1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <cl@gentwo.org> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_owner.h> 30 #include <linux/sched/isolation.h> 31 32 #include "internal.h" 33 34 #ifdef CONFIG_PROC_FS 35 #ifdef CONFIG_NUMA 36 #define ENABLE_NUMA_STAT 1 37 static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 38 39 /* zero numa counters within a zone */ 40 static void zero_zone_numa_counters(struct zone *zone) 41 { 42 int item, cpu; 43 44 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { 45 atomic_long_set(&zone->vm_numa_event[item], 0); 46 for_each_online_cpu(cpu) { 47 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] 48 = 0; 49 } 50 } 51 } 52 53 /* zero numa counters of all the populated zones */ 54 static void zero_zones_numa_counters(void) 55 { 56 struct zone *zone; 57 58 for_each_populated_zone(zone) 59 zero_zone_numa_counters(zone); 60 } 61 62 /* zero global numa counters */ 63 static void zero_global_numa_counters(void) 64 { 65 int item; 66 67 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 68 atomic_long_set(&vm_numa_event[item], 0); 69 } 70 71 static void invalid_numa_statistics(void) 72 { 73 zero_zones_numa_counters(); 74 zero_global_numa_counters(); 75 } 76 77 static DEFINE_MUTEX(vm_numa_stat_lock); 78 79 static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write, 80 void *buffer, size_t *length, loff_t *ppos) 81 { 82 int ret, oldval; 83 84 mutex_lock(&vm_numa_stat_lock); 85 if (write) 86 oldval = sysctl_vm_numa_stat; 87 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 88 if (ret || !write) 89 goto out; 90 91 if (oldval == sysctl_vm_numa_stat) 92 goto out; 93 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 94 static_branch_enable(&vm_numa_stat_key); 95 pr_info("enable numa statistics\n"); 96 } else { 97 static_branch_disable(&vm_numa_stat_key); 98 invalid_numa_statistics(); 99 pr_info("disable numa statistics, and clear numa counters\n"); 100 } 101 102 out: 103 mutex_unlock(&vm_numa_stat_lock); 104 return ret; 105 } 106 #endif 107 #endif /* CONFIG_PROC_FS */ 108 109 #ifdef CONFIG_VM_EVENT_COUNTERS 110 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 111 EXPORT_PER_CPU_SYMBOL(vm_event_states); 112 113 static void sum_vm_events(unsigned long *ret) 114 { 115 int cpu; 116 int i; 117 118 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 119 120 for_each_online_cpu(cpu) { 121 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 122 123 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 124 ret[i] += this->event[i]; 125 } 126 } 127 128 /* 129 * Accumulate the vm event counters across all CPUs. 130 * The result is unavoidably approximate - it can change 131 * during and after execution of this function. 132 */ 133 void all_vm_events(unsigned long *ret) 134 { 135 cpus_read_lock(); 136 sum_vm_events(ret); 137 cpus_read_unlock(); 138 } 139 EXPORT_SYMBOL_GPL(all_vm_events); 140 141 /* 142 * Fold the foreign cpu events into our own. 143 * 144 * This is adding to the events on one processor 145 * but keeps the global counts constant. 146 */ 147 void vm_events_fold_cpu(int cpu) 148 { 149 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 150 int i; 151 152 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 153 count_vm_events(i, fold_state->event[i]); 154 fold_state->event[i] = 0; 155 } 156 } 157 158 #endif /* CONFIG_VM_EVENT_COUNTERS */ 159 160 /* 161 * Manage combined zone based / global counters 162 * 163 * vm_stat contains the global counters 164 */ 165 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 166 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 167 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; 168 EXPORT_SYMBOL(vm_zone_stat); 169 EXPORT_SYMBOL(vm_node_stat); 170 171 #ifdef CONFIG_NUMA 172 static void fold_vm_zone_numa_events(struct zone *zone) 173 { 174 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; 175 int cpu; 176 enum numa_stat_item item; 177 178 for_each_online_cpu(cpu) { 179 struct per_cpu_zonestat *pzstats; 180 181 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 182 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 183 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); 184 } 185 186 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 187 zone_numa_event_add(zone_numa_events[item], zone, item); 188 } 189 190 void fold_vm_numa_events(void) 191 { 192 struct zone *zone; 193 194 for_each_populated_zone(zone) 195 fold_vm_zone_numa_events(zone); 196 } 197 #endif 198 199 #ifdef CONFIG_SMP 200 201 int calculate_pressure_threshold(struct zone *zone) 202 { 203 int threshold; 204 int watermark_distance; 205 206 /* 207 * As vmstats are not up to date, there is drift between the estimated 208 * and real values. For high thresholds and a high number of CPUs, it 209 * is possible for the min watermark to be breached while the estimated 210 * value looks fine. The pressure threshold is a reduced value such 211 * that even the maximum amount of drift will not accidentally breach 212 * the min watermark 213 */ 214 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 215 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 216 217 /* 218 * Maximum threshold is 125 219 */ 220 threshold = min(125, threshold); 221 222 return threshold; 223 } 224 225 int calculate_normal_threshold(struct zone *zone) 226 { 227 int threshold; 228 int mem; /* memory in 128 MB units */ 229 230 /* 231 * The threshold scales with the number of processors and the amount 232 * of memory per zone. More memory means that we can defer updates for 233 * longer, more processors could lead to more contention. 234 * fls() is used to have a cheap way of logarithmic scaling. 235 * 236 * Some sample thresholds: 237 * 238 * Threshold Processors (fls) Zonesize fls(mem)+1 239 * ------------------------------------------------------------------ 240 * 8 1 1 0.9-1 GB 4 241 * 16 2 2 0.9-1 GB 4 242 * 20 2 2 1-2 GB 5 243 * 24 2 2 2-4 GB 6 244 * 28 2 2 4-8 GB 7 245 * 32 2 2 8-16 GB 8 246 * 4 2 2 <128M 1 247 * 30 4 3 2-4 GB 5 248 * 48 4 3 8-16 GB 8 249 * 32 8 4 1-2 GB 4 250 * 32 8 4 0.9-1GB 4 251 * 10 16 5 <128M 1 252 * 40 16 5 900M 4 253 * 70 64 7 2-4 GB 5 254 * 84 64 7 4-8 GB 6 255 * 108 512 9 4-8 GB 6 256 * 125 1024 10 8-16 GB 8 257 * 125 1024 10 16-32 GB 9 258 */ 259 260 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 261 262 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 263 264 /* 265 * Maximum threshold is 125 266 */ 267 threshold = min(125, threshold); 268 269 return threshold; 270 } 271 272 /* 273 * Refresh the thresholds for each zone. 274 */ 275 void refresh_zone_stat_thresholds(void) 276 { 277 struct pglist_data *pgdat; 278 struct zone *zone; 279 int cpu; 280 int threshold; 281 282 /* Zero current pgdat thresholds */ 283 for_each_online_pgdat(pgdat) { 284 for_each_online_cpu(cpu) { 285 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 286 } 287 } 288 289 for_each_populated_zone(zone) { 290 struct pglist_data *pgdat = zone->zone_pgdat; 291 unsigned long max_drift, tolerate_drift; 292 293 threshold = calculate_normal_threshold(zone); 294 295 for_each_online_cpu(cpu) { 296 int pgdat_threshold; 297 298 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 299 = threshold; 300 301 /* Base nodestat threshold on the largest populated zone. */ 302 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 303 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 304 = max(threshold, pgdat_threshold); 305 } 306 307 /* 308 * Only set percpu_drift_mark if there is a danger that 309 * NR_FREE_PAGES reports the low watermark is ok when in fact 310 * the min watermark could be breached by an allocation 311 */ 312 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 313 max_drift = num_online_cpus() * threshold; 314 if (max_drift > tolerate_drift) 315 zone->percpu_drift_mark = high_wmark_pages(zone) + 316 max_drift; 317 } 318 } 319 320 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 321 int (*calculate_pressure)(struct zone *)) 322 { 323 struct zone *zone; 324 int cpu; 325 int threshold; 326 int i; 327 328 for (i = 0; i < pgdat->nr_zones; i++) { 329 zone = &pgdat->node_zones[i]; 330 if (!zone->percpu_drift_mark) 331 continue; 332 333 threshold = (*calculate_pressure)(zone); 334 for_each_online_cpu(cpu) 335 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 336 = threshold; 337 } 338 } 339 340 /* 341 * For use when we know that interrupts are disabled, 342 * or when we know that preemption is disabled and that 343 * particular counter cannot be updated from interrupt context. 344 */ 345 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 346 long delta) 347 { 348 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 349 s8 __percpu *p = pcp->vm_stat_diff + item; 350 long x; 351 long t; 352 353 /* 354 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, 355 * atomicity is provided by IRQs being disabled -- either explicitly 356 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables 357 * CPU migrations and preemption potentially corrupts a counter so 358 * disable preemption. 359 */ 360 preempt_disable_nested(); 361 362 x = delta + __this_cpu_read(*p); 363 364 t = __this_cpu_read(pcp->stat_threshold); 365 366 if (unlikely(abs(x) > t)) { 367 zone_page_state_add(x, zone, item); 368 x = 0; 369 } 370 __this_cpu_write(*p, x); 371 372 preempt_enable_nested(); 373 } 374 EXPORT_SYMBOL(__mod_zone_page_state); 375 376 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 377 long delta) 378 { 379 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 380 s8 __percpu *p = pcp->vm_node_stat_diff + item; 381 long x; 382 long t; 383 384 if (vmstat_item_in_bytes(item)) { 385 /* 386 * Only cgroups use subpage accounting right now; at 387 * the global level, these items still change in 388 * multiples of whole pages. Store them as pages 389 * internally to keep the per-cpu counters compact. 390 */ 391 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 392 delta >>= PAGE_SHIFT; 393 } 394 395 /* See __mod_node_page_state */ 396 preempt_disable_nested(); 397 398 x = delta + __this_cpu_read(*p); 399 400 t = __this_cpu_read(pcp->stat_threshold); 401 402 if (unlikely(abs(x) > t)) { 403 node_page_state_add(x, pgdat, item); 404 x = 0; 405 } 406 __this_cpu_write(*p, x); 407 408 preempt_enable_nested(); 409 } 410 EXPORT_SYMBOL(__mod_node_page_state); 411 412 /* 413 * Optimized increment and decrement functions. 414 * 415 * These are only for a single page and therefore can take a struct page * 416 * argument instead of struct zone *. This allows the inclusion of the code 417 * generated for page_zone(page) into the optimized functions. 418 * 419 * No overflow check is necessary and therefore the differential can be 420 * incremented or decremented in place which may allow the compilers to 421 * generate better code. 422 * The increment or decrement is known and therefore one boundary check can 423 * be omitted. 424 * 425 * NOTE: These functions are very performance sensitive. Change only 426 * with care. 427 * 428 * Some processors have inc/dec instructions that are atomic vs an interrupt. 429 * However, the code must first determine the differential location in a zone 430 * based on the processor number and then inc/dec the counter. There is no 431 * guarantee without disabling preemption that the processor will not change 432 * in between and therefore the atomicity vs. interrupt cannot be exploited 433 * in a useful way here. 434 */ 435 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 436 { 437 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 438 s8 __percpu *p = pcp->vm_stat_diff + item; 439 s8 v, t; 440 441 /* See __mod_node_page_state */ 442 preempt_disable_nested(); 443 444 v = __this_cpu_inc_return(*p); 445 t = __this_cpu_read(pcp->stat_threshold); 446 if (unlikely(v > t)) { 447 s8 overstep = t >> 1; 448 449 zone_page_state_add(v + overstep, zone, item); 450 __this_cpu_write(*p, -overstep); 451 } 452 453 preempt_enable_nested(); 454 } 455 456 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 457 { 458 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 459 s8 __percpu *p = pcp->vm_node_stat_diff + item; 460 s8 v, t; 461 462 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 463 464 /* See __mod_node_page_state */ 465 preempt_disable_nested(); 466 467 v = __this_cpu_inc_return(*p); 468 t = __this_cpu_read(pcp->stat_threshold); 469 if (unlikely(v > t)) { 470 s8 overstep = t >> 1; 471 472 node_page_state_add(v + overstep, pgdat, item); 473 __this_cpu_write(*p, -overstep); 474 } 475 476 preempt_enable_nested(); 477 } 478 479 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 480 { 481 __inc_zone_state(page_zone(page), item); 482 } 483 EXPORT_SYMBOL(__inc_zone_page_state); 484 485 void __inc_node_page_state(struct page *page, enum node_stat_item item) 486 { 487 __inc_node_state(page_pgdat(page), item); 488 } 489 EXPORT_SYMBOL(__inc_node_page_state); 490 491 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 492 { 493 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 494 s8 __percpu *p = pcp->vm_stat_diff + item; 495 s8 v, t; 496 497 /* See __mod_node_page_state */ 498 preempt_disable_nested(); 499 500 v = __this_cpu_dec_return(*p); 501 t = __this_cpu_read(pcp->stat_threshold); 502 if (unlikely(v < - t)) { 503 s8 overstep = t >> 1; 504 505 zone_page_state_add(v - overstep, zone, item); 506 __this_cpu_write(*p, overstep); 507 } 508 509 preempt_enable_nested(); 510 } 511 512 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 513 { 514 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 515 s8 __percpu *p = pcp->vm_node_stat_diff + item; 516 s8 v, t; 517 518 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 519 520 /* See __mod_node_page_state */ 521 preempt_disable_nested(); 522 523 v = __this_cpu_dec_return(*p); 524 t = __this_cpu_read(pcp->stat_threshold); 525 if (unlikely(v < - t)) { 526 s8 overstep = t >> 1; 527 528 node_page_state_add(v - overstep, pgdat, item); 529 __this_cpu_write(*p, overstep); 530 } 531 532 preempt_enable_nested(); 533 } 534 535 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 536 { 537 __dec_zone_state(page_zone(page), item); 538 } 539 EXPORT_SYMBOL(__dec_zone_page_state); 540 541 void __dec_node_page_state(struct page *page, enum node_stat_item item) 542 { 543 __dec_node_state(page_pgdat(page), item); 544 } 545 EXPORT_SYMBOL(__dec_node_page_state); 546 547 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 548 /* 549 * If we have cmpxchg_local support then we do not need to incur the overhead 550 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 551 * 552 * mod_state() modifies the zone counter state through atomic per cpu 553 * operations. 554 * 555 * Overstep mode specifies how overstep should handled: 556 * 0 No overstepping 557 * 1 Overstepping half of threshold 558 * -1 Overstepping minus half of threshold 559 */ 560 static inline void mod_zone_state(struct zone *zone, 561 enum zone_stat_item item, long delta, int overstep_mode) 562 { 563 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 564 s8 __percpu *p = pcp->vm_stat_diff + item; 565 long n, t, z; 566 s8 o; 567 568 o = this_cpu_read(*p); 569 do { 570 z = 0; /* overflow to zone counters */ 571 572 /* 573 * The fetching of the stat_threshold is racy. We may apply 574 * a counter threshold to the wrong the cpu if we get 575 * rescheduled while executing here. However, the next 576 * counter update will apply the threshold again and 577 * therefore bring the counter under the threshold again. 578 * 579 * Most of the time the thresholds are the same anyways 580 * for all cpus in a zone. 581 */ 582 t = this_cpu_read(pcp->stat_threshold); 583 584 n = delta + (long)o; 585 586 if (abs(n) > t) { 587 int os = overstep_mode * (t >> 1) ; 588 589 /* Overflow must be added to zone counters */ 590 z = n + os; 591 n = -os; 592 } 593 } while (!this_cpu_try_cmpxchg(*p, &o, n)); 594 595 if (z) 596 zone_page_state_add(z, zone, item); 597 } 598 599 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 600 long delta) 601 { 602 mod_zone_state(zone, item, delta, 0); 603 } 604 EXPORT_SYMBOL(mod_zone_page_state); 605 606 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 607 { 608 mod_zone_state(page_zone(page), item, 1, 1); 609 } 610 EXPORT_SYMBOL(inc_zone_page_state); 611 612 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 613 { 614 mod_zone_state(page_zone(page), item, -1, -1); 615 } 616 EXPORT_SYMBOL(dec_zone_page_state); 617 618 static inline void mod_node_state(struct pglist_data *pgdat, 619 enum node_stat_item item, int delta, int overstep_mode) 620 { 621 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 622 s8 __percpu *p = pcp->vm_node_stat_diff + item; 623 long n, t, z; 624 s8 o; 625 626 if (vmstat_item_in_bytes(item)) { 627 /* 628 * Only cgroups use subpage accounting right now; at 629 * the global level, these items still change in 630 * multiples of whole pages. Store them as pages 631 * internally to keep the per-cpu counters compact. 632 */ 633 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 634 delta >>= PAGE_SHIFT; 635 } 636 637 o = this_cpu_read(*p); 638 do { 639 z = 0; /* overflow to node counters */ 640 641 /* 642 * The fetching of the stat_threshold is racy. We may apply 643 * a counter threshold to the wrong the cpu if we get 644 * rescheduled while executing here. However, the next 645 * counter update will apply the threshold again and 646 * therefore bring the counter under the threshold again. 647 * 648 * Most of the time the thresholds are the same anyways 649 * for all cpus in a node. 650 */ 651 t = this_cpu_read(pcp->stat_threshold); 652 653 n = delta + (long)o; 654 655 if (abs(n) > t) { 656 int os = overstep_mode * (t >> 1) ; 657 658 /* Overflow must be added to node counters */ 659 z = n + os; 660 n = -os; 661 } 662 } while (!this_cpu_try_cmpxchg(*p, &o, n)); 663 664 if (z) 665 node_page_state_add(z, pgdat, item); 666 } 667 668 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 669 long delta) 670 { 671 mod_node_state(pgdat, item, delta, 0); 672 } 673 EXPORT_SYMBOL(mod_node_page_state); 674 675 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 676 { 677 mod_node_state(pgdat, item, 1, 1); 678 } 679 680 void inc_node_page_state(struct page *page, enum node_stat_item item) 681 { 682 mod_node_state(page_pgdat(page), item, 1, 1); 683 } 684 EXPORT_SYMBOL(inc_node_page_state); 685 686 void dec_node_page_state(struct page *page, enum node_stat_item item) 687 { 688 mod_node_state(page_pgdat(page), item, -1, -1); 689 } 690 EXPORT_SYMBOL(dec_node_page_state); 691 #else 692 /* 693 * Use interrupt disable to serialize counter updates 694 */ 695 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 696 long delta) 697 { 698 unsigned long flags; 699 700 local_irq_save(flags); 701 __mod_zone_page_state(zone, item, delta); 702 local_irq_restore(flags); 703 } 704 EXPORT_SYMBOL(mod_zone_page_state); 705 706 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 707 { 708 unsigned long flags; 709 struct zone *zone; 710 711 zone = page_zone(page); 712 local_irq_save(flags); 713 __inc_zone_state(zone, item); 714 local_irq_restore(flags); 715 } 716 EXPORT_SYMBOL(inc_zone_page_state); 717 718 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 719 { 720 unsigned long flags; 721 722 local_irq_save(flags); 723 __dec_zone_page_state(page, item); 724 local_irq_restore(flags); 725 } 726 EXPORT_SYMBOL(dec_zone_page_state); 727 728 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 729 { 730 unsigned long flags; 731 732 local_irq_save(flags); 733 __inc_node_state(pgdat, item); 734 local_irq_restore(flags); 735 } 736 EXPORT_SYMBOL(inc_node_state); 737 738 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 739 long delta) 740 { 741 unsigned long flags; 742 743 local_irq_save(flags); 744 __mod_node_page_state(pgdat, item, delta); 745 local_irq_restore(flags); 746 } 747 EXPORT_SYMBOL(mod_node_page_state); 748 749 void inc_node_page_state(struct page *page, enum node_stat_item item) 750 { 751 unsigned long flags; 752 struct pglist_data *pgdat; 753 754 pgdat = page_pgdat(page); 755 local_irq_save(flags); 756 __inc_node_state(pgdat, item); 757 local_irq_restore(flags); 758 } 759 EXPORT_SYMBOL(inc_node_page_state); 760 761 void dec_node_page_state(struct page *page, enum node_stat_item item) 762 { 763 unsigned long flags; 764 765 local_irq_save(flags); 766 __dec_node_page_state(page, item); 767 local_irq_restore(flags); 768 } 769 EXPORT_SYMBOL(dec_node_page_state); 770 #endif 771 772 /* 773 * Fold a differential into the global counters. 774 * Returns the number of counters updated. 775 */ 776 static int fold_diff(int *zone_diff, int *node_diff) 777 { 778 int i; 779 int changes = 0; 780 781 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 782 if (zone_diff[i]) { 783 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 784 changes++; 785 } 786 787 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 788 if (node_diff[i]) { 789 atomic_long_add(node_diff[i], &vm_node_stat[i]); 790 changes++; 791 } 792 return changes; 793 } 794 795 /* 796 * Update the zone counters for the current cpu. 797 * 798 * Note that refresh_cpu_vm_stats strives to only access 799 * node local memory. The per cpu pagesets on remote zones are placed 800 * in the memory local to the processor using that pageset. So the 801 * loop over all zones will access a series of cachelines local to 802 * the processor. 803 * 804 * The call to zone_page_state_add updates the cachelines with the 805 * statistics in the remote zone struct as well as the global cachelines 806 * with the global counters. These could cause remote node cache line 807 * bouncing and will have to be only done when necessary. 808 * 809 * The function returns the number of global counters updated. 810 */ 811 static int refresh_cpu_vm_stats(bool do_pagesets) 812 { 813 struct pglist_data *pgdat; 814 struct zone *zone; 815 int i; 816 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 817 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 818 int changes = 0; 819 820 for_each_populated_zone(zone) { 821 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; 822 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; 823 824 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 825 int v; 826 827 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); 828 if (v) { 829 830 atomic_long_add(v, &zone->vm_stat[i]); 831 global_zone_diff[i] += v; 832 #ifdef CONFIG_NUMA 833 /* 3 seconds idle till flush */ 834 __this_cpu_write(pcp->expire, 3); 835 #endif 836 } 837 } 838 839 if (do_pagesets) { 840 cond_resched(); 841 842 changes += decay_pcp_high(zone, this_cpu_ptr(pcp)); 843 #ifdef CONFIG_NUMA 844 /* 845 * Deal with draining the remote pageset of this 846 * processor 847 * 848 * Check if there are pages remaining in this pageset 849 * if not then there is nothing to expire. 850 */ 851 if (!__this_cpu_read(pcp->expire) || 852 !__this_cpu_read(pcp->count)) 853 continue; 854 855 /* 856 * We never drain zones local to this processor. 857 */ 858 if (zone_to_nid(zone) == numa_node_id()) { 859 __this_cpu_write(pcp->expire, 0); 860 continue; 861 } 862 863 if (__this_cpu_dec_return(pcp->expire)) { 864 changes++; 865 continue; 866 } 867 868 if (__this_cpu_read(pcp->count)) { 869 drain_zone_pages(zone, this_cpu_ptr(pcp)); 870 changes++; 871 } 872 #endif 873 } 874 } 875 876 for_each_online_pgdat(pgdat) { 877 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 878 879 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 880 int v; 881 882 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 883 if (v) { 884 atomic_long_add(v, &pgdat->vm_stat[i]); 885 global_node_diff[i] += v; 886 } 887 } 888 } 889 890 changes += fold_diff(global_zone_diff, global_node_diff); 891 return changes; 892 } 893 894 /* 895 * Fold the data for an offline cpu into the global array. 896 * There cannot be any access by the offline cpu and therefore 897 * synchronization is simplified. 898 */ 899 void cpu_vm_stats_fold(int cpu) 900 { 901 struct pglist_data *pgdat; 902 struct zone *zone; 903 int i; 904 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 905 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 906 907 for_each_populated_zone(zone) { 908 struct per_cpu_zonestat *pzstats; 909 910 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 911 912 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 913 if (pzstats->vm_stat_diff[i]) { 914 int v; 915 916 v = pzstats->vm_stat_diff[i]; 917 pzstats->vm_stat_diff[i] = 0; 918 atomic_long_add(v, &zone->vm_stat[i]); 919 global_zone_diff[i] += v; 920 } 921 } 922 #ifdef CONFIG_NUMA 923 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 924 if (pzstats->vm_numa_event[i]) { 925 unsigned long v; 926 927 v = pzstats->vm_numa_event[i]; 928 pzstats->vm_numa_event[i] = 0; 929 zone_numa_event_add(v, zone, i); 930 } 931 } 932 #endif 933 } 934 935 for_each_online_pgdat(pgdat) { 936 struct per_cpu_nodestat *p; 937 938 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 939 940 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 941 if (p->vm_node_stat_diff[i]) { 942 int v; 943 944 v = p->vm_node_stat_diff[i]; 945 p->vm_node_stat_diff[i] = 0; 946 atomic_long_add(v, &pgdat->vm_stat[i]); 947 global_node_diff[i] += v; 948 } 949 } 950 951 fold_diff(global_zone_diff, global_node_diff); 952 } 953 954 /* 955 * this is only called if !populated_zone(zone), which implies no other users of 956 * pset->vm_stat_diff[] exist. 957 */ 958 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) 959 { 960 unsigned long v; 961 int i; 962 963 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 964 if (pzstats->vm_stat_diff[i]) { 965 v = pzstats->vm_stat_diff[i]; 966 pzstats->vm_stat_diff[i] = 0; 967 zone_page_state_add(v, zone, i); 968 } 969 } 970 971 #ifdef CONFIG_NUMA 972 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 973 if (pzstats->vm_numa_event[i]) { 974 v = pzstats->vm_numa_event[i]; 975 pzstats->vm_numa_event[i] = 0; 976 zone_numa_event_add(v, zone, i); 977 } 978 } 979 #endif 980 } 981 #endif 982 983 #ifdef CONFIG_NUMA 984 /* 985 * Determine the per node value of a stat item. This function 986 * is called frequently in a NUMA machine, so try to be as 987 * frugal as possible. 988 */ 989 unsigned long sum_zone_node_page_state(int node, 990 enum zone_stat_item item) 991 { 992 struct zone *zones = NODE_DATA(node)->node_zones; 993 int i; 994 unsigned long count = 0; 995 996 for (i = 0; i < MAX_NR_ZONES; i++) 997 count += zone_page_state(zones + i, item); 998 999 return count; 1000 } 1001 1002 /* Determine the per node value of a numa stat item. */ 1003 unsigned long sum_zone_numa_event_state(int node, 1004 enum numa_stat_item item) 1005 { 1006 struct zone *zones = NODE_DATA(node)->node_zones; 1007 unsigned long count = 0; 1008 int i; 1009 1010 for (i = 0; i < MAX_NR_ZONES; i++) 1011 count += zone_numa_event_state(zones + i, item); 1012 1013 return count; 1014 } 1015 1016 /* 1017 * Determine the per node value of a stat item. 1018 */ 1019 unsigned long node_page_state_pages(struct pglist_data *pgdat, 1020 enum node_stat_item item) 1021 { 1022 long x = atomic_long_read(&pgdat->vm_stat[item]); 1023 #ifdef CONFIG_SMP 1024 if (x < 0) 1025 x = 0; 1026 #endif 1027 return x; 1028 } 1029 1030 unsigned long node_page_state(struct pglist_data *pgdat, 1031 enum node_stat_item item) 1032 { 1033 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1034 1035 return node_page_state_pages(pgdat, item); 1036 } 1037 #endif 1038 1039 /* 1040 * Count number of pages "struct page" and "struct page_ext" consume. 1041 * nr_memmap_boot_pages: # of pages allocated by boot allocator 1042 * nr_memmap_pages: # of pages that were allocated by buddy allocator 1043 */ 1044 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0); 1045 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0); 1046 1047 void memmap_boot_pages_add(long delta) 1048 { 1049 atomic_long_add(delta, &nr_memmap_boot_pages); 1050 } 1051 1052 void memmap_pages_add(long delta) 1053 { 1054 atomic_long_add(delta, &nr_memmap_pages); 1055 } 1056 1057 #ifdef CONFIG_COMPACTION 1058 1059 struct contig_page_info { 1060 unsigned long free_pages; 1061 unsigned long free_blocks_total; 1062 unsigned long free_blocks_suitable; 1063 }; 1064 1065 /* 1066 * Calculate the number of free pages in a zone, how many contiguous 1067 * pages are free and how many are large enough to satisfy an allocation of 1068 * the target size. Note that this function makes no attempt to estimate 1069 * how many suitable free blocks there *might* be if MOVABLE pages were 1070 * migrated. Calculating that is possible, but expensive and can be 1071 * figured out from userspace 1072 */ 1073 static void fill_contig_page_info(struct zone *zone, 1074 unsigned int suitable_order, 1075 struct contig_page_info *info) 1076 { 1077 unsigned int order; 1078 1079 info->free_pages = 0; 1080 info->free_blocks_total = 0; 1081 info->free_blocks_suitable = 0; 1082 1083 for (order = 0; order < NR_PAGE_ORDERS; order++) { 1084 unsigned long blocks; 1085 1086 /* 1087 * Count number of free blocks. 1088 * 1089 * Access to nr_free is lockless as nr_free is used only for 1090 * diagnostic purposes. Use data_race to avoid KCSAN warning. 1091 */ 1092 blocks = data_race(zone->free_area[order].nr_free); 1093 info->free_blocks_total += blocks; 1094 1095 /* Count free base pages */ 1096 info->free_pages += blocks << order; 1097 1098 /* Count the suitable free blocks */ 1099 if (order >= suitable_order) 1100 info->free_blocks_suitable += blocks << 1101 (order - suitable_order); 1102 } 1103 } 1104 1105 /* 1106 * A fragmentation index only makes sense if an allocation of a requested 1107 * size would fail. If that is true, the fragmentation index indicates 1108 * whether external fragmentation or a lack of memory was the problem. 1109 * The value can be used to determine if page reclaim or compaction 1110 * should be used 1111 */ 1112 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1113 { 1114 unsigned long requested = 1UL << order; 1115 1116 if (WARN_ON_ONCE(order > MAX_PAGE_ORDER)) 1117 return 0; 1118 1119 if (!info->free_blocks_total) 1120 return 0; 1121 1122 /* Fragmentation index only makes sense when a request would fail */ 1123 if (info->free_blocks_suitable) 1124 return -1000; 1125 1126 /* 1127 * Index is between 0 and 1 so return within 3 decimal places 1128 * 1129 * 0 => allocation would fail due to lack of memory 1130 * 1 => allocation would fail due to fragmentation 1131 */ 1132 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1133 } 1134 1135 /* 1136 * Calculates external fragmentation within a zone wrt the given order. 1137 * It is defined as the percentage of pages found in blocks of size 1138 * less than 1 << order. It returns values in range [0, 100]. 1139 */ 1140 unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1141 { 1142 struct contig_page_info info; 1143 1144 fill_contig_page_info(zone, order, &info); 1145 if (info.free_pages == 0) 1146 return 0; 1147 1148 return div_u64((info.free_pages - 1149 (info.free_blocks_suitable << order)) * 100, 1150 info.free_pages); 1151 } 1152 1153 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1154 int fragmentation_index(struct zone *zone, unsigned int order) 1155 { 1156 struct contig_page_info info; 1157 1158 fill_contig_page_info(zone, order, &info); 1159 return __fragmentation_index(order, &info); 1160 } 1161 #endif 1162 1163 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1164 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1165 #ifdef CONFIG_ZONE_DMA 1166 #define TEXT_FOR_DMA(xx, yy) [xx##_DMA] = yy "_dma", 1167 #else 1168 #define TEXT_FOR_DMA(xx, yy) 1169 #endif 1170 1171 #ifdef CONFIG_ZONE_DMA32 1172 #define TEXT_FOR_DMA32(xx, yy) [xx##_DMA32] = yy "_dma32", 1173 #else 1174 #define TEXT_FOR_DMA32(xx, yy) 1175 #endif 1176 1177 #ifdef CONFIG_HIGHMEM 1178 #define TEXT_FOR_HIGHMEM(xx, yy) [xx##_HIGH] = yy "_high", 1179 #else 1180 #define TEXT_FOR_HIGHMEM(xx, yy) 1181 #endif 1182 1183 #ifdef CONFIG_ZONE_DEVICE 1184 #define TEXT_FOR_DEVICE(xx, yy) [xx##_DEVICE] = yy "_device", 1185 #else 1186 #define TEXT_FOR_DEVICE(xx, yy) 1187 #endif 1188 1189 #define TEXTS_FOR_ZONES(xx, yy) \ 1190 TEXT_FOR_DMA(xx, yy) \ 1191 TEXT_FOR_DMA32(xx, yy) \ 1192 [xx##_NORMAL] = yy "_normal", \ 1193 TEXT_FOR_HIGHMEM(xx, yy) \ 1194 [xx##_MOVABLE] = yy "_movable", \ 1195 TEXT_FOR_DEVICE(xx, yy) 1196 1197 const char * const vmstat_text[] = { 1198 /* enum zone_stat_item counters */ 1199 #define I(x) (x) 1200 [I(NR_FREE_PAGES)] = "nr_free_pages", 1201 [I(NR_FREE_PAGES_BLOCKS)] = "nr_free_pages_blocks", 1202 [I(NR_ZONE_INACTIVE_ANON)] = "nr_zone_inactive_anon", 1203 [I(NR_ZONE_ACTIVE_ANON)] = "nr_zone_active_anon", 1204 [I(NR_ZONE_INACTIVE_FILE)] = "nr_zone_inactive_file", 1205 [I(NR_ZONE_ACTIVE_FILE)] = "nr_zone_active_file", 1206 [I(NR_ZONE_UNEVICTABLE)] = "nr_zone_unevictable", 1207 [I(NR_ZONE_WRITE_PENDING)] = "nr_zone_write_pending", 1208 [I(NR_MLOCK)] = "nr_mlock", 1209 #if IS_ENABLED(CONFIG_ZSMALLOC) 1210 [I(NR_ZSPAGES)] = "nr_zspages", 1211 #endif 1212 [I(NR_FREE_CMA_PAGES)] = "nr_free_cma", 1213 #ifdef CONFIG_UNACCEPTED_MEMORY 1214 [I(NR_UNACCEPTED)] = "nr_unaccepted", 1215 #endif 1216 #undef I 1217 1218 /* enum numa_stat_item counters */ 1219 #define I(x) (NR_VM_ZONE_STAT_ITEMS + x) 1220 #ifdef CONFIG_NUMA 1221 [I(NUMA_HIT)] = "numa_hit", 1222 [I(NUMA_MISS)] = "numa_miss", 1223 [I(NUMA_FOREIGN)] = "numa_foreign", 1224 [I(NUMA_INTERLEAVE_HIT)] = "numa_interleave", 1225 [I(NUMA_LOCAL)] = "numa_local", 1226 [I(NUMA_OTHER)] = "numa_other", 1227 #endif 1228 #undef I 1229 1230 /* enum node_stat_item counters */ 1231 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + x) 1232 [I(NR_INACTIVE_ANON)] = "nr_inactive_anon", 1233 [I(NR_ACTIVE_ANON)] = "nr_active_anon", 1234 [I(NR_INACTIVE_FILE)] = "nr_inactive_file", 1235 [I(NR_ACTIVE_FILE)] = "nr_active_file", 1236 [I(NR_UNEVICTABLE)] = "nr_unevictable", 1237 [I(NR_SLAB_RECLAIMABLE_B)] = "nr_slab_reclaimable", 1238 [I(NR_SLAB_UNRECLAIMABLE_B)] = "nr_slab_unreclaimable", 1239 [I(NR_ISOLATED_ANON)] = "nr_isolated_anon", 1240 [I(NR_ISOLATED_FILE)] = "nr_isolated_file", 1241 [I(WORKINGSET_NODES)] = "workingset_nodes", 1242 [I(WORKINGSET_REFAULT_ANON)] = "workingset_refault_anon", 1243 [I(WORKINGSET_REFAULT_FILE)] = "workingset_refault_file", 1244 [I(WORKINGSET_ACTIVATE_ANON)] = "workingset_activate_anon", 1245 [I(WORKINGSET_ACTIVATE_FILE)] = "workingset_activate_file", 1246 [I(WORKINGSET_RESTORE_ANON)] = "workingset_restore_anon", 1247 [I(WORKINGSET_RESTORE_FILE)] = "workingset_restore_file", 1248 [I(WORKINGSET_NODERECLAIM)] = "workingset_nodereclaim", 1249 [I(NR_ANON_MAPPED)] = "nr_anon_pages", 1250 [I(NR_FILE_MAPPED)] = "nr_mapped", 1251 [I(NR_FILE_PAGES)] = "nr_file_pages", 1252 [I(NR_FILE_DIRTY)] = "nr_dirty", 1253 [I(NR_WRITEBACK)] = "nr_writeback", 1254 [I(NR_SHMEM)] = "nr_shmem", 1255 [I(NR_SHMEM_THPS)] = "nr_shmem_hugepages", 1256 [I(NR_SHMEM_PMDMAPPED)] = "nr_shmem_pmdmapped", 1257 [I(NR_FILE_THPS)] = "nr_file_hugepages", 1258 [I(NR_FILE_PMDMAPPED)] = "nr_file_pmdmapped", 1259 [I(NR_ANON_THPS)] = "nr_anon_transparent_hugepages", 1260 [I(NR_VMSCAN_WRITE)] = "nr_vmscan_write", 1261 [I(NR_VMSCAN_IMMEDIATE)] = "nr_vmscan_immediate_reclaim", 1262 [I(NR_DIRTIED)] = "nr_dirtied", 1263 [I(NR_WRITTEN)] = "nr_written", 1264 [I(NR_THROTTLED_WRITTEN)] = "nr_throttled_written", 1265 [I(NR_KERNEL_MISC_RECLAIMABLE)] = "nr_kernel_misc_reclaimable", 1266 [I(NR_FOLL_PIN_ACQUIRED)] = "nr_foll_pin_acquired", 1267 [I(NR_FOLL_PIN_RELEASED)] = "nr_foll_pin_released", 1268 [I(NR_KERNEL_STACK_KB)] = "nr_kernel_stack", 1269 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1270 [I(NR_KERNEL_SCS_KB)] = "nr_shadow_call_stack", 1271 #endif 1272 [I(NR_PAGETABLE)] = "nr_page_table_pages", 1273 [I(NR_SECONDARY_PAGETABLE)] = "nr_sec_page_table_pages", 1274 #ifdef CONFIG_IOMMU_SUPPORT 1275 [I(NR_IOMMU_PAGES)] = "nr_iommu_pages", 1276 #endif 1277 #ifdef CONFIG_SWAP 1278 [I(NR_SWAPCACHE)] = "nr_swapcached", 1279 #endif 1280 #ifdef CONFIG_NUMA_BALANCING 1281 [I(PGPROMOTE_SUCCESS)] = "pgpromote_success", 1282 [I(PGPROMOTE_CANDIDATE)] = "pgpromote_candidate", 1283 #endif 1284 [I(PGDEMOTE_KSWAPD)] = "pgdemote_kswapd", 1285 [I(PGDEMOTE_DIRECT)] = "pgdemote_direct", 1286 [I(PGDEMOTE_KHUGEPAGED)] = "pgdemote_khugepaged", 1287 [I(PGDEMOTE_PROACTIVE)] = "pgdemote_proactive", 1288 #ifdef CONFIG_HUGETLB_PAGE 1289 [I(NR_HUGETLB)] = "nr_hugetlb", 1290 #endif 1291 [I(NR_BALLOON_PAGES)] = "nr_balloon_pages", 1292 #undef I 1293 1294 /* system-wide enum vm_stat_item counters */ 1295 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \ 1296 NR_VM_NODE_STAT_ITEMS + x) 1297 [I(NR_DIRTY_THRESHOLD)] = "nr_dirty_threshold", 1298 [I(NR_DIRTY_BG_THRESHOLD)] = "nr_dirty_background_threshold", 1299 [I(NR_MEMMAP_PAGES)] = "nr_memmap_pages", 1300 [I(NR_MEMMAP_BOOT_PAGES)] = "nr_memmap_boot_pages", 1301 #undef I 1302 1303 #if defined(CONFIG_VM_EVENT_COUNTERS) 1304 /* enum vm_event_item counters */ 1305 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \ 1306 NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS + x) 1307 1308 [I(PGPGIN)] = "pgpgin", 1309 [I(PGPGOUT)] = "pgpgout", 1310 [I(PSWPIN)] = "pswpin", 1311 [I(PSWPOUT)] = "pswpout", 1312 1313 #define OFF (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \ 1314 NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS) 1315 TEXTS_FOR_ZONES(OFF+PGALLOC, "pgalloc") 1316 TEXTS_FOR_ZONES(OFF+ALLOCSTALL, "allocstall") 1317 TEXTS_FOR_ZONES(OFF+PGSCAN_SKIP, "pgskip") 1318 #undef OFF 1319 1320 [I(PGFREE)] = "pgfree", 1321 [I(PGACTIVATE)] = "pgactivate", 1322 [I(PGDEACTIVATE)] = "pgdeactivate", 1323 [I(PGLAZYFREE)] = "pglazyfree", 1324 1325 [I(PGFAULT)] = "pgfault", 1326 [I(PGMAJFAULT)] = "pgmajfault", 1327 [I(PGLAZYFREED)] = "pglazyfreed", 1328 1329 [I(PGREFILL)] = "pgrefill", 1330 [I(PGREUSE)] = "pgreuse", 1331 [I(PGSTEAL_KSWAPD)] = "pgsteal_kswapd", 1332 [I(PGSTEAL_DIRECT)] = "pgsteal_direct", 1333 [I(PGSTEAL_KHUGEPAGED)] = "pgsteal_khugepaged", 1334 [I(PGSTEAL_PROACTIVE)] = "pgsteal_proactive", 1335 [I(PGSCAN_KSWAPD)] = "pgscan_kswapd", 1336 [I(PGSCAN_DIRECT)] = "pgscan_direct", 1337 [I(PGSCAN_KHUGEPAGED)] = "pgscan_khugepaged", 1338 [I(PGSCAN_PROACTIVE)] = "pgscan_proactive", 1339 [I(PGSCAN_DIRECT_THROTTLE)] = "pgscan_direct_throttle", 1340 [I(PGSCAN_ANON)] = "pgscan_anon", 1341 [I(PGSCAN_FILE)] = "pgscan_file", 1342 [I(PGSTEAL_ANON)] = "pgsteal_anon", 1343 [I(PGSTEAL_FILE)] = "pgsteal_file", 1344 1345 #ifdef CONFIG_NUMA 1346 [I(PGSCAN_ZONE_RECLAIM_SUCCESS)] = "zone_reclaim_success", 1347 [I(PGSCAN_ZONE_RECLAIM_FAILED)] = "zone_reclaim_failed", 1348 #endif 1349 [I(PGINODESTEAL)] = "pginodesteal", 1350 [I(SLABS_SCANNED)] = "slabs_scanned", 1351 [I(KSWAPD_INODESTEAL)] = "kswapd_inodesteal", 1352 [I(KSWAPD_LOW_WMARK_HIT_QUICKLY)] = "kswapd_low_wmark_hit_quickly", 1353 [I(KSWAPD_HIGH_WMARK_HIT_QUICKLY)] = "kswapd_high_wmark_hit_quickly", 1354 [I(PAGEOUTRUN)] = "pageoutrun", 1355 1356 [I(PGROTATED)] = "pgrotated", 1357 1358 [I(DROP_PAGECACHE)] = "drop_pagecache", 1359 [I(DROP_SLAB)] = "drop_slab", 1360 [I(OOM_KILL)] = "oom_kill", 1361 1362 #ifdef CONFIG_NUMA_BALANCING 1363 [I(NUMA_PTE_UPDATES)] = "numa_pte_updates", 1364 [I(NUMA_HUGE_PTE_UPDATES)] = "numa_huge_pte_updates", 1365 [I(NUMA_HINT_FAULTS)] = "numa_hint_faults", 1366 [I(NUMA_HINT_FAULTS_LOCAL)] = "numa_hint_faults_local", 1367 [I(NUMA_PAGE_MIGRATE)] = "numa_pages_migrated", 1368 #endif 1369 #ifdef CONFIG_MIGRATION 1370 [I(PGMIGRATE_SUCCESS)] = "pgmigrate_success", 1371 [I(PGMIGRATE_FAIL)] = "pgmigrate_fail", 1372 [I(THP_MIGRATION_SUCCESS)] = "thp_migration_success", 1373 [I(THP_MIGRATION_FAIL)] = "thp_migration_fail", 1374 [I(THP_MIGRATION_SPLIT)] = "thp_migration_split", 1375 #endif 1376 #ifdef CONFIG_COMPACTION 1377 [I(COMPACTMIGRATE_SCANNED)] = "compact_migrate_scanned", 1378 [I(COMPACTFREE_SCANNED)] = "compact_free_scanned", 1379 [I(COMPACTISOLATED)] = "compact_isolated", 1380 [I(COMPACTSTALL)] = "compact_stall", 1381 [I(COMPACTFAIL)] = "compact_fail", 1382 [I(COMPACTSUCCESS)] = "compact_success", 1383 [I(KCOMPACTD_WAKE)] = "compact_daemon_wake", 1384 [I(KCOMPACTD_MIGRATE_SCANNED)] = "compact_daemon_migrate_scanned", 1385 [I(KCOMPACTD_FREE_SCANNED)] = "compact_daemon_free_scanned", 1386 #endif 1387 1388 #ifdef CONFIG_HUGETLB_PAGE 1389 [I(HTLB_BUDDY_PGALLOC)] = "htlb_buddy_alloc_success", 1390 [I(HTLB_BUDDY_PGALLOC_FAIL)] = "htlb_buddy_alloc_fail", 1391 #endif 1392 #ifdef CONFIG_CMA 1393 [I(CMA_ALLOC_SUCCESS)] = "cma_alloc_success", 1394 [I(CMA_ALLOC_FAIL)] = "cma_alloc_fail", 1395 #endif 1396 [I(UNEVICTABLE_PGCULLED)] = "unevictable_pgs_culled", 1397 [I(UNEVICTABLE_PGSCANNED)] = "unevictable_pgs_scanned", 1398 [I(UNEVICTABLE_PGRESCUED)] = "unevictable_pgs_rescued", 1399 [I(UNEVICTABLE_PGMLOCKED)] = "unevictable_pgs_mlocked", 1400 [I(UNEVICTABLE_PGMUNLOCKED)] = "unevictable_pgs_munlocked", 1401 [I(UNEVICTABLE_PGCLEARED)] = "unevictable_pgs_cleared", 1402 [I(UNEVICTABLE_PGSTRANDED)] = "unevictable_pgs_stranded", 1403 1404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1405 [I(THP_FAULT_ALLOC)] = "thp_fault_alloc", 1406 [I(THP_FAULT_FALLBACK)] = "thp_fault_fallback", 1407 [I(THP_FAULT_FALLBACK_CHARGE)] = "thp_fault_fallback_charge", 1408 [I(THP_COLLAPSE_ALLOC)] = "thp_collapse_alloc", 1409 [I(THP_COLLAPSE_ALLOC_FAILED)] = "thp_collapse_alloc_failed", 1410 [I(THP_FILE_ALLOC)] = "thp_file_alloc", 1411 [I(THP_FILE_FALLBACK)] = "thp_file_fallback", 1412 [I(THP_FILE_FALLBACK_CHARGE)] = "thp_file_fallback_charge", 1413 [I(THP_FILE_MAPPED)] = "thp_file_mapped", 1414 [I(THP_SPLIT_PAGE)] = "thp_split_page", 1415 [I(THP_SPLIT_PAGE_FAILED)] = "thp_split_page_failed", 1416 [I(THP_DEFERRED_SPLIT_PAGE)] = "thp_deferred_split_page", 1417 [I(THP_UNDERUSED_SPLIT_PAGE)] = "thp_underused_split_page", 1418 [I(THP_SPLIT_PMD)] = "thp_split_pmd", 1419 [I(THP_SCAN_EXCEED_NONE_PTE)] = "thp_scan_exceed_none_pte", 1420 [I(THP_SCAN_EXCEED_SWAP_PTE)] = "thp_scan_exceed_swap_pte", 1421 [I(THP_SCAN_EXCEED_SHARED_PTE)] = "thp_scan_exceed_share_pte", 1422 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1423 [I(THP_SPLIT_PUD)] = "thp_split_pud", 1424 #endif 1425 [I(THP_ZERO_PAGE_ALLOC)] = "thp_zero_page_alloc", 1426 [I(THP_ZERO_PAGE_ALLOC_FAILED)] = "thp_zero_page_alloc_failed", 1427 [I(THP_SWPOUT)] = "thp_swpout", 1428 [I(THP_SWPOUT_FALLBACK)] = "thp_swpout_fallback", 1429 #endif 1430 #ifdef CONFIG_MEMORY_BALLOON 1431 [I(BALLOON_INFLATE)] = "balloon_inflate", 1432 [I(BALLOON_DEFLATE)] = "balloon_deflate", 1433 #ifdef CONFIG_BALLOON_COMPACTION 1434 [I(BALLOON_MIGRATE)] = "balloon_migrate", 1435 #endif 1436 #endif /* CONFIG_MEMORY_BALLOON */ 1437 #ifdef CONFIG_DEBUG_TLBFLUSH 1438 [I(NR_TLB_REMOTE_FLUSH)] = "nr_tlb_remote_flush", 1439 [I(NR_TLB_REMOTE_FLUSH_RECEIVED)] = "nr_tlb_remote_flush_received", 1440 [I(NR_TLB_LOCAL_FLUSH_ALL)] = "nr_tlb_local_flush_all", 1441 [I(NR_TLB_LOCAL_FLUSH_ONE)] = "nr_tlb_local_flush_one", 1442 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1443 1444 #ifdef CONFIG_SWAP 1445 [I(SWAP_RA)] = "swap_ra", 1446 [I(SWAP_RA_HIT)] = "swap_ra_hit", 1447 [I(SWPIN_ZERO)] = "swpin_zero", 1448 [I(SWPOUT_ZERO)] = "swpout_zero", 1449 #ifdef CONFIG_KSM 1450 [I(KSM_SWPIN_COPY)] = "ksm_swpin_copy", 1451 #endif 1452 #endif 1453 #ifdef CONFIG_KSM 1454 [I(COW_KSM)] = "cow_ksm", 1455 #endif 1456 #ifdef CONFIG_ZSWAP 1457 [I(ZSWPIN)] = "zswpin", 1458 [I(ZSWPOUT)] = "zswpout", 1459 [I(ZSWPWB)] = "zswpwb", 1460 #endif 1461 #ifdef CONFIG_X86 1462 [I(DIRECT_MAP_LEVEL2_SPLIT)] = "direct_map_level2_splits", 1463 [I(DIRECT_MAP_LEVEL3_SPLIT)] = "direct_map_level3_splits", 1464 [I(DIRECT_MAP_LEVEL2_COLLAPSE)] = "direct_map_level2_collapses", 1465 [I(DIRECT_MAP_LEVEL3_COLLAPSE)] = "direct_map_level3_collapses", 1466 #endif 1467 #ifdef CONFIG_PER_VMA_LOCK_STATS 1468 [I(VMA_LOCK_SUCCESS)] = "vma_lock_success", 1469 [I(VMA_LOCK_ABORT)] = "vma_lock_abort", 1470 [I(VMA_LOCK_RETRY)] = "vma_lock_retry", 1471 [I(VMA_LOCK_MISS)] = "vma_lock_miss", 1472 #endif 1473 #ifdef CONFIG_DEBUG_STACK_USAGE 1474 [I(KSTACK_1K)] = "kstack_1k", 1475 #if THREAD_SIZE > 1024 1476 [I(KSTACK_2K)] = "kstack_2k", 1477 #endif 1478 #if THREAD_SIZE > 2048 1479 [I(KSTACK_4K)] = "kstack_4k", 1480 #endif 1481 #if THREAD_SIZE > 4096 1482 [I(KSTACK_8K)] = "kstack_8k", 1483 #endif 1484 #if THREAD_SIZE > 8192 1485 [I(KSTACK_16K)] = "kstack_16k", 1486 #endif 1487 #if THREAD_SIZE > 16384 1488 [I(KSTACK_32K)] = "kstack_32k", 1489 #endif 1490 #if THREAD_SIZE > 32768 1491 [I(KSTACK_64K)] = "kstack_64k", 1492 #endif 1493 #if THREAD_SIZE > 65536 1494 [I(KSTACK_REST)] = "kstack_rest", 1495 #endif 1496 #endif 1497 #undef I 1498 #endif /* CONFIG_VM_EVENT_COUNTERS */ 1499 }; 1500 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1501 1502 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1503 defined(CONFIG_PROC_FS) 1504 static void *frag_start(struct seq_file *m, loff_t *pos) 1505 { 1506 pg_data_t *pgdat; 1507 loff_t node = *pos; 1508 1509 for (pgdat = first_online_pgdat(); 1510 pgdat && node; 1511 pgdat = next_online_pgdat(pgdat)) 1512 --node; 1513 1514 return pgdat; 1515 } 1516 1517 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1518 { 1519 pg_data_t *pgdat = (pg_data_t *)arg; 1520 1521 (*pos)++; 1522 return next_online_pgdat(pgdat); 1523 } 1524 1525 static void frag_stop(struct seq_file *m, void *arg) 1526 { 1527 } 1528 1529 /* 1530 * Walk zones in a node and print using a callback. 1531 * If @assert_populated is true, only use callback for zones that are populated. 1532 */ 1533 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1534 bool assert_populated, bool nolock, 1535 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1536 { 1537 struct zone *zone; 1538 struct zone *node_zones = pgdat->node_zones; 1539 unsigned long flags; 1540 1541 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1542 if (assert_populated && !populated_zone(zone)) 1543 continue; 1544 1545 if (!nolock) 1546 spin_lock_irqsave(&zone->lock, flags); 1547 print(m, pgdat, zone); 1548 if (!nolock) 1549 spin_unlock_irqrestore(&zone->lock, flags); 1550 } 1551 } 1552 #endif 1553 1554 #ifdef CONFIG_PROC_FS 1555 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1556 struct zone *zone) 1557 { 1558 int order; 1559 1560 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1561 for (order = 0; order < NR_PAGE_ORDERS; ++order) 1562 /* 1563 * Access to nr_free is lockless as nr_free is used only for 1564 * printing purposes. Use data_race to avoid KCSAN warning. 1565 */ 1566 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free)); 1567 seq_putc(m, '\n'); 1568 } 1569 1570 /* 1571 * This walks the free areas for each zone. 1572 */ 1573 static int frag_show(struct seq_file *m, void *arg) 1574 { 1575 pg_data_t *pgdat = (pg_data_t *)arg; 1576 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1577 return 0; 1578 } 1579 1580 static void pagetypeinfo_showfree_print(struct seq_file *m, 1581 pg_data_t *pgdat, struct zone *zone) 1582 { 1583 int order, mtype; 1584 1585 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1586 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1587 pgdat->node_id, 1588 zone->name, 1589 migratetype_names[mtype]); 1590 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 1591 unsigned long freecount = 0; 1592 struct free_area *area; 1593 struct list_head *curr; 1594 bool overflow = false; 1595 1596 area = &(zone->free_area[order]); 1597 1598 list_for_each(curr, &area->free_list[mtype]) { 1599 /* 1600 * Cap the free_list iteration because it might 1601 * be really large and we are under a spinlock 1602 * so a long time spent here could trigger a 1603 * hard lockup detector. Anyway this is a 1604 * debugging tool so knowing there is a handful 1605 * of pages of this order should be more than 1606 * sufficient. 1607 */ 1608 if (++freecount >= 100000) { 1609 overflow = true; 1610 break; 1611 } 1612 } 1613 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1614 spin_unlock_irq(&zone->lock); 1615 cond_resched(); 1616 spin_lock_irq(&zone->lock); 1617 } 1618 seq_putc(m, '\n'); 1619 } 1620 } 1621 1622 /* Print out the free pages at each order for each migatetype */ 1623 static void pagetypeinfo_showfree(struct seq_file *m, void *arg) 1624 { 1625 int order; 1626 pg_data_t *pgdat = (pg_data_t *)arg; 1627 1628 /* Print header */ 1629 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1630 for (order = 0; order < NR_PAGE_ORDERS; ++order) 1631 seq_printf(m, "%6d ", order); 1632 seq_putc(m, '\n'); 1633 1634 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1635 } 1636 1637 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1638 pg_data_t *pgdat, struct zone *zone) 1639 { 1640 int mtype; 1641 unsigned long pfn; 1642 unsigned long start_pfn = zone->zone_start_pfn; 1643 unsigned long end_pfn = zone_end_pfn(zone); 1644 unsigned long count[MIGRATE_TYPES] = { 0, }; 1645 1646 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1647 struct page *page; 1648 1649 page = pfn_to_online_page(pfn); 1650 if (!page) 1651 continue; 1652 1653 if (page_zone(page) != zone) 1654 continue; 1655 1656 mtype = get_pageblock_migratetype(page); 1657 1658 if (mtype < MIGRATE_TYPES) 1659 count[mtype]++; 1660 } 1661 1662 /* Print counts */ 1663 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1664 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1665 seq_printf(m, "%12lu ", count[mtype]); 1666 seq_putc(m, '\n'); 1667 } 1668 1669 /* Print out the number of pageblocks for each migratetype */ 1670 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1671 { 1672 int mtype; 1673 pg_data_t *pgdat = (pg_data_t *)arg; 1674 1675 seq_printf(m, "\n%-23s", "Number of blocks type "); 1676 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1677 seq_printf(m, "%12s ", migratetype_names[mtype]); 1678 seq_putc(m, '\n'); 1679 walk_zones_in_node(m, pgdat, true, false, 1680 pagetypeinfo_showblockcount_print); 1681 } 1682 1683 /* 1684 * Print out the number of pageblocks for each migratetype that contain pages 1685 * of other types. This gives an indication of how well fallbacks are being 1686 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1687 * to determine what is going on 1688 */ 1689 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1690 { 1691 #ifdef CONFIG_PAGE_OWNER 1692 int mtype; 1693 1694 if (!static_branch_unlikely(&page_owner_inited)) 1695 return; 1696 1697 drain_all_pages(NULL); 1698 1699 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1700 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1701 seq_printf(m, "%12s ", migratetype_names[mtype]); 1702 seq_putc(m, '\n'); 1703 1704 walk_zones_in_node(m, pgdat, true, true, 1705 pagetypeinfo_showmixedcount_print); 1706 #endif /* CONFIG_PAGE_OWNER */ 1707 } 1708 1709 /* 1710 * This prints out statistics in relation to grouping pages by mobility. 1711 * It is expensive to collect so do not constantly read the file. 1712 */ 1713 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1714 { 1715 pg_data_t *pgdat = (pg_data_t *)arg; 1716 1717 /* check memoryless node */ 1718 if (!node_state(pgdat->node_id, N_MEMORY)) 1719 return 0; 1720 1721 seq_printf(m, "Page block order: %d\n", pageblock_order); 1722 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1723 seq_putc(m, '\n'); 1724 pagetypeinfo_showfree(m, pgdat); 1725 pagetypeinfo_showblockcount(m, pgdat); 1726 pagetypeinfo_showmixedcount(m, pgdat); 1727 1728 return 0; 1729 } 1730 1731 static const struct seq_operations fragmentation_op = { 1732 .start = frag_start, 1733 .next = frag_next, 1734 .stop = frag_stop, 1735 .show = frag_show, 1736 }; 1737 1738 static const struct seq_operations pagetypeinfo_op = { 1739 .start = frag_start, 1740 .next = frag_next, 1741 .stop = frag_stop, 1742 .show = pagetypeinfo_show, 1743 }; 1744 1745 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1746 { 1747 int zid; 1748 1749 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1750 struct zone *compare = &pgdat->node_zones[zid]; 1751 1752 if (populated_zone(compare)) 1753 return zone == compare; 1754 } 1755 1756 return false; 1757 } 1758 1759 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1760 struct zone *zone) 1761 { 1762 int i; 1763 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1764 if (is_zone_first_populated(pgdat, zone)) { 1765 seq_printf(m, "\n per-node stats"); 1766 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1767 unsigned long pages = node_page_state_pages(pgdat, i); 1768 1769 if (vmstat_item_print_in_thp(i)) 1770 pages /= HPAGE_PMD_NR; 1771 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1772 pages); 1773 } 1774 } 1775 seq_printf(m, 1776 "\n pages free %lu" 1777 "\n boost %lu" 1778 "\n min %lu" 1779 "\n low %lu" 1780 "\n high %lu" 1781 "\n promo %lu" 1782 "\n spanned %lu" 1783 "\n present %lu" 1784 "\n managed %lu" 1785 "\n cma %lu", 1786 zone_page_state(zone, NR_FREE_PAGES), 1787 zone->watermark_boost, 1788 min_wmark_pages(zone), 1789 low_wmark_pages(zone), 1790 high_wmark_pages(zone), 1791 promo_wmark_pages(zone), 1792 zone->spanned_pages, 1793 zone->present_pages, 1794 zone_managed_pages(zone), 1795 zone_cma_pages(zone)); 1796 1797 seq_printf(m, 1798 "\n protection: (%ld", 1799 zone->lowmem_reserve[0]); 1800 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1801 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1802 seq_putc(m, ')'); 1803 1804 /* If unpopulated, no other information is useful */ 1805 if (!populated_zone(zone)) { 1806 seq_putc(m, '\n'); 1807 return; 1808 } 1809 1810 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1811 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1812 zone_page_state(zone, i)); 1813 1814 #ifdef CONFIG_NUMA 1815 fold_vm_zone_numa_events(zone); 1816 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1817 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1818 zone_numa_event_state(zone, i)); 1819 #endif 1820 1821 seq_printf(m, "\n pagesets"); 1822 for_each_online_cpu(i) { 1823 struct per_cpu_pages *pcp; 1824 struct per_cpu_zonestat __maybe_unused *pzstats; 1825 1826 pcp = per_cpu_ptr(zone->per_cpu_pageset, i); 1827 seq_printf(m, 1828 "\n cpu: %i" 1829 "\n count: %i" 1830 "\n high: %i" 1831 "\n batch: %i" 1832 "\n high_min: %i" 1833 "\n high_max: %i", 1834 i, 1835 pcp->count, 1836 pcp->high, 1837 pcp->batch, 1838 pcp->high_min, 1839 pcp->high_max); 1840 #ifdef CONFIG_SMP 1841 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); 1842 seq_printf(m, "\n vm stats threshold: %d", 1843 pzstats->stat_threshold); 1844 #endif 1845 } 1846 seq_printf(m, 1847 "\n node_unreclaimable: %u" 1848 "\n start_pfn: %lu", 1849 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1850 zone->zone_start_pfn); 1851 seq_putc(m, '\n'); 1852 } 1853 1854 /* 1855 * Output information about zones in @pgdat. All zones are printed regardless 1856 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1857 * set of all zones and userspace would not be aware of such zones if they are 1858 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1859 */ 1860 static int zoneinfo_show(struct seq_file *m, void *arg) 1861 { 1862 pg_data_t *pgdat = (pg_data_t *)arg; 1863 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1864 return 0; 1865 } 1866 1867 static const struct seq_operations zoneinfo_op = { 1868 .start = frag_start, /* iterate over all zones. The same as in 1869 * fragmentation. */ 1870 .next = frag_next, 1871 .stop = frag_stop, 1872 .show = zoneinfo_show, 1873 }; 1874 1875 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1876 NR_VM_NUMA_EVENT_ITEMS + \ 1877 NR_VM_NODE_STAT_ITEMS + \ 1878 NR_VM_STAT_ITEMS + \ 1879 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1880 NR_VM_EVENT_ITEMS : 0)) 1881 1882 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1883 { 1884 unsigned long *v; 1885 int i; 1886 1887 if (*pos >= NR_VMSTAT_ITEMS) 1888 return NULL; 1889 1890 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) != NR_VMSTAT_ITEMS); 1891 fold_vm_numa_events(); 1892 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1893 m->private = v; 1894 if (!v) 1895 return ERR_PTR(-ENOMEM); 1896 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1897 v[i] = global_zone_page_state(i); 1898 v += NR_VM_ZONE_STAT_ITEMS; 1899 1900 #ifdef CONFIG_NUMA 1901 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1902 v[i] = global_numa_event_state(i); 1903 v += NR_VM_NUMA_EVENT_ITEMS; 1904 #endif 1905 1906 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1907 v[i] = global_node_page_state_pages(i); 1908 if (vmstat_item_print_in_thp(i)) 1909 v[i] /= HPAGE_PMD_NR; 1910 } 1911 v += NR_VM_NODE_STAT_ITEMS; 1912 1913 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1914 v + NR_DIRTY_THRESHOLD); 1915 v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages); 1916 v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages); 1917 v += NR_VM_STAT_ITEMS; 1918 1919 #ifdef CONFIG_VM_EVENT_COUNTERS 1920 all_vm_events(v); 1921 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1922 v[PGPGOUT] /= 2; 1923 #endif 1924 return (unsigned long *)m->private + *pos; 1925 } 1926 1927 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1928 { 1929 (*pos)++; 1930 if (*pos >= NR_VMSTAT_ITEMS) 1931 return NULL; 1932 return (unsigned long *)m->private + *pos; 1933 } 1934 1935 static int vmstat_show(struct seq_file *m, void *arg) 1936 { 1937 unsigned long *l = arg; 1938 unsigned long off = l - (unsigned long *)m->private; 1939 1940 seq_puts(m, vmstat_text[off]); 1941 seq_put_decimal_ull(m, " ", *l); 1942 seq_putc(m, '\n'); 1943 1944 if (off == NR_VMSTAT_ITEMS - 1) { 1945 /* 1946 * We've come to the end - add any deprecated counters to avoid 1947 * breaking userspace which might depend on them being present. 1948 */ 1949 seq_puts(m, "nr_unstable 0\n"); 1950 } 1951 return 0; 1952 } 1953 1954 static void vmstat_stop(struct seq_file *m, void *arg) 1955 { 1956 kfree(m->private); 1957 m->private = NULL; 1958 } 1959 1960 static const struct seq_operations vmstat_op = { 1961 .start = vmstat_start, 1962 .next = vmstat_next, 1963 .stop = vmstat_stop, 1964 .show = vmstat_show, 1965 }; 1966 #endif /* CONFIG_PROC_FS */ 1967 1968 #ifdef CONFIG_SMP 1969 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1970 static int sysctl_stat_interval __read_mostly = HZ; 1971 static int vmstat_late_init_done; 1972 1973 #ifdef CONFIG_PROC_FS 1974 static void refresh_vm_stats(struct work_struct *work) 1975 { 1976 refresh_cpu_vm_stats(true); 1977 } 1978 1979 static int vmstat_refresh(const struct ctl_table *table, int write, 1980 void *buffer, size_t *lenp, loff_t *ppos) 1981 { 1982 long val; 1983 int err; 1984 int i; 1985 1986 /* 1987 * The regular update, every sysctl_stat_interval, may come later 1988 * than expected: leaving a significant amount in per_cpu buckets. 1989 * This is particularly misleading when checking a quantity of HUGE 1990 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1991 * which can equally be echo'ed to or cat'ted from (by root), 1992 * can be used to update the stats just before reading them. 1993 * 1994 * Oh, and since global_zone_page_state() etc. are so careful to hide 1995 * transiently negative values, report an error here if any of 1996 * the stats is negative, so we know to go looking for imbalance. 1997 */ 1998 err = schedule_on_each_cpu(refresh_vm_stats); 1999 if (err) 2000 return err; 2001 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 2002 /* 2003 * Skip checking stats known to go negative occasionally. 2004 */ 2005 switch (i) { 2006 case NR_ZONE_WRITE_PENDING: 2007 case NR_FREE_CMA_PAGES: 2008 continue; 2009 } 2010 val = atomic_long_read(&vm_zone_stat[i]); 2011 if (val < 0) { 2012 pr_warn("%s: %s %ld\n", 2013 __func__, zone_stat_name(i), val); 2014 } 2015 } 2016 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 2017 /* 2018 * Skip checking stats known to go negative occasionally. 2019 */ 2020 switch (i) { 2021 case NR_WRITEBACK: 2022 continue; 2023 } 2024 val = atomic_long_read(&vm_node_stat[i]); 2025 if (val < 0) { 2026 pr_warn("%s: %s %ld\n", 2027 __func__, node_stat_name(i), val); 2028 } 2029 } 2030 if (write) 2031 *ppos += *lenp; 2032 else 2033 *lenp = 0; 2034 return 0; 2035 } 2036 #endif /* CONFIG_PROC_FS */ 2037 2038 static void vmstat_update(struct work_struct *w) 2039 { 2040 if (refresh_cpu_vm_stats(true)) { 2041 /* 2042 * Counters were updated so we expect more updates 2043 * to occur in the future. Keep on running the 2044 * update worker thread. 2045 */ 2046 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 2047 this_cpu_ptr(&vmstat_work), 2048 round_jiffies_relative(sysctl_stat_interval)); 2049 } 2050 } 2051 2052 /* 2053 * Check if the diffs for a certain cpu indicate that 2054 * an update is needed. 2055 */ 2056 static bool need_update(int cpu) 2057 { 2058 pg_data_t *last_pgdat = NULL; 2059 struct zone *zone; 2060 2061 for_each_populated_zone(zone) { 2062 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 2063 struct per_cpu_nodestat *n; 2064 2065 /* 2066 * The fast way of checking if there are any vmstat diffs. 2067 */ 2068 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) 2069 return true; 2070 2071 if (last_pgdat == zone->zone_pgdat) 2072 continue; 2073 last_pgdat = zone->zone_pgdat; 2074 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); 2075 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) 2076 return true; 2077 } 2078 return false; 2079 } 2080 2081 /* 2082 * Switch off vmstat processing and then fold all the remaining differentials 2083 * until the diffs stay at zero. The function is used by NOHZ and can only be 2084 * invoked when tick processing is not active. 2085 */ 2086 void quiet_vmstat(void) 2087 { 2088 if (system_state != SYSTEM_RUNNING) 2089 return; 2090 2091 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 2092 return; 2093 2094 if (!need_update(smp_processor_id())) 2095 return; 2096 2097 /* 2098 * Just refresh counters and do not care about the pending delayed 2099 * vmstat_update. It doesn't fire that often to matter and canceling 2100 * it would be too expensive from this path. 2101 * vmstat_shepherd will take care about that for us. 2102 */ 2103 refresh_cpu_vm_stats(false); 2104 } 2105 2106 /* 2107 * Shepherd worker thread that checks the 2108 * differentials of processors that have their worker 2109 * threads for vm statistics updates disabled because of 2110 * inactivity. 2111 */ 2112 static void vmstat_shepherd(struct work_struct *w); 2113 2114 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 2115 2116 static void vmstat_shepherd(struct work_struct *w) 2117 { 2118 int cpu; 2119 2120 cpus_read_lock(); 2121 /* Check processors whose vmstat worker threads have been disabled */ 2122 for_each_online_cpu(cpu) { 2123 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 2124 2125 /* 2126 * In kernel users of vmstat counters either require the precise value and 2127 * they are using zone_page_state_snapshot interface or they can live with 2128 * an imprecision as the regular flushing can happen at arbitrary time and 2129 * cumulative error can grow (see calculate_normal_threshold). 2130 * 2131 * From that POV the regular flushing can be postponed for CPUs that have 2132 * been isolated from the kernel interference without critical 2133 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd 2134 * for all isolated CPUs to avoid interference with the isolated workload. 2135 */ 2136 if (cpu_is_isolated(cpu)) 2137 continue; 2138 2139 if (!delayed_work_pending(dw) && need_update(cpu)) 2140 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 2141 2142 cond_resched(); 2143 } 2144 cpus_read_unlock(); 2145 2146 schedule_delayed_work(&shepherd, 2147 round_jiffies_relative(sysctl_stat_interval)); 2148 } 2149 2150 static void __init start_shepherd_timer(void) 2151 { 2152 int cpu; 2153 2154 for_each_possible_cpu(cpu) { 2155 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 2156 vmstat_update); 2157 2158 /* 2159 * For secondary CPUs during CPU hotplug scenarios, 2160 * vmstat_cpu_online() will enable the work. 2161 * mm/vmstat:online enables and disables vmstat_work 2162 * symmetrically during CPU hotplug events. 2163 */ 2164 if (!cpu_online(cpu)) 2165 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2166 } 2167 2168 schedule_delayed_work(&shepherd, 2169 round_jiffies_relative(sysctl_stat_interval)); 2170 } 2171 2172 static void __init init_cpu_node_state(void) 2173 { 2174 int node; 2175 2176 for_each_online_node(node) { 2177 if (!cpumask_empty(cpumask_of_node(node))) 2178 node_set_state(node, N_CPU); 2179 } 2180 } 2181 2182 static int vmstat_cpu_online(unsigned int cpu) 2183 { 2184 if (vmstat_late_init_done) 2185 refresh_zone_stat_thresholds(); 2186 2187 if (!node_state(cpu_to_node(cpu), N_CPU)) { 2188 node_set_state(cpu_to_node(cpu), N_CPU); 2189 } 2190 enable_delayed_work(&per_cpu(vmstat_work, cpu)); 2191 2192 return 0; 2193 } 2194 2195 static int vmstat_cpu_down_prep(unsigned int cpu) 2196 { 2197 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2198 return 0; 2199 } 2200 2201 static int vmstat_cpu_dead(unsigned int cpu) 2202 { 2203 const struct cpumask *node_cpus; 2204 int node; 2205 2206 node = cpu_to_node(cpu); 2207 2208 refresh_zone_stat_thresholds(); 2209 node_cpus = cpumask_of_node(node); 2210 if (!cpumask_empty(node_cpus)) 2211 return 0; 2212 2213 node_clear_state(node, N_CPU); 2214 2215 return 0; 2216 } 2217 2218 static int __init vmstat_late_init(void) 2219 { 2220 refresh_zone_stat_thresholds(); 2221 vmstat_late_init_done = 1; 2222 2223 return 0; 2224 } 2225 late_initcall(vmstat_late_init); 2226 #endif 2227 2228 #ifdef CONFIG_PROC_FS 2229 static const struct ctl_table vmstat_table[] = { 2230 #ifdef CONFIG_SMP 2231 { 2232 .procname = "stat_interval", 2233 .data = &sysctl_stat_interval, 2234 .maxlen = sizeof(sysctl_stat_interval), 2235 .mode = 0644, 2236 .proc_handler = proc_dointvec_jiffies, 2237 }, 2238 { 2239 .procname = "stat_refresh", 2240 .data = NULL, 2241 .maxlen = 0, 2242 .mode = 0600, 2243 .proc_handler = vmstat_refresh, 2244 }, 2245 #endif 2246 #ifdef CONFIG_NUMA 2247 { 2248 .procname = "numa_stat", 2249 .data = &sysctl_vm_numa_stat, 2250 .maxlen = sizeof(int), 2251 .mode = 0644, 2252 .proc_handler = sysctl_vm_numa_stat_handler, 2253 .extra1 = SYSCTL_ZERO, 2254 .extra2 = SYSCTL_ONE, 2255 }, 2256 #endif 2257 }; 2258 #endif 2259 2260 struct workqueue_struct *mm_percpu_wq; 2261 2262 void __init init_mm_internals(void) 2263 { 2264 int ret __maybe_unused; 2265 2266 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2267 2268 #ifdef CONFIG_SMP 2269 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2270 NULL, vmstat_cpu_dead); 2271 if (ret < 0) 2272 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2273 2274 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2275 vmstat_cpu_online, 2276 vmstat_cpu_down_prep); 2277 if (ret < 0) 2278 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2279 2280 cpus_read_lock(); 2281 init_cpu_node_state(); 2282 cpus_read_unlock(); 2283 2284 start_shepherd_timer(); 2285 #endif 2286 #ifdef CONFIG_PROC_FS 2287 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2288 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2289 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2290 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2291 register_sysctl_init("vm", vmstat_table); 2292 #endif 2293 } 2294 2295 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2296 2297 /* 2298 * Return an index indicating how much of the available free memory is 2299 * unusable for an allocation of the requested size. 2300 */ 2301 static int unusable_free_index(unsigned int order, 2302 struct contig_page_info *info) 2303 { 2304 /* No free memory is interpreted as all free memory is unusable */ 2305 if (info->free_pages == 0) 2306 return 1000; 2307 2308 /* 2309 * Index should be a value between 0 and 1. Return a value to 3 2310 * decimal places. 2311 * 2312 * 0 => no fragmentation 2313 * 1 => high fragmentation 2314 */ 2315 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2316 2317 } 2318 2319 static void unusable_show_print(struct seq_file *m, 2320 pg_data_t *pgdat, struct zone *zone) 2321 { 2322 unsigned int order; 2323 int index; 2324 struct contig_page_info info; 2325 2326 seq_printf(m, "Node %d, zone %8s ", 2327 pgdat->node_id, 2328 zone->name); 2329 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 2330 fill_contig_page_info(zone, order, &info); 2331 index = unusable_free_index(order, &info); 2332 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2333 } 2334 2335 seq_putc(m, '\n'); 2336 } 2337 2338 /* 2339 * Display unusable free space index 2340 * 2341 * The unusable free space index measures how much of the available free 2342 * memory cannot be used to satisfy an allocation of a given size and is a 2343 * value between 0 and 1. The higher the value, the more of free memory is 2344 * unusable and by implication, the worse the external fragmentation is. This 2345 * can be expressed as a percentage by multiplying by 100. 2346 */ 2347 static int unusable_show(struct seq_file *m, void *arg) 2348 { 2349 pg_data_t *pgdat = (pg_data_t *)arg; 2350 2351 /* check memoryless node */ 2352 if (!node_state(pgdat->node_id, N_MEMORY)) 2353 return 0; 2354 2355 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2356 2357 return 0; 2358 } 2359 2360 static const struct seq_operations unusable_sops = { 2361 .start = frag_start, 2362 .next = frag_next, 2363 .stop = frag_stop, 2364 .show = unusable_show, 2365 }; 2366 2367 DEFINE_SEQ_ATTRIBUTE(unusable); 2368 2369 static void extfrag_show_print(struct seq_file *m, 2370 pg_data_t *pgdat, struct zone *zone) 2371 { 2372 unsigned int order; 2373 int index; 2374 2375 /* Alloc on stack as interrupts are disabled for zone walk */ 2376 struct contig_page_info info; 2377 2378 seq_printf(m, "Node %d, zone %8s ", 2379 pgdat->node_id, 2380 zone->name); 2381 for (order = 0; order < NR_PAGE_ORDERS; ++order) { 2382 fill_contig_page_info(zone, order, &info); 2383 index = __fragmentation_index(order, &info); 2384 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000); 2385 } 2386 2387 seq_putc(m, '\n'); 2388 } 2389 2390 /* 2391 * Display fragmentation index for orders that allocations would fail for 2392 */ 2393 static int extfrag_show(struct seq_file *m, void *arg) 2394 { 2395 pg_data_t *pgdat = (pg_data_t *)arg; 2396 2397 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2398 2399 return 0; 2400 } 2401 2402 static const struct seq_operations extfrag_sops = { 2403 .start = frag_start, 2404 .next = frag_next, 2405 .stop = frag_stop, 2406 .show = extfrag_show, 2407 }; 2408 2409 DEFINE_SEQ_ATTRIBUTE(extfrag); 2410 2411 static int __init extfrag_debug_init(void) 2412 { 2413 struct dentry *extfrag_debug_root; 2414 2415 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2416 2417 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2418 &unusable_fops); 2419 2420 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2421 &extfrag_fops); 2422 2423 return 0; 2424 } 2425 2426 module_init(extfrag_debug_init); 2427 2428 #endif 2429