1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13 #include <linux/fs.h> 14 #include <linux/mm.h> 15 #include <linux/err.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/vmstat.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/debugfs.h> 24 #include <linux/sched.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include <linux/compaction.h> 28 #include <linux/mm_inline.h> 29 #include <linux/page_ext.h> 30 #include <linux/page_owner.h> 31 32 #include "internal.h" 33 34 #ifdef CONFIG_NUMA 35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 36 37 /* zero numa counters within a zone */ 38 static void zero_zone_numa_counters(struct zone *zone) 39 { 40 int item, cpu; 41 42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { 43 atomic_long_set(&zone->vm_numa_event[item], 0); 44 for_each_online_cpu(cpu) { 45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] 46 = 0; 47 } 48 } 49 } 50 51 /* zero numa counters of all the populated zones */ 52 static void zero_zones_numa_counters(void) 53 { 54 struct zone *zone; 55 56 for_each_populated_zone(zone) 57 zero_zone_numa_counters(zone); 58 } 59 60 /* zero global numa counters */ 61 static void zero_global_numa_counters(void) 62 { 63 int item; 64 65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 66 atomic_long_set(&vm_numa_event[item], 0); 67 } 68 69 static void invalid_numa_statistics(void) 70 { 71 zero_zones_numa_counters(); 72 zero_global_numa_counters(); 73 } 74 75 static DEFINE_MUTEX(vm_numa_stat_lock); 76 77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 78 void *buffer, size_t *length, loff_t *ppos) 79 { 80 int ret, oldval; 81 82 mutex_lock(&vm_numa_stat_lock); 83 if (write) 84 oldval = sysctl_vm_numa_stat; 85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 86 if (ret || !write) 87 goto out; 88 89 if (oldval == sysctl_vm_numa_stat) 90 goto out; 91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 92 static_branch_enable(&vm_numa_stat_key); 93 pr_info("enable numa statistics\n"); 94 } else { 95 static_branch_disable(&vm_numa_stat_key); 96 invalid_numa_statistics(); 97 pr_info("disable numa statistics, and clear numa counters\n"); 98 } 99 100 out: 101 mutex_unlock(&vm_numa_stat_lock); 102 return ret; 103 } 104 #endif 105 106 #ifdef CONFIG_VM_EVENT_COUNTERS 107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 108 EXPORT_PER_CPU_SYMBOL(vm_event_states); 109 110 static void sum_vm_events(unsigned long *ret) 111 { 112 int cpu; 113 int i; 114 115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 116 117 for_each_online_cpu(cpu) { 118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 119 120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 121 ret[i] += this->event[i]; 122 } 123 } 124 125 /* 126 * Accumulate the vm event counters across all CPUs. 127 * The result is unavoidably approximate - it can change 128 * during and after execution of this function. 129 */ 130 void all_vm_events(unsigned long *ret) 131 { 132 cpus_read_lock(); 133 sum_vm_events(ret); 134 cpus_read_unlock(); 135 } 136 EXPORT_SYMBOL_GPL(all_vm_events); 137 138 /* 139 * Fold the foreign cpu events into our own. 140 * 141 * This is adding to the events on one processor 142 * but keeps the global counts constant. 143 */ 144 void vm_events_fold_cpu(int cpu) 145 { 146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 147 int i; 148 149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 150 count_vm_events(i, fold_state->event[i]); 151 fold_state->event[i] = 0; 152 } 153 } 154 155 #endif /* CONFIG_VM_EVENT_COUNTERS */ 156 157 /* 158 * Manage combined zone based / global counters 159 * 160 * vm_stat contains the global counters 161 */ 162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; 165 EXPORT_SYMBOL(vm_zone_stat); 166 EXPORT_SYMBOL(vm_node_stat); 167 168 #ifdef CONFIG_SMP 169 170 int calculate_pressure_threshold(struct zone *zone) 171 { 172 int threshold; 173 int watermark_distance; 174 175 /* 176 * As vmstats are not up to date, there is drift between the estimated 177 * and real values. For high thresholds and a high number of CPUs, it 178 * is possible for the min watermark to be breached while the estimated 179 * value looks fine. The pressure threshold is a reduced value such 180 * that even the maximum amount of drift will not accidentally breach 181 * the min watermark 182 */ 183 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 184 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 185 186 /* 187 * Maximum threshold is 125 188 */ 189 threshold = min(125, threshold); 190 191 return threshold; 192 } 193 194 int calculate_normal_threshold(struct zone *zone) 195 { 196 int threshold; 197 int mem; /* memory in 128 MB units */ 198 199 /* 200 * The threshold scales with the number of processors and the amount 201 * of memory per zone. More memory means that we can defer updates for 202 * longer, more processors could lead to more contention. 203 * fls() is used to have a cheap way of logarithmic scaling. 204 * 205 * Some sample thresholds: 206 * 207 * Threshold Processors (fls) Zonesize fls(mem)+1 208 * ------------------------------------------------------------------ 209 * 8 1 1 0.9-1 GB 4 210 * 16 2 2 0.9-1 GB 4 211 * 20 2 2 1-2 GB 5 212 * 24 2 2 2-4 GB 6 213 * 28 2 2 4-8 GB 7 214 * 32 2 2 8-16 GB 8 215 * 4 2 2 <128M 1 216 * 30 4 3 2-4 GB 5 217 * 48 4 3 8-16 GB 8 218 * 32 8 4 1-2 GB 4 219 * 32 8 4 0.9-1GB 4 220 * 10 16 5 <128M 1 221 * 40 16 5 900M 4 222 * 70 64 7 2-4 GB 5 223 * 84 64 7 4-8 GB 6 224 * 108 512 9 4-8 GB 6 225 * 125 1024 10 8-16 GB 8 226 * 125 1024 10 16-32 GB 9 227 */ 228 229 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 230 231 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 232 233 /* 234 * Maximum threshold is 125 235 */ 236 threshold = min(125, threshold); 237 238 return threshold; 239 } 240 241 /* 242 * Refresh the thresholds for each zone. 243 */ 244 void refresh_zone_stat_thresholds(void) 245 { 246 struct pglist_data *pgdat; 247 struct zone *zone; 248 int cpu; 249 int threshold; 250 251 /* Zero current pgdat thresholds */ 252 for_each_online_pgdat(pgdat) { 253 for_each_online_cpu(cpu) { 254 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 255 } 256 } 257 258 for_each_populated_zone(zone) { 259 struct pglist_data *pgdat = zone->zone_pgdat; 260 unsigned long max_drift, tolerate_drift; 261 262 threshold = calculate_normal_threshold(zone); 263 264 for_each_online_cpu(cpu) { 265 int pgdat_threshold; 266 267 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 268 = threshold; 269 270 /* Base nodestat threshold on the largest populated zone. */ 271 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 272 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 273 = max(threshold, pgdat_threshold); 274 } 275 276 /* 277 * Only set percpu_drift_mark if there is a danger that 278 * NR_FREE_PAGES reports the low watermark is ok when in fact 279 * the min watermark could be breached by an allocation 280 */ 281 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 282 max_drift = num_online_cpus() * threshold; 283 if (max_drift > tolerate_drift) 284 zone->percpu_drift_mark = high_wmark_pages(zone) + 285 max_drift; 286 } 287 } 288 289 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 290 int (*calculate_pressure)(struct zone *)) 291 { 292 struct zone *zone; 293 int cpu; 294 int threshold; 295 int i; 296 297 for (i = 0; i < pgdat->nr_zones; i++) { 298 zone = &pgdat->node_zones[i]; 299 if (!zone->percpu_drift_mark) 300 continue; 301 302 threshold = (*calculate_pressure)(zone); 303 for_each_online_cpu(cpu) 304 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 305 = threshold; 306 } 307 } 308 309 /* 310 * For use when we know that interrupts are disabled, 311 * or when we know that preemption is disabled and that 312 * particular counter cannot be updated from interrupt context. 313 */ 314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 315 long delta) 316 { 317 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 318 s8 __percpu *p = pcp->vm_stat_diff + item; 319 long x; 320 long t; 321 322 x = delta + __this_cpu_read(*p); 323 324 t = __this_cpu_read(pcp->stat_threshold); 325 326 if (unlikely(abs(x) > t)) { 327 zone_page_state_add(x, zone, item); 328 x = 0; 329 } 330 __this_cpu_write(*p, x); 331 } 332 EXPORT_SYMBOL(__mod_zone_page_state); 333 334 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 335 long delta) 336 { 337 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 338 s8 __percpu *p = pcp->vm_node_stat_diff + item; 339 long x; 340 long t; 341 342 if (vmstat_item_in_bytes(item)) { 343 /* 344 * Only cgroups use subpage accounting right now; at 345 * the global level, these items still change in 346 * multiples of whole pages. Store them as pages 347 * internally to keep the per-cpu counters compact. 348 */ 349 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 350 delta >>= PAGE_SHIFT; 351 } 352 353 x = delta + __this_cpu_read(*p); 354 355 t = __this_cpu_read(pcp->stat_threshold); 356 357 if (unlikely(abs(x) > t)) { 358 node_page_state_add(x, pgdat, item); 359 x = 0; 360 } 361 __this_cpu_write(*p, x); 362 } 363 EXPORT_SYMBOL(__mod_node_page_state); 364 365 /* 366 * Optimized increment and decrement functions. 367 * 368 * These are only for a single page and therefore can take a struct page * 369 * argument instead of struct zone *. This allows the inclusion of the code 370 * generated for page_zone(page) into the optimized functions. 371 * 372 * No overflow check is necessary and therefore the differential can be 373 * incremented or decremented in place which may allow the compilers to 374 * generate better code. 375 * The increment or decrement is known and therefore one boundary check can 376 * be omitted. 377 * 378 * NOTE: These functions are very performance sensitive. Change only 379 * with care. 380 * 381 * Some processors have inc/dec instructions that are atomic vs an interrupt. 382 * However, the code must first determine the differential location in a zone 383 * based on the processor number and then inc/dec the counter. There is no 384 * guarantee without disabling preemption that the processor will not change 385 * in between and therefore the atomicity vs. interrupt cannot be exploited 386 * in a useful way here. 387 */ 388 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 389 { 390 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 391 s8 __percpu *p = pcp->vm_stat_diff + item; 392 s8 v, t; 393 394 v = __this_cpu_inc_return(*p); 395 t = __this_cpu_read(pcp->stat_threshold); 396 if (unlikely(v > t)) { 397 s8 overstep = t >> 1; 398 399 zone_page_state_add(v + overstep, zone, item); 400 __this_cpu_write(*p, -overstep); 401 } 402 } 403 404 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 405 { 406 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 407 s8 __percpu *p = pcp->vm_node_stat_diff + item; 408 s8 v, t; 409 410 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 411 412 v = __this_cpu_inc_return(*p); 413 t = __this_cpu_read(pcp->stat_threshold); 414 if (unlikely(v > t)) { 415 s8 overstep = t >> 1; 416 417 node_page_state_add(v + overstep, pgdat, item); 418 __this_cpu_write(*p, -overstep); 419 } 420 } 421 422 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 423 { 424 __inc_zone_state(page_zone(page), item); 425 } 426 EXPORT_SYMBOL(__inc_zone_page_state); 427 428 void __inc_node_page_state(struct page *page, enum node_stat_item item) 429 { 430 __inc_node_state(page_pgdat(page), item); 431 } 432 EXPORT_SYMBOL(__inc_node_page_state); 433 434 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 435 { 436 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 437 s8 __percpu *p = pcp->vm_stat_diff + item; 438 s8 v, t; 439 440 v = __this_cpu_dec_return(*p); 441 t = __this_cpu_read(pcp->stat_threshold); 442 if (unlikely(v < - t)) { 443 s8 overstep = t >> 1; 444 445 zone_page_state_add(v - overstep, zone, item); 446 __this_cpu_write(*p, overstep); 447 } 448 } 449 450 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 451 { 452 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 453 s8 __percpu *p = pcp->vm_node_stat_diff + item; 454 s8 v, t; 455 456 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 457 458 v = __this_cpu_dec_return(*p); 459 t = __this_cpu_read(pcp->stat_threshold); 460 if (unlikely(v < - t)) { 461 s8 overstep = t >> 1; 462 463 node_page_state_add(v - overstep, pgdat, item); 464 __this_cpu_write(*p, overstep); 465 } 466 } 467 468 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 469 { 470 __dec_zone_state(page_zone(page), item); 471 } 472 EXPORT_SYMBOL(__dec_zone_page_state); 473 474 void __dec_node_page_state(struct page *page, enum node_stat_item item) 475 { 476 __dec_node_state(page_pgdat(page), item); 477 } 478 EXPORT_SYMBOL(__dec_node_page_state); 479 480 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 481 /* 482 * If we have cmpxchg_local support then we do not need to incur the overhead 483 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 484 * 485 * mod_state() modifies the zone counter state through atomic per cpu 486 * operations. 487 * 488 * Overstep mode specifies how overstep should handled: 489 * 0 No overstepping 490 * 1 Overstepping half of threshold 491 * -1 Overstepping minus half of threshold 492 */ 493 static inline void mod_zone_state(struct zone *zone, 494 enum zone_stat_item item, long delta, int overstep_mode) 495 { 496 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 497 s8 __percpu *p = pcp->vm_stat_diff + item; 498 long o, n, t, z; 499 500 do { 501 z = 0; /* overflow to zone counters */ 502 503 /* 504 * The fetching of the stat_threshold is racy. We may apply 505 * a counter threshold to the wrong the cpu if we get 506 * rescheduled while executing here. However, the next 507 * counter update will apply the threshold again and 508 * therefore bring the counter under the threshold again. 509 * 510 * Most of the time the thresholds are the same anyways 511 * for all cpus in a zone. 512 */ 513 t = this_cpu_read(pcp->stat_threshold); 514 515 o = this_cpu_read(*p); 516 n = delta + o; 517 518 if (abs(n) > t) { 519 int os = overstep_mode * (t >> 1) ; 520 521 /* Overflow must be added to zone counters */ 522 z = n + os; 523 n = -os; 524 } 525 } while (this_cpu_cmpxchg(*p, o, n) != o); 526 527 if (z) 528 zone_page_state_add(z, zone, item); 529 } 530 531 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 532 long delta) 533 { 534 mod_zone_state(zone, item, delta, 0); 535 } 536 EXPORT_SYMBOL(mod_zone_page_state); 537 538 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 539 { 540 mod_zone_state(page_zone(page), item, 1, 1); 541 } 542 EXPORT_SYMBOL(inc_zone_page_state); 543 544 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 545 { 546 mod_zone_state(page_zone(page), item, -1, -1); 547 } 548 EXPORT_SYMBOL(dec_zone_page_state); 549 550 static inline void mod_node_state(struct pglist_data *pgdat, 551 enum node_stat_item item, int delta, int overstep_mode) 552 { 553 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 554 s8 __percpu *p = pcp->vm_node_stat_diff + item; 555 long o, n, t, z; 556 557 if (vmstat_item_in_bytes(item)) { 558 /* 559 * Only cgroups use subpage accounting right now; at 560 * the global level, these items still change in 561 * multiples of whole pages. Store them as pages 562 * internally to keep the per-cpu counters compact. 563 */ 564 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 565 delta >>= PAGE_SHIFT; 566 } 567 568 do { 569 z = 0; /* overflow to node counters */ 570 571 /* 572 * The fetching of the stat_threshold is racy. We may apply 573 * a counter threshold to the wrong the cpu if we get 574 * rescheduled while executing here. However, the next 575 * counter update will apply the threshold again and 576 * therefore bring the counter under the threshold again. 577 * 578 * Most of the time the thresholds are the same anyways 579 * for all cpus in a node. 580 */ 581 t = this_cpu_read(pcp->stat_threshold); 582 583 o = this_cpu_read(*p); 584 n = delta + o; 585 586 if (abs(n) > t) { 587 int os = overstep_mode * (t >> 1) ; 588 589 /* Overflow must be added to node counters */ 590 z = n + os; 591 n = -os; 592 } 593 } while (this_cpu_cmpxchg(*p, o, n) != o); 594 595 if (z) 596 node_page_state_add(z, pgdat, item); 597 } 598 599 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 600 long delta) 601 { 602 mod_node_state(pgdat, item, delta, 0); 603 } 604 EXPORT_SYMBOL(mod_node_page_state); 605 606 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 607 { 608 mod_node_state(pgdat, item, 1, 1); 609 } 610 611 void inc_node_page_state(struct page *page, enum node_stat_item item) 612 { 613 mod_node_state(page_pgdat(page), item, 1, 1); 614 } 615 EXPORT_SYMBOL(inc_node_page_state); 616 617 void dec_node_page_state(struct page *page, enum node_stat_item item) 618 { 619 mod_node_state(page_pgdat(page), item, -1, -1); 620 } 621 EXPORT_SYMBOL(dec_node_page_state); 622 #else 623 /* 624 * Use interrupt disable to serialize counter updates 625 */ 626 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 627 long delta) 628 { 629 unsigned long flags; 630 631 local_irq_save(flags); 632 __mod_zone_page_state(zone, item, delta); 633 local_irq_restore(flags); 634 } 635 EXPORT_SYMBOL(mod_zone_page_state); 636 637 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 638 { 639 unsigned long flags; 640 struct zone *zone; 641 642 zone = page_zone(page); 643 local_irq_save(flags); 644 __inc_zone_state(zone, item); 645 local_irq_restore(flags); 646 } 647 EXPORT_SYMBOL(inc_zone_page_state); 648 649 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 650 { 651 unsigned long flags; 652 653 local_irq_save(flags); 654 __dec_zone_page_state(page, item); 655 local_irq_restore(flags); 656 } 657 EXPORT_SYMBOL(dec_zone_page_state); 658 659 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 660 { 661 unsigned long flags; 662 663 local_irq_save(flags); 664 __inc_node_state(pgdat, item); 665 local_irq_restore(flags); 666 } 667 EXPORT_SYMBOL(inc_node_state); 668 669 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 670 long delta) 671 { 672 unsigned long flags; 673 674 local_irq_save(flags); 675 __mod_node_page_state(pgdat, item, delta); 676 local_irq_restore(flags); 677 } 678 EXPORT_SYMBOL(mod_node_page_state); 679 680 void inc_node_page_state(struct page *page, enum node_stat_item item) 681 { 682 unsigned long flags; 683 struct pglist_data *pgdat; 684 685 pgdat = page_pgdat(page); 686 local_irq_save(flags); 687 __inc_node_state(pgdat, item); 688 local_irq_restore(flags); 689 } 690 EXPORT_SYMBOL(inc_node_page_state); 691 692 void dec_node_page_state(struct page *page, enum node_stat_item item) 693 { 694 unsigned long flags; 695 696 local_irq_save(flags); 697 __dec_node_page_state(page, item); 698 local_irq_restore(flags); 699 } 700 EXPORT_SYMBOL(dec_node_page_state); 701 #endif 702 703 /* 704 * Fold a differential into the global counters. 705 * Returns the number of counters updated. 706 */ 707 static int fold_diff(int *zone_diff, int *node_diff) 708 { 709 int i; 710 int changes = 0; 711 712 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 713 if (zone_diff[i]) { 714 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 715 changes++; 716 } 717 718 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 719 if (node_diff[i]) { 720 atomic_long_add(node_diff[i], &vm_node_stat[i]); 721 changes++; 722 } 723 return changes; 724 } 725 726 #ifdef CONFIG_NUMA 727 static void fold_vm_zone_numa_events(struct zone *zone) 728 { 729 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; 730 int cpu; 731 enum numa_stat_item item; 732 733 for_each_online_cpu(cpu) { 734 struct per_cpu_zonestat *pzstats; 735 736 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 737 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 738 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); 739 } 740 741 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 742 zone_numa_event_add(zone_numa_events[item], zone, item); 743 } 744 745 void fold_vm_numa_events(void) 746 { 747 struct zone *zone; 748 749 for_each_populated_zone(zone) 750 fold_vm_zone_numa_events(zone); 751 } 752 #endif 753 754 /* 755 * Update the zone counters for the current cpu. 756 * 757 * Note that refresh_cpu_vm_stats strives to only access 758 * node local memory. The per cpu pagesets on remote zones are placed 759 * in the memory local to the processor using that pageset. So the 760 * loop over all zones will access a series of cachelines local to 761 * the processor. 762 * 763 * The call to zone_page_state_add updates the cachelines with the 764 * statistics in the remote zone struct as well as the global cachelines 765 * with the global counters. These could cause remote node cache line 766 * bouncing and will have to be only done when necessary. 767 * 768 * The function returns the number of global counters updated. 769 */ 770 static int refresh_cpu_vm_stats(bool do_pagesets) 771 { 772 struct pglist_data *pgdat; 773 struct zone *zone; 774 int i; 775 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 776 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 777 int changes = 0; 778 779 for_each_populated_zone(zone) { 780 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; 781 #ifdef CONFIG_NUMA 782 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; 783 #endif 784 785 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 786 int v; 787 788 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); 789 if (v) { 790 791 atomic_long_add(v, &zone->vm_stat[i]); 792 global_zone_diff[i] += v; 793 #ifdef CONFIG_NUMA 794 /* 3 seconds idle till flush */ 795 __this_cpu_write(pcp->expire, 3); 796 #endif 797 } 798 } 799 #ifdef CONFIG_NUMA 800 801 if (do_pagesets) { 802 cond_resched(); 803 /* 804 * Deal with draining the remote pageset of this 805 * processor 806 * 807 * Check if there are pages remaining in this pageset 808 * if not then there is nothing to expire. 809 */ 810 if (!__this_cpu_read(pcp->expire) || 811 !__this_cpu_read(pcp->count)) 812 continue; 813 814 /* 815 * We never drain zones local to this processor. 816 */ 817 if (zone_to_nid(zone) == numa_node_id()) { 818 __this_cpu_write(pcp->expire, 0); 819 continue; 820 } 821 822 if (__this_cpu_dec_return(pcp->expire)) 823 continue; 824 825 if (__this_cpu_read(pcp->count)) { 826 drain_zone_pages(zone, this_cpu_ptr(pcp)); 827 changes++; 828 } 829 } 830 #endif 831 } 832 833 for_each_online_pgdat(pgdat) { 834 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 835 836 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 837 int v; 838 839 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 840 if (v) { 841 atomic_long_add(v, &pgdat->vm_stat[i]); 842 global_node_diff[i] += v; 843 } 844 } 845 } 846 847 changes += fold_diff(global_zone_diff, global_node_diff); 848 return changes; 849 } 850 851 /* 852 * Fold the data for an offline cpu into the global array. 853 * There cannot be any access by the offline cpu and therefore 854 * synchronization is simplified. 855 */ 856 void cpu_vm_stats_fold(int cpu) 857 { 858 struct pglist_data *pgdat; 859 struct zone *zone; 860 int i; 861 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 862 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 863 864 for_each_populated_zone(zone) { 865 struct per_cpu_zonestat *pzstats; 866 867 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 868 869 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 870 if (pzstats->vm_stat_diff[i]) { 871 int v; 872 873 v = pzstats->vm_stat_diff[i]; 874 pzstats->vm_stat_diff[i] = 0; 875 atomic_long_add(v, &zone->vm_stat[i]); 876 global_zone_diff[i] += v; 877 } 878 } 879 #ifdef CONFIG_NUMA 880 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 881 if (pzstats->vm_numa_event[i]) { 882 unsigned long v; 883 884 v = pzstats->vm_numa_event[i]; 885 pzstats->vm_numa_event[i] = 0; 886 zone_numa_event_add(v, zone, i); 887 } 888 } 889 #endif 890 } 891 892 for_each_online_pgdat(pgdat) { 893 struct per_cpu_nodestat *p; 894 895 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 896 897 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 898 if (p->vm_node_stat_diff[i]) { 899 int v; 900 901 v = p->vm_node_stat_diff[i]; 902 p->vm_node_stat_diff[i] = 0; 903 atomic_long_add(v, &pgdat->vm_stat[i]); 904 global_node_diff[i] += v; 905 } 906 } 907 908 fold_diff(global_zone_diff, global_node_diff); 909 } 910 911 /* 912 * this is only called if !populated_zone(zone), which implies no other users of 913 * pset->vm_stat_diff[] exist. 914 */ 915 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) 916 { 917 unsigned long v; 918 int i; 919 920 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 921 if (pzstats->vm_stat_diff[i]) { 922 v = pzstats->vm_stat_diff[i]; 923 pzstats->vm_stat_diff[i] = 0; 924 zone_page_state_add(v, zone, i); 925 } 926 } 927 928 #ifdef CONFIG_NUMA 929 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 930 if (pzstats->vm_numa_event[i]) { 931 v = pzstats->vm_numa_event[i]; 932 pzstats->vm_numa_event[i] = 0; 933 zone_numa_event_add(v, zone, i); 934 } 935 } 936 #endif 937 } 938 #endif 939 940 #ifdef CONFIG_NUMA 941 /* 942 * Determine the per node value of a stat item. This function 943 * is called frequently in a NUMA machine, so try to be as 944 * frugal as possible. 945 */ 946 unsigned long sum_zone_node_page_state(int node, 947 enum zone_stat_item item) 948 { 949 struct zone *zones = NODE_DATA(node)->node_zones; 950 int i; 951 unsigned long count = 0; 952 953 for (i = 0; i < MAX_NR_ZONES; i++) 954 count += zone_page_state(zones + i, item); 955 956 return count; 957 } 958 959 /* Determine the per node value of a numa stat item. */ 960 unsigned long sum_zone_numa_event_state(int node, 961 enum numa_stat_item item) 962 { 963 struct zone *zones = NODE_DATA(node)->node_zones; 964 unsigned long count = 0; 965 int i; 966 967 for (i = 0; i < MAX_NR_ZONES; i++) 968 count += zone_numa_event_state(zones + i, item); 969 970 return count; 971 } 972 973 /* 974 * Determine the per node value of a stat item. 975 */ 976 unsigned long node_page_state_pages(struct pglist_data *pgdat, 977 enum node_stat_item item) 978 { 979 long x = atomic_long_read(&pgdat->vm_stat[item]); 980 #ifdef CONFIG_SMP 981 if (x < 0) 982 x = 0; 983 #endif 984 return x; 985 } 986 987 unsigned long node_page_state(struct pglist_data *pgdat, 988 enum node_stat_item item) 989 { 990 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 991 992 return node_page_state_pages(pgdat, item); 993 } 994 #endif 995 996 #ifdef CONFIG_COMPACTION 997 998 struct contig_page_info { 999 unsigned long free_pages; 1000 unsigned long free_blocks_total; 1001 unsigned long free_blocks_suitable; 1002 }; 1003 1004 /* 1005 * Calculate the number of free pages in a zone, how many contiguous 1006 * pages are free and how many are large enough to satisfy an allocation of 1007 * the target size. Note that this function makes no attempt to estimate 1008 * how many suitable free blocks there *might* be if MOVABLE pages were 1009 * migrated. Calculating that is possible, but expensive and can be 1010 * figured out from userspace 1011 */ 1012 static void fill_contig_page_info(struct zone *zone, 1013 unsigned int suitable_order, 1014 struct contig_page_info *info) 1015 { 1016 unsigned int order; 1017 1018 info->free_pages = 0; 1019 info->free_blocks_total = 0; 1020 info->free_blocks_suitable = 0; 1021 1022 for (order = 0; order < MAX_ORDER; order++) { 1023 unsigned long blocks; 1024 1025 /* Count number of free blocks */ 1026 blocks = zone->free_area[order].nr_free; 1027 info->free_blocks_total += blocks; 1028 1029 /* Count free base pages */ 1030 info->free_pages += blocks << order; 1031 1032 /* Count the suitable free blocks */ 1033 if (order >= suitable_order) 1034 info->free_blocks_suitable += blocks << 1035 (order - suitable_order); 1036 } 1037 } 1038 1039 /* 1040 * A fragmentation index only makes sense if an allocation of a requested 1041 * size would fail. If that is true, the fragmentation index indicates 1042 * whether external fragmentation or a lack of memory was the problem. 1043 * The value can be used to determine if page reclaim or compaction 1044 * should be used 1045 */ 1046 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1047 { 1048 unsigned long requested = 1UL << order; 1049 1050 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1051 return 0; 1052 1053 if (!info->free_blocks_total) 1054 return 0; 1055 1056 /* Fragmentation index only makes sense when a request would fail */ 1057 if (info->free_blocks_suitable) 1058 return -1000; 1059 1060 /* 1061 * Index is between 0 and 1 so return within 3 decimal places 1062 * 1063 * 0 => allocation would fail due to lack of memory 1064 * 1 => allocation would fail due to fragmentation 1065 */ 1066 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1067 } 1068 1069 /* 1070 * Calculates external fragmentation within a zone wrt the given order. 1071 * It is defined as the percentage of pages found in blocks of size 1072 * less than 1 << order. It returns values in range [0, 100]. 1073 */ 1074 unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1075 { 1076 struct contig_page_info info; 1077 1078 fill_contig_page_info(zone, order, &info); 1079 if (info.free_pages == 0) 1080 return 0; 1081 1082 return div_u64((info.free_pages - 1083 (info.free_blocks_suitable << order)) * 100, 1084 info.free_pages); 1085 } 1086 1087 /* Same as __fragmentation index but allocs contig_page_info on stack */ 1088 int fragmentation_index(struct zone *zone, unsigned int order) 1089 { 1090 struct contig_page_info info; 1091 1092 fill_contig_page_info(zone, order, &info); 1093 return __fragmentation_index(order, &info); 1094 } 1095 #endif 1096 1097 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1098 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1099 #ifdef CONFIG_ZONE_DMA 1100 #define TEXT_FOR_DMA(xx) xx "_dma", 1101 #else 1102 #define TEXT_FOR_DMA(xx) 1103 #endif 1104 1105 #ifdef CONFIG_ZONE_DMA32 1106 #define TEXT_FOR_DMA32(xx) xx "_dma32", 1107 #else 1108 #define TEXT_FOR_DMA32(xx) 1109 #endif 1110 1111 #ifdef CONFIG_HIGHMEM 1112 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 1113 #else 1114 #define TEXT_FOR_HIGHMEM(xx) 1115 #endif 1116 1117 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1118 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1119 1120 const char * const vmstat_text[] = { 1121 /* enum zone_stat_item counters */ 1122 "nr_free_pages", 1123 "nr_zone_inactive_anon", 1124 "nr_zone_active_anon", 1125 "nr_zone_inactive_file", 1126 "nr_zone_active_file", 1127 "nr_zone_unevictable", 1128 "nr_zone_write_pending", 1129 "nr_mlock", 1130 "nr_bounce", 1131 #if IS_ENABLED(CONFIG_ZSMALLOC) 1132 "nr_zspages", 1133 #endif 1134 "nr_free_cma", 1135 1136 /* enum numa_stat_item counters */ 1137 #ifdef CONFIG_NUMA 1138 "numa_hit", 1139 "numa_miss", 1140 "numa_foreign", 1141 "numa_interleave", 1142 "numa_local", 1143 "numa_other", 1144 #endif 1145 1146 /* enum node_stat_item counters */ 1147 "nr_inactive_anon", 1148 "nr_active_anon", 1149 "nr_inactive_file", 1150 "nr_active_file", 1151 "nr_unevictable", 1152 "nr_slab_reclaimable", 1153 "nr_slab_unreclaimable", 1154 "nr_isolated_anon", 1155 "nr_isolated_file", 1156 "workingset_nodes", 1157 "workingset_refault_anon", 1158 "workingset_refault_file", 1159 "workingset_activate_anon", 1160 "workingset_activate_file", 1161 "workingset_restore_anon", 1162 "workingset_restore_file", 1163 "workingset_nodereclaim", 1164 "nr_anon_pages", 1165 "nr_mapped", 1166 "nr_file_pages", 1167 "nr_dirty", 1168 "nr_writeback", 1169 "nr_writeback_temp", 1170 "nr_shmem", 1171 "nr_shmem_hugepages", 1172 "nr_shmem_pmdmapped", 1173 "nr_file_hugepages", 1174 "nr_file_pmdmapped", 1175 "nr_anon_transparent_hugepages", 1176 "nr_vmscan_write", 1177 "nr_vmscan_immediate_reclaim", 1178 "nr_dirtied", 1179 "nr_written", 1180 "nr_kernel_misc_reclaimable", 1181 "nr_foll_pin_acquired", 1182 "nr_foll_pin_released", 1183 "nr_kernel_stack", 1184 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1185 "nr_shadow_call_stack", 1186 #endif 1187 "nr_page_table_pages", 1188 #ifdef CONFIG_SWAP 1189 "nr_swapcached", 1190 #endif 1191 1192 /* enum writeback_stat_item counters */ 1193 "nr_dirty_threshold", 1194 "nr_dirty_background_threshold", 1195 1196 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1197 /* enum vm_event_item counters */ 1198 "pgpgin", 1199 "pgpgout", 1200 "pswpin", 1201 "pswpout", 1202 1203 TEXTS_FOR_ZONES("pgalloc") 1204 TEXTS_FOR_ZONES("allocstall") 1205 TEXTS_FOR_ZONES("pgskip") 1206 1207 "pgfree", 1208 "pgactivate", 1209 "pgdeactivate", 1210 "pglazyfree", 1211 1212 "pgfault", 1213 "pgmajfault", 1214 "pglazyfreed", 1215 1216 "pgrefill", 1217 "pgreuse", 1218 "pgsteal_kswapd", 1219 "pgsteal_direct", 1220 "pgdemote_kswapd", 1221 "pgdemote_direct", 1222 "pgscan_kswapd", 1223 "pgscan_direct", 1224 "pgscan_direct_throttle", 1225 "pgscan_anon", 1226 "pgscan_file", 1227 "pgsteal_anon", 1228 "pgsteal_file", 1229 1230 #ifdef CONFIG_NUMA 1231 "zone_reclaim_failed", 1232 #endif 1233 "pginodesteal", 1234 "slabs_scanned", 1235 "kswapd_inodesteal", 1236 "kswapd_low_wmark_hit_quickly", 1237 "kswapd_high_wmark_hit_quickly", 1238 "pageoutrun", 1239 1240 "pgrotated", 1241 1242 "drop_pagecache", 1243 "drop_slab", 1244 "oom_kill", 1245 1246 #ifdef CONFIG_NUMA_BALANCING 1247 "numa_pte_updates", 1248 "numa_huge_pte_updates", 1249 "numa_hint_faults", 1250 "numa_hint_faults_local", 1251 "numa_pages_migrated", 1252 #endif 1253 #ifdef CONFIG_MIGRATION 1254 "pgmigrate_success", 1255 "pgmigrate_fail", 1256 "thp_migration_success", 1257 "thp_migration_fail", 1258 "thp_migration_split", 1259 #endif 1260 #ifdef CONFIG_COMPACTION 1261 "compact_migrate_scanned", 1262 "compact_free_scanned", 1263 "compact_isolated", 1264 "compact_stall", 1265 "compact_fail", 1266 "compact_success", 1267 "compact_daemon_wake", 1268 "compact_daemon_migrate_scanned", 1269 "compact_daemon_free_scanned", 1270 #endif 1271 1272 #ifdef CONFIG_HUGETLB_PAGE 1273 "htlb_buddy_alloc_success", 1274 "htlb_buddy_alloc_fail", 1275 #endif 1276 #ifdef CONFIG_CMA 1277 "cma_alloc_success", 1278 "cma_alloc_fail", 1279 #endif 1280 "unevictable_pgs_culled", 1281 "unevictable_pgs_scanned", 1282 "unevictable_pgs_rescued", 1283 "unevictable_pgs_mlocked", 1284 "unevictable_pgs_munlocked", 1285 "unevictable_pgs_cleared", 1286 "unevictable_pgs_stranded", 1287 1288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1289 "thp_fault_alloc", 1290 "thp_fault_fallback", 1291 "thp_fault_fallback_charge", 1292 "thp_collapse_alloc", 1293 "thp_collapse_alloc_failed", 1294 "thp_file_alloc", 1295 "thp_file_fallback", 1296 "thp_file_fallback_charge", 1297 "thp_file_mapped", 1298 "thp_split_page", 1299 "thp_split_page_failed", 1300 "thp_deferred_split_page", 1301 "thp_split_pmd", 1302 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1303 "thp_split_pud", 1304 #endif 1305 "thp_zero_page_alloc", 1306 "thp_zero_page_alloc_failed", 1307 "thp_swpout", 1308 "thp_swpout_fallback", 1309 #endif 1310 #ifdef CONFIG_MEMORY_BALLOON 1311 "balloon_inflate", 1312 "balloon_deflate", 1313 #ifdef CONFIG_BALLOON_COMPACTION 1314 "balloon_migrate", 1315 #endif 1316 #endif /* CONFIG_MEMORY_BALLOON */ 1317 #ifdef CONFIG_DEBUG_TLBFLUSH 1318 "nr_tlb_remote_flush", 1319 "nr_tlb_remote_flush_received", 1320 "nr_tlb_local_flush_all", 1321 "nr_tlb_local_flush_one", 1322 #endif /* CONFIG_DEBUG_TLBFLUSH */ 1323 1324 #ifdef CONFIG_DEBUG_VM_VMACACHE 1325 "vmacache_find_calls", 1326 "vmacache_find_hits", 1327 #endif 1328 #ifdef CONFIG_SWAP 1329 "swap_ra", 1330 "swap_ra_hit", 1331 #endif 1332 #ifdef CONFIG_X86 1333 "direct_map_level2_splits", 1334 "direct_map_level3_splits", 1335 #endif 1336 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1337 }; 1338 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1339 1340 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1341 defined(CONFIG_PROC_FS) 1342 static void *frag_start(struct seq_file *m, loff_t *pos) 1343 { 1344 pg_data_t *pgdat; 1345 loff_t node = *pos; 1346 1347 for (pgdat = first_online_pgdat(); 1348 pgdat && node; 1349 pgdat = next_online_pgdat(pgdat)) 1350 --node; 1351 1352 return pgdat; 1353 } 1354 1355 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1356 { 1357 pg_data_t *pgdat = (pg_data_t *)arg; 1358 1359 (*pos)++; 1360 return next_online_pgdat(pgdat); 1361 } 1362 1363 static void frag_stop(struct seq_file *m, void *arg) 1364 { 1365 } 1366 1367 /* 1368 * Walk zones in a node and print using a callback. 1369 * If @assert_populated is true, only use callback for zones that are populated. 1370 */ 1371 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1372 bool assert_populated, bool nolock, 1373 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1374 { 1375 struct zone *zone; 1376 struct zone *node_zones = pgdat->node_zones; 1377 unsigned long flags; 1378 1379 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1380 if (assert_populated && !populated_zone(zone)) 1381 continue; 1382 1383 if (!nolock) 1384 spin_lock_irqsave(&zone->lock, flags); 1385 print(m, pgdat, zone); 1386 if (!nolock) 1387 spin_unlock_irqrestore(&zone->lock, flags); 1388 } 1389 } 1390 #endif 1391 1392 #ifdef CONFIG_PROC_FS 1393 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1394 struct zone *zone) 1395 { 1396 int order; 1397 1398 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1399 for (order = 0; order < MAX_ORDER; ++order) 1400 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1401 seq_putc(m, '\n'); 1402 } 1403 1404 /* 1405 * This walks the free areas for each zone. 1406 */ 1407 static int frag_show(struct seq_file *m, void *arg) 1408 { 1409 pg_data_t *pgdat = (pg_data_t *)arg; 1410 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1411 return 0; 1412 } 1413 1414 static void pagetypeinfo_showfree_print(struct seq_file *m, 1415 pg_data_t *pgdat, struct zone *zone) 1416 { 1417 int order, mtype; 1418 1419 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1420 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1421 pgdat->node_id, 1422 zone->name, 1423 migratetype_names[mtype]); 1424 for (order = 0; order < MAX_ORDER; ++order) { 1425 unsigned long freecount = 0; 1426 struct free_area *area; 1427 struct list_head *curr; 1428 bool overflow = false; 1429 1430 area = &(zone->free_area[order]); 1431 1432 list_for_each(curr, &area->free_list[mtype]) { 1433 /* 1434 * Cap the free_list iteration because it might 1435 * be really large and we are under a spinlock 1436 * so a long time spent here could trigger a 1437 * hard lockup detector. Anyway this is a 1438 * debugging tool so knowing there is a handful 1439 * of pages of this order should be more than 1440 * sufficient. 1441 */ 1442 if (++freecount >= 100000) { 1443 overflow = true; 1444 break; 1445 } 1446 } 1447 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1448 spin_unlock_irq(&zone->lock); 1449 cond_resched(); 1450 spin_lock_irq(&zone->lock); 1451 } 1452 seq_putc(m, '\n'); 1453 } 1454 } 1455 1456 /* Print out the free pages at each order for each migatetype */ 1457 static void pagetypeinfo_showfree(struct seq_file *m, void *arg) 1458 { 1459 int order; 1460 pg_data_t *pgdat = (pg_data_t *)arg; 1461 1462 /* Print header */ 1463 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1464 for (order = 0; order < MAX_ORDER; ++order) 1465 seq_printf(m, "%6d ", order); 1466 seq_putc(m, '\n'); 1467 1468 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1469 } 1470 1471 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1472 pg_data_t *pgdat, struct zone *zone) 1473 { 1474 int mtype; 1475 unsigned long pfn; 1476 unsigned long start_pfn = zone->zone_start_pfn; 1477 unsigned long end_pfn = zone_end_pfn(zone); 1478 unsigned long count[MIGRATE_TYPES] = { 0, }; 1479 1480 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1481 struct page *page; 1482 1483 page = pfn_to_online_page(pfn); 1484 if (!page) 1485 continue; 1486 1487 if (page_zone(page) != zone) 1488 continue; 1489 1490 mtype = get_pageblock_migratetype(page); 1491 1492 if (mtype < MIGRATE_TYPES) 1493 count[mtype]++; 1494 } 1495 1496 /* Print counts */ 1497 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1498 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1499 seq_printf(m, "%12lu ", count[mtype]); 1500 seq_putc(m, '\n'); 1501 } 1502 1503 /* Print out the number of pageblocks for each migratetype */ 1504 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1505 { 1506 int mtype; 1507 pg_data_t *pgdat = (pg_data_t *)arg; 1508 1509 seq_printf(m, "\n%-23s", "Number of blocks type "); 1510 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1511 seq_printf(m, "%12s ", migratetype_names[mtype]); 1512 seq_putc(m, '\n'); 1513 walk_zones_in_node(m, pgdat, true, false, 1514 pagetypeinfo_showblockcount_print); 1515 } 1516 1517 /* 1518 * Print out the number of pageblocks for each migratetype that contain pages 1519 * of other types. This gives an indication of how well fallbacks are being 1520 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1521 * to determine what is going on 1522 */ 1523 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1524 { 1525 #ifdef CONFIG_PAGE_OWNER 1526 int mtype; 1527 1528 if (!static_branch_unlikely(&page_owner_inited)) 1529 return; 1530 1531 drain_all_pages(NULL); 1532 1533 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1534 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1535 seq_printf(m, "%12s ", migratetype_names[mtype]); 1536 seq_putc(m, '\n'); 1537 1538 walk_zones_in_node(m, pgdat, true, true, 1539 pagetypeinfo_showmixedcount_print); 1540 #endif /* CONFIG_PAGE_OWNER */ 1541 } 1542 1543 /* 1544 * This prints out statistics in relation to grouping pages by mobility. 1545 * It is expensive to collect so do not constantly read the file. 1546 */ 1547 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1548 { 1549 pg_data_t *pgdat = (pg_data_t *)arg; 1550 1551 /* check memoryless node */ 1552 if (!node_state(pgdat->node_id, N_MEMORY)) 1553 return 0; 1554 1555 seq_printf(m, "Page block order: %d\n", pageblock_order); 1556 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1557 seq_putc(m, '\n'); 1558 pagetypeinfo_showfree(m, pgdat); 1559 pagetypeinfo_showblockcount(m, pgdat); 1560 pagetypeinfo_showmixedcount(m, pgdat); 1561 1562 return 0; 1563 } 1564 1565 static const struct seq_operations fragmentation_op = { 1566 .start = frag_start, 1567 .next = frag_next, 1568 .stop = frag_stop, 1569 .show = frag_show, 1570 }; 1571 1572 static const struct seq_operations pagetypeinfo_op = { 1573 .start = frag_start, 1574 .next = frag_next, 1575 .stop = frag_stop, 1576 .show = pagetypeinfo_show, 1577 }; 1578 1579 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1580 { 1581 int zid; 1582 1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1584 struct zone *compare = &pgdat->node_zones[zid]; 1585 1586 if (populated_zone(compare)) 1587 return zone == compare; 1588 } 1589 1590 return false; 1591 } 1592 1593 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1594 struct zone *zone) 1595 { 1596 int i; 1597 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1598 if (is_zone_first_populated(pgdat, zone)) { 1599 seq_printf(m, "\n per-node stats"); 1600 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1601 unsigned long pages = node_page_state_pages(pgdat, i); 1602 1603 if (vmstat_item_print_in_thp(i)) 1604 pages /= HPAGE_PMD_NR; 1605 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1606 pages); 1607 } 1608 } 1609 seq_printf(m, 1610 "\n pages free %lu" 1611 "\n min %lu" 1612 "\n low %lu" 1613 "\n high %lu" 1614 "\n spanned %lu" 1615 "\n present %lu" 1616 "\n managed %lu" 1617 "\n cma %lu", 1618 zone_page_state(zone, NR_FREE_PAGES), 1619 min_wmark_pages(zone), 1620 low_wmark_pages(zone), 1621 high_wmark_pages(zone), 1622 zone->spanned_pages, 1623 zone->present_pages, 1624 zone_managed_pages(zone), 1625 zone_cma_pages(zone)); 1626 1627 seq_printf(m, 1628 "\n protection: (%ld", 1629 zone->lowmem_reserve[0]); 1630 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1631 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1632 seq_putc(m, ')'); 1633 1634 /* If unpopulated, no other information is useful */ 1635 if (!populated_zone(zone)) { 1636 seq_putc(m, '\n'); 1637 return; 1638 } 1639 1640 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1641 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1642 zone_page_state(zone, i)); 1643 1644 #ifdef CONFIG_NUMA 1645 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1646 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1647 zone_numa_event_state(zone, i)); 1648 #endif 1649 1650 seq_printf(m, "\n pagesets"); 1651 for_each_online_cpu(i) { 1652 struct per_cpu_pages *pcp; 1653 struct per_cpu_zonestat __maybe_unused *pzstats; 1654 1655 pcp = per_cpu_ptr(zone->per_cpu_pageset, i); 1656 seq_printf(m, 1657 "\n cpu: %i" 1658 "\n count: %i" 1659 "\n high: %i" 1660 "\n batch: %i", 1661 i, 1662 pcp->count, 1663 pcp->high, 1664 pcp->batch); 1665 #ifdef CONFIG_SMP 1666 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); 1667 seq_printf(m, "\n vm stats threshold: %d", 1668 pzstats->stat_threshold); 1669 #endif 1670 } 1671 seq_printf(m, 1672 "\n node_unreclaimable: %u" 1673 "\n start_pfn: %lu", 1674 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1675 zone->zone_start_pfn); 1676 seq_putc(m, '\n'); 1677 } 1678 1679 /* 1680 * Output information about zones in @pgdat. All zones are printed regardless 1681 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1682 * set of all zones and userspace would not be aware of such zones if they are 1683 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1684 */ 1685 static int zoneinfo_show(struct seq_file *m, void *arg) 1686 { 1687 pg_data_t *pgdat = (pg_data_t *)arg; 1688 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1689 return 0; 1690 } 1691 1692 static const struct seq_operations zoneinfo_op = { 1693 .start = frag_start, /* iterate over all zones. The same as in 1694 * fragmentation. */ 1695 .next = frag_next, 1696 .stop = frag_stop, 1697 .show = zoneinfo_show, 1698 }; 1699 1700 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1701 NR_VM_NUMA_EVENT_ITEMS + \ 1702 NR_VM_NODE_STAT_ITEMS + \ 1703 NR_VM_WRITEBACK_STAT_ITEMS + \ 1704 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1705 NR_VM_EVENT_ITEMS : 0)) 1706 1707 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1708 { 1709 unsigned long *v; 1710 int i; 1711 1712 if (*pos >= NR_VMSTAT_ITEMS) 1713 return NULL; 1714 1715 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1716 fold_vm_numa_events(); 1717 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1718 m->private = v; 1719 if (!v) 1720 return ERR_PTR(-ENOMEM); 1721 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1722 v[i] = global_zone_page_state(i); 1723 v += NR_VM_ZONE_STAT_ITEMS; 1724 1725 #ifdef CONFIG_NUMA 1726 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1727 v[i] = global_numa_event_state(i); 1728 v += NR_VM_NUMA_EVENT_ITEMS; 1729 #endif 1730 1731 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1732 v[i] = global_node_page_state_pages(i); 1733 if (vmstat_item_print_in_thp(i)) 1734 v[i] /= HPAGE_PMD_NR; 1735 } 1736 v += NR_VM_NODE_STAT_ITEMS; 1737 1738 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1739 v + NR_DIRTY_THRESHOLD); 1740 v += NR_VM_WRITEBACK_STAT_ITEMS; 1741 1742 #ifdef CONFIG_VM_EVENT_COUNTERS 1743 all_vm_events(v); 1744 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1745 v[PGPGOUT] /= 2; 1746 #endif 1747 return (unsigned long *)m->private + *pos; 1748 } 1749 1750 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1751 { 1752 (*pos)++; 1753 if (*pos >= NR_VMSTAT_ITEMS) 1754 return NULL; 1755 return (unsigned long *)m->private + *pos; 1756 } 1757 1758 static int vmstat_show(struct seq_file *m, void *arg) 1759 { 1760 unsigned long *l = arg; 1761 unsigned long off = l - (unsigned long *)m->private; 1762 1763 seq_puts(m, vmstat_text[off]); 1764 seq_put_decimal_ull(m, " ", *l); 1765 seq_putc(m, '\n'); 1766 1767 if (off == NR_VMSTAT_ITEMS - 1) { 1768 /* 1769 * We've come to the end - add any deprecated counters to avoid 1770 * breaking userspace which might depend on them being present. 1771 */ 1772 seq_puts(m, "nr_unstable 0\n"); 1773 } 1774 return 0; 1775 } 1776 1777 static void vmstat_stop(struct seq_file *m, void *arg) 1778 { 1779 kfree(m->private); 1780 m->private = NULL; 1781 } 1782 1783 static const struct seq_operations vmstat_op = { 1784 .start = vmstat_start, 1785 .next = vmstat_next, 1786 .stop = vmstat_stop, 1787 .show = vmstat_show, 1788 }; 1789 #endif /* CONFIG_PROC_FS */ 1790 1791 #ifdef CONFIG_SMP 1792 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1793 int sysctl_stat_interval __read_mostly = HZ; 1794 1795 #ifdef CONFIG_PROC_FS 1796 static void refresh_vm_stats(struct work_struct *work) 1797 { 1798 refresh_cpu_vm_stats(true); 1799 } 1800 1801 int vmstat_refresh(struct ctl_table *table, int write, 1802 void *buffer, size_t *lenp, loff_t *ppos) 1803 { 1804 long val; 1805 int err; 1806 int i; 1807 1808 /* 1809 * The regular update, every sysctl_stat_interval, may come later 1810 * than expected: leaving a significant amount in per_cpu buckets. 1811 * This is particularly misleading when checking a quantity of HUGE 1812 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1813 * which can equally be echo'ed to or cat'ted from (by root), 1814 * can be used to update the stats just before reading them. 1815 * 1816 * Oh, and since global_zone_page_state() etc. are so careful to hide 1817 * transiently negative values, report an error here if any of 1818 * the stats is negative, so we know to go looking for imbalance. 1819 */ 1820 err = schedule_on_each_cpu(refresh_vm_stats); 1821 if (err) 1822 return err; 1823 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1824 /* 1825 * Skip checking stats known to go negative occasionally. 1826 */ 1827 switch (i) { 1828 case NR_ZONE_WRITE_PENDING: 1829 case NR_FREE_CMA_PAGES: 1830 continue; 1831 } 1832 val = atomic_long_read(&vm_zone_stat[i]); 1833 if (val < 0) { 1834 pr_warn("%s: %s %ld\n", 1835 __func__, zone_stat_name(i), val); 1836 } 1837 } 1838 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1839 /* 1840 * Skip checking stats known to go negative occasionally. 1841 */ 1842 switch (i) { 1843 case NR_WRITEBACK: 1844 continue; 1845 } 1846 val = atomic_long_read(&vm_node_stat[i]); 1847 if (val < 0) { 1848 pr_warn("%s: %s %ld\n", 1849 __func__, node_stat_name(i), val); 1850 } 1851 } 1852 if (write) 1853 *ppos += *lenp; 1854 else 1855 *lenp = 0; 1856 return 0; 1857 } 1858 #endif /* CONFIG_PROC_FS */ 1859 1860 static void vmstat_update(struct work_struct *w) 1861 { 1862 if (refresh_cpu_vm_stats(true)) { 1863 /* 1864 * Counters were updated so we expect more updates 1865 * to occur in the future. Keep on running the 1866 * update worker thread. 1867 */ 1868 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1869 this_cpu_ptr(&vmstat_work), 1870 round_jiffies_relative(sysctl_stat_interval)); 1871 } 1872 } 1873 1874 /* 1875 * Check if the diffs for a certain cpu indicate that 1876 * an update is needed. 1877 */ 1878 static bool need_update(int cpu) 1879 { 1880 pg_data_t *last_pgdat = NULL; 1881 struct zone *zone; 1882 1883 for_each_populated_zone(zone) { 1884 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 1885 struct per_cpu_nodestat *n; 1886 1887 /* 1888 * The fast way of checking if there are any vmstat diffs. 1889 */ 1890 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) 1891 return true; 1892 1893 if (last_pgdat == zone->zone_pgdat) 1894 continue; 1895 last_pgdat = zone->zone_pgdat; 1896 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); 1897 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) 1898 return true; 1899 } 1900 return false; 1901 } 1902 1903 /* 1904 * Switch off vmstat processing and then fold all the remaining differentials 1905 * until the diffs stay at zero. The function is used by NOHZ and can only be 1906 * invoked when tick processing is not active. 1907 */ 1908 void quiet_vmstat(void) 1909 { 1910 if (system_state != SYSTEM_RUNNING) 1911 return; 1912 1913 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1914 return; 1915 1916 if (!need_update(smp_processor_id())) 1917 return; 1918 1919 /* 1920 * Just refresh counters and do not care about the pending delayed 1921 * vmstat_update. It doesn't fire that often to matter and canceling 1922 * it would be too expensive from this path. 1923 * vmstat_shepherd will take care about that for us. 1924 */ 1925 refresh_cpu_vm_stats(false); 1926 } 1927 1928 /* 1929 * Shepherd worker thread that checks the 1930 * differentials of processors that have their worker 1931 * threads for vm statistics updates disabled because of 1932 * inactivity. 1933 */ 1934 static void vmstat_shepherd(struct work_struct *w); 1935 1936 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1937 1938 static void vmstat_shepherd(struct work_struct *w) 1939 { 1940 int cpu; 1941 1942 cpus_read_lock(); 1943 /* Check processors whose vmstat worker threads have been disabled */ 1944 for_each_online_cpu(cpu) { 1945 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1946 1947 if (!delayed_work_pending(dw) && need_update(cpu)) 1948 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1949 1950 cond_resched(); 1951 } 1952 cpus_read_unlock(); 1953 1954 schedule_delayed_work(&shepherd, 1955 round_jiffies_relative(sysctl_stat_interval)); 1956 } 1957 1958 static void __init start_shepherd_timer(void) 1959 { 1960 int cpu; 1961 1962 for_each_possible_cpu(cpu) 1963 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1964 vmstat_update); 1965 1966 schedule_delayed_work(&shepherd, 1967 round_jiffies_relative(sysctl_stat_interval)); 1968 } 1969 1970 static void __init init_cpu_node_state(void) 1971 { 1972 int node; 1973 1974 for_each_online_node(node) { 1975 if (cpumask_weight(cpumask_of_node(node)) > 0) 1976 node_set_state(node, N_CPU); 1977 } 1978 } 1979 1980 static int vmstat_cpu_online(unsigned int cpu) 1981 { 1982 refresh_zone_stat_thresholds(); 1983 node_set_state(cpu_to_node(cpu), N_CPU); 1984 return 0; 1985 } 1986 1987 static int vmstat_cpu_down_prep(unsigned int cpu) 1988 { 1989 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1990 return 0; 1991 } 1992 1993 static int vmstat_cpu_dead(unsigned int cpu) 1994 { 1995 const struct cpumask *node_cpus; 1996 int node; 1997 1998 node = cpu_to_node(cpu); 1999 2000 refresh_zone_stat_thresholds(); 2001 node_cpus = cpumask_of_node(node); 2002 if (cpumask_weight(node_cpus) > 0) 2003 return 0; 2004 2005 node_clear_state(node, N_CPU); 2006 return 0; 2007 } 2008 2009 #endif 2010 2011 struct workqueue_struct *mm_percpu_wq; 2012 2013 void __init init_mm_internals(void) 2014 { 2015 int ret __maybe_unused; 2016 2017 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2018 2019 #ifdef CONFIG_SMP 2020 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2021 NULL, vmstat_cpu_dead); 2022 if (ret < 0) 2023 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2024 2025 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2026 vmstat_cpu_online, 2027 vmstat_cpu_down_prep); 2028 if (ret < 0) 2029 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2030 2031 cpus_read_lock(); 2032 init_cpu_node_state(); 2033 cpus_read_unlock(); 2034 2035 start_shepherd_timer(); 2036 #endif 2037 #ifdef CONFIG_PROC_FS 2038 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2039 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2040 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2041 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2042 #endif 2043 } 2044 2045 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2046 2047 /* 2048 * Return an index indicating how much of the available free memory is 2049 * unusable for an allocation of the requested size. 2050 */ 2051 static int unusable_free_index(unsigned int order, 2052 struct contig_page_info *info) 2053 { 2054 /* No free memory is interpreted as all free memory is unusable */ 2055 if (info->free_pages == 0) 2056 return 1000; 2057 2058 /* 2059 * Index should be a value between 0 and 1. Return a value to 3 2060 * decimal places. 2061 * 2062 * 0 => no fragmentation 2063 * 1 => high fragmentation 2064 */ 2065 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2066 2067 } 2068 2069 static void unusable_show_print(struct seq_file *m, 2070 pg_data_t *pgdat, struct zone *zone) 2071 { 2072 unsigned int order; 2073 int index; 2074 struct contig_page_info info; 2075 2076 seq_printf(m, "Node %d, zone %8s ", 2077 pgdat->node_id, 2078 zone->name); 2079 for (order = 0; order < MAX_ORDER; ++order) { 2080 fill_contig_page_info(zone, order, &info); 2081 index = unusable_free_index(order, &info); 2082 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2083 } 2084 2085 seq_putc(m, '\n'); 2086 } 2087 2088 /* 2089 * Display unusable free space index 2090 * 2091 * The unusable free space index measures how much of the available free 2092 * memory cannot be used to satisfy an allocation of a given size and is a 2093 * value between 0 and 1. The higher the value, the more of free memory is 2094 * unusable and by implication, the worse the external fragmentation is. This 2095 * can be expressed as a percentage by multiplying by 100. 2096 */ 2097 static int unusable_show(struct seq_file *m, void *arg) 2098 { 2099 pg_data_t *pgdat = (pg_data_t *)arg; 2100 2101 /* check memoryless node */ 2102 if (!node_state(pgdat->node_id, N_MEMORY)) 2103 return 0; 2104 2105 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2106 2107 return 0; 2108 } 2109 2110 static const struct seq_operations unusable_sops = { 2111 .start = frag_start, 2112 .next = frag_next, 2113 .stop = frag_stop, 2114 .show = unusable_show, 2115 }; 2116 2117 DEFINE_SEQ_ATTRIBUTE(unusable); 2118 2119 static void extfrag_show_print(struct seq_file *m, 2120 pg_data_t *pgdat, struct zone *zone) 2121 { 2122 unsigned int order; 2123 int index; 2124 2125 /* Alloc on stack as interrupts are disabled for zone walk */ 2126 struct contig_page_info info; 2127 2128 seq_printf(m, "Node %d, zone %8s ", 2129 pgdat->node_id, 2130 zone->name); 2131 for (order = 0; order < MAX_ORDER; ++order) { 2132 fill_contig_page_info(zone, order, &info); 2133 index = __fragmentation_index(order, &info); 2134 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2135 } 2136 2137 seq_putc(m, '\n'); 2138 } 2139 2140 /* 2141 * Display fragmentation index for orders that allocations would fail for 2142 */ 2143 static int extfrag_show(struct seq_file *m, void *arg) 2144 { 2145 pg_data_t *pgdat = (pg_data_t *)arg; 2146 2147 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2148 2149 return 0; 2150 } 2151 2152 static const struct seq_operations extfrag_sops = { 2153 .start = frag_start, 2154 .next = frag_next, 2155 .stop = frag_stop, 2156 .show = extfrag_show, 2157 }; 2158 2159 DEFINE_SEQ_ATTRIBUTE(extfrag); 2160 2161 static int __init extfrag_debug_init(void) 2162 { 2163 struct dentry *extfrag_debug_root; 2164 2165 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2166 2167 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2168 &unusable_fops); 2169 2170 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2171 &extfrag_fops); 2172 2173 return 0; 2174 } 2175 2176 module_init(extfrag_debug_init); 2177 #endif 2178