1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/err.h> 14 #include <linux/module.h> 15 #include <linux/cpu.h> 16 #include <linux/sched.h> 17 18 #ifdef CONFIG_VM_EVENT_COUNTERS 19 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 20 EXPORT_PER_CPU_SYMBOL(vm_event_states); 21 22 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask) 23 { 24 int cpu = 0; 25 int i; 26 27 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 28 29 cpu = first_cpu(*cpumask); 30 while (cpu < NR_CPUS) { 31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 32 33 cpu = next_cpu(cpu, *cpumask); 34 35 if (cpu < NR_CPUS) 36 prefetch(&per_cpu(vm_event_states, cpu)); 37 38 39 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 40 ret[i] += this->event[i]; 41 } 42 } 43 44 /* 45 * Accumulate the vm event counters across all CPUs. 46 * The result is unavoidably approximate - it can change 47 * during and after execution of this function. 48 */ 49 void all_vm_events(unsigned long *ret) 50 { 51 sum_vm_events(ret, &cpu_online_map); 52 } 53 EXPORT_SYMBOL_GPL(all_vm_events); 54 55 #ifdef CONFIG_HOTPLUG 56 /* 57 * Fold the foreign cpu events into our own. 58 * 59 * This is adding to the events on one processor 60 * but keeps the global counts constant. 61 */ 62 void vm_events_fold_cpu(int cpu) 63 { 64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 65 int i; 66 67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 68 count_vm_events(i, fold_state->event[i]); 69 fold_state->event[i] = 0; 70 } 71 } 72 #endif /* CONFIG_HOTPLUG */ 73 74 #endif /* CONFIG_VM_EVENT_COUNTERS */ 75 76 /* 77 * Manage combined zone based / global counters 78 * 79 * vm_stat contains the global counters 80 */ 81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 82 EXPORT_SYMBOL(vm_stat); 83 84 #ifdef CONFIG_SMP 85 86 static int calculate_threshold(struct zone *zone) 87 { 88 int threshold; 89 int mem; /* memory in 128 MB units */ 90 91 /* 92 * The threshold scales with the number of processors and the amount 93 * of memory per zone. More memory means that we can defer updates for 94 * longer, more processors could lead to more contention. 95 * fls() is used to have a cheap way of logarithmic scaling. 96 * 97 * Some sample thresholds: 98 * 99 * Threshold Processors (fls) Zonesize fls(mem+1) 100 * ------------------------------------------------------------------ 101 * 8 1 1 0.9-1 GB 4 102 * 16 2 2 0.9-1 GB 4 103 * 20 2 2 1-2 GB 5 104 * 24 2 2 2-4 GB 6 105 * 28 2 2 4-8 GB 7 106 * 32 2 2 8-16 GB 8 107 * 4 2 2 <128M 1 108 * 30 4 3 2-4 GB 5 109 * 48 4 3 8-16 GB 8 110 * 32 8 4 1-2 GB 4 111 * 32 8 4 0.9-1GB 4 112 * 10 16 5 <128M 1 113 * 40 16 5 900M 4 114 * 70 64 7 2-4 GB 5 115 * 84 64 7 4-8 GB 6 116 * 108 512 9 4-8 GB 6 117 * 125 1024 10 8-16 GB 8 118 * 125 1024 10 16-32 GB 9 119 */ 120 121 mem = zone->present_pages >> (27 - PAGE_SHIFT); 122 123 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 124 125 /* 126 * Maximum threshold is 125 127 */ 128 threshold = min(125, threshold); 129 130 return threshold; 131 } 132 133 /* 134 * Refresh the thresholds for each zone. 135 */ 136 static void refresh_zone_stat_thresholds(void) 137 { 138 struct zone *zone; 139 int cpu; 140 int threshold; 141 142 for_each_zone(zone) { 143 144 if (!zone->present_pages) 145 continue; 146 147 threshold = calculate_threshold(zone); 148 149 for_each_online_cpu(cpu) 150 zone_pcp(zone, cpu)->stat_threshold = threshold; 151 } 152 } 153 154 /* 155 * For use when we know that interrupts are disabled. 156 */ 157 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 158 int delta) 159 { 160 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 161 s8 *p = pcp->vm_stat_diff + item; 162 long x; 163 164 x = delta + *p; 165 166 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) { 167 zone_page_state_add(x, zone, item); 168 x = 0; 169 } 170 *p = x; 171 } 172 EXPORT_SYMBOL(__mod_zone_page_state); 173 174 /* 175 * For an unknown interrupt state 176 */ 177 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 178 int delta) 179 { 180 unsigned long flags; 181 182 local_irq_save(flags); 183 __mod_zone_page_state(zone, item, delta); 184 local_irq_restore(flags); 185 } 186 EXPORT_SYMBOL(mod_zone_page_state); 187 188 /* 189 * Optimized increment and decrement functions. 190 * 191 * These are only for a single page and therefore can take a struct page * 192 * argument instead of struct zone *. This allows the inclusion of the code 193 * generated for page_zone(page) into the optimized functions. 194 * 195 * No overflow check is necessary and therefore the differential can be 196 * incremented or decremented in place which may allow the compilers to 197 * generate better code. 198 * The increment or decrement is known and therefore one boundary check can 199 * be omitted. 200 * 201 * NOTE: These functions are very performance sensitive. Change only 202 * with care. 203 * 204 * Some processors have inc/dec instructions that are atomic vs an interrupt. 205 * However, the code must first determine the differential location in a zone 206 * based on the processor number and then inc/dec the counter. There is no 207 * guarantee without disabling preemption that the processor will not change 208 * in between and therefore the atomicity vs. interrupt cannot be exploited 209 * in a useful way here. 210 */ 211 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 212 { 213 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 214 s8 *p = pcp->vm_stat_diff + item; 215 216 (*p)++; 217 218 if (unlikely(*p > pcp->stat_threshold)) { 219 int overstep = pcp->stat_threshold / 2; 220 221 zone_page_state_add(*p + overstep, zone, item); 222 *p = -overstep; 223 } 224 } 225 226 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 227 { 228 __inc_zone_state(page_zone(page), item); 229 } 230 EXPORT_SYMBOL(__inc_zone_page_state); 231 232 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 233 { 234 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id()); 235 s8 *p = pcp->vm_stat_diff + item; 236 237 (*p)--; 238 239 if (unlikely(*p < - pcp->stat_threshold)) { 240 int overstep = pcp->stat_threshold / 2; 241 242 zone_page_state_add(*p - overstep, zone, item); 243 *p = overstep; 244 } 245 } 246 247 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 248 { 249 __dec_zone_state(page_zone(page), item); 250 } 251 EXPORT_SYMBOL(__dec_zone_page_state); 252 253 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 254 { 255 unsigned long flags; 256 257 local_irq_save(flags); 258 __inc_zone_state(zone, item); 259 local_irq_restore(flags); 260 } 261 262 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 263 { 264 unsigned long flags; 265 struct zone *zone; 266 267 zone = page_zone(page); 268 local_irq_save(flags); 269 __inc_zone_state(zone, item); 270 local_irq_restore(flags); 271 } 272 EXPORT_SYMBOL(inc_zone_page_state); 273 274 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 275 { 276 unsigned long flags; 277 278 local_irq_save(flags); 279 __dec_zone_page_state(page, item); 280 local_irq_restore(flags); 281 } 282 EXPORT_SYMBOL(dec_zone_page_state); 283 284 /* 285 * Update the zone counters for one cpu. 286 * 287 * Note that refresh_cpu_vm_stats strives to only access 288 * node local memory. The per cpu pagesets on remote zones are placed 289 * in the memory local to the processor using that pageset. So the 290 * loop over all zones will access a series of cachelines local to 291 * the processor. 292 * 293 * The call to zone_page_state_add updates the cachelines with the 294 * statistics in the remote zone struct as well as the global cachelines 295 * with the global counters. These could cause remote node cache line 296 * bouncing and will have to be only done when necessary. 297 */ 298 void refresh_cpu_vm_stats(int cpu) 299 { 300 struct zone *zone; 301 int i; 302 unsigned long flags; 303 304 for_each_zone(zone) { 305 struct per_cpu_pageset *p; 306 307 if (!populated_zone(zone)) 308 continue; 309 310 p = zone_pcp(zone, cpu); 311 312 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 313 if (p->vm_stat_diff[i]) { 314 local_irq_save(flags); 315 zone_page_state_add(p->vm_stat_diff[i], 316 zone, i); 317 p->vm_stat_diff[i] = 0; 318 #ifdef CONFIG_NUMA 319 /* 3 seconds idle till flush */ 320 p->expire = 3; 321 #endif 322 local_irq_restore(flags); 323 } 324 #ifdef CONFIG_NUMA 325 /* 326 * Deal with draining the remote pageset of this 327 * processor 328 * 329 * Check if there are pages remaining in this pageset 330 * if not then there is nothing to expire. 331 */ 332 if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count)) 333 continue; 334 335 /* 336 * We never drain zones local to this processor. 337 */ 338 if (zone_to_nid(zone) == numa_node_id()) { 339 p->expire = 0; 340 continue; 341 } 342 343 p->expire--; 344 if (p->expire) 345 continue; 346 347 if (p->pcp[0].count) 348 drain_zone_pages(zone, p->pcp + 0); 349 350 if (p->pcp[1].count) 351 drain_zone_pages(zone, p->pcp + 1); 352 #endif 353 } 354 } 355 356 #endif 357 358 #ifdef CONFIG_NUMA 359 /* 360 * zonelist = the list of zones passed to the allocator 361 * z = the zone from which the allocation occurred. 362 * 363 * Must be called with interrupts disabled. 364 */ 365 void zone_statistics(struct zonelist *zonelist, struct zone *z) 366 { 367 if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) { 368 __inc_zone_state(z, NUMA_HIT); 369 } else { 370 __inc_zone_state(z, NUMA_MISS); 371 __inc_zone_state(zonelist->zones[0], NUMA_FOREIGN); 372 } 373 if (z->node == numa_node_id()) 374 __inc_zone_state(z, NUMA_LOCAL); 375 else 376 __inc_zone_state(z, NUMA_OTHER); 377 } 378 #endif 379 380 #ifdef CONFIG_PROC_FS 381 382 #include <linux/seq_file.h> 383 384 static char * const migratetype_names[MIGRATE_TYPES] = { 385 "Unmovable", 386 "Reclaimable", 387 "Movable", 388 "Reserve", 389 }; 390 391 static void *frag_start(struct seq_file *m, loff_t *pos) 392 { 393 pg_data_t *pgdat; 394 loff_t node = *pos; 395 for (pgdat = first_online_pgdat(); 396 pgdat && node; 397 pgdat = next_online_pgdat(pgdat)) 398 --node; 399 400 return pgdat; 401 } 402 403 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 404 { 405 pg_data_t *pgdat = (pg_data_t *)arg; 406 407 (*pos)++; 408 return next_online_pgdat(pgdat); 409 } 410 411 static void frag_stop(struct seq_file *m, void *arg) 412 { 413 } 414 415 /* Walk all the zones in a node and print using a callback */ 416 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 417 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 418 { 419 struct zone *zone; 420 struct zone *node_zones = pgdat->node_zones; 421 unsigned long flags; 422 423 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 424 if (!populated_zone(zone)) 425 continue; 426 427 spin_lock_irqsave(&zone->lock, flags); 428 print(m, pgdat, zone); 429 spin_unlock_irqrestore(&zone->lock, flags); 430 } 431 } 432 433 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 434 struct zone *zone) 435 { 436 int order; 437 438 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 439 for (order = 0; order < MAX_ORDER; ++order) 440 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 441 seq_putc(m, '\n'); 442 } 443 444 /* 445 * This walks the free areas for each zone. 446 */ 447 static int frag_show(struct seq_file *m, void *arg) 448 { 449 pg_data_t *pgdat = (pg_data_t *)arg; 450 walk_zones_in_node(m, pgdat, frag_show_print); 451 return 0; 452 } 453 454 static void pagetypeinfo_showfree_print(struct seq_file *m, 455 pg_data_t *pgdat, struct zone *zone) 456 { 457 int order, mtype; 458 459 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 460 seq_printf(m, "Node %4d, zone %8s, type %12s ", 461 pgdat->node_id, 462 zone->name, 463 migratetype_names[mtype]); 464 for (order = 0; order < MAX_ORDER; ++order) { 465 unsigned long freecount = 0; 466 struct free_area *area; 467 struct list_head *curr; 468 469 area = &(zone->free_area[order]); 470 471 list_for_each(curr, &area->free_list[mtype]) 472 freecount++; 473 seq_printf(m, "%6lu ", freecount); 474 } 475 seq_putc(m, '\n'); 476 } 477 } 478 479 /* Print out the free pages at each order for each migatetype */ 480 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 481 { 482 int order; 483 pg_data_t *pgdat = (pg_data_t *)arg; 484 485 /* Print header */ 486 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 487 for (order = 0; order < MAX_ORDER; ++order) 488 seq_printf(m, "%6d ", order); 489 seq_putc(m, '\n'); 490 491 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 492 493 return 0; 494 } 495 496 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 497 pg_data_t *pgdat, struct zone *zone) 498 { 499 int mtype; 500 unsigned long pfn; 501 unsigned long start_pfn = zone->zone_start_pfn; 502 unsigned long end_pfn = start_pfn + zone->spanned_pages; 503 unsigned long count[MIGRATE_TYPES] = { 0, }; 504 505 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 506 struct page *page; 507 508 if (!pfn_valid(pfn)) 509 continue; 510 511 page = pfn_to_page(pfn); 512 mtype = get_pageblock_migratetype(page); 513 514 count[mtype]++; 515 } 516 517 /* Print counts */ 518 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 519 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 520 seq_printf(m, "%12lu ", count[mtype]); 521 seq_putc(m, '\n'); 522 } 523 524 /* Print out the free pages at each order for each migratetype */ 525 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 526 { 527 int mtype; 528 pg_data_t *pgdat = (pg_data_t *)arg; 529 530 seq_printf(m, "\n%-23s", "Number of blocks type "); 531 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 532 seq_printf(m, "%12s ", migratetype_names[mtype]); 533 seq_putc(m, '\n'); 534 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 535 536 return 0; 537 } 538 539 /* 540 * This prints out statistics in relation to grouping pages by mobility. 541 * It is expensive to collect so do not constantly read the file. 542 */ 543 static int pagetypeinfo_show(struct seq_file *m, void *arg) 544 { 545 pg_data_t *pgdat = (pg_data_t *)arg; 546 547 seq_printf(m, "Page block order: %d\n", pageblock_order); 548 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 549 seq_putc(m, '\n'); 550 pagetypeinfo_showfree(m, pgdat); 551 pagetypeinfo_showblockcount(m, pgdat); 552 553 return 0; 554 } 555 556 const struct seq_operations fragmentation_op = { 557 .start = frag_start, 558 .next = frag_next, 559 .stop = frag_stop, 560 .show = frag_show, 561 }; 562 563 const struct seq_operations pagetypeinfo_op = { 564 .start = frag_start, 565 .next = frag_next, 566 .stop = frag_stop, 567 .show = pagetypeinfo_show, 568 }; 569 570 #ifdef CONFIG_ZONE_DMA 571 #define TEXT_FOR_DMA(xx) xx "_dma", 572 #else 573 #define TEXT_FOR_DMA(xx) 574 #endif 575 576 #ifdef CONFIG_ZONE_DMA32 577 #define TEXT_FOR_DMA32(xx) xx "_dma32", 578 #else 579 #define TEXT_FOR_DMA32(xx) 580 #endif 581 582 #ifdef CONFIG_HIGHMEM 583 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 584 #else 585 #define TEXT_FOR_HIGHMEM(xx) 586 #endif 587 588 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 589 TEXT_FOR_HIGHMEM(xx) xx "_movable", 590 591 static const char * const vmstat_text[] = { 592 /* Zoned VM counters */ 593 "nr_free_pages", 594 "nr_inactive", 595 "nr_active", 596 "nr_anon_pages", 597 "nr_mapped", 598 "nr_file_pages", 599 "nr_dirty", 600 "nr_writeback", 601 "nr_slab_reclaimable", 602 "nr_slab_unreclaimable", 603 "nr_page_table_pages", 604 "nr_unstable", 605 "nr_bounce", 606 "nr_vmscan_write", 607 608 #ifdef CONFIG_NUMA 609 "numa_hit", 610 "numa_miss", 611 "numa_foreign", 612 "numa_interleave", 613 "numa_local", 614 "numa_other", 615 #endif 616 617 #ifdef CONFIG_VM_EVENT_COUNTERS 618 "pgpgin", 619 "pgpgout", 620 "pswpin", 621 "pswpout", 622 623 TEXTS_FOR_ZONES("pgalloc") 624 625 "pgfree", 626 "pgactivate", 627 "pgdeactivate", 628 629 "pgfault", 630 "pgmajfault", 631 632 TEXTS_FOR_ZONES("pgrefill") 633 TEXTS_FOR_ZONES("pgsteal") 634 TEXTS_FOR_ZONES("pgscan_kswapd") 635 TEXTS_FOR_ZONES("pgscan_direct") 636 637 "pginodesteal", 638 "slabs_scanned", 639 "kswapd_steal", 640 "kswapd_inodesteal", 641 "pageoutrun", 642 "allocstall", 643 644 "pgrotated", 645 #endif 646 }; 647 648 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 649 struct zone *zone) 650 { 651 int i; 652 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 653 seq_printf(m, 654 "\n pages free %lu" 655 "\n min %lu" 656 "\n low %lu" 657 "\n high %lu" 658 "\n scanned %lu (a: %lu i: %lu)" 659 "\n spanned %lu" 660 "\n present %lu", 661 zone_page_state(zone, NR_FREE_PAGES), 662 zone->pages_min, 663 zone->pages_low, 664 zone->pages_high, 665 zone->pages_scanned, 666 zone->nr_scan_active, zone->nr_scan_inactive, 667 zone->spanned_pages, 668 zone->present_pages); 669 670 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 671 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 672 zone_page_state(zone, i)); 673 674 seq_printf(m, 675 "\n protection: (%lu", 676 zone->lowmem_reserve[0]); 677 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 678 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 679 seq_printf(m, 680 ")" 681 "\n pagesets"); 682 for_each_online_cpu(i) { 683 struct per_cpu_pageset *pageset; 684 int j; 685 686 pageset = zone_pcp(zone, i); 687 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 688 seq_printf(m, 689 "\n cpu: %i pcp: %i" 690 "\n count: %i" 691 "\n high: %i" 692 "\n batch: %i", 693 i, j, 694 pageset->pcp[j].count, 695 pageset->pcp[j].high, 696 pageset->pcp[j].batch); 697 } 698 #ifdef CONFIG_SMP 699 seq_printf(m, "\n vm stats threshold: %d", 700 pageset->stat_threshold); 701 #endif 702 } 703 seq_printf(m, 704 "\n all_unreclaimable: %u" 705 "\n prev_priority: %i" 706 "\n start_pfn: %lu", 707 zone->all_unreclaimable, 708 zone->prev_priority, 709 zone->zone_start_pfn); 710 seq_putc(m, '\n'); 711 } 712 713 /* 714 * Output information about zones in @pgdat. 715 */ 716 static int zoneinfo_show(struct seq_file *m, void *arg) 717 { 718 pg_data_t *pgdat = (pg_data_t *)arg; 719 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 720 return 0; 721 } 722 723 const struct seq_operations zoneinfo_op = { 724 .start = frag_start, /* iterate over all zones. The same as in 725 * fragmentation. */ 726 .next = frag_next, 727 .stop = frag_stop, 728 .show = zoneinfo_show, 729 }; 730 731 static void *vmstat_start(struct seq_file *m, loff_t *pos) 732 { 733 unsigned long *v; 734 #ifdef CONFIG_VM_EVENT_COUNTERS 735 unsigned long *e; 736 #endif 737 int i; 738 739 if (*pos >= ARRAY_SIZE(vmstat_text)) 740 return NULL; 741 742 #ifdef CONFIG_VM_EVENT_COUNTERS 743 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) 744 + sizeof(struct vm_event_state), GFP_KERNEL); 745 #else 746 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long), 747 GFP_KERNEL); 748 #endif 749 m->private = v; 750 if (!v) 751 return ERR_PTR(-ENOMEM); 752 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 753 v[i] = global_page_state(i); 754 #ifdef CONFIG_VM_EVENT_COUNTERS 755 e = v + NR_VM_ZONE_STAT_ITEMS; 756 all_vm_events(e); 757 e[PGPGIN] /= 2; /* sectors -> kbytes */ 758 e[PGPGOUT] /= 2; 759 #endif 760 return v + *pos; 761 } 762 763 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 764 { 765 (*pos)++; 766 if (*pos >= ARRAY_SIZE(vmstat_text)) 767 return NULL; 768 return (unsigned long *)m->private + *pos; 769 } 770 771 static int vmstat_show(struct seq_file *m, void *arg) 772 { 773 unsigned long *l = arg; 774 unsigned long off = l - (unsigned long *)m->private; 775 776 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 777 return 0; 778 } 779 780 static void vmstat_stop(struct seq_file *m, void *arg) 781 { 782 kfree(m->private); 783 m->private = NULL; 784 } 785 786 const struct seq_operations vmstat_op = { 787 .start = vmstat_start, 788 .next = vmstat_next, 789 .stop = vmstat_stop, 790 .show = vmstat_show, 791 }; 792 793 #endif /* CONFIG_PROC_FS */ 794 795 #ifdef CONFIG_SMP 796 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 797 int sysctl_stat_interval __read_mostly = HZ; 798 799 static void vmstat_update(struct work_struct *w) 800 { 801 refresh_cpu_vm_stats(smp_processor_id()); 802 schedule_delayed_work(&__get_cpu_var(vmstat_work), 803 sysctl_stat_interval); 804 } 805 806 static void __devinit start_cpu_timer(int cpu) 807 { 808 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu); 809 810 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update); 811 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu); 812 } 813 814 /* 815 * Use the cpu notifier to insure that the thresholds are recalculated 816 * when necessary. 817 */ 818 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, 819 unsigned long action, 820 void *hcpu) 821 { 822 long cpu = (long)hcpu; 823 824 switch (action) { 825 case CPU_ONLINE: 826 case CPU_ONLINE_FROZEN: 827 start_cpu_timer(cpu); 828 break; 829 case CPU_DOWN_PREPARE: 830 case CPU_DOWN_PREPARE_FROZEN: 831 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu)); 832 per_cpu(vmstat_work, cpu).work.func = NULL; 833 break; 834 case CPU_DOWN_FAILED: 835 case CPU_DOWN_FAILED_FROZEN: 836 start_cpu_timer(cpu); 837 break; 838 case CPU_DEAD: 839 case CPU_DEAD_FROZEN: 840 refresh_zone_stat_thresholds(); 841 break; 842 default: 843 break; 844 } 845 return NOTIFY_OK; 846 } 847 848 static struct notifier_block __cpuinitdata vmstat_notifier = 849 { &vmstat_cpuup_callback, NULL, 0 }; 850 851 static int __init setup_vmstat(void) 852 { 853 int cpu; 854 855 refresh_zone_stat_thresholds(); 856 register_cpu_notifier(&vmstat_notifier); 857 858 for_each_online_cpu(cpu) 859 start_cpu_timer(cpu); 860 return 0; 861 } 862 module_init(setup_vmstat) 863 #endif 864