xref: /linux/mm/vmstat.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/vmstat.h>
17 #include <linux/sched.h>
18 
19 #ifdef CONFIG_VM_EVENT_COUNTERS
20 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
21 EXPORT_PER_CPU_SYMBOL(vm_event_states);
22 
23 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
24 {
25 	int cpu;
26 	int i;
27 
28 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
29 
30 	for_each_cpu(cpu, cpumask) {
31 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
32 
33 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
34 			ret[i] += this->event[i];
35 	}
36 }
37 
38 /*
39  * Accumulate the vm event counters across all CPUs.
40  * The result is unavoidably approximate - it can change
41  * during and after execution of this function.
42 */
43 void all_vm_events(unsigned long *ret)
44 {
45 	get_online_cpus();
46 	sum_vm_events(ret, cpu_online_mask);
47 	put_online_cpus();
48 }
49 EXPORT_SYMBOL_GPL(all_vm_events);
50 
51 #ifdef CONFIG_HOTPLUG
52 /*
53  * Fold the foreign cpu events into our own.
54  *
55  * This is adding to the events on one processor
56  * but keeps the global counts constant.
57  */
58 void vm_events_fold_cpu(int cpu)
59 {
60 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
61 	int i;
62 
63 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
64 		count_vm_events(i, fold_state->event[i]);
65 		fold_state->event[i] = 0;
66 	}
67 }
68 #endif /* CONFIG_HOTPLUG */
69 
70 #endif /* CONFIG_VM_EVENT_COUNTERS */
71 
72 /*
73  * Manage combined zone based / global counters
74  *
75  * vm_stat contains the global counters
76  */
77 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
78 EXPORT_SYMBOL(vm_stat);
79 
80 #ifdef CONFIG_SMP
81 
82 static int calculate_threshold(struct zone *zone)
83 {
84 	int threshold;
85 	int mem;	/* memory in 128 MB units */
86 
87 	/*
88 	 * The threshold scales with the number of processors and the amount
89 	 * of memory per zone. More memory means that we can defer updates for
90 	 * longer, more processors could lead to more contention.
91  	 * fls() is used to have a cheap way of logarithmic scaling.
92 	 *
93 	 * Some sample thresholds:
94 	 *
95 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
96 	 * ------------------------------------------------------------------
97 	 * 8		1		1	0.9-1 GB	4
98 	 * 16		2		2	0.9-1 GB	4
99 	 * 20 		2		2	1-2 GB		5
100 	 * 24		2		2	2-4 GB		6
101 	 * 28		2		2	4-8 GB		7
102 	 * 32		2		2	8-16 GB		8
103 	 * 4		2		2	<128M		1
104 	 * 30		4		3	2-4 GB		5
105 	 * 48		4		3	8-16 GB		8
106 	 * 32		8		4	1-2 GB		4
107 	 * 32		8		4	0.9-1GB		4
108 	 * 10		16		5	<128M		1
109 	 * 40		16		5	900M		4
110 	 * 70		64		7	2-4 GB		5
111 	 * 84		64		7	4-8 GB		6
112 	 * 108		512		9	4-8 GB		6
113 	 * 125		1024		10	8-16 GB		8
114 	 * 125		1024		10	16-32 GB	9
115 	 */
116 
117 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
118 
119 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
120 
121 	/*
122 	 * Maximum threshold is 125
123 	 */
124 	threshold = min(125, threshold);
125 
126 	return threshold;
127 }
128 
129 /*
130  * Refresh the thresholds for each zone.
131  */
132 static void refresh_zone_stat_thresholds(void)
133 {
134 	struct zone *zone;
135 	int cpu;
136 	int threshold;
137 
138 	for_each_populated_zone(zone) {
139 		threshold = calculate_threshold(zone);
140 
141 		for_each_online_cpu(cpu)
142 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
143 							= threshold;
144 	}
145 }
146 
147 /*
148  * For use when we know that interrupts are disabled.
149  */
150 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
151 				int delta)
152 {
153 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
154 
155 	s8 *p = pcp->vm_stat_diff + item;
156 	long x;
157 
158 	x = delta + *p;
159 
160 	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
161 		zone_page_state_add(x, zone, item);
162 		x = 0;
163 	}
164 	*p = x;
165 }
166 EXPORT_SYMBOL(__mod_zone_page_state);
167 
168 /*
169  * For an unknown interrupt state
170  */
171 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
172 					int delta)
173 {
174 	unsigned long flags;
175 
176 	local_irq_save(flags);
177 	__mod_zone_page_state(zone, item, delta);
178 	local_irq_restore(flags);
179 }
180 EXPORT_SYMBOL(mod_zone_page_state);
181 
182 /*
183  * Optimized increment and decrement functions.
184  *
185  * These are only for a single page and therefore can take a struct page *
186  * argument instead of struct zone *. This allows the inclusion of the code
187  * generated for page_zone(page) into the optimized functions.
188  *
189  * No overflow check is necessary and therefore the differential can be
190  * incremented or decremented in place which may allow the compilers to
191  * generate better code.
192  * The increment or decrement is known and therefore one boundary check can
193  * be omitted.
194  *
195  * NOTE: These functions are very performance sensitive. Change only
196  * with care.
197  *
198  * Some processors have inc/dec instructions that are atomic vs an interrupt.
199  * However, the code must first determine the differential location in a zone
200  * based on the processor number and then inc/dec the counter. There is no
201  * guarantee without disabling preemption that the processor will not change
202  * in between and therefore the atomicity vs. interrupt cannot be exploited
203  * in a useful way here.
204  */
205 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
206 {
207 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
208 	s8 *p = pcp->vm_stat_diff + item;
209 
210 	(*p)++;
211 
212 	if (unlikely(*p > pcp->stat_threshold)) {
213 		int overstep = pcp->stat_threshold / 2;
214 
215 		zone_page_state_add(*p + overstep, zone, item);
216 		*p = -overstep;
217 	}
218 }
219 
220 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
221 {
222 	__inc_zone_state(page_zone(page), item);
223 }
224 EXPORT_SYMBOL(__inc_zone_page_state);
225 
226 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
227 {
228 	struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
229 	s8 *p = pcp->vm_stat_diff + item;
230 
231 	(*p)--;
232 
233 	if (unlikely(*p < - pcp->stat_threshold)) {
234 		int overstep = pcp->stat_threshold / 2;
235 
236 		zone_page_state_add(*p - overstep, zone, item);
237 		*p = overstep;
238 	}
239 }
240 
241 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
242 {
243 	__dec_zone_state(page_zone(page), item);
244 }
245 EXPORT_SYMBOL(__dec_zone_page_state);
246 
247 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
248 {
249 	unsigned long flags;
250 
251 	local_irq_save(flags);
252 	__inc_zone_state(zone, item);
253 	local_irq_restore(flags);
254 }
255 
256 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
257 {
258 	unsigned long flags;
259 	struct zone *zone;
260 
261 	zone = page_zone(page);
262 	local_irq_save(flags);
263 	__inc_zone_state(zone, item);
264 	local_irq_restore(flags);
265 }
266 EXPORT_SYMBOL(inc_zone_page_state);
267 
268 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
269 {
270 	unsigned long flags;
271 
272 	local_irq_save(flags);
273 	__dec_zone_page_state(page, item);
274 	local_irq_restore(flags);
275 }
276 EXPORT_SYMBOL(dec_zone_page_state);
277 
278 /*
279  * Update the zone counters for one cpu.
280  *
281  * The cpu specified must be either the current cpu or a processor that
282  * is not online. If it is the current cpu then the execution thread must
283  * be pinned to the current cpu.
284  *
285  * Note that refresh_cpu_vm_stats strives to only access
286  * node local memory. The per cpu pagesets on remote zones are placed
287  * in the memory local to the processor using that pageset. So the
288  * loop over all zones will access a series of cachelines local to
289  * the processor.
290  *
291  * The call to zone_page_state_add updates the cachelines with the
292  * statistics in the remote zone struct as well as the global cachelines
293  * with the global counters. These could cause remote node cache line
294  * bouncing and will have to be only done when necessary.
295  */
296 void refresh_cpu_vm_stats(int cpu)
297 {
298 	struct zone *zone;
299 	int i;
300 	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
301 
302 	for_each_populated_zone(zone) {
303 		struct per_cpu_pageset *p;
304 
305 		p = per_cpu_ptr(zone->pageset, cpu);
306 
307 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
308 			if (p->vm_stat_diff[i]) {
309 				unsigned long flags;
310 				int v;
311 
312 				local_irq_save(flags);
313 				v = p->vm_stat_diff[i];
314 				p->vm_stat_diff[i] = 0;
315 				local_irq_restore(flags);
316 				atomic_long_add(v, &zone->vm_stat[i]);
317 				global_diff[i] += v;
318 #ifdef CONFIG_NUMA
319 				/* 3 seconds idle till flush */
320 				p->expire = 3;
321 #endif
322 			}
323 		cond_resched();
324 #ifdef CONFIG_NUMA
325 		/*
326 		 * Deal with draining the remote pageset of this
327 		 * processor
328 		 *
329 		 * Check if there are pages remaining in this pageset
330 		 * if not then there is nothing to expire.
331 		 */
332 		if (!p->expire || !p->pcp.count)
333 			continue;
334 
335 		/*
336 		 * We never drain zones local to this processor.
337 		 */
338 		if (zone_to_nid(zone) == numa_node_id()) {
339 			p->expire = 0;
340 			continue;
341 		}
342 
343 		p->expire--;
344 		if (p->expire)
345 			continue;
346 
347 		if (p->pcp.count)
348 			drain_zone_pages(zone, &p->pcp);
349 #endif
350 	}
351 
352 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
353 		if (global_diff[i])
354 			atomic_long_add(global_diff[i], &vm_stat[i]);
355 }
356 
357 #endif
358 
359 #ifdef CONFIG_NUMA
360 /*
361  * zonelist = the list of zones passed to the allocator
362  * z 	    = the zone from which the allocation occurred.
363  *
364  * Must be called with interrupts disabled.
365  */
366 void zone_statistics(struct zone *preferred_zone, struct zone *z)
367 {
368 	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
369 		__inc_zone_state(z, NUMA_HIT);
370 	} else {
371 		__inc_zone_state(z, NUMA_MISS);
372 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
373 	}
374 	if (z->node == numa_node_id())
375 		__inc_zone_state(z, NUMA_LOCAL);
376 	else
377 		__inc_zone_state(z, NUMA_OTHER);
378 }
379 #endif
380 
381 #ifdef CONFIG_PROC_FS
382 #include <linux/proc_fs.h>
383 #include <linux/seq_file.h>
384 
385 static char * const migratetype_names[MIGRATE_TYPES] = {
386 	"Unmovable",
387 	"Reclaimable",
388 	"Movable",
389 	"Reserve",
390 	"Isolate",
391 };
392 
393 static void *frag_start(struct seq_file *m, loff_t *pos)
394 {
395 	pg_data_t *pgdat;
396 	loff_t node = *pos;
397 	for (pgdat = first_online_pgdat();
398 	     pgdat && node;
399 	     pgdat = next_online_pgdat(pgdat))
400 		--node;
401 
402 	return pgdat;
403 }
404 
405 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
406 {
407 	pg_data_t *pgdat = (pg_data_t *)arg;
408 
409 	(*pos)++;
410 	return next_online_pgdat(pgdat);
411 }
412 
413 static void frag_stop(struct seq_file *m, void *arg)
414 {
415 }
416 
417 /* Walk all the zones in a node and print using a callback */
418 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
419 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
420 {
421 	struct zone *zone;
422 	struct zone *node_zones = pgdat->node_zones;
423 	unsigned long flags;
424 
425 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
426 		if (!populated_zone(zone))
427 			continue;
428 
429 		spin_lock_irqsave(&zone->lock, flags);
430 		print(m, pgdat, zone);
431 		spin_unlock_irqrestore(&zone->lock, flags);
432 	}
433 }
434 
435 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
436 						struct zone *zone)
437 {
438 	int order;
439 
440 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
441 	for (order = 0; order < MAX_ORDER; ++order)
442 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
443 	seq_putc(m, '\n');
444 }
445 
446 /*
447  * This walks the free areas for each zone.
448  */
449 static int frag_show(struct seq_file *m, void *arg)
450 {
451 	pg_data_t *pgdat = (pg_data_t *)arg;
452 	walk_zones_in_node(m, pgdat, frag_show_print);
453 	return 0;
454 }
455 
456 static void pagetypeinfo_showfree_print(struct seq_file *m,
457 					pg_data_t *pgdat, struct zone *zone)
458 {
459 	int order, mtype;
460 
461 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
462 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
463 					pgdat->node_id,
464 					zone->name,
465 					migratetype_names[mtype]);
466 		for (order = 0; order < MAX_ORDER; ++order) {
467 			unsigned long freecount = 0;
468 			struct free_area *area;
469 			struct list_head *curr;
470 
471 			area = &(zone->free_area[order]);
472 
473 			list_for_each(curr, &area->free_list[mtype])
474 				freecount++;
475 			seq_printf(m, "%6lu ", freecount);
476 		}
477 		seq_putc(m, '\n');
478 	}
479 }
480 
481 /* Print out the free pages at each order for each migatetype */
482 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
483 {
484 	int order;
485 	pg_data_t *pgdat = (pg_data_t *)arg;
486 
487 	/* Print header */
488 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
489 	for (order = 0; order < MAX_ORDER; ++order)
490 		seq_printf(m, "%6d ", order);
491 	seq_putc(m, '\n');
492 
493 	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
494 
495 	return 0;
496 }
497 
498 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
499 					pg_data_t *pgdat, struct zone *zone)
500 {
501 	int mtype;
502 	unsigned long pfn;
503 	unsigned long start_pfn = zone->zone_start_pfn;
504 	unsigned long end_pfn = start_pfn + zone->spanned_pages;
505 	unsigned long count[MIGRATE_TYPES] = { 0, };
506 
507 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
508 		struct page *page;
509 
510 		if (!pfn_valid(pfn))
511 			continue;
512 
513 		page = pfn_to_page(pfn);
514 
515 		/* Watch for unexpected holes punched in the memmap */
516 		if (!memmap_valid_within(pfn, page, zone))
517 			continue;
518 
519 		mtype = get_pageblock_migratetype(page);
520 
521 		if (mtype < MIGRATE_TYPES)
522 			count[mtype]++;
523 	}
524 
525 	/* Print counts */
526 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
527 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
528 		seq_printf(m, "%12lu ", count[mtype]);
529 	seq_putc(m, '\n');
530 }
531 
532 /* Print out the free pages at each order for each migratetype */
533 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
534 {
535 	int mtype;
536 	pg_data_t *pgdat = (pg_data_t *)arg;
537 
538 	seq_printf(m, "\n%-23s", "Number of blocks type ");
539 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
540 		seq_printf(m, "%12s ", migratetype_names[mtype]);
541 	seq_putc(m, '\n');
542 	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
543 
544 	return 0;
545 }
546 
547 /*
548  * This prints out statistics in relation to grouping pages by mobility.
549  * It is expensive to collect so do not constantly read the file.
550  */
551 static int pagetypeinfo_show(struct seq_file *m, void *arg)
552 {
553 	pg_data_t *pgdat = (pg_data_t *)arg;
554 
555 	/* check memoryless node */
556 	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
557 		return 0;
558 
559 	seq_printf(m, "Page block order: %d\n", pageblock_order);
560 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
561 	seq_putc(m, '\n');
562 	pagetypeinfo_showfree(m, pgdat);
563 	pagetypeinfo_showblockcount(m, pgdat);
564 
565 	return 0;
566 }
567 
568 static const struct seq_operations fragmentation_op = {
569 	.start	= frag_start,
570 	.next	= frag_next,
571 	.stop	= frag_stop,
572 	.show	= frag_show,
573 };
574 
575 static int fragmentation_open(struct inode *inode, struct file *file)
576 {
577 	return seq_open(file, &fragmentation_op);
578 }
579 
580 static const struct file_operations fragmentation_file_operations = {
581 	.open		= fragmentation_open,
582 	.read		= seq_read,
583 	.llseek		= seq_lseek,
584 	.release	= seq_release,
585 };
586 
587 static const struct seq_operations pagetypeinfo_op = {
588 	.start	= frag_start,
589 	.next	= frag_next,
590 	.stop	= frag_stop,
591 	.show	= pagetypeinfo_show,
592 };
593 
594 static int pagetypeinfo_open(struct inode *inode, struct file *file)
595 {
596 	return seq_open(file, &pagetypeinfo_op);
597 }
598 
599 static const struct file_operations pagetypeinfo_file_ops = {
600 	.open		= pagetypeinfo_open,
601 	.read		= seq_read,
602 	.llseek		= seq_lseek,
603 	.release	= seq_release,
604 };
605 
606 #ifdef CONFIG_ZONE_DMA
607 #define TEXT_FOR_DMA(xx) xx "_dma",
608 #else
609 #define TEXT_FOR_DMA(xx)
610 #endif
611 
612 #ifdef CONFIG_ZONE_DMA32
613 #define TEXT_FOR_DMA32(xx) xx "_dma32",
614 #else
615 #define TEXT_FOR_DMA32(xx)
616 #endif
617 
618 #ifdef CONFIG_HIGHMEM
619 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
620 #else
621 #define TEXT_FOR_HIGHMEM(xx)
622 #endif
623 
624 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
625 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
626 
627 static const char * const vmstat_text[] = {
628 	/* Zoned VM counters */
629 	"nr_free_pages",
630 	"nr_inactive_anon",
631 	"nr_active_anon",
632 	"nr_inactive_file",
633 	"nr_active_file",
634 	"nr_unevictable",
635 	"nr_mlock",
636 	"nr_anon_pages",
637 	"nr_mapped",
638 	"nr_file_pages",
639 	"nr_dirty",
640 	"nr_writeback",
641 	"nr_slab_reclaimable",
642 	"nr_slab_unreclaimable",
643 	"nr_page_table_pages",
644 	"nr_kernel_stack",
645 	"nr_unstable",
646 	"nr_bounce",
647 	"nr_vmscan_write",
648 	"nr_writeback_temp",
649 	"nr_isolated_anon",
650 	"nr_isolated_file",
651 	"nr_shmem",
652 #ifdef CONFIG_NUMA
653 	"numa_hit",
654 	"numa_miss",
655 	"numa_foreign",
656 	"numa_interleave",
657 	"numa_local",
658 	"numa_other",
659 #endif
660 
661 #ifdef CONFIG_VM_EVENT_COUNTERS
662 	"pgpgin",
663 	"pgpgout",
664 	"pswpin",
665 	"pswpout",
666 
667 	TEXTS_FOR_ZONES("pgalloc")
668 
669 	"pgfree",
670 	"pgactivate",
671 	"pgdeactivate",
672 
673 	"pgfault",
674 	"pgmajfault",
675 
676 	TEXTS_FOR_ZONES("pgrefill")
677 	TEXTS_FOR_ZONES("pgsteal")
678 	TEXTS_FOR_ZONES("pgscan_kswapd")
679 	TEXTS_FOR_ZONES("pgscan_direct")
680 
681 #ifdef CONFIG_NUMA
682 	"zone_reclaim_failed",
683 #endif
684 	"pginodesteal",
685 	"slabs_scanned",
686 	"kswapd_steal",
687 	"kswapd_inodesteal",
688 	"kswapd_low_wmark_hit_quickly",
689 	"kswapd_high_wmark_hit_quickly",
690 	"kswapd_skip_congestion_wait",
691 	"pageoutrun",
692 	"allocstall",
693 
694 	"pgrotated",
695 #ifdef CONFIG_HUGETLB_PAGE
696 	"htlb_buddy_alloc_success",
697 	"htlb_buddy_alloc_fail",
698 #endif
699 	"unevictable_pgs_culled",
700 	"unevictable_pgs_scanned",
701 	"unevictable_pgs_rescued",
702 	"unevictable_pgs_mlocked",
703 	"unevictable_pgs_munlocked",
704 	"unevictable_pgs_cleared",
705 	"unevictable_pgs_stranded",
706 	"unevictable_pgs_mlockfreed",
707 #endif
708 };
709 
710 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
711 							struct zone *zone)
712 {
713 	int i;
714 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
715 	seq_printf(m,
716 		   "\n  pages free     %lu"
717 		   "\n        min      %lu"
718 		   "\n        low      %lu"
719 		   "\n        high     %lu"
720 		   "\n        scanned  %lu"
721 		   "\n        spanned  %lu"
722 		   "\n        present  %lu",
723 		   zone_page_state(zone, NR_FREE_PAGES),
724 		   min_wmark_pages(zone),
725 		   low_wmark_pages(zone),
726 		   high_wmark_pages(zone),
727 		   zone->pages_scanned,
728 		   zone->spanned_pages,
729 		   zone->present_pages);
730 
731 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
732 		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
733 				zone_page_state(zone, i));
734 
735 	seq_printf(m,
736 		   "\n        protection: (%lu",
737 		   zone->lowmem_reserve[0]);
738 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
739 		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
740 	seq_printf(m,
741 		   ")"
742 		   "\n  pagesets");
743 	for_each_online_cpu(i) {
744 		struct per_cpu_pageset *pageset;
745 
746 		pageset = per_cpu_ptr(zone->pageset, i);
747 		seq_printf(m,
748 			   "\n    cpu: %i"
749 			   "\n              count: %i"
750 			   "\n              high:  %i"
751 			   "\n              batch: %i",
752 			   i,
753 			   pageset->pcp.count,
754 			   pageset->pcp.high,
755 			   pageset->pcp.batch);
756 #ifdef CONFIG_SMP
757 		seq_printf(m, "\n  vm stats threshold: %d",
758 				pageset->stat_threshold);
759 #endif
760 	}
761 	seq_printf(m,
762 		   "\n  all_unreclaimable: %u"
763 		   "\n  prev_priority:     %i"
764 		   "\n  start_pfn:         %lu"
765 		   "\n  inactive_ratio:    %u",
766 		   zone->all_unreclaimable,
767 		   zone->prev_priority,
768 		   zone->zone_start_pfn,
769 		   zone->inactive_ratio);
770 	seq_putc(m, '\n');
771 }
772 
773 /*
774  * Output information about zones in @pgdat.
775  */
776 static int zoneinfo_show(struct seq_file *m, void *arg)
777 {
778 	pg_data_t *pgdat = (pg_data_t *)arg;
779 	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
780 	return 0;
781 }
782 
783 static const struct seq_operations zoneinfo_op = {
784 	.start	= frag_start, /* iterate over all zones. The same as in
785 			       * fragmentation. */
786 	.next	= frag_next,
787 	.stop	= frag_stop,
788 	.show	= zoneinfo_show,
789 };
790 
791 static int zoneinfo_open(struct inode *inode, struct file *file)
792 {
793 	return seq_open(file, &zoneinfo_op);
794 }
795 
796 static const struct file_operations proc_zoneinfo_file_operations = {
797 	.open		= zoneinfo_open,
798 	.read		= seq_read,
799 	.llseek		= seq_lseek,
800 	.release	= seq_release,
801 };
802 
803 static void *vmstat_start(struct seq_file *m, loff_t *pos)
804 {
805 	unsigned long *v;
806 #ifdef CONFIG_VM_EVENT_COUNTERS
807 	unsigned long *e;
808 #endif
809 	int i;
810 
811 	if (*pos >= ARRAY_SIZE(vmstat_text))
812 		return NULL;
813 
814 #ifdef CONFIG_VM_EVENT_COUNTERS
815 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
816 			+ sizeof(struct vm_event_state), GFP_KERNEL);
817 #else
818 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
819 			GFP_KERNEL);
820 #endif
821 	m->private = v;
822 	if (!v)
823 		return ERR_PTR(-ENOMEM);
824 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
825 		v[i] = global_page_state(i);
826 #ifdef CONFIG_VM_EVENT_COUNTERS
827 	e = v + NR_VM_ZONE_STAT_ITEMS;
828 	all_vm_events(e);
829 	e[PGPGIN] /= 2;		/* sectors -> kbytes */
830 	e[PGPGOUT] /= 2;
831 #endif
832 	return v + *pos;
833 }
834 
835 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
836 {
837 	(*pos)++;
838 	if (*pos >= ARRAY_SIZE(vmstat_text))
839 		return NULL;
840 	return (unsigned long *)m->private + *pos;
841 }
842 
843 static int vmstat_show(struct seq_file *m, void *arg)
844 {
845 	unsigned long *l = arg;
846 	unsigned long off = l - (unsigned long *)m->private;
847 
848 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
849 	return 0;
850 }
851 
852 static void vmstat_stop(struct seq_file *m, void *arg)
853 {
854 	kfree(m->private);
855 	m->private = NULL;
856 }
857 
858 static const struct seq_operations vmstat_op = {
859 	.start	= vmstat_start,
860 	.next	= vmstat_next,
861 	.stop	= vmstat_stop,
862 	.show	= vmstat_show,
863 };
864 
865 static int vmstat_open(struct inode *inode, struct file *file)
866 {
867 	return seq_open(file, &vmstat_op);
868 }
869 
870 static const struct file_operations proc_vmstat_file_operations = {
871 	.open		= vmstat_open,
872 	.read		= seq_read,
873 	.llseek		= seq_lseek,
874 	.release	= seq_release,
875 };
876 #endif /* CONFIG_PROC_FS */
877 
878 #ifdef CONFIG_SMP
879 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
880 int sysctl_stat_interval __read_mostly = HZ;
881 
882 static void vmstat_update(struct work_struct *w)
883 {
884 	refresh_cpu_vm_stats(smp_processor_id());
885 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
886 		round_jiffies_relative(sysctl_stat_interval));
887 }
888 
889 static void __cpuinit start_cpu_timer(int cpu)
890 {
891 	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
892 
893 	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
894 	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
895 }
896 
897 /*
898  * Use the cpu notifier to insure that the thresholds are recalculated
899  * when necessary.
900  */
901 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
902 		unsigned long action,
903 		void *hcpu)
904 {
905 	long cpu = (long)hcpu;
906 
907 	switch (action) {
908 	case CPU_ONLINE:
909 	case CPU_ONLINE_FROZEN:
910 		start_cpu_timer(cpu);
911 		node_set_state(cpu_to_node(cpu), N_CPU);
912 		break;
913 	case CPU_DOWN_PREPARE:
914 	case CPU_DOWN_PREPARE_FROZEN:
915 		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
916 		per_cpu(vmstat_work, cpu).work.func = NULL;
917 		break;
918 	case CPU_DOWN_FAILED:
919 	case CPU_DOWN_FAILED_FROZEN:
920 		start_cpu_timer(cpu);
921 		break;
922 	case CPU_DEAD:
923 	case CPU_DEAD_FROZEN:
924 		refresh_zone_stat_thresholds();
925 		break;
926 	default:
927 		break;
928 	}
929 	return NOTIFY_OK;
930 }
931 
932 static struct notifier_block __cpuinitdata vmstat_notifier =
933 	{ &vmstat_cpuup_callback, NULL, 0 };
934 #endif
935 
936 static int __init setup_vmstat(void)
937 {
938 #ifdef CONFIG_SMP
939 	int cpu;
940 
941 	refresh_zone_stat_thresholds();
942 	register_cpu_notifier(&vmstat_notifier);
943 
944 	for_each_online_cpu(cpu)
945 		start_cpu_timer(cpu);
946 #endif
947 #ifdef CONFIG_PROC_FS
948 	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
949 	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
950 	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
951 	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
952 #endif
953 	return 0;
954 }
955 module_init(setup_vmstat)
956