498 
499 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
500 {
501 	pg_data_t *pgdat = (pg_data_t *)arg;
502 
503 	(*pos)++;
504 	return next_online_pgdat(pgdat);
505 }
506 
507 static void frag_stop(struct seq_file *m, void *arg)
508 {
509 }
510 
511 /* Walk all the zones in a node and print using a callback */
512 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
513 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
514 {
515 	struct zone *zone;
516 	struct zone *node_zones = pgdat->node_zones;
517 	unsigned long flags;
518 
519 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
520 		if (!populated_zone(zone))
521 			continue;
522 
523 		spin_lock_irqsave(&zone->lock, flags);
524 		print(m, pgdat, zone);
525 		spin_unlock_irqrestore(&zone->lock, flags);
526 	}
527 }
528 #endif
529 
530 #ifdef CONFIG_PROC_FS
531 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
532 						struct zone *zone)
533 {
534 	int order;
535 
536 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
537 	for (order = 0; order < MAX_ORDER; ++order)
538 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
539 	seq_putc(m, '\n');
540 }
541 
542 /*
543  * This walks the free areas for each zone.
544  */
545 static int frag_show(struct seq_file *m, void *arg)
546 {
547 	pg_data_t *pgdat = (pg_data_t *)arg;
548 	walk_zones_in_node(m, pgdat, frag_show_print);
549 	return 0;
550 }
551 
552 static void pagetypeinfo_showfree_print(struct seq_file *m,
553 					pg_data_t *pgdat, struct zone *zone)
554 {
555 	int order, mtype;
556 
557 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
558 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
559 					pgdat->node_id,
560 					zone->name,
561 					migratetype_names[mtype]);
562 		for (order = 0; order < MAX_ORDER; ++order) {
563 			unsigned long freecount = 0;
564 			struct free_area *area;
565 			struct list_head *curr;
566 
567 			area = &(zone->free_area[order]);
568 
569 			list_for_each(curr, &area->free_list[mtype])
570 				freecount++;
571 			seq_printf(m, "%6lu ", freecount);
572 		}
573 		seq_putc(m, '\n');
574 	}
575 }
576 
577 /* Print out the free pages at each order for each migatetype */
578 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
579 {
580 	int order;
581 	pg_data_t *pgdat = (pg_data_t *)arg;
582 
583 	/* Print header */
584 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
585 	for (order = 0; order < MAX_ORDER; ++order)
586 		seq_printf(m, "%6d ", order);
587 	seq_putc(m, '\n');
588 
589 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
590 
591 	return 0;
592 }
593 
594 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
595 					pg_data_t *pgdat, struct zone *zone)
596 {
597 	int mtype;
598 	unsigned long pfn;
599 	unsigned long start_pfn = zone->zone_start_pfn;
600 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
601 	unsigned long count[MIGRATE_TYPES] = { 0, };
602 
603 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
604 		struct page *page;
605 
606 		if (!pfn_valid(pfn))
607 			continue;
608 
609 		page = pfn_to_page(pfn);
610 
611 		/* Watch for unexpected holes punched in the memmap */
612 		if (!memmap_valid_within(pfn, page, zone))
613 			continue;
614 
615 		mtype = get_pageblock_migratetype(page);
616 
617 		if (mtype < MIGRATE_TYPES)
618 			count[mtype]++;
619 	}
620 
621 	/* Print counts */
622 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
623 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
624 		seq_printf(m, "%12lu ", count[mtype]);
625 	seq_putc(m, '\n');
626 }
627 
628 /* Print out the free pages at each order for each migratetype */
629 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
630 {
631 	int mtype;
632 	pg_data_t *pgdat = (pg_data_t *)arg;
633 
634 	seq_printf(m, "\n%-23s", "Number of blocks type ");
635 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
636 		seq_printf(m, "%12s ", migratetype_names[mtype]);
637 	seq_putc(m, '\n');
638 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
639 
640 	return 0;
641 }
642 
643 /*
644  * This prints out statistics in relation to grouping pages by mobility.
645  * It is expensive to collect so do not constantly read the file.
646  */
647 static int pagetypeinfo_show(struct seq_file *m, void *arg)
648 {
649 	pg_data_t *pgdat = (pg_data_t *)arg;
650 
651 	/* check memoryless node */
652 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
653 		return 0;
654 
655 	seq_printf(m, "Page block order: %d\n", pageblock_order);
656 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
657 	seq_putc(m, '\n');
658 	pagetypeinfo_showfree(m, pgdat);
659 	pagetypeinfo_showblockcount(m, pgdat);
660 
661 	return 0;
662 }
663 
664 static const struct seq_operations fragmentation_op = {
665 	.start	= frag_start,
666 	.next	= frag_next,
667 	.stop	= frag_stop,
668 	.show	= frag_show,
669 };
670 
671 static int fragmentation_open(struct inode *inode, struct file *file)
672 {
673 	return seq_open(file, &fragmentation_op);
674 }
675 
676 static const struct file_operations fragmentation_file_operations = {
677 	.open		= fragmentation_open,
678 	.read		= seq_read,
679 	.llseek		= seq_lseek,
680 	.release	= seq_release,
681 };
682 
683 static const struct seq_operations pagetypeinfo_op = {
684 	.start	= frag_start,
685 	.next	= frag_next,
686 	.stop	= frag_stop,
687 	.show	= pagetypeinfo_show,
688 };
689 
690 static int pagetypeinfo_open(struct inode *inode, struct file *file)
691 {
692 	return seq_open(file, &pagetypeinfo_op);
693 }
694 
695 static const struct file_operations pagetypeinfo_file_ops = {
696 	.open		= pagetypeinfo_open,
697 	.read		= seq_read,
698 	.llseek		= seq_lseek,
699 	.release	= seq_release,
700 };
701 
702 #ifdef CONFIG_ZONE_DMA
703 #define TEXT_FOR_DMA(xx) xx "_dma",
704 #else
705 #define TEXT_FOR_DMA(xx)
706 #endif
707 
708 #ifdef CONFIG_ZONE_DMA32
709 #define TEXT_FOR_DMA32(xx) xx "_dma32",
710 #else
711 #define TEXT_FOR_DMA32(xx)
712 #endif
713 
714 #ifdef CONFIG_HIGHMEM
715 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
716 #else
717 #define TEXT_FOR_HIGHMEM(xx)
718 #endif
719 
720 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
721 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
722 
723 static const char * const vmstat_text[] = {
724 	/* Zoned VM counters */
725 	"nr_free_pages",
726 	"nr_inactive_anon",
727 	"nr_active_anon",
728 	"nr_inactive_file",
729 	"nr_active_file",
730 	"nr_unevictable",
731 	"nr_mlock",
732 	"nr_anon_pages",
733 	"nr_mapped",
734 	"nr_file_pages",
735 	"nr_dirty",
736 	"nr_writeback",
737 	"nr_slab_reclaimable",
738 	"nr_slab_unreclaimable",
739 	"nr_page_table_pages",
740 	"nr_kernel_stack",
741 	"nr_unstable",
742 	"nr_bounce",
743 	"nr_vmscan_write",
744 	"nr_writeback_temp",
745 	"nr_isolated_anon",
746 	"nr_isolated_file",
747 	"nr_shmem",
748 #ifdef CONFIG_NUMA
749 	"numa_hit",
750 	"numa_miss",
751 	"numa_foreign",
752 	"numa_interleave",
753 	"numa_local",
754 	"numa_other",
755 #endif
756 
757 #ifdef CONFIG_VM_EVENT_COUNTERS
758 	"pgpgin",
759 	"pgpgout",
760 	"pswpin",
761 	"pswpout",
762 
763 	TEXTS_FOR_ZONES("pgalloc")
764 
765 	"pgfree",
766 	"pgactivate",
767 	"pgdeactivate",
768 
769 	"pgfault",
770 	"pgmajfault",
771 
772 	TEXTS_FOR_ZONES("pgrefill")
773 	TEXTS_FOR_ZONES("pgsteal")
774 	TEXTS_FOR_ZONES("pgscan_kswapd")
775 	TEXTS_FOR_ZONES("pgscan_direct")
776 
777 #ifdef CONFIG_NUMA
778 	"zone_reclaim_failed",
779 #endif
780 	"pginodesteal",
781 	"slabs_scanned",
782 	"kswapd_steal",
783 	"kswapd_inodesteal",
784 	"kswapd_low_wmark_hit_quickly",
785 	"kswapd_high_wmark_hit_quickly",
786 	"kswapd_skip_congestion_wait",
787 	"pageoutrun",
788 	"allocstall",
789 
790 	"pgrotated",
791 
792 #ifdef CONFIG_COMPACTION
793 	"compact_blocks_moved",
794 	"compact_pages_moved",
795 	"compact_pagemigrate_failed",
796 	"compact_stall",
797 	"compact_fail",
798 	"compact_success",
799 #endif
800 
801 #ifdef CONFIG_HUGETLB_PAGE
802 	"htlb_buddy_alloc_success",
803 	"htlb_buddy_alloc_fail",
804 #endif
805 	"unevictable_pgs_culled",
806 	"unevictable_pgs_scanned",
807 	"unevictable_pgs_rescued",
808 	"unevictable_pgs_mlocked",
809 	"unevictable_pgs_munlocked",
810 	"unevictable_pgs_cleared",
811 	"unevictable_pgs_stranded",
812 	"unevictable_pgs_mlockfreed",
813 #endif
814 };
815 
816 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
817 							struct zone *zone)
818 {
819 	int i;
820 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
821 	seq_printf(m,
822 		   "\n  pages free     %lu"
823 		   "\n        min      %lu"
824 		   "\n        low      %lu"
825 		   "\n        high     %lu"
826 		   "\n        scanned  %lu"
827 		   "\n        spanned  %lu"
828 		   "\n        present  %lu",
829 		   zone_nr_free_pages(zone),
830 		   min_wmark_pages(zone),
831 		   low_wmark_pages(zone),
832 		   high_wmark_pages(zone),
833 		   zone->pages_scanned,
834 		   zone->spanned_pages,
835 		   zone->present_pages);
836 
837 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
838 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
839 				zone_page_state(zone, i));
840 
841 	seq_printf(m,
842 		   "\n        protection: (%lu",
843 		   zone->lowmem_reserve[0]);
844 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
845 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
846 	seq_printf(m,
847 		   ")"
848 		   "\n  pagesets");
849 	for_each_online_cpu(i) {
850 		struct per_cpu_pageset *pageset;
851 
852 		pageset = per_cpu_ptr(zone->pageset, i);
853 		seq_printf(m,
854 			   "\n    cpu: %i"
855 			   "\n              count: %i"
856 			   "\n              high:  %i"
857 			   "\n              batch: %i",
858 			   i,
859 			   pageset->pcp.count,
860 			   pageset->pcp.high,
861 			   pageset->pcp.batch);
862 #ifdef CONFIG_SMP
863 		seq_printf(m, "\n  vm stats threshold: %d",
864 				pageset->stat_threshold);
865 #endif
866 	}
867 	seq_printf(m,
868 		   "\n  all_unreclaimable: %u"
869 		   "\n  start_pfn:         %lu"
870 		   "\n  inactive_ratio:    %u",
871 		   zone->all_unreclaimable,
872 		   zone->zone_start_pfn,
873 		   zone->inactive_ratio);
874 	seq_putc(m, '\n');
875 }
876 
877 /*
878  * Output information about zones in @pgdat.
879  */
880 static int zoneinfo_show(struct seq_file *m, void *arg)
881 {
882 	pg_data_t *pgdat = (pg_data_t *)arg;
883 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
884 	return 0;
885 }
886 
887 static const struct seq_operations zoneinfo_op = {
888 	.start	= frag_start, /* iterate over all zones. The same as in
889 			       * fragmentation. */
890 	.next	= frag_next,
891 	.stop	= frag_stop,
892 	.show	= zoneinfo_show,
893 };
894 
895 static int zoneinfo_open(struct inode *inode, struct file *file)
896 {
897 	return seq_open(file, &zoneinfo_op);
898 }
899 
900 static const struct file_operations proc_zoneinfo_file_operations = {
901 	.open		= zoneinfo_open,
902 	.read		= seq_read,
903 	.llseek		= seq_lseek,
904 	.release	= seq_release,
905 };
906 
907 static void *vmstat_start(struct seq_file *m, loff_t *pos)
908 {
909 	unsigned long *v;
910 #ifdef CONFIG_VM_EVENT_COUNTERS
911 	unsigned long *e;
912 #endif
913 	int i;
914 
915 	if (*pos >= ARRAY_SIZE(vmstat_text))
916 		return NULL;
917 
918 #ifdef CONFIG_VM_EVENT_COUNTERS
919 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
920 			+ sizeof(struct vm_event_state), GFP_KERNEL);
921 #else
922 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
923 			GFP_KERNEL);
924 #endif
925 	m->private = v;
926 	if (!v)
927 		return ERR_PTR(-ENOMEM);
928 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
929 		v[i] = global_page_state(i);
930 #ifdef CONFIG_VM_EVENT_COUNTERS
931 	e = v + NR_VM_ZONE_STAT_ITEMS;
932 	all_vm_events(e);
933 	e[PGPGIN] /= 2;		/* sectors -> kbytes */
934 	e[PGPGOUT] /= 2;
935 #endif
936 	return v + *pos;
937 }
938 
939 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
940 {
941 	(*pos)++;
942 	if (*pos >= ARRAY_SIZE(vmstat_text))
943 		return NULL;
944 	return (unsigned long *)m->private + *pos;
945 }
946 
947 static int vmstat_show(struct seq_file *m, void *arg)
948 {
949 	unsigned long *l = arg;
950 	unsigned long off = l - (unsigned long *)m->private;
951 
952 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
953 	return 0;
954 }
955 
956 static void vmstat_stop(struct seq_file *m, void *arg)
957 {
958 	kfree(m->private);
959 	m->private = NULL;
960 }
961 
962 static const struct seq_operations vmstat_op = {
963 	.start	= vmstat_start,
964 	.next	= vmstat_next,
965 	.stop	= vmstat_stop,
966 	.show	= vmstat_show,
967 };
968 
969 static int vmstat_open(struct inode *inode, struct file *file)
970 {
971 	return seq_open(file, &vmstat_op);
972 }
973 
974 static const struct file_operations proc_vmstat_file_operations = {
975 	.open		= vmstat_open,
976 	.read		= seq_read,
977 	.llseek		= seq_lseek,
978 	.release	= seq_release,
979 };
980 #endif /* CONFIG_PROC_FS */
981 
982 #ifdef CONFIG_SMP
983 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
984 int sysctl_stat_interval __read_mostly = HZ;
985 
986 static void vmstat_update(struct work_struct *w)
987 {
988 	refresh_cpu_vm_stats(smp_processor_id());
989 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
990 		round_jiffies_relative(sysctl_stat_interval));
991 }
992 
993 static void __cpuinit start_cpu_timer(int cpu)
994 {
995 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
996 
997 	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
998 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
999 }
1000 
1001 /*
1002  * Use the cpu notifier to insure that the thresholds are recalculated
1003  * when necessary.
1004  */
1005 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1006 		unsigned long action,
1007 		void *hcpu)
1008 {
1009 	long cpu = (long)hcpu;
1010 
1011 	switch (action) {
1012 	case CPU_ONLINE:
1013 	case CPU_ONLINE_FROZEN:
1014 		refresh_zone_stat_thresholds();
1015 		start_cpu_timer(cpu);
1016 		node_set_state(cpu_to_node(cpu), N_CPU);
1017 		break;
1018 	case CPU_DOWN_PREPARE:
1019 	case CPU_DOWN_PREPARE_FROZEN:
1020 		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
1021 		per_cpu(vmstat_work, cpu).work.func = NULL;
1022 		break;
1023 	case CPU_DOWN_FAILED:
1024 	case CPU_DOWN_FAILED_FROZEN:
1025 		start_cpu_timer(cpu);
1026 		break;
1027 	case CPU_DEAD:
1028 	case CPU_DEAD_FROZEN:
1029 		refresh_zone_stat_thresholds();
1030 		break;
1031 	default:
1032 		break;
1033 	}
1034 	return NOTIFY_OK;
1035 }
1036 
1037 static struct notifier_block __cpuinitdata vmstat_notifier =
1038 	{ &vmstat_cpuup_callback, NULL, 0 };
1039 #endif
1040 
1041 static int __init setup_vmstat(void)
1042 {
1043 #ifdef CONFIG_SMP
1044 	int cpu;
1045 
1046 	refresh_zone_stat_thresholds();
1047 	register_cpu_notifier(&vmstat_notifier);
1048 
1049 	for_each_online_cpu(cpu)
1050 		start_cpu_timer(cpu);
1051 #endif
1052 #ifdef CONFIG_PROC_FS
1053 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1054 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1055 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1056 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1057 #endif
1058 	return 0;
1059 }
1060 module_init(setup_vmstat)
1061 
1062 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1063 #include <linux/debugfs.h>
1064 
1065 static struct dentry *extfrag_debug_root;
1066 
1067 /*
1068  * Return an index indicating how much of the available free memory is
1069  * unusable for an allocation of the requested size.
1070  */
1071 static int unusable_free_index(unsigned int order,
1072 				struct contig_page_info *info)
1073 {
1074 	/* No free memory is interpreted as all free memory is unusable */
1075 	if (info->free_pages == 0)
1076 		return 1000;
1077 
1078 	/*
1079 	 * Index should be a value between 0 and 1. Return a value to 3
1080 	 * decimal places.
1081 	 *
1082 	 * 0 => no fragmentation
1083 	 * 1 => high fragmentation
1084 	 */
1085 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1086 
1087 }
1088 
1089 static void unusable_show_print(struct seq_file *m,
1090 					pg_data_t *pgdat, struct zone *zone)
1091 {
1092 	unsigned int order;
1093 	int index;
1094 	struct contig_page_info info;
1095 
1096 	seq_printf(m, "Node %d, zone %8s ",
1097 				pgdat->node_id,
1098 				zone->name);
1099 	for (order = 0; order < MAX_ORDER; ++order) {
1100 		fill_contig_page_info(zone, order, &info);
1101 		index = unusable_free_index(order, &info);
1102 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1103 	}
1104 
1105 	seq_putc(m, '\n');
1106 }
1107 
1108 /*
1109  * Display unusable free space index
1110  *
1111  * The unusable free space index measures how much of the available free
1112  * memory cannot be used to satisfy an allocation of a given size and is a
1113  * value between 0 and 1. The higher the value, the more of free memory is
1114  * unusable and by implication, the worse the external fragmentation is. This
1115  * can be expressed as a percentage by multiplying by 100.
1116  */
1117 static int unusable_show(struct seq_file *m, void *arg)
1118 {
1119 	pg_data_t *pgdat = (pg_data_t *)arg;
1120 
1121 	/* check memoryless node */
1122 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1123 		return 0;
1124 
1125 	walk_zones_in_node(m, pgdat, unusable_show_print);
1126 
1127 	return 0;
1128 }
1129 
1130 static const struct seq_operations unusable_op = {
1131 	.start	= frag_start,
1132 	.next	= frag_next,
1133 	.stop	= frag_stop,
1134 	.show	= unusable_show,
1135 };
1136 
1137 static int unusable_open(struct inode *inode, struct file *file)
1138 {
1139 	return seq_open(file, &unusable_op);
1140 }
1141 
1142 static const struct file_operations unusable_file_ops = {
1143 	.open		= unusable_open,
1144 	.read		= seq_read,
1145 	.llseek		= seq_lseek,
1146 	.release	= seq_release,
1147 };
1148 
1149 static void extfrag_show_print(struct seq_file *m,
1150 					pg_data_t *pgdat, struct zone *zone)
1151 {
1152 	unsigned int order;
1153 	int index;
1154 
1155 	/* Alloc on stack as interrupts are disabled for zone walk */
1156 	struct contig_page_info info;
1157 
1158 	seq_printf(m, "Node %d, zone %8s ",
1159 				pgdat->node_id,
1160 				zone->name);
1161 	for (order = 0; order < MAX_ORDER; ++order) {
1162 		fill_contig_page_info(zone, order, &info);
1163 		index = __fragmentation_index(order, &info);
1164 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1165 	}
1166 
1167 	seq_putc(m, '\n');
1168 }
1169 
1170 /*
1171  * Display fragmentation index for orders that allocations would fail for
1172  */
1173 static int extfrag_show(struct seq_file *m, void *arg)
1174 {
1175 	pg_data_t *pgdat = (pg_data_t *)arg;
1176 
1177 	walk_zones_in_node(m, pgdat, extfrag_show_print);
1178 
1179 	return 0;
1180 }
1181 
1182 static const struct seq_operations extfrag_op = {
1183 	.start	= frag_start,
1184 	.next	= frag_next,
1185 	.stop	= frag_stop,
1186 	.show	= extfrag_show,
1187 };
1188 
1189 static int extfrag_open(struct inode *inode, struct file *file)
1190 {
1191 	return seq_open(file, &extfrag_op);
1192 }
1193 
1194 static const struct file_operations extfrag_file_ops = {
1195 	.open		= extfrag_open,
1196 	.read		= seq_read,
1197 	.llseek		= seq_lseek,
1198 	.release	= seq_release,
1199 };
1200 
1201 static int __init extfrag_debug_init(void)
1202 {
1203 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1204 	if (!extfrag_debug_root)
1205 		return -ENOMEM;
1206 
1207 	if (!debugfs_create_file("unusable_index", 0444,
1208 			extfrag_debug_root, NULL, &unusable_file_ops))
1209 		return -ENOMEM;
1210 
1211 	if (!debugfs_create_file("extfrag_index", 0444,
1212 			extfrag_debug_root, NULL, &extfrag_file_ops))
1213 		return -ENOMEM;
1214 
1215 	return 0;
1216 }
1217 
1218 module_init(extfrag_debug_init);
1219 #endif
1220