1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_ext.h> 30 #include <linux/page_owner.h> 31 32 #include "internal.h" 33 34 #ifdef CONFIG_NUMA 35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 36 37 /* zero numa counters within a zone */ 38 static void zero_zone_numa_counters(struct zone *zone) 39 { 40 int item, cpu; 41 42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { 43 atomic_long_set(&zone->vm_numa_event[item], 0); 44 for_each_online_cpu(cpu) { 45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] 46 = 0; 47 } 48 } 49 } 50 51 /* zero numa counters of all the populated zones */ 52 static void zero_zones_numa_counters(void) 53 { 54 struct zone *zone; 55 56 for_each_populated_zone(zone) 57 zero_zone_numa_counters(zone); 58 } 59 60 /* zero global numa counters */ 61 static void zero_global_numa_counters(void) 62 { 63 int item; 64 65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 66 atomic_long_set(&vm_numa_event[item], 0); 67 } 68 69 static void invalid_numa_statistics(void) 70 { 71 zero_zones_numa_counters(); 72 zero_global_numa_counters(); 73 } 74 75 static DEFINE_MUTEX(vm_numa_stat_lock); 76 77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 78 void *buffer, size_t *length, loff_t *ppos) 79 { 80 int ret, oldval; 81 82 mutex_lock(&vm_numa_stat_lock); 83 if (write) 84 oldval = sysctl_vm_numa_stat; 85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 86 if (ret || !write) 87 goto out; 88 89 if (oldval == sysctl_vm_numa_stat) 90 goto out; 91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 92 static_branch_enable(&vm_numa_stat_key); 93 pr_info("enable numa statistics\n"); 94 } else { 95 static_branch_disable(&vm_numa_stat_key); 96 invalid_numa_statistics(); 97 pr_info("disable numa statistics, and clear numa counters\n"); 98 } 99 100 out: 101 mutex_unlock(&vm_numa_stat_lock); 102 return ret; 103 } 104 #endif 105 106 #ifdef CONFIG_VM_EVENT_COUNTERS 107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 108 EXPORT_PER_CPU_SYMBOL(vm_event_states); 109 110 static void sum_vm_events(unsigned long *ret) 111 { 112 int cpu; 113 int i; 114 115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 116 117 for_each_online_cpu(cpu) { 118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 119 120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 121 ret[i] += this->event[i]; 122 } 123 } 124 125 /* 126 * Accumulate the vm event counters across all CPUs. 127 * The result is unavoidably approximate - it can change 128 * during and after execution of this function. 129 */ 130 void all_vm_events(unsigned long *ret) 131 { 132 cpus_read_lock(); 133 sum_vm_events(ret); 134 cpus_read_unlock(); 135 } 136 EXPORT_SYMBOL_GPL(all_vm_events); 137 138 /* 139 * Fold the foreign cpu events into our own. 140 * 141 * This is adding to the events on one processor 142 * but keeps the global counts constant. 143 */ 144 void vm_events_fold_cpu(int cpu) 145 { 146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 147 int i; 148 149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 150 count_vm_events(i, fold_state->event[i]); 151 fold_state->event[i] = 0; 152 } 153 } 154 155 #endif /* CONFIG_VM_EVENT_COUNTERS */ 156 157 /* 158 * Manage combined zone based / global counters 159 * 160 * vm_stat contains the global counters 161 */ 162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; 165 EXPORT_SYMBOL(vm_zone_stat); 166 EXPORT_SYMBOL(vm_node_stat); 167 168 #ifdef CONFIG_NUMA 169 static void fold_vm_zone_numa_events(struct zone *zone) 170 { 171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; 172 int cpu; 173 enum numa_stat_item item; 174 175 for_each_online_cpu(cpu) { 176 struct per_cpu_zonestat *pzstats; 177 178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); 181 } 182 183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 184 zone_numa_event_add(zone_numa_events[item], zone, item); 185 } 186 187 void fold_vm_numa_events(void) 188 { 189 struct zone *zone; 190 191 for_each_populated_zone(zone) 192 fold_vm_zone_numa_events(zone); 193 } 194 #endif 195 196 #ifdef CONFIG_SMP 197 198 int calculate_pressure_threshold(struct zone *zone) 199 { 200 int threshold; 201 int watermark_distance; 202 203 /* 204 * As vmstats are not up to date, there is drift between the estimated 205 * and real values. For high thresholds and a high number of CPUs, it 206 * is possible for the min watermark to be breached while the estimated 207 * value looks fine. The pressure threshold is a reduced value such 208 * that even the maximum amount of drift will not accidentally breach 209 * the min watermark 210 */ 211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 212 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 213 214 /* 215 * Maximum threshold is 125 216 */ 217 threshold = min(125, threshold); 218 219 return threshold; 220 } 221 222 int calculate_normal_threshold(struct zone *zone) 223 { 224 int threshold; 225 int mem; /* memory in 128 MB units */ 226 227 /* 228 * The threshold scales with the number of processors and the amount 229 * of memory per zone. More memory means that we can defer updates for 230 * longer, more processors could lead to more contention. 231 * fls() is used to have a cheap way of logarithmic scaling. 232 * 233 * Some sample thresholds: 234 * 235 * Threshold Processors (fls) Zonesize fls(mem)+1 236 * ------------------------------------------------------------------ 237 * 8 1 1 0.9-1 GB 4 238 * 16 2 2 0.9-1 GB 4 239 * 20 2 2 1-2 GB 5 240 * 24 2 2 2-4 GB 6 241 * 28 2 2 4-8 GB 7 242 * 32 2 2 8-16 GB 8 243 * 4 2 2 <128M 1 244 * 30 4 3 2-4 GB 5 245 * 48 4 3 8-16 GB 8 246 * 32 8 4 1-2 GB 4 247 * 32 8 4 0.9-1GB 4 248 * 10 16 5 <128M 1 249 * 40 16 5 900M 4 250 * 70 64 7 2-4 GB 5 251 * 84 64 7 4-8 GB 6 252 * 108 512 9 4-8 GB 6 253 * 125 1024 10 8-16 GB 8 254 * 125 1024 10 16-32 GB 9 255 */ 256 257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 258 259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 260 261 /* 262 * Maximum threshold is 125 263 */ 264 threshold = min(125, threshold); 265 266 return threshold; 267 } 268 269 /* 270 * Refresh the thresholds for each zone. 271 */ 272 void refresh_zone_stat_thresholds(void) 273 { 274 struct pglist_data *pgdat; 275 struct zone *zone; 276 int cpu; 277 int threshold; 278 279 /* Zero current pgdat thresholds */ 280 for_each_online_pgdat(pgdat) { 281 for_each_online_cpu(cpu) { 282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 283 } 284 } 285 286 for_each_populated_zone(zone) { 287 struct pglist_data *pgdat = zone->zone_pgdat; 288 unsigned long max_drift, tolerate_drift; 289 290 threshold = calculate_normal_threshold(zone); 291 292 for_each_online_cpu(cpu) { 293 int pgdat_threshold; 294 295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 296 = threshold; 297 298 /* Base nodestat threshold on the largest populated zone. */ 299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 301 = max(threshold, pgdat_threshold); 302 } 303 304 /* 305 * Only set percpu_drift_mark if there is a danger that 306 * NR_FREE_PAGES reports the low watermark is ok when in fact 307 * the min watermark could be breached by an allocation 308 */ 309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 310 max_drift = num_online_cpus() * threshold; 311 if (max_drift > tolerate_drift) 312 zone->percpu_drift_mark = high_wmark_pages(zone) + 313 max_drift; 314 } 315 } 316 317 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 318 int (*calculate_pressure)(struct zone *)) 319 { 320 struct zone *zone; 321 int cpu; 322 int threshold; 323 int i; 324 325 for (i = 0; i < pgdat->nr_zones; i++) { 326 zone = &pgdat->node_zones[i]; 327 if (!zone->percpu_drift_mark) 328 continue; 329 330 threshold = (*calculate_pressure)(zone); 331 for_each_online_cpu(cpu) 332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 333 = threshold; 334 } 335 } 336 337 /* 338 * For use when we know that interrupts are disabled, 339 * or when we know that preemption is disabled and that 340 * particular counter cannot be updated from interrupt context. 341 */ 342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 343 long delta) 344 { 345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 346 s8 __percpu *p = pcp->vm_stat_diff + item; 347 long x; 348 long t; 349 350 /* 351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, 352 * atomicity is provided by IRQs being disabled -- either explicitly 353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables 354 * CPU migrations and preemption potentially corrupts a counter so 355 * disable preemption. 356 */ 357 preempt_disable_nested(); 358 359 x = delta + __this_cpu_read(*p); 360 361 t = __this_cpu_read(pcp->stat_threshold); 362 363 if (unlikely(abs(x) > t)) { 364 zone_page_state_add(x, zone, item); 365 x = 0; 366 } 367 __this_cpu_write(*p, x); 368 369 preempt_enable_nested(); 370 } 371 EXPORT_SYMBOL(__mod_zone_page_state); 372 373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 374 long delta) 375 { 376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 377 s8 __percpu *p = pcp->vm_node_stat_diff + item; 378 long x; 379 long t; 380 381 if (vmstat_item_in_bytes(item)) { 382 /* 383 * Only cgroups use subpage accounting right now; at 384 * the global level, these items still change in 385 * multiples of whole pages. Store them as pages 386 * internally to keep the per-cpu counters compact. 387 */ 388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 389 delta >>= PAGE_SHIFT; 390 } 391 392 /* See __mod_node_page_state */ 393 preempt_disable_nested(); 394 395 x = delta + __this_cpu_read(*p); 396 397 t = __this_cpu_read(pcp->stat_threshold); 398 399 if (unlikely(abs(x) > t)) { 400 node_page_state_add(x, pgdat, item); 401 x = 0; 402 } 403 __this_cpu_write(*p, x); 404 405 preempt_enable_nested(); 406 } 407 EXPORT_SYMBOL(__mod_node_page_state); 408 409 /* 410 * Optimized increment and decrement functions. 411 * 412 * These are only for a single page and therefore can take a struct page * 413 * argument instead of struct zone *. This allows the inclusion of the code 414 * generated for page_zone(page) into the optimized functions. 415 * 416 * No overflow check is necessary and therefore the differential can be 417 * incremented or decremented in place which may allow the compilers to 418 * generate better code. 419 * The increment or decrement is known and therefore one boundary check can 420 * be omitted. 421 * 422 * NOTE: These functions are very performance sensitive. Change only 423 * with care. 424 * 425 * Some processors have inc/dec instructions that are atomic vs an interrupt. 426 * However, the code must first determine the differential location in a zone 427 * based on the processor number and then inc/dec the counter. There is no 428 * guarantee without disabling preemption that the processor will not change 429 * in between and therefore the atomicity vs. interrupt cannot be exploited 430 * in a useful way here. 431 */ 432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 433 { 434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 435 s8 __percpu *p = pcp->vm_stat_diff + item; 436 s8 v, t; 437 438 /* See __mod_node_page_state */ 439 preempt_disable_nested(); 440 441 v = __this_cpu_inc_return(*p); 442 t = __this_cpu_read(pcp->stat_threshold); 443 if (unlikely(v > t)) { 444 s8 overstep = t >> 1; 445 446 zone_page_state_add(v + overstep, zone, item); 447 __this_cpu_write(*p, -overstep); 448 } 449 450 preempt_enable_nested(); 451 } 452 453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 454 { 455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 456 s8 __percpu *p = pcp->vm_node_stat_diff + item; 457 s8 v, t; 458 459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 460 461 /* See __mod_node_page_state */ 462 preempt_disable_nested(); 463 464 v = __this_cpu_inc_return(*p); 465 t = __this_cpu_read(pcp->stat_threshold); 466 if (unlikely(v > t)) { 467 s8 overstep = t >> 1; 468 469 node_page_state_add(v + overstep, pgdat, item); 470 __this_cpu_write(*p, -overstep); 471 } 472 473 preempt_enable_nested(); 474 } 475 476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 477 { 478 __inc_zone_state(page_zone(page), item); 479 } 480 EXPORT_SYMBOL(__inc_zone_page_state); 481 482 void __inc_node_page_state(struct page *page, enum node_stat_item item) 483 { 484 __inc_node_state(page_pgdat(page), item); 485 } 486 EXPORT_SYMBOL(__inc_node_page_state); 487 488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 489 { 490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 491 s8 __percpu *p = pcp->vm_stat_diff + item; 492 s8 v, t; 493 494 /* See __mod_node_page_state */ 495 preempt_disable_nested(); 496 497 v = __this_cpu_dec_return(*p); 498 t = __this_cpu_read(pcp->stat_threshold); 499 if (unlikely(v < - t)) { 500 s8 overstep = t >> 1; 501 502 zone_page_state_add(v - overstep, zone, item); 503 __this_cpu_write(*p, overstep); 504 } 505 506 preempt_enable_nested(); 507 } 508 509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 510 { 511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 512 s8 __percpu *p = pcp->vm_node_stat_diff + item; 513 s8 v, t; 514 515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 516 517 /* See __mod_node_page_state */ 518 preempt_disable_nested(); 519 520 v = __this_cpu_dec_return(*p); 521 t = __this_cpu_read(pcp->stat_threshold); 522 if (unlikely(v < - t)) { 523 s8 overstep = t >> 1; 524 525 node_page_state_add(v - overstep, pgdat, item); 526 __this_cpu_write(*p, overstep); 527 } 528 529 preempt_enable_nested(); 530 } 531 532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 533 { 534 __dec_zone_state(page_zone(page), item); 535 } 536 EXPORT_SYMBOL(__dec_zone_page_state); 537 538 void __dec_node_page_state(struct page *page, enum node_stat_item item) 539 { 540 __dec_node_state(page_pgdat(page), item); 541 } 542 EXPORT_SYMBOL(__dec_node_page_state); 543 544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 545 /* 546 * If we have cmpxchg_local support then we do not need to incur the overhead 547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 548 * 549 * mod_state() modifies the zone counter state through atomic per cpu 550 * operations. 551 * 552 * Overstep mode specifies how overstep should handled: 553 * 0 No overstepping 554 * 1 Overstepping half of threshold 555 * -1 Overstepping minus half of threshold 556 */ 557 static inline void mod_zone_state(struct zone *zone, 558 enum zone_stat_item item, long delta, int overstep_mode) 559 { 560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 561 s8 __percpu *p = pcp->vm_stat_diff + item; 562 long o, n, t, z; 563 564 do { 565 z = 0; /* overflow to zone counters */ 566 567 /* 568 * The fetching of the stat_threshold is racy. We may apply 569 * a counter threshold to the wrong the cpu if we get 570 * rescheduled while executing here. However, the next 571 * counter update will apply the threshold again and 572 * therefore bring the counter under the threshold again. 573 * 574 * Most of the time the thresholds are the same anyways 575 * for all cpus in a zone. 576 */ 577 t = this_cpu_read(pcp->stat_threshold); 578 579 o = this_cpu_read(*p); 580 n = delta + o; 581 582 if (abs(n) > t) { 583 int os = overstep_mode * (t >> 1) ; 584 585 /* Overflow must be added to zone counters */ 586 z = n + os; 587 n = -os; 588 } 589 } while (this_cpu_cmpxchg(*p, o, n) != o); 590 591 if (z) 592 zone_page_state_add(z, zone, item); 593 } 594 595 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 596 long delta) 597 { 598 mod_zone_state(zone, item, delta, 0); 599 } 600 EXPORT_SYMBOL(mod_zone_page_state); 601 602 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 603 { 604 mod_zone_state(page_zone(page), item, 1, 1); 605 } 606 EXPORT_SYMBOL(inc_zone_page_state); 607 608 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 609 { 610 mod_zone_state(page_zone(page), item, -1, -1); 611 } 612 EXPORT_SYMBOL(dec_zone_page_state); 613 614 static inline void mod_node_state(struct pglist_data *pgdat, 615 enum node_stat_item item, int delta, int overstep_mode) 616 { 617 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 618 s8 __percpu *p = pcp->vm_node_stat_diff + item; 619 long o, n, t, z; 620 621 if (vmstat_item_in_bytes(item)) { 622 /* 623 * Only cgroups use subpage accounting right now; at 624 * the global level, these items still change in 625 * multiples of whole pages. Store them as pages 626 * internally to keep the per-cpu counters compact. 627 */ 628 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 629 delta >>= PAGE_SHIFT; 630 } 631 632 do { 633 z = 0; /* overflow to node counters */ 634 635 /* 636 * The fetching of the stat_threshold is racy. We may apply 637 * a counter threshold to the wrong the cpu if we get 638 * rescheduled while executing here. However, the next 639 * counter update will apply the threshold again and 640 * therefore bring the counter under the threshold again. 641 * 642 * Most of the time the thresholds are the same anyways 643 * for all cpus in a node. 644 */ 645 t = this_cpu_read(pcp->stat_threshold); 646 647 o = this_cpu_read(*p); 648 n = delta + o; 649 650 if (abs(n) > t) { 651 int os = overstep_mode * (t >> 1) ; 652 653 /* Overflow must be added to node counters */ 654 z = n + os; 655 n = -os; 656 } 657 } while (this_cpu_cmpxchg(*p, o, n) != o); 658 659 if (z) 660 node_page_state_add(z, pgdat, item); 661 } 662 663 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 664 long delta) 665 { 666 mod_node_state(pgdat, item, delta, 0); 667 } 668 EXPORT_SYMBOL(mod_node_page_state); 669 670 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 671 { 672 mod_node_state(pgdat, item, 1, 1); 673 } 674 675 void inc_node_page_state(struct page *page, enum node_stat_item item) 676 { 677 mod_node_state(page_pgdat(page), item, 1, 1); 678 } 679 EXPORT_SYMBOL(inc_node_page_state); 680 681 void dec_node_page_state(struct page *page, enum node_stat_item item) 682 { 683 mod_node_state(page_pgdat(page), item, -1, -1); 684 } 685 EXPORT_SYMBOL(dec_node_page_state); 686 #else 687 /* 688 * Use interrupt disable to serialize counter updates 689 */ 690 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 691 long delta) 692 { 693 unsigned long flags; 694 695 local_irq_save(flags); 696 __mod_zone_page_state(zone, item, delta); 697 local_irq_restore(flags); 698 } 699 EXPORT_SYMBOL(mod_zone_page_state); 700 701 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 702 { 703 unsigned long flags; 704 struct zone *zone; 705 706 zone = page_zone(page); 707 local_irq_save(flags); 708 __inc_zone_state(zone, item); 709 local_irq_restore(flags); 710 } 711 EXPORT_SYMBOL(inc_zone_page_state); 712 713 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 714 { 715 unsigned long flags; 716 717 local_irq_save(flags); 718 __dec_zone_page_state(page, item); 719 local_irq_restore(flags); 720 } 721 EXPORT_SYMBOL(dec_zone_page_state); 722 723 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 724 { 725 unsigned long flags; 726 727 local_irq_save(flags); 728 __inc_node_state(pgdat, item); 729 local_irq_restore(flags); 730 } 731 EXPORT_SYMBOL(inc_node_state); 732 733 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 734 long delta) 735 { 736 unsigned long flags; 737 738 local_irq_save(flags); 739 __mod_node_page_state(pgdat, item, delta); 740 local_irq_restore(flags); 741 } 742 EXPORT_SYMBOL(mod_node_page_state); 743 744 void inc_node_page_state(struct page *page, enum node_stat_item item) 745 { 746 unsigned long flags; 747 struct pglist_data *pgdat; 748 749 pgdat = page_pgdat(page); 750 local_irq_save(flags); 751 __inc_node_state(pgdat, item); 752 local_irq_restore(flags); 753 } 754 EXPORT_SYMBOL(inc_node_page_state); 755 756 void dec_node_page_state(struct page *page, enum node_stat_item item) 757 { 758 unsigned long flags; 759 760 local_irq_save(flags); 761 __dec_node_page_state(page, item); 762 local_irq_restore(flags); 763 } 764 EXPORT_SYMBOL(dec_node_page_state); 765 #endif 766 767 /* 768 * Fold a differential into the global counters. 769 * Returns the number of counters updated. 770 */ 771 static int fold_diff(int *zone_diff, int *node_diff) 772 { 773 int i; 774 int changes = 0; 775 776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 777 if (zone_diff[i]) { 778 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 779 changes++; 780 } 781 782 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 783 if (node_diff[i]) { 784 atomic_long_add(node_diff[i], &vm_node_stat[i]); 785 changes++; 786 } 787 return changes; 788 } 789 790 /* 791 * Update the zone counters for the current cpu. 792 * 793 * Note that refresh_cpu_vm_stats strives to only access 794 * node local memory. The per cpu pagesets on remote zones are placed 795 * in the memory local to the processor using that pageset. So the 796 * loop over all zones will access a series of cachelines local to 797 * the processor. 798 * 799 * The call to zone_page_state_add updates the cachelines with the 800 * statistics in the remote zone struct as well as the global cachelines 801 * with the global counters. These could cause remote node cache line 802 * bouncing and will have to be only done when necessary. 803 * 804 * The function returns the number of global counters updated. 805 */ 806 static int refresh_cpu_vm_stats(bool do_pagesets) 807 { 808 struct pglist_data *pgdat; 809 struct zone *zone; 810 int i; 811 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 812 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 813 int changes = 0; 814 815 for_each_populated_zone(zone) { 816 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; 817 #ifdef CONFIG_NUMA 818 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; 819 #endif 820 821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 822 int v; 823 824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); 825 if (v) { 826 827 atomic_long_add(v, &zone->vm_stat[i]); 828 global_zone_diff[i] += v; 829 #ifdef CONFIG_NUMA 830 /* 3 seconds idle till flush */ 831 __this_cpu_write(pcp->expire, 3); 832 #endif 833 } 834 } 835 #ifdef CONFIG_NUMA 836 837 if (do_pagesets) { 838 cond_resched(); 839 /* 840 * Deal with draining the remote pageset of this 841 * processor 842 * 843 * Check if there are pages remaining in this pageset 844 * if not then there is nothing to expire. 845 */ 846 if (!__this_cpu_read(pcp->expire) || 847 !__this_cpu_read(pcp->count)) 848 continue; 849 850 /* 851 * We never drain zones local to this processor. 852 */ 853 if (zone_to_nid(zone) == numa_node_id()) { 854 __this_cpu_write(pcp->expire, 0); 855 continue; 856 } 857 858 if (__this_cpu_dec_return(pcp->expire)) 859 continue; 860 861 if (__this_cpu_read(pcp->count)) { 862 drain_zone_pages(zone, this_cpu_ptr(pcp)); 863 changes++; 864 } 865 } 866 #endif 867 } 868 869 for_each_online_pgdat(pgdat) { 870 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 871 872 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 873 int v; 874 875 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 876 if (v) { 877 atomic_long_add(v, &pgdat->vm_stat[i]); 878 global_node_diff[i] += v; 879 } 880 } 881 } 882 883 changes += fold_diff(global_zone_diff, global_node_diff); 884 return changes; 885 } 886 887 /* 888 * Fold the data for an offline cpu into the global array. 889 * There cannot be any access by the offline cpu and therefore 890 * synchronization is simplified. 891 */ 892 void cpu_vm_stats_fold(int cpu) 893 { 894 struct pglist_data *pgdat; 895 struct zone *zone; 896 int i; 897 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 898 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 899 900 for_each_populated_zone(zone) { 901 struct per_cpu_zonestat *pzstats; 902 903 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 904 905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 906 if (pzstats->vm_stat_diff[i]) { 907 int v; 908 909 v = pzstats->vm_stat_diff[i]; 910 pzstats->vm_stat_diff[i] = 0; 911 atomic_long_add(v, &zone->vm_stat[i]); 912 global_zone_diff[i] += v; 913 } 914 } 915 #ifdef CONFIG_NUMA 916 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 917 if (pzstats->vm_numa_event[i]) { 918 unsigned long v; 919 920 v = pzstats->vm_numa_event[i]; 921 pzstats->vm_numa_event[i] = 0; 922 zone_numa_event_add(v, zone, i); 923 } 924 } 925 #endif 926 } 927 928 for_each_online_pgdat(pgdat) { 929 struct per_cpu_nodestat *p; 930 931 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 932 933 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 934 if (p->vm_node_stat_diff[i]) { 935 int v; 936 937 v = p->vm_node_stat_diff[i]; 938 p->vm_node_stat_diff[i] = 0; 939 atomic_long_add(v, &pgdat->vm_stat[i]); 940 global_node_diff[i] += v; 941 } 942 } 943 944 fold_diff(global_zone_diff, global_node_diff); 945 } 946 947 /* 948 * this is only called if !populated_zone(zone), which implies no other users of 949 * pset->vm_stat_diff[] exist. 950 */ 951 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) 952 { 953 unsigned long v; 954 int i; 955 956 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 957 if (pzstats->vm_stat_diff[i]) { 958 v = pzstats->vm_stat_diff[i]; 959 pzstats->vm_stat_diff[i] = 0; 960 zone_page_state_add(v, zone, i); 961 } 962 } 963 964 #ifdef CONFIG_NUMA 965 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 966 if (pzstats->vm_numa_event[i]) { 967 v = pzstats->vm_numa_event[i]; 968 pzstats->vm_numa_event[i] = 0; 969 zone_numa_event_add(v, zone, i); 970 } 971 } 972 #endif 973 } 974 #endif 975 976 #ifdef CONFIG_NUMA 977 /* 978 * Determine the per node value of a stat item. This function 979 * is called frequently in a NUMA machine, so try to be as 980 * frugal as possible. 981 */ 982 unsigned long sum_zone_node_page_state(int node, 983 enum zone_stat_item item) 984 { 985 struct zone *zones = NODE_DATA(node)->node_zones; 986 int i; 987 unsigned long count = 0; 988 989 for (i = 0; i < MAX_NR_ZONES; i++) 990 count += zone_page_state(zones + i, item); 991 992 return count; 993 } 994 995 /* Determine the per node value of a numa stat item. */ 996 unsigned long sum_zone_numa_event_state(int node, 997 enum numa_stat_item item) 998 { 999 struct zone *zones = NODE_DATA(node)->node_zones; 1000 unsigned long count = 0; 1001 int i; 1002 1003 for (i = 0; i < MAX_NR_ZONES; i++) 1004 count += zone_numa_event_state(zones + i, item); 1005 1006 return count; 1007 } 1008 1009 /* 1010 * Determine the per node value of a stat item. 1011 */ 1012 unsigned long node_page_state_pages(struct pglist_data *pgdat, 1013 enum node_stat_item item) 1014 { 1015 long x = atomic_long_read(&pgdat->vm_stat[item]); 1016 #ifdef CONFIG_SMP 1017 if (x < 0) 1018 x = 0; 1019 #endif 1020 return x; 1021 } 1022 1023 unsigned long node_page_state(struct pglist_data *pgdat, 1024 enum node_stat_item item) 1025 { 1026 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1027 1028 return node_page_state_pages(pgdat, item); 1029 } 1030 #endif 1031 1032 #ifdef CONFIG_COMPACTION 1033 1034 struct contig_page_info { 1035 unsigned long free_pages; 1036 unsigned long free_blocks_total; 1037 unsigned long free_blocks_suitable; 1038 }; 1039 1040 /* 1041 * Calculate the number of free pages in a zone, how many contiguous 1042 * pages are free and how many are large enough to satisfy an allocation of 1043 * the target size. Note that this function makes no attempt to estimate 1044 * how many suitable free blocks there *might* be if MOVABLE pages were 1045 * migrated. Calculating that is possible, but expensive and can be 1046 * figured out from userspace 1047 */ 1048 static void fill_contig_page_info(struct zone *zone, 1049 unsigned int suitable_order, 1050 struct contig_page_info *info) 1051 { 1052 unsigned int order; 1053 1054 info->free_pages = 0; 1055 info->free_blocks_total = 0; 1056 info->free_blocks_suitable = 0; 1057 1058 for (order = 0; order < MAX_ORDER; order++) { 1059 unsigned long blocks; 1060 1061 /* 1062 * Count number of free blocks. 1063 * 1064 * Access to nr_free is lockless as nr_free is used only for 1065 * diagnostic purposes. Use data_race to avoid KCSAN warning. 1066 */ 1067 blocks = data_race(zone->free_area[order].nr_free); 1068 info->free_blocks_total += blocks; 1069 1070 /* Count free base pages */ 1071 info->free_pages += blocks << order; 1072 1073 /* Count the suitable free blocks */ 1074 if (order >= suitable_order) 1075 info->free_blocks_suitable += blocks << 1076 (order - suitable_order); 1077 } 1078 } 1079 1080 /* 1081 * A fragmentation index only makes sense if an allocation of a requested 1082 * size would fail. If that is true, the fragmentation index indicates 1083 * whether external fragmentation or a lack of memory was the problem. 1084 * The value can be used to determine if page reclaim or compaction 1085 * should be used 1086 */ 1087 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1088 { 1089 unsigned long requested = 1UL << order; 1090 1091 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1092 return 0; 1093 1094 if (!info->free_blocks_total) 1095 return 0; 1096 1097 /* Fragmentation index only makes sense when a request would fail */ 1098 if (info->free_blocks_suitable) 1099 return -1000; 1100 1101 /* 1102 * Index is between 0 and 1 so return within 3 decimal places 1103 * 1104 * 0 => allocation would fail due to lack of memory 1105 * 1 => allocation would fail due to fragmentation 1106 */ 1107 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1108 } 1109 1110 /* 1111 * Calculates external fragmentation within a zone wrt the given order. 1112 * It is defined as the percentage of pages found in blocks of size 1113 * less than 1 << order. It returns values in range [0, 100]. 1114 */ 1115 unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1116 { 1117 struct contig_page_info info; 1118 1119 fill_contig_page_info(zone, order, &info); 1120 if (info.free_pages == 0) 1121 return 0; 1122 1123 return div_u64((info.free_pages - 1124 (info.free_blocks_suitable << order)) * 100, 1125 info.free_pages); 1126 } 1127 1128 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1129 int fragmentation_index(struct zone *zone, unsigned int order) 1130 { 1131 struct contig_page_info info; 1132 1133 fill_contig_page_info(zone, order, &info); 1134 return __fragmentation_index(order, &info); 1135 } 1136 #endif 1137 1138 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1139 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1140 #ifdef CONFIG_ZONE_DMA 1141 #define TEXT_FOR_DMA(xx) xx "_dma", 1142 #else 1143 #define TEXT_FOR_DMA(xx) 1144 #endif 1145 1146 #ifdef CONFIG_ZONE_DMA32 1147 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1148 #else 1149 #define TEXT_FOR_DMA32(xx) 1150 #endif 1151 1152 #ifdef CONFIG_HIGHMEM 1153 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1154 #else 1155 #define TEXT_FOR_HIGHMEM(xx) 1156 #endif 1157 1158 #ifdef CONFIG_ZONE_DEVICE 1159 #define TEXT_FOR_DEVICE(xx) xx "_device", 1160 #else 1161 #define TEXT_FOR_DEVICE(xx) 1162 #endif 1163 1164 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1165 TEXT_FOR_HIGHMEM(xx) xx "_movable", \ 1166 TEXT_FOR_DEVICE(xx) 1167 1168 const char * const vmstat_text[] = { 1169 /* enum zone_stat_item counters */ 1170 "nr_free_pages", 1171 "nr_zone_inactive_anon", 1172 "nr_zone_active_anon", 1173 "nr_zone_inactive_file", 1174 "nr_zone_active_file", 1175 "nr_zone_unevictable", 1176 "nr_zone_write_pending", 1177 "nr_mlock", 1178 "nr_bounce", 1179 #if IS_ENABLED(CONFIG_ZSMALLOC) 1180 "nr_zspages", 1181 #endif 1182 "nr_free_cma", 1183 1184 /* enum numa_stat_item counters */ 1185 #ifdef CONFIG_NUMA 1186 "numa_hit", 1187 "numa_miss", 1188 "numa_foreign", 1189 "numa_interleave", 1190 "numa_local", 1191 "numa_other", 1192 #endif 1193 1194 /* enum node_stat_item counters */ 1195 "nr_inactive_anon", 1196 "nr_active_anon", 1197 "nr_inactive_file", 1198 "nr_active_file", 1199 "nr_unevictable", 1200 "nr_slab_reclaimable", 1201 "nr_slab_unreclaimable", 1202 "nr_isolated_anon", 1203 "nr_isolated_file", 1204 "workingset_nodes", 1205 "workingset_refault_anon", 1206 "workingset_refault_file", 1207 "workingset_activate_anon", 1208 "workingset_activate_file", 1209 "workingset_restore_anon", 1210 "workingset_restore_file", 1211 "workingset_nodereclaim", 1212 "nr_anon_pages", 1213 "nr_mapped", 1214 "nr_file_pages", 1215 "nr_dirty", 1216 "nr_writeback", 1217 "nr_writeback_temp", 1218 "nr_shmem", 1219 "nr_shmem_hugepages", 1220 "nr_shmem_pmdmapped", 1221 "nr_file_hugepages", 1222 "nr_file_pmdmapped", 1223 "nr_anon_transparent_hugepages", 1224 "nr_vmscan_write", 1225 "nr_vmscan_immediate_reclaim", 1226 "nr_dirtied", 1227 "nr_written", 1228 "nr_throttled_written", 1229 "nr_kernel_misc_reclaimable", 1230 "nr_foll_pin_acquired", 1231 "nr_foll_pin_released", 1232 "nr_kernel_stack", 1233 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1234 "nr_shadow_call_stack", 1235 #endif 1236 "nr_page_table_pages", 1237 "nr_sec_page_table_pages", 1238 #ifdef CONFIG_SWAP 1239 "nr_swapcached", 1240 #endif 1241 #ifdef CONFIG_NUMA_BALANCING 1242 "pgpromote_success", 1243 "pgpromote_candidate", 1244 #endif 1245 1246 /* enum writeback_stat_item counters */ 1247 "nr_dirty_threshold", 1248 "nr_dirty_background_threshold", 1249 1250 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1251 /* enum vm_event_item counters */ 1252 "pgpgin", 1253 "pgpgout", 1254 "pswpin", 1255 "pswpout", 1256 1257 TEXTS_FOR_ZONES("pgalloc") 1258 TEXTS_FOR_ZONES("allocstall") 1259 TEXTS_FOR_ZONES("pgskip") 1260 1261 "pgfree", 1262 "pgactivate", 1263 "pgdeactivate", 1264 "pglazyfree", 1265 1266 "pgfault", 1267 "pgmajfault", 1268 "pglazyfreed", 1269 1270 "pgrefill", 1271 "pgreuse", 1272 "pgsteal_kswapd", 1273 "pgsteal_direct", 1274 "pgdemote_kswapd", 1275 "pgdemote_direct", 1276 "pgscan_kswapd", 1277 "pgscan_direct", 1278 "pgscan_direct_throttle", 1279 "pgscan_anon", 1280 "pgscan_file", 1281 "pgsteal_anon", 1282 "pgsteal_file", 1283 1284 #ifdef CONFIG_NUMA 1285 "zone_reclaim_failed", 1286 #endif 1287 "pginodesteal", 1288 "slabs_scanned", 1289 "kswapd_inodesteal", 1290 "kswapd_low_wmark_hit_quickly", 1291 "kswapd_high_wmark_hit_quickly", 1292 "pageoutrun", 1293 1294 "pgrotated", 1295 1296 "drop_pagecache", 1297 "drop_slab", 1298 "oom_kill", 1299 1300 #ifdef CONFIG_NUMA_BALANCING 1301 "numa_pte_updates", 1302 "numa_huge_pte_updates", 1303 "numa_hint_faults", 1304 "numa_hint_faults_local", 1305 "numa_pages_migrated", 1306 #endif 1307 #ifdef CONFIG_MIGRATION 1308 "pgmigrate_success", 1309 "pgmigrate_fail", 1310 "thp_migration_success", 1311 "thp_migration_fail", 1312 "thp_migration_split", 1313 #endif 1314 #ifdef CONFIG_COMPACTION 1315 "compact_migrate_scanned", 1316 "compact_free_scanned", 1317 "compact_isolated", 1318 "compact_stall", 1319 "compact_fail", 1320 "compact_success", 1321 "compact_daemon_wake", 1322 "compact_daemon_migrate_scanned", 1323 "compact_daemon_free_scanned", 1324 #endif 1325 1326 #ifdef CONFIG_HUGETLB_PAGE 1327 "htlb_buddy_alloc_success", 1328 "htlb_buddy_alloc_fail", 1329 #endif 1330 #ifdef CONFIG_CMA 1331 "cma_alloc_success", 1332 "cma_alloc_fail", 1333 #endif 1334 "unevictable_pgs_culled", 1335 "unevictable_pgs_scanned", 1336 "unevictable_pgs_rescued", 1337 "unevictable_pgs_mlocked", 1338 "unevictable_pgs_munlocked", 1339 "unevictable_pgs_cleared", 1340 "unevictable_pgs_stranded", 1341 1342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1343 "thp_fault_alloc", 1344 "thp_fault_fallback", 1345 "thp_fault_fallback_charge", 1346 "thp_collapse_alloc", 1347 "thp_collapse_alloc_failed", 1348 "thp_file_alloc", 1349 "thp_file_fallback", 1350 "thp_file_fallback_charge", 1351 "thp_file_mapped", 1352 "thp_split_page", 1353 "thp_split_page_failed", 1354 "thp_deferred_split_page", 1355 "thp_split_pmd", 1356 "thp_scan_exceed_none_pte", 1357 "thp_scan_exceed_swap_pte", 1358 "thp_scan_exceed_share_pte", 1359 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1360 "thp_split_pud", 1361 #endif 1362 "thp_zero_page_alloc", 1363 "thp_zero_page_alloc_failed", 1364 "thp_swpout", 1365 "thp_swpout_fallback", 1366 #endif 1367 #ifdef CONFIG_MEMORY_BALLOON 1368 "balloon_inflate", 1369 "balloon_deflate", 1370 #ifdef CONFIG_BALLOON_COMPACTION 1371 "balloon_migrate", 1372 #endif 1373 #endif /* CONFIG_MEMORY_BALLOON */ 1374 #ifdef CONFIG_DEBUG_TLBFLUSH 1375 "nr_tlb_remote_flush", 1376 "nr_tlb_remote_flush_received", 1377 "nr_tlb_local_flush_all", 1378 "nr_tlb_local_flush_one", 1379 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1380 1381 #ifdef CONFIG_SWAP 1382 "swap_ra", 1383 "swap_ra_hit", 1384 #ifdef CONFIG_KSM 1385 "ksm_swpin_copy", 1386 #endif 1387 #endif 1388 #ifdef CONFIG_KSM 1389 "cow_ksm", 1390 #endif 1391 #ifdef CONFIG_ZSWAP 1392 "zswpin", 1393 "zswpout", 1394 #endif 1395 #ifdef CONFIG_X86 1396 "direct_map_level2_splits", 1397 "direct_map_level3_splits", 1398 #endif 1399 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1400 }; 1401 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1402 1403 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1404 defined(CONFIG_PROC_FS) 1405 static void *frag_start(struct seq_file *m, loff_t *pos) 1406 { 1407 pg_data_t *pgdat; 1408 loff_t node = *pos; 1409 1410 for (pgdat = first_online_pgdat(); 1411 pgdat && node; 1412 pgdat = next_online_pgdat(pgdat)) 1413 --node; 1414 1415 return pgdat; 1416 } 1417 1418 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1419 { 1420 pg_data_t *pgdat = (pg_data_t *)arg; 1421 1422 (*pos)++; 1423 return next_online_pgdat(pgdat); 1424 } 1425 1426 static void frag_stop(struct seq_file *m, void *arg) 1427 { 1428 } 1429 1430 /* 1431 * Walk zones in a node and print using a callback. 1432 * If @assert_populated is true, only use callback for zones that are populated. 1433 */ 1434 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1435 bool assert_populated, bool nolock, 1436 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1437 { 1438 struct zone *zone; 1439 struct zone *node_zones = pgdat->node_zones; 1440 unsigned long flags; 1441 1442 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1443 if (assert_populated && !populated_zone(zone)) 1444 continue; 1445 1446 if (!nolock) 1447 spin_lock_irqsave(&zone->lock, flags); 1448 print(m, pgdat, zone); 1449 if (!nolock) 1450 spin_unlock_irqrestore(&zone->lock, flags); 1451 } 1452 } 1453 #endif 1454 1455 #ifdef CONFIG_PROC_FS 1456 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1457 struct zone *zone) 1458 { 1459 int order; 1460 1461 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1462 for (order = 0; order < MAX_ORDER; ++order) 1463 /* 1464 * Access to nr_free is lockless as nr_free is used only for 1465 * printing purposes. Use data_race to avoid KCSAN warning. 1466 */ 1467 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free)); 1468 seq_putc(m, '\n'); 1469 } 1470 1471 /* 1472 * This walks the free areas for each zone. 1473 */ 1474 static int frag_show(struct seq_file *m, void *arg) 1475 { 1476 pg_data_t *pgdat = (pg_data_t *)arg; 1477 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1478 return 0; 1479 } 1480 1481 static void pagetypeinfo_showfree_print(struct seq_file *m, 1482 pg_data_t *pgdat, struct zone *zone) 1483 { 1484 int order, mtype; 1485 1486 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1487 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1488 pgdat->node_id, 1489 zone->name, 1490 migratetype_names[mtype]); 1491 for (order = 0; order < MAX_ORDER; ++order) { 1492 unsigned long freecount = 0; 1493 struct free_area *area; 1494 struct list_head *curr; 1495 bool overflow = false; 1496 1497 area = &(zone->free_area[order]); 1498 1499 list_for_each(curr, &area->free_list[mtype]) { 1500 /* 1501 * Cap the free_list iteration because it might 1502 * be really large and we are under a spinlock 1503 * so a long time spent here could trigger a 1504 * hard lockup detector. Anyway this is a 1505 * debugging tool so knowing there is a handful 1506 * of pages of this order should be more than 1507 * sufficient. 1508 */ 1509 if (++freecount >= 100000) { 1510 overflow = true; 1511 break; 1512 } 1513 } 1514 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1515 spin_unlock_irq(&zone->lock); 1516 cond_resched(); 1517 spin_lock_irq(&zone->lock); 1518 } 1519 seq_putc(m, '\n'); 1520 } 1521 } 1522 1523 /* Print out the free pages at each order for each migatetype */ 1524 static void pagetypeinfo_showfree(struct seq_file *m, void *arg) 1525 { 1526 int order; 1527 pg_data_t *pgdat = (pg_data_t *)arg; 1528 1529 /* Print header */ 1530 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1531 for (order = 0; order < MAX_ORDER; ++order) 1532 seq_printf(m, "%6d ", order); 1533 seq_putc(m, '\n'); 1534 1535 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1536 } 1537 1538 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1539 pg_data_t *pgdat, struct zone *zone) 1540 { 1541 int mtype; 1542 unsigned long pfn; 1543 unsigned long start_pfn = zone->zone_start_pfn; 1544 unsigned long end_pfn = zone_end_pfn(zone); 1545 unsigned long count[MIGRATE_TYPES] = { 0, }; 1546 1547 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1548 struct page *page; 1549 1550 page = pfn_to_online_page(pfn); 1551 if (!page) 1552 continue; 1553 1554 if (page_zone(page) != zone) 1555 continue; 1556 1557 mtype = get_pageblock_migratetype(page); 1558 1559 if (mtype < MIGRATE_TYPES) 1560 count[mtype]++; 1561 } 1562 1563 /* Print counts */ 1564 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1565 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1566 seq_printf(m, "%12lu ", count[mtype]); 1567 seq_putc(m, '\n'); 1568 } 1569 1570 /* Print out the number of pageblocks for each migratetype */ 1571 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1572 { 1573 int mtype; 1574 pg_data_t *pgdat = (pg_data_t *)arg; 1575 1576 seq_printf(m, "\n%-23s", "Number of blocks type "); 1577 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1578 seq_printf(m, "%12s ", migratetype_names[mtype]); 1579 seq_putc(m, '\n'); 1580 walk_zones_in_node(m, pgdat, true, false, 1581 pagetypeinfo_showblockcount_print); 1582 } 1583 1584 /* 1585 * Print out the number of pageblocks for each migratetype that contain pages 1586 * of other types. This gives an indication of how well fallbacks are being 1587 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1588 * to determine what is going on 1589 */ 1590 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1591 { 1592 #ifdef CONFIG_PAGE_OWNER 1593 int mtype; 1594 1595 if (!static_branch_unlikely(&page_owner_inited)) 1596 return; 1597 1598 drain_all_pages(NULL); 1599 1600 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1601 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1602 seq_printf(m, "%12s ", migratetype_names[mtype]); 1603 seq_putc(m, '\n'); 1604 1605 walk_zones_in_node(m, pgdat, true, true, 1606 pagetypeinfo_showmixedcount_print); 1607 #endif /* CONFIG_PAGE_OWNER */ 1608 } 1609 1610 /* 1611 * This prints out statistics in relation to grouping pages by mobility. 1612 * It is expensive to collect so do not constantly read the file. 1613 */ 1614 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1615 { 1616 pg_data_t *pgdat = (pg_data_t *)arg; 1617 1618 /* check memoryless node */ 1619 if (!node_state(pgdat->node_id, N_MEMORY)) 1620 return 0; 1621 1622 seq_printf(m, "Page block order: %d\n", pageblock_order); 1623 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1624 seq_putc(m, '\n'); 1625 pagetypeinfo_showfree(m, pgdat); 1626 pagetypeinfo_showblockcount(m, pgdat); 1627 pagetypeinfo_showmixedcount(m, pgdat); 1628 1629 return 0; 1630 } 1631 1632 static const struct seq_operations fragmentation_op = { 1633 .start = frag_start, 1634 .next = frag_next, 1635 .stop = frag_stop, 1636 .show = frag_show, 1637 }; 1638 1639 static const struct seq_operations pagetypeinfo_op = { 1640 .start = frag_start, 1641 .next = frag_next, 1642 .stop = frag_stop, 1643 .show = pagetypeinfo_show, 1644 }; 1645 1646 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1647 { 1648 int zid; 1649 1650 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1651 struct zone *compare = &pgdat->node_zones[zid]; 1652 1653 if (populated_zone(compare)) 1654 return zone == compare; 1655 } 1656 1657 return false; 1658 } 1659 1660 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1661 struct zone *zone) 1662 { 1663 int i; 1664 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1665 if (is_zone_first_populated(pgdat, zone)) { 1666 seq_printf(m, "\n per-node stats"); 1667 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1668 unsigned long pages = node_page_state_pages(pgdat, i); 1669 1670 if (vmstat_item_print_in_thp(i)) 1671 pages /= HPAGE_PMD_NR; 1672 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1673 pages); 1674 } 1675 } 1676 seq_printf(m, 1677 "\n pages free %lu" 1678 "\n boost %lu" 1679 "\n min %lu" 1680 "\n low %lu" 1681 "\n high %lu" 1682 "\n spanned %lu" 1683 "\n present %lu" 1684 "\n managed %lu" 1685 "\n cma %lu", 1686 zone_page_state(zone, NR_FREE_PAGES), 1687 zone->watermark_boost, 1688 min_wmark_pages(zone), 1689 low_wmark_pages(zone), 1690 high_wmark_pages(zone), 1691 zone->spanned_pages, 1692 zone->present_pages, 1693 zone_managed_pages(zone), 1694 zone_cma_pages(zone)); 1695 1696 seq_printf(m, 1697 "\n protection: (%ld", 1698 zone->lowmem_reserve[0]); 1699 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1700 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1701 seq_putc(m, ')'); 1702 1703 /* If unpopulated, no other information is useful */ 1704 if (!populated_zone(zone)) { 1705 seq_putc(m, '\n'); 1706 return; 1707 } 1708 1709 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1710 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1711 zone_page_state(zone, i)); 1712 1713 #ifdef CONFIG_NUMA 1714 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1715 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1716 zone_numa_event_state(zone, i)); 1717 #endif 1718 1719 seq_printf(m, "\n pagesets"); 1720 for_each_online_cpu(i) { 1721 struct per_cpu_pages *pcp; 1722 struct per_cpu_zonestat __maybe_unused *pzstats; 1723 1724 pcp = per_cpu_ptr(zone->per_cpu_pageset, i); 1725 seq_printf(m, 1726 "\n cpu: %i" 1727 "\n count: %i" 1728 "\n high: %i" 1729 "\n batch: %i", 1730 i, 1731 pcp->count, 1732 pcp->high, 1733 pcp->batch); 1734 #ifdef CONFIG_SMP 1735 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); 1736 seq_printf(m, "\n vm stats threshold: %d", 1737 pzstats->stat_threshold); 1738 #endif 1739 } 1740 seq_printf(m, 1741 "\n node_unreclaimable: %u" 1742 "\n start_pfn: %lu", 1743 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1744 zone->zone_start_pfn); 1745 seq_putc(m, '\n'); 1746 } 1747 1748 /* 1749 * Output information about zones in @pgdat. All zones are printed regardless 1750 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1751 * set of all zones and userspace would not be aware of such zones if they are 1752 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1753 */ 1754 static int zoneinfo_show(struct seq_file *m, void *arg) 1755 { 1756 pg_data_t *pgdat = (pg_data_t *)arg; 1757 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1758 return 0; 1759 } 1760 1761 static const struct seq_operations zoneinfo_op = { 1762 .start = frag_start, /* iterate over all zones. The same as in 1763 * fragmentation. */ 1764 .next = frag_next, 1765 .stop = frag_stop, 1766 .show = zoneinfo_show, 1767 }; 1768 1769 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1770 NR_VM_NUMA_EVENT_ITEMS + \ 1771 NR_VM_NODE_STAT_ITEMS + \ 1772 NR_VM_WRITEBACK_STAT_ITEMS + \ 1773 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1774 NR_VM_EVENT_ITEMS : 0)) 1775 1776 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1777 { 1778 unsigned long *v; 1779 int i; 1780 1781 if (*pos >= NR_VMSTAT_ITEMS) 1782 return NULL; 1783 1784 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1785 fold_vm_numa_events(); 1786 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1787 m->private = v; 1788 if (!v) 1789 return ERR_PTR(-ENOMEM); 1790 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1791 v[i] = global_zone_page_state(i); 1792 v += NR_VM_ZONE_STAT_ITEMS; 1793 1794 #ifdef CONFIG_NUMA 1795 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1796 v[i] = global_numa_event_state(i); 1797 v += NR_VM_NUMA_EVENT_ITEMS; 1798 #endif 1799 1800 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1801 v[i] = global_node_page_state_pages(i); 1802 if (vmstat_item_print_in_thp(i)) 1803 v[i] /= HPAGE_PMD_NR; 1804 } 1805 v += NR_VM_NODE_STAT_ITEMS; 1806 1807 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1808 v + NR_DIRTY_THRESHOLD); 1809 v += NR_VM_WRITEBACK_STAT_ITEMS; 1810 1811 #ifdef CONFIG_VM_EVENT_COUNTERS 1812 all_vm_events(v); 1813 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1814 v[PGPGOUT] /= 2; 1815 #endif 1816 return (unsigned long *)m->private + *pos; 1817 } 1818 1819 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1820 { 1821 (*pos)++; 1822 if (*pos >= NR_VMSTAT_ITEMS) 1823 return NULL; 1824 return (unsigned long *)m->private + *pos; 1825 } 1826 1827 static int vmstat_show(struct seq_file *m, void *arg) 1828 { 1829 unsigned long *l = arg; 1830 unsigned long off = l - (unsigned long *)m->private; 1831 1832 seq_puts(m, vmstat_text[off]); 1833 seq_put_decimal_ull(m, " ", *l); 1834 seq_putc(m, '\n'); 1835 1836 if (off == NR_VMSTAT_ITEMS - 1) { 1837 /* 1838 * We've come to the end - add any deprecated counters to avoid 1839 * breaking userspace which might depend on them being present. 1840 */ 1841 seq_puts(m, "nr_unstable 0\n"); 1842 } 1843 return 0; 1844 } 1845 1846 static void vmstat_stop(struct seq_file *m, void *arg) 1847 { 1848 kfree(m->private); 1849 m->private = NULL; 1850 } 1851 1852 static const struct seq_operations vmstat_op = { 1853 .start = vmstat_start, 1854 .next = vmstat_next, 1855 .stop = vmstat_stop, 1856 .show = vmstat_show, 1857 }; 1858 #endif /* CONFIG_PROC_FS */ 1859 1860 #ifdef CONFIG_SMP 1861 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1862 int sysctl_stat_interval __read_mostly = HZ; 1863 1864 #ifdef CONFIG_PROC_FS 1865 static void refresh_vm_stats(struct work_struct *work) 1866 { 1867 refresh_cpu_vm_stats(true); 1868 } 1869 1870 int vmstat_refresh(struct ctl_table *table, int write, 1871 void *buffer, size_t *lenp, loff_t *ppos) 1872 { 1873 long val; 1874 int err; 1875 int i; 1876 1877 /* 1878 * The regular update, every sysctl_stat_interval, may come later 1879 * than expected: leaving a significant amount in per_cpu buckets. 1880 * This is particularly misleading when checking a quantity of HUGE 1881 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1882 * which can equally be echo'ed to or cat'ted from (by root), 1883 * can be used to update the stats just before reading them. 1884 * 1885 * Oh, and since global_zone_page_state() etc. are so careful to hide 1886 * transiently negative values, report an error here if any of 1887 * the stats is negative, so we know to go looking for imbalance. 1888 */ 1889 err = schedule_on_each_cpu(refresh_vm_stats); 1890 if (err) 1891 return err; 1892 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1893 /* 1894 * Skip checking stats known to go negative occasionally. 1895 */ 1896 switch (i) { 1897 case NR_ZONE_WRITE_PENDING: 1898 case NR_FREE_CMA_PAGES: 1899 continue; 1900 } 1901 val = atomic_long_read(&vm_zone_stat[i]); 1902 if (val < 0) { 1903 pr_warn("%s: %s %ld\n", 1904 __func__, zone_stat_name(i), val); 1905 } 1906 } 1907 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1908 /* 1909 * Skip checking stats known to go negative occasionally. 1910 */ 1911 switch (i) { 1912 case NR_WRITEBACK: 1913 continue; 1914 } 1915 val = atomic_long_read(&vm_node_stat[i]); 1916 if (val < 0) { 1917 pr_warn("%s: %s %ld\n", 1918 __func__, node_stat_name(i), val); 1919 } 1920 } 1921 if (write) 1922 *ppos += *lenp; 1923 else 1924 *lenp = 0; 1925 return 0; 1926 } 1927 #endif /* CONFIG_PROC_FS */ 1928 1929 static void vmstat_update(struct work_struct *w) 1930 { 1931 if (refresh_cpu_vm_stats(true)) { 1932 /* 1933 * Counters were updated so we expect more updates 1934 * to occur in the future. Keep on running the 1935 * update worker thread. 1936 */ 1937 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1938 this_cpu_ptr(&vmstat_work), 1939 round_jiffies_relative(sysctl_stat_interval)); 1940 } 1941 } 1942 1943 /* 1944 * Check if the diffs for a certain cpu indicate that 1945 * an update is needed. 1946 */ 1947 static bool need_update(int cpu) 1948 { 1949 pg_data_t *last_pgdat = NULL; 1950 struct zone *zone; 1951 1952 for_each_populated_zone(zone) { 1953 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 1954 struct per_cpu_nodestat *n; 1955 1956 /* 1957 * The fast way of checking if there are any vmstat diffs. 1958 */ 1959 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) 1960 return true; 1961 1962 if (last_pgdat == zone->zone_pgdat) 1963 continue; 1964 last_pgdat = zone->zone_pgdat; 1965 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); 1966 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) 1967 return true; 1968 } 1969 return false; 1970 } 1971 1972 /* 1973 * Switch off vmstat processing and then fold all the remaining differentials 1974 * until the diffs stay at zero. The function is used by NOHZ and can only be 1975 * invoked when tick processing is not active. 1976 */ 1977 void quiet_vmstat(void) 1978 { 1979 if (system_state != SYSTEM_RUNNING) 1980 return; 1981 1982 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1983 return; 1984 1985 if (!need_update(smp_processor_id())) 1986 return; 1987 1988 /* 1989 * Just refresh counters and do not care about the pending delayed 1990 * vmstat_update. It doesn't fire that often to matter and canceling 1991 * it would be too expensive from this path. 1992 * vmstat_shepherd will take care about that for us. 1993 */ 1994 refresh_cpu_vm_stats(false); 1995 } 1996 1997 /* 1998 * Shepherd worker thread that checks the 1999 * differentials of processors that have their worker 2000 * threads for vm statistics updates disabled because of 2001 * inactivity. 2002 */ 2003 static void vmstat_shepherd(struct work_struct *w); 2004 2005 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 2006 2007 static void vmstat_shepherd(struct work_struct *w) 2008 { 2009 int cpu; 2010 2011 cpus_read_lock(); 2012 /* Check processors whose vmstat worker threads have been disabled */ 2013 for_each_online_cpu(cpu) { 2014 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 2015 2016 if (!delayed_work_pending(dw) && need_update(cpu)) 2017 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 2018 2019 cond_resched(); 2020 } 2021 cpus_read_unlock(); 2022 2023 schedule_delayed_work(&shepherd, 2024 round_jiffies_relative(sysctl_stat_interval)); 2025 } 2026 2027 static void __init start_shepherd_timer(void) 2028 { 2029 int cpu; 2030 2031 for_each_possible_cpu(cpu) 2032 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 2033 vmstat_update); 2034 2035 schedule_delayed_work(&shepherd, 2036 round_jiffies_relative(sysctl_stat_interval)); 2037 } 2038 2039 static void __init init_cpu_node_state(void) 2040 { 2041 int node; 2042 2043 for_each_online_node(node) { 2044 if (!cpumask_empty(cpumask_of_node(node))) 2045 node_set_state(node, N_CPU); 2046 } 2047 } 2048 2049 static int vmstat_cpu_online(unsigned int cpu) 2050 { 2051 refresh_zone_stat_thresholds(); 2052 2053 if (!node_state(cpu_to_node(cpu), N_CPU)) { 2054 node_set_state(cpu_to_node(cpu), N_CPU); 2055 } 2056 2057 return 0; 2058 } 2059 2060 static int vmstat_cpu_down_prep(unsigned int cpu) 2061 { 2062 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2063 return 0; 2064 } 2065 2066 static int vmstat_cpu_dead(unsigned int cpu) 2067 { 2068 const struct cpumask *node_cpus; 2069 int node; 2070 2071 node = cpu_to_node(cpu); 2072 2073 refresh_zone_stat_thresholds(); 2074 node_cpus = cpumask_of_node(node); 2075 if (!cpumask_empty(node_cpus)) 2076 return 0; 2077 2078 node_clear_state(node, N_CPU); 2079 2080 return 0; 2081 } 2082 2083 #endif 2084 2085 struct workqueue_struct *mm_percpu_wq; 2086 2087 void __init init_mm_internals(void) 2088 { 2089 int ret __maybe_unused; 2090 2091 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2092 2093 #ifdef CONFIG_SMP 2094 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2095 NULL, vmstat_cpu_dead); 2096 if (ret < 0) 2097 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2098 2099 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2100 vmstat_cpu_online, 2101 vmstat_cpu_down_prep); 2102 if (ret < 0) 2103 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2104 2105 cpus_read_lock(); 2106 init_cpu_node_state(); 2107 cpus_read_unlock(); 2108 2109 start_shepherd_timer(); 2110 #endif 2111 #ifdef CONFIG_PROC_FS 2112 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2113 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2114 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2115 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2116 #endif 2117 } 2118 2119 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2120 2121 /* 2122 * Return an index indicating how much of the available free memory is 2123 * unusable for an allocation of the requested size. 2124 */ 2125 static int unusable_free_index(unsigned int order, 2126 struct contig_page_info *info) 2127 { 2128 /* No free memory is interpreted as all free memory is unusable */ 2129 if (info->free_pages == 0) 2130 return 1000; 2131 2132 /* 2133 * Index should be a value between 0 and 1. Return a value to 3 2134 * decimal places. 2135 * 2136 * 0 => no fragmentation 2137 * 1 => high fragmentation 2138 */ 2139 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2140 2141 } 2142 2143 static void unusable_show_print(struct seq_file *m, 2144 pg_data_t *pgdat, struct zone *zone) 2145 { 2146 unsigned int order; 2147 int index; 2148 struct contig_page_info info; 2149 2150 seq_printf(m, "Node %d, zone %8s ", 2151 pgdat->node_id, 2152 zone->name); 2153 for (order = 0; order < MAX_ORDER; ++order) { 2154 fill_contig_page_info(zone, order, &info); 2155 index = unusable_free_index(order, &info); 2156 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2157 } 2158 2159 seq_putc(m, '\n'); 2160 } 2161 2162 /* 2163 * Display unusable free space index 2164 * 2165 * The unusable free space index measures how much of the available free 2166 * memory cannot be used to satisfy an allocation of a given size and is a 2167 * value between 0 and 1. The higher the value, the more of free memory is 2168 * unusable and by implication, the worse the external fragmentation is. This 2169 * can be expressed as a percentage by multiplying by 100. 2170 */ 2171 static int unusable_show(struct seq_file *m, void *arg) 2172 { 2173 pg_data_t *pgdat = (pg_data_t *)arg; 2174 2175 /* check memoryless node */ 2176 if (!node_state(pgdat->node_id, N_MEMORY)) 2177 return 0; 2178 2179 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2180 2181 return 0; 2182 } 2183 2184 static const struct seq_operations unusable_sops = { 2185 .start = frag_start, 2186 .next = frag_next, 2187 .stop = frag_stop, 2188 .show = unusable_show, 2189 }; 2190 2191 DEFINE_SEQ_ATTRIBUTE(unusable); 2192 2193 static void extfrag_show_print(struct seq_file *m, 2194 pg_data_t *pgdat, struct zone *zone) 2195 { 2196 unsigned int order; 2197 int index; 2198 2199 /* Alloc on stack as interrupts are disabled for zone walk */ 2200 struct contig_page_info info; 2201 2202 seq_printf(m, "Node %d, zone %8s ", 2203 pgdat->node_id, 2204 zone->name); 2205 for (order = 0; order < MAX_ORDER; ++order) { 2206 fill_contig_page_info(zone, order, &info); 2207 index = __fragmentation_index(order, &info); 2208 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000); 2209 } 2210 2211 seq_putc(m, '\n'); 2212 } 2213 2214 /* 2215 * Display fragmentation index for orders that allocations would fail for 2216 */ 2217 static int extfrag_show(struct seq_file *m, void *arg) 2218 { 2219 pg_data_t *pgdat = (pg_data_t *)arg; 2220 2221 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2222 2223 return 0; 2224 } 2225 2226 static const struct seq_operations extfrag_sops = { 2227 .start = frag_start, 2228 .next = frag_next, 2229 .stop = frag_stop, 2230 .show = extfrag_show, 2231 }; 2232 2233 DEFINE_SEQ_ATTRIBUTE(extfrag); 2234 2235 static int __init extfrag_debug_init(void) 2236 { 2237 struct dentry *extfrag_debug_root; 2238 2239 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2240 2241 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2242 &unusable_fops); 2243 2244 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2245 &extfrag_fops); 2246 2247 return 0; 2248 } 2249 2250 module_init(extfrag_debug_init); 2251 #endif 2252