1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/cpu.h> 16 #include <linux/vmstat.h> 17 #include <linux/sched.h> 18 19 #ifdef CONFIG_VM_EVENT_COUNTERS 20 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 21 EXPORT_PER_CPU_SYMBOL(vm_event_states); 22 23 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask) 24 { 25 int cpu; 26 int i; 27 28 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 29 30 for_each_cpu(cpu, cpumask) { 31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 32 33 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 34 ret[i] += this->event[i]; 35 } 36 } 37 38 /* 39 * Accumulate the vm event counters across all CPUs. 40 * The result is unavoidably approximate - it can change 41 * during and after execution of this function. 42 */ 43 void all_vm_events(unsigned long *ret) 44 { 45 get_online_cpus(); 46 sum_vm_events(ret, cpu_online_mask); 47 put_online_cpus(); 48 } 49 EXPORT_SYMBOL_GPL(all_vm_events); 50 51 #ifdef CONFIG_HOTPLUG 52 /* 53 * Fold the foreign cpu events into our own. 54 * 55 * This is adding to the events on one processor 56 * but keeps the global counts constant. 57 */ 58 void vm_events_fold_cpu(int cpu) 59 { 60 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 61 int i; 62 63 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 64 count_vm_events(i, fold_state->event[i]); 65 fold_state->event[i] = 0; 66 } 67 } 68 #endif /* CONFIG_HOTPLUG */ 69 70 #endif /* CONFIG_VM_EVENT_COUNTERS */ 71 72 /* 73 * Manage combined zone based / global counters 74 * 75 * vm_stat contains the global counters 76 */ 77 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 78 EXPORT_SYMBOL(vm_stat); 79 80 #ifdef CONFIG_SMP 81 82 static int calculate_threshold(struct zone *zone) 83 { 84 int threshold; 85 int mem; /* memory in 128 MB units */ 86 87 /* 88 * The threshold scales with the number of processors and the amount 89 * of memory per zone. More memory means that we can defer updates for 90 * longer, more processors could lead to more contention. 91 * fls() is used to have a cheap way of logarithmic scaling. 92 * 93 * Some sample thresholds: 94 * 95 * Threshold Processors (fls) Zonesize fls(mem+1) 96 * ------------------------------------------------------------------ 97 * 8 1 1 0.9-1 GB 4 98 * 16 2 2 0.9-1 GB 4 99 * 20 2 2 1-2 GB 5 100 * 24 2 2 2-4 GB 6 101 * 28 2 2 4-8 GB 7 102 * 32 2 2 8-16 GB 8 103 * 4 2 2 <128M 1 104 * 30 4 3 2-4 GB 5 105 * 48 4 3 8-16 GB 8 106 * 32 8 4 1-2 GB 4 107 * 32 8 4 0.9-1GB 4 108 * 10 16 5 <128M 1 109 * 40 16 5 900M 4 110 * 70 64 7 2-4 GB 5 111 * 84 64 7 4-8 GB 6 112 * 108 512 9 4-8 GB 6 113 * 125 1024 10 8-16 GB 8 114 * 125 1024 10 16-32 GB 9 115 */ 116 117 mem = zone->present_pages >> (27 - PAGE_SHIFT); 118 119 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 120 121 /* 122 * Maximum threshold is 125 123 */ 124 threshold = min(125, threshold); 125 126 return threshold; 127 } 128 129 /* 130 * Refresh the thresholds for each zone. 131 */ 132 static void refresh_zone_stat_thresholds(void) 133 { 134 struct zone *zone; 135 int cpu; 136 int threshold; 137 138 for_each_populated_zone(zone) { 139 threshold = calculate_threshold(zone); 140 141 for_each_online_cpu(cpu) 142 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 143 = threshold; 144 } 145 } 146 147 /* 148 * For use when we know that interrupts are disabled. 149 */ 150 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 151 int delta) 152 { 153 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset); 154 155 s8 *p = pcp->vm_stat_diff + item; 156 long x; 157 158 x = delta + *p; 159 160 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) { 161 zone_page_state_add(x, zone, item); 162 x = 0; 163 } 164 *p = x; 165 } 166 EXPORT_SYMBOL(__mod_zone_page_state); 167 168 /* 169 * For an unknown interrupt state 170 */ 171 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 172 int delta) 173 { 174 unsigned long flags; 175 176 local_irq_save(flags); 177 __mod_zone_page_state(zone, item, delta); 178 local_irq_restore(flags); 179 } 180 EXPORT_SYMBOL(mod_zone_page_state); 181 182 /* 183 * Optimized increment and decrement functions. 184 * 185 * These are only for a single page and therefore can take a struct page * 186 * argument instead of struct zone *. This allows the inclusion of the code 187 * generated for page_zone(page) into the optimized functions. 188 * 189 * No overflow check is necessary and therefore the differential can be 190 * incremented or decremented in place which may allow the compilers to 191 * generate better code. 192 * The increment or decrement is known and therefore one boundary check can 193 * be omitted. 194 * 195 * NOTE: These functions are very performance sensitive. Change only 196 * with care. 197 * 198 * Some processors have inc/dec instructions that are atomic vs an interrupt. 199 * However, the code must first determine the differential location in a zone 200 * based on the processor number and then inc/dec the counter. There is no 201 * guarantee without disabling preemption that the processor will not change 202 * in between and therefore the atomicity vs. interrupt cannot be exploited 203 * in a useful way here. 204 */ 205 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 206 { 207 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset); 208 s8 *p = pcp->vm_stat_diff + item; 209 210 (*p)++; 211 212 if (unlikely(*p > pcp->stat_threshold)) { 213 int overstep = pcp->stat_threshold / 2; 214 215 zone_page_state_add(*p + overstep, zone, item); 216 *p = -overstep; 217 } 218 } 219 220 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 221 { 222 __inc_zone_state(page_zone(page), item); 223 } 224 EXPORT_SYMBOL(__inc_zone_page_state); 225 226 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 227 { 228 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset); 229 s8 *p = pcp->vm_stat_diff + item; 230 231 (*p)--; 232 233 if (unlikely(*p < - pcp->stat_threshold)) { 234 int overstep = pcp->stat_threshold / 2; 235 236 zone_page_state_add(*p - overstep, zone, item); 237 *p = overstep; 238 } 239 } 240 241 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 242 { 243 __dec_zone_state(page_zone(page), item); 244 } 245 EXPORT_SYMBOL(__dec_zone_page_state); 246 247 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 248 { 249 unsigned long flags; 250 251 local_irq_save(flags); 252 __inc_zone_state(zone, item); 253 local_irq_restore(flags); 254 } 255 256 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 257 { 258 unsigned long flags; 259 struct zone *zone; 260 261 zone = page_zone(page); 262 local_irq_save(flags); 263 __inc_zone_state(zone, item); 264 local_irq_restore(flags); 265 } 266 EXPORT_SYMBOL(inc_zone_page_state); 267 268 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 269 { 270 unsigned long flags; 271 272 local_irq_save(flags); 273 __dec_zone_page_state(page, item); 274 local_irq_restore(flags); 275 } 276 EXPORT_SYMBOL(dec_zone_page_state); 277 278 /* 279 * Update the zone counters for one cpu. 280 * 281 * The cpu specified must be either the current cpu or a processor that 282 * is not online. If it is the current cpu then the execution thread must 283 * be pinned to the current cpu. 284 * 285 * Note that refresh_cpu_vm_stats strives to only access 286 * node local memory. The per cpu pagesets on remote zones are placed 287 * in the memory local to the processor using that pageset. So the 288 * loop over all zones will access a series of cachelines local to 289 * the processor. 290 * 291 * The call to zone_page_state_add updates the cachelines with the 292 * statistics in the remote zone struct as well as the global cachelines 293 * with the global counters. These could cause remote node cache line 294 * bouncing and will have to be only done when necessary. 295 */ 296 void refresh_cpu_vm_stats(int cpu) 297 { 298 struct zone *zone; 299 int i; 300 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 301 302 for_each_populated_zone(zone) { 303 struct per_cpu_pageset *p; 304 305 p = per_cpu_ptr(zone->pageset, cpu); 306 307 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 308 if (p->vm_stat_diff[i]) { 309 unsigned long flags; 310 int v; 311 312 local_irq_save(flags); 313 v = p->vm_stat_diff[i]; 314 p->vm_stat_diff[i] = 0; 315 local_irq_restore(flags); 316 atomic_long_add(v, &zone->vm_stat[i]); 317 global_diff[i] += v; 318 #ifdef CONFIG_NUMA 319 /* 3 seconds idle till flush */ 320 p->expire = 3; 321 #endif 322 } 323 cond_resched(); 324 #ifdef CONFIG_NUMA 325 /* 326 * Deal with draining the remote pageset of this 327 * processor 328 * 329 * Check if there are pages remaining in this pageset 330 * if not then there is nothing to expire. 331 */ 332 if (!p->expire || !p->pcp.count) 333 continue; 334 335 /* 336 * We never drain zones local to this processor. 337 */ 338 if (zone_to_nid(zone) == numa_node_id()) { 339 p->expire = 0; 340 continue; 341 } 342 343 p->expire--; 344 if (p->expire) 345 continue; 346 347 if (p->pcp.count) 348 drain_zone_pages(zone, &p->pcp); 349 #endif 350 } 351 352 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 353 if (global_diff[i]) 354 atomic_long_add(global_diff[i], &vm_stat[i]); 355 } 356 357 #endif 358 359 #ifdef CONFIG_NUMA 360 /* 361 * zonelist = the list of zones passed to the allocator 362 * z = the zone from which the allocation occurred. 363 * 364 * Must be called with interrupts disabled. 365 */ 366 void zone_statistics(struct zone *preferred_zone, struct zone *z) 367 { 368 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 369 __inc_zone_state(z, NUMA_HIT); 370 } else { 371 __inc_zone_state(z, NUMA_MISS); 372 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 373 } 374 if (z->node == numa_node_id()) 375 __inc_zone_state(z, NUMA_LOCAL); 376 else 377 __inc_zone_state(z, NUMA_OTHER); 378 } 379 #endif 380 381 #ifdef CONFIG_PROC_FS 382 #include <linux/proc_fs.h> 383 #include <linux/seq_file.h> 384 385 static char * const migratetype_names[MIGRATE_TYPES] = { 386 "Unmovable", 387 "Reclaimable", 388 "Movable", 389 "Reserve", 390 "Isolate", 391 }; 392 393 static void *frag_start(struct seq_file *m, loff_t *pos) 394 { 395 pg_data_t *pgdat; 396 loff_t node = *pos; 397 for (pgdat = first_online_pgdat(); 398 pgdat && node; 399 pgdat = next_online_pgdat(pgdat)) 400 --node; 401 402 return pgdat; 403 } 404 405 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 406 { 407 pg_data_t *pgdat = (pg_data_t *)arg; 408 409 (*pos)++; 410 return next_online_pgdat(pgdat); 411 } 412 413 static void frag_stop(struct seq_file *m, void *arg) 414 { 415 } 416 417 /* Walk all the zones in a node and print using a callback */ 418 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 419 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 420 { 421 struct zone *zone; 422 struct zone *node_zones = pgdat->node_zones; 423 unsigned long flags; 424 425 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 426 if (!populated_zone(zone)) 427 continue; 428 429 spin_lock_irqsave(&zone->lock, flags); 430 print(m, pgdat, zone); 431 spin_unlock_irqrestore(&zone->lock, flags); 432 } 433 } 434 435 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 436 struct zone *zone) 437 { 438 int order; 439 440 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 441 for (order = 0; order < MAX_ORDER; ++order) 442 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 443 seq_putc(m, '\n'); 444 } 445 446 /* 447 * This walks the free areas for each zone. 448 */ 449 static int frag_show(struct seq_file *m, void *arg) 450 { 451 pg_data_t *pgdat = (pg_data_t *)arg; 452 walk_zones_in_node(m, pgdat, frag_show_print); 453 return 0; 454 } 455 456 static void pagetypeinfo_showfree_print(struct seq_file *m, 457 pg_data_t *pgdat, struct zone *zone) 458 { 459 int order, mtype; 460 461 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 462 seq_printf(m, "Node %4d, zone %8s, type %12s ", 463 pgdat->node_id, 464 zone->name, 465 migratetype_names[mtype]); 466 for (order = 0; order < MAX_ORDER; ++order) { 467 unsigned long freecount = 0; 468 struct free_area *area; 469 struct list_head *curr; 470 471 area = &(zone->free_area[order]); 472 473 list_for_each(curr, &area->free_list[mtype]) 474 freecount++; 475 seq_printf(m, "%6lu ", freecount); 476 } 477 seq_putc(m, '\n'); 478 } 479 } 480 481 /* Print out the free pages at each order for each migatetype */ 482 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 483 { 484 int order; 485 pg_data_t *pgdat = (pg_data_t *)arg; 486 487 /* Print header */ 488 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 489 for (order = 0; order < MAX_ORDER; ++order) 490 seq_printf(m, "%6d ", order); 491 seq_putc(m, '\n'); 492 493 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 494 495 return 0; 496 } 497 498 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 499 pg_data_t *pgdat, struct zone *zone) 500 { 501 int mtype; 502 unsigned long pfn; 503 unsigned long start_pfn = zone->zone_start_pfn; 504 unsigned long end_pfn = start_pfn + zone->spanned_pages; 505 unsigned long count[MIGRATE_TYPES] = { 0, }; 506 507 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 508 struct page *page; 509 510 if (!pfn_valid(pfn)) 511 continue; 512 513 page = pfn_to_page(pfn); 514 515 /* Watch for unexpected holes punched in the memmap */ 516 if (!memmap_valid_within(pfn, page, zone)) 517 continue; 518 519 mtype = get_pageblock_migratetype(page); 520 521 if (mtype < MIGRATE_TYPES) 522 count[mtype]++; 523 } 524 525 /* Print counts */ 526 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 527 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 528 seq_printf(m, "%12lu ", count[mtype]); 529 seq_putc(m, '\n'); 530 } 531 532 /* Print out the free pages at each order for each migratetype */ 533 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 534 { 535 int mtype; 536 pg_data_t *pgdat = (pg_data_t *)arg; 537 538 seq_printf(m, "\n%-23s", "Number of blocks type "); 539 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 540 seq_printf(m, "%12s ", migratetype_names[mtype]); 541 seq_putc(m, '\n'); 542 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 543 544 return 0; 545 } 546 547 /* 548 * This prints out statistics in relation to grouping pages by mobility. 549 * It is expensive to collect so do not constantly read the file. 550 */ 551 static int pagetypeinfo_show(struct seq_file *m, void *arg) 552 { 553 pg_data_t *pgdat = (pg_data_t *)arg; 554 555 /* check memoryless node */ 556 if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) 557 return 0; 558 559 seq_printf(m, "Page block order: %d\n", pageblock_order); 560 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 561 seq_putc(m, '\n'); 562 pagetypeinfo_showfree(m, pgdat); 563 pagetypeinfo_showblockcount(m, pgdat); 564 565 return 0; 566 } 567 568 static const struct seq_operations fragmentation_op = { 569 .start = frag_start, 570 .next = frag_next, 571 .stop = frag_stop, 572 .show = frag_show, 573 }; 574 575 static int fragmentation_open(struct inode *inode, struct file *file) 576 { 577 return seq_open(file, &fragmentation_op); 578 } 579 580 static const struct file_operations fragmentation_file_operations = { 581 .open = fragmentation_open, 582 .read = seq_read, 583 .llseek = seq_lseek, 584 .release = seq_release, 585 }; 586 587 static const struct seq_operations pagetypeinfo_op = { 588 .start = frag_start, 589 .next = frag_next, 590 .stop = frag_stop, 591 .show = pagetypeinfo_show, 592 }; 593 594 static int pagetypeinfo_open(struct inode *inode, struct file *file) 595 { 596 return seq_open(file, &pagetypeinfo_op); 597 } 598 599 static const struct file_operations pagetypeinfo_file_ops = { 600 .open = pagetypeinfo_open, 601 .read = seq_read, 602 .llseek = seq_lseek, 603 .release = seq_release, 604 }; 605 606 #ifdef CONFIG_ZONE_DMA 607 #define TEXT_FOR_DMA(xx) xx "_dma", 608 #else 609 #define TEXT_FOR_DMA(xx) 610 #endif 611 612 #ifdef CONFIG_ZONE_DMA32 613 #define TEXT_FOR_DMA32(xx) xx "_dma32", 614 #else 615 #define TEXT_FOR_DMA32(xx) 616 #endif 617 618 #ifdef CONFIG_HIGHMEM 619 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 620 #else 621 #define TEXT_FOR_HIGHMEM(xx) 622 #endif 623 624 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 625 TEXT_FOR_HIGHMEM(xx) xx "_movable", 626 627 static const char * const vmstat_text[] = { 628 /* Zoned VM counters */ 629 "nr_free_pages", 630 "nr_inactive_anon", 631 "nr_active_anon", 632 "nr_inactive_file", 633 "nr_active_file", 634 "nr_unevictable", 635 "nr_mlock", 636 "nr_anon_pages", 637 "nr_mapped", 638 "nr_file_pages", 639 "nr_dirty", 640 "nr_writeback", 641 "nr_slab_reclaimable", 642 "nr_slab_unreclaimable", 643 "nr_page_table_pages", 644 "nr_kernel_stack", 645 "nr_unstable", 646 "nr_bounce", 647 "nr_vmscan_write", 648 "nr_writeback_temp", 649 "nr_isolated_anon", 650 "nr_isolated_file", 651 "nr_shmem", 652 #ifdef CONFIG_NUMA 653 "numa_hit", 654 "numa_miss", 655 "numa_foreign", 656 "numa_interleave", 657 "numa_local", 658 "numa_other", 659 #endif 660 661 #ifdef CONFIG_VM_EVENT_COUNTERS 662 "pgpgin", 663 "pgpgout", 664 "pswpin", 665 "pswpout", 666 667 TEXTS_FOR_ZONES("pgalloc") 668 669 "pgfree", 670 "pgactivate", 671 "pgdeactivate", 672 673 "pgfault", 674 "pgmajfault", 675 676 TEXTS_FOR_ZONES("pgrefill") 677 TEXTS_FOR_ZONES("pgsteal") 678 TEXTS_FOR_ZONES("pgscan_kswapd") 679 TEXTS_FOR_ZONES("pgscan_direct") 680 681 #ifdef CONFIG_NUMA 682 "zone_reclaim_failed", 683 #endif 684 "pginodesteal", 685 "slabs_scanned", 686 "kswapd_steal", 687 "kswapd_inodesteal", 688 "kswapd_low_wmark_hit_quickly", 689 "kswapd_high_wmark_hit_quickly", 690 "kswapd_skip_congestion_wait", 691 "pageoutrun", 692 "allocstall", 693 694 "pgrotated", 695 #ifdef CONFIG_HUGETLB_PAGE 696 "htlb_buddy_alloc_success", 697 "htlb_buddy_alloc_fail", 698 #endif 699 "unevictable_pgs_culled", 700 "unevictable_pgs_scanned", 701 "unevictable_pgs_rescued", 702 "unevictable_pgs_mlocked", 703 "unevictable_pgs_munlocked", 704 "unevictable_pgs_cleared", 705 "unevictable_pgs_stranded", 706 "unevictable_pgs_mlockfreed", 707 #endif 708 }; 709 710 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 711 struct zone *zone) 712 { 713 int i; 714 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 715 seq_printf(m, 716 "\n pages free %lu" 717 "\n min %lu" 718 "\n low %lu" 719 "\n high %lu" 720 "\n scanned %lu" 721 "\n spanned %lu" 722 "\n present %lu", 723 zone_page_state(zone, NR_FREE_PAGES), 724 min_wmark_pages(zone), 725 low_wmark_pages(zone), 726 high_wmark_pages(zone), 727 zone->pages_scanned, 728 zone->spanned_pages, 729 zone->present_pages); 730 731 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 732 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 733 zone_page_state(zone, i)); 734 735 seq_printf(m, 736 "\n protection: (%lu", 737 zone->lowmem_reserve[0]); 738 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 739 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 740 seq_printf(m, 741 ")" 742 "\n pagesets"); 743 for_each_online_cpu(i) { 744 struct per_cpu_pageset *pageset; 745 746 pageset = per_cpu_ptr(zone->pageset, i); 747 seq_printf(m, 748 "\n cpu: %i" 749 "\n count: %i" 750 "\n high: %i" 751 "\n batch: %i", 752 i, 753 pageset->pcp.count, 754 pageset->pcp.high, 755 pageset->pcp.batch); 756 #ifdef CONFIG_SMP 757 seq_printf(m, "\n vm stats threshold: %d", 758 pageset->stat_threshold); 759 #endif 760 } 761 seq_printf(m, 762 "\n all_unreclaimable: %u" 763 "\n prev_priority: %i" 764 "\n start_pfn: %lu" 765 "\n inactive_ratio: %u", 766 zone->all_unreclaimable, 767 zone->prev_priority, 768 zone->zone_start_pfn, 769 zone->inactive_ratio); 770 seq_putc(m, '\n'); 771 } 772 773 /* 774 * Output information about zones in @pgdat. 775 */ 776 static int zoneinfo_show(struct seq_file *m, void *arg) 777 { 778 pg_data_t *pgdat = (pg_data_t *)arg; 779 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 780 return 0; 781 } 782 783 static const struct seq_operations zoneinfo_op = { 784 .start = frag_start, /* iterate over all zones. The same as in 785 * fragmentation. */ 786 .next = frag_next, 787 .stop = frag_stop, 788 .show = zoneinfo_show, 789 }; 790 791 static int zoneinfo_open(struct inode *inode, struct file *file) 792 { 793 return seq_open(file, &zoneinfo_op); 794 } 795 796 static const struct file_operations proc_zoneinfo_file_operations = { 797 .open = zoneinfo_open, 798 .read = seq_read, 799 .llseek = seq_lseek, 800 .release = seq_release, 801 }; 802 803 static void *vmstat_start(struct seq_file *m, loff_t *pos) 804 { 805 unsigned long *v; 806 #ifdef CONFIG_VM_EVENT_COUNTERS 807 unsigned long *e; 808 #endif 809 int i; 810 811 if (*pos >= ARRAY_SIZE(vmstat_text)) 812 return NULL; 813 814 #ifdef CONFIG_VM_EVENT_COUNTERS 815 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) 816 + sizeof(struct vm_event_state), GFP_KERNEL); 817 #else 818 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long), 819 GFP_KERNEL); 820 #endif 821 m->private = v; 822 if (!v) 823 return ERR_PTR(-ENOMEM); 824 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 825 v[i] = global_page_state(i); 826 #ifdef CONFIG_VM_EVENT_COUNTERS 827 e = v + NR_VM_ZONE_STAT_ITEMS; 828 all_vm_events(e); 829 e[PGPGIN] /= 2; /* sectors -> kbytes */ 830 e[PGPGOUT] /= 2; 831 #endif 832 return v + *pos; 833 } 834 835 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 836 { 837 (*pos)++; 838 if (*pos >= ARRAY_SIZE(vmstat_text)) 839 return NULL; 840 return (unsigned long *)m->private + *pos; 841 } 842 843 static int vmstat_show(struct seq_file *m, void *arg) 844 { 845 unsigned long *l = arg; 846 unsigned long off = l - (unsigned long *)m->private; 847 848 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 849 return 0; 850 } 851 852 static void vmstat_stop(struct seq_file *m, void *arg) 853 { 854 kfree(m->private); 855 m->private = NULL; 856 } 857 858 static const struct seq_operations vmstat_op = { 859 .start = vmstat_start, 860 .next = vmstat_next, 861 .stop = vmstat_stop, 862 .show = vmstat_show, 863 }; 864 865 static int vmstat_open(struct inode *inode, struct file *file) 866 { 867 return seq_open(file, &vmstat_op); 868 } 869 870 static const struct file_operations proc_vmstat_file_operations = { 871 .open = vmstat_open, 872 .read = seq_read, 873 .llseek = seq_lseek, 874 .release = seq_release, 875 }; 876 #endif /* CONFIG_PROC_FS */ 877 878 #ifdef CONFIG_SMP 879 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 880 int sysctl_stat_interval __read_mostly = HZ; 881 882 static void vmstat_update(struct work_struct *w) 883 { 884 refresh_cpu_vm_stats(smp_processor_id()); 885 schedule_delayed_work(&__get_cpu_var(vmstat_work), 886 round_jiffies_relative(sysctl_stat_interval)); 887 } 888 889 static void __cpuinit start_cpu_timer(int cpu) 890 { 891 struct delayed_work *work = &per_cpu(vmstat_work, cpu); 892 893 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update); 894 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); 895 } 896 897 /* 898 * Use the cpu notifier to insure that the thresholds are recalculated 899 * when necessary. 900 */ 901 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, 902 unsigned long action, 903 void *hcpu) 904 { 905 long cpu = (long)hcpu; 906 907 switch (action) { 908 case CPU_ONLINE: 909 case CPU_ONLINE_FROZEN: 910 start_cpu_timer(cpu); 911 node_set_state(cpu_to_node(cpu), N_CPU); 912 break; 913 case CPU_DOWN_PREPARE: 914 case CPU_DOWN_PREPARE_FROZEN: 915 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu)); 916 per_cpu(vmstat_work, cpu).work.func = NULL; 917 break; 918 case CPU_DOWN_FAILED: 919 case CPU_DOWN_FAILED_FROZEN: 920 start_cpu_timer(cpu); 921 break; 922 case CPU_DEAD: 923 case CPU_DEAD_FROZEN: 924 refresh_zone_stat_thresholds(); 925 break; 926 default: 927 break; 928 } 929 return NOTIFY_OK; 930 } 931 932 static struct notifier_block __cpuinitdata vmstat_notifier = 933 { &vmstat_cpuup_callback, NULL, 0 }; 934 #endif 935 936 static int __init setup_vmstat(void) 937 { 938 #ifdef CONFIG_SMP 939 int cpu; 940 941 refresh_zone_stat_thresholds(); 942 register_cpu_notifier(&vmstat_notifier); 943 944 for_each_online_cpu(cpu) 945 start_cpu_timer(cpu); 946 #endif 947 #ifdef CONFIG_PROC_FS 948 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 949 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 950 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 951 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 952 #endif 953 return 0; 954 } 955 module_init(setup_vmstat) 956