xref: /linux/mm/vmstat.c (revision 37cb28ec7d3a36a5bace7063a3dba633ab110f8b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 
32 #include "internal.h"
33 
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36 
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 	int item, cpu;
41 
42 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 		atomic_long_set(&zone->vm_numa_event[item], 0);
44 		for_each_online_cpu(cpu) {
45 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 						= 0;
47 		}
48 	}
49 }
50 
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54 	struct zone *zone;
55 
56 	for_each_populated_zone(zone)
57 		zero_zone_numa_counters(zone);
58 }
59 
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63 	int item;
64 
65 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 		atomic_long_set(&vm_numa_event[item], 0);
67 }
68 
69 static void invalid_numa_statistics(void)
70 {
71 	zero_zones_numa_counters();
72 	zero_global_numa_counters();
73 }
74 
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76 
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 		void *buffer, size_t *length, loff_t *ppos)
79 {
80 	int ret, oldval;
81 
82 	mutex_lock(&vm_numa_stat_lock);
83 	if (write)
84 		oldval = sysctl_vm_numa_stat;
85 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 	if (ret || !write)
87 		goto out;
88 
89 	if (oldval == sysctl_vm_numa_stat)
90 		goto out;
91 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 		static_branch_enable(&vm_numa_stat_key);
93 		pr_info("enable numa statistics\n");
94 	} else {
95 		static_branch_disable(&vm_numa_stat_key);
96 		invalid_numa_statistics();
97 		pr_info("disable numa statistics, and clear numa counters\n");
98 	}
99 
100 out:
101 	mutex_unlock(&vm_numa_stat_lock);
102 	return ret;
103 }
104 #endif
105 
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109 
110 static void sum_vm_events(unsigned long *ret)
111 {
112 	int cpu;
113 	int i;
114 
115 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116 
117 	for_each_online_cpu(cpu) {
118 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119 
120 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 			ret[i] += this->event[i];
122 	}
123 }
124 
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132 	cpus_read_lock();
133 	sum_vm_events(ret);
134 	cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137 
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
144 void vm_events_fold_cpu(int cpu)
145 {
146 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 	int i;
148 
149 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 		count_vm_events(i, fold_state->event[i]);
151 		fold_state->event[i] = 0;
152 	}
153 }
154 
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156 
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167 
168 #ifdef CONFIG_SMP
169 
170 int calculate_pressure_threshold(struct zone *zone)
171 {
172 	int threshold;
173 	int watermark_distance;
174 
175 	/*
176 	 * As vmstats are not up to date, there is drift between the estimated
177 	 * and real values. For high thresholds and a high number of CPUs, it
178 	 * is possible for the min watermark to be breached while the estimated
179 	 * value looks fine. The pressure threshold is a reduced value such
180 	 * that even the maximum amount of drift will not accidentally breach
181 	 * the min watermark
182 	 */
183 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
184 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
185 
186 	/*
187 	 * Maximum threshold is 125
188 	 */
189 	threshold = min(125, threshold);
190 
191 	return threshold;
192 }
193 
194 int calculate_normal_threshold(struct zone *zone)
195 {
196 	int threshold;
197 	int mem;	/* memory in 128 MB units */
198 
199 	/*
200 	 * The threshold scales with the number of processors and the amount
201 	 * of memory per zone. More memory means that we can defer updates for
202 	 * longer, more processors could lead to more contention.
203  	 * fls() is used to have a cheap way of logarithmic scaling.
204 	 *
205 	 * Some sample thresholds:
206 	 *
207 	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
208 	 * ------------------------------------------------------------------
209 	 * 8		1		1	0.9-1 GB	4
210 	 * 16		2		2	0.9-1 GB	4
211 	 * 20 		2		2	1-2 GB		5
212 	 * 24		2		2	2-4 GB		6
213 	 * 28		2		2	4-8 GB		7
214 	 * 32		2		2	8-16 GB		8
215 	 * 4		2		2	<128M		1
216 	 * 30		4		3	2-4 GB		5
217 	 * 48		4		3	8-16 GB		8
218 	 * 32		8		4	1-2 GB		4
219 	 * 32		8		4	0.9-1GB		4
220 	 * 10		16		5	<128M		1
221 	 * 40		16		5	900M		4
222 	 * 70		64		7	2-4 GB		5
223 	 * 84		64		7	4-8 GB		6
224 	 * 108		512		9	4-8 GB		6
225 	 * 125		1024		10	8-16 GB		8
226 	 * 125		1024		10	16-32 GB	9
227 	 */
228 
229 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
230 
231 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
232 
233 	/*
234 	 * Maximum threshold is 125
235 	 */
236 	threshold = min(125, threshold);
237 
238 	return threshold;
239 }
240 
241 /*
242  * Refresh the thresholds for each zone.
243  */
244 void refresh_zone_stat_thresholds(void)
245 {
246 	struct pglist_data *pgdat;
247 	struct zone *zone;
248 	int cpu;
249 	int threshold;
250 
251 	/* Zero current pgdat thresholds */
252 	for_each_online_pgdat(pgdat) {
253 		for_each_online_cpu(cpu) {
254 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
255 		}
256 	}
257 
258 	for_each_populated_zone(zone) {
259 		struct pglist_data *pgdat = zone->zone_pgdat;
260 		unsigned long max_drift, tolerate_drift;
261 
262 		threshold = calculate_normal_threshold(zone);
263 
264 		for_each_online_cpu(cpu) {
265 			int pgdat_threshold;
266 
267 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
268 							= threshold;
269 
270 			/* Base nodestat threshold on the largest populated zone. */
271 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
272 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
273 				= max(threshold, pgdat_threshold);
274 		}
275 
276 		/*
277 		 * Only set percpu_drift_mark if there is a danger that
278 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
279 		 * the min watermark could be breached by an allocation
280 		 */
281 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
282 		max_drift = num_online_cpus() * threshold;
283 		if (max_drift > tolerate_drift)
284 			zone->percpu_drift_mark = high_wmark_pages(zone) +
285 					max_drift;
286 	}
287 }
288 
289 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
290 				int (*calculate_pressure)(struct zone *))
291 {
292 	struct zone *zone;
293 	int cpu;
294 	int threshold;
295 	int i;
296 
297 	for (i = 0; i < pgdat->nr_zones; i++) {
298 		zone = &pgdat->node_zones[i];
299 		if (!zone->percpu_drift_mark)
300 			continue;
301 
302 		threshold = (*calculate_pressure)(zone);
303 		for_each_online_cpu(cpu)
304 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
305 							= threshold;
306 	}
307 }
308 
309 /*
310  * For use when we know that interrupts are disabled,
311  * or when we know that preemption is disabled and that
312  * particular counter cannot be updated from interrupt context.
313  */
314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
315 			   long delta)
316 {
317 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
318 	s8 __percpu *p = pcp->vm_stat_diff + item;
319 	long x;
320 	long t;
321 
322 	x = delta + __this_cpu_read(*p);
323 
324 	t = __this_cpu_read(pcp->stat_threshold);
325 
326 	if (unlikely(abs(x) > t)) {
327 		zone_page_state_add(x, zone, item);
328 		x = 0;
329 	}
330 	__this_cpu_write(*p, x);
331 }
332 EXPORT_SYMBOL(__mod_zone_page_state);
333 
334 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
335 				long delta)
336 {
337 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
338 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
339 	long x;
340 	long t;
341 
342 	if (vmstat_item_in_bytes(item)) {
343 		/*
344 		 * Only cgroups use subpage accounting right now; at
345 		 * the global level, these items still change in
346 		 * multiples of whole pages. Store them as pages
347 		 * internally to keep the per-cpu counters compact.
348 		 */
349 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
350 		delta >>= PAGE_SHIFT;
351 	}
352 
353 	x = delta + __this_cpu_read(*p);
354 
355 	t = __this_cpu_read(pcp->stat_threshold);
356 
357 	if (unlikely(abs(x) > t)) {
358 		node_page_state_add(x, pgdat, item);
359 		x = 0;
360 	}
361 	__this_cpu_write(*p, x);
362 }
363 EXPORT_SYMBOL(__mod_node_page_state);
364 
365 /*
366  * Optimized increment and decrement functions.
367  *
368  * These are only for a single page and therefore can take a struct page *
369  * argument instead of struct zone *. This allows the inclusion of the code
370  * generated for page_zone(page) into the optimized functions.
371  *
372  * No overflow check is necessary and therefore the differential can be
373  * incremented or decremented in place which may allow the compilers to
374  * generate better code.
375  * The increment or decrement is known and therefore one boundary check can
376  * be omitted.
377  *
378  * NOTE: These functions are very performance sensitive. Change only
379  * with care.
380  *
381  * Some processors have inc/dec instructions that are atomic vs an interrupt.
382  * However, the code must first determine the differential location in a zone
383  * based on the processor number and then inc/dec the counter. There is no
384  * guarantee without disabling preemption that the processor will not change
385  * in between and therefore the atomicity vs. interrupt cannot be exploited
386  * in a useful way here.
387  */
388 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
389 {
390 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
391 	s8 __percpu *p = pcp->vm_stat_diff + item;
392 	s8 v, t;
393 
394 	v = __this_cpu_inc_return(*p);
395 	t = __this_cpu_read(pcp->stat_threshold);
396 	if (unlikely(v > t)) {
397 		s8 overstep = t >> 1;
398 
399 		zone_page_state_add(v + overstep, zone, item);
400 		__this_cpu_write(*p, -overstep);
401 	}
402 }
403 
404 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
405 {
406 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
407 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
408 	s8 v, t;
409 
410 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
411 
412 	v = __this_cpu_inc_return(*p);
413 	t = __this_cpu_read(pcp->stat_threshold);
414 	if (unlikely(v > t)) {
415 		s8 overstep = t >> 1;
416 
417 		node_page_state_add(v + overstep, pgdat, item);
418 		__this_cpu_write(*p, -overstep);
419 	}
420 }
421 
422 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
423 {
424 	__inc_zone_state(page_zone(page), item);
425 }
426 EXPORT_SYMBOL(__inc_zone_page_state);
427 
428 void __inc_node_page_state(struct page *page, enum node_stat_item item)
429 {
430 	__inc_node_state(page_pgdat(page), item);
431 }
432 EXPORT_SYMBOL(__inc_node_page_state);
433 
434 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
435 {
436 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
437 	s8 __percpu *p = pcp->vm_stat_diff + item;
438 	s8 v, t;
439 
440 	v = __this_cpu_dec_return(*p);
441 	t = __this_cpu_read(pcp->stat_threshold);
442 	if (unlikely(v < - t)) {
443 		s8 overstep = t >> 1;
444 
445 		zone_page_state_add(v - overstep, zone, item);
446 		__this_cpu_write(*p, overstep);
447 	}
448 }
449 
450 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
451 {
452 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
453 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
454 	s8 v, t;
455 
456 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
457 
458 	v = __this_cpu_dec_return(*p);
459 	t = __this_cpu_read(pcp->stat_threshold);
460 	if (unlikely(v < - t)) {
461 		s8 overstep = t >> 1;
462 
463 		node_page_state_add(v - overstep, pgdat, item);
464 		__this_cpu_write(*p, overstep);
465 	}
466 }
467 
468 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
469 {
470 	__dec_zone_state(page_zone(page), item);
471 }
472 EXPORT_SYMBOL(__dec_zone_page_state);
473 
474 void __dec_node_page_state(struct page *page, enum node_stat_item item)
475 {
476 	__dec_node_state(page_pgdat(page), item);
477 }
478 EXPORT_SYMBOL(__dec_node_page_state);
479 
480 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
481 /*
482  * If we have cmpxchg_local support then we do not need to incur the overhead
483  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
484  *
485  * mod_state() modifies the zone counter state through atomic per cpu
486  * operations.
487  *
488  * Overstep mode specifies how overstep should handled:
489  *     0       No overstepping
490  *     1       Overstepping half of threshold
491  *     -1      Overstepping minus half of threshold
492 */
493 static inline void mod_zone_state(struct zone *zone,
494        enum zone_stat_item item, long delta, int overstep_mode)
495 {
496 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
497 	s8 __percpu *p = pcp->vm_stat_diff + item;
498 	long o, n, t, z;
499 
500 	do {
501 		z = 0;  /* overflow to zone counters */
502 
503 		/*
504 		 * The fetching of the stat_threshold is racy. We may apply
505 		 * a counter threshold to the wrong the cpu if we get
506 		 * rescheduled while executing here. However, the next
507 		 * counter update will apply the threshold again and
508 		 * therefore bring the counter under the threshold again.
509 		 *
510 		 * Most of the time the thresholds are the same anyways
511 		 * for all cpus in a zone.
512 		 */
513 		t = this_cpu_read(pcp->stat_threshold);
514 
515 		o = this_cpu_read(*p);
516 		n = delta + o;
517 
518 		if (abs(n) > t) {
519 			int os = overstep_mode * (t >> 1) ;
520 
521 			/* Overflow must be added to zone counters */
522 			z = n + os;
523 			n = -os;
524 		}
525 	} while (this_cpu_cmpxchg(*p, o, n) != o);
526 
527 	if (z)
528 		zone_page_state_add(z, zone, item);
529 }
530 
531 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
532 			 long delta)
533 {
534 	mod_zone_state(zone, item, delta, 0);
535 }
536 EXPORT_SYMBOL(mod_zone_page_state);
537 
538 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
539 {
540 	mod_zone_state(page_zone(page), item, 1, 1);
541 }
542 EXPORT_SYMBOL(inc_zone_page_state);
543 
544 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
545 {
546 	mod_zone_state(page_zone(page), item, -1, -1);
547 }
548 EXPORT_SYMBOL(dec_zone_page_state);
549 
550 static inline void mod_node_state(struct pglist_data *pgdat,
551        enum node_stat_item item, int delta, int overstep_mode)
552 {
553 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
554 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
555 	long o, n, t, z;
556 
557 	if (vmstat_item_in_bytes(item)) {
558 		/*
559 		 * Only cgroups use subpage accounting right now; at
560 		 * the global level, these items still change in
561 		 * multiples of whole pages. Store them as pages
562 		 * internally to keep the per-cpu counters compact.
563 		 */
564 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
565 		delta >>= PAGE_SHIFT;
566 	}
567 
568 	do {
569 		z = 0;  /* overflow to node counters */
570 
571 		/*
572 		 * The fetching of the stat_threshold is racy. We may apply
573 		 * a counter threshold to the wrong the cpu if we get
574 		 * rescheduled while executing here. However, the next
575 		 * counter update will apply the threshold again and
576 		 * therefore bring the counter under the threshold again.
577 		 *
578 		 * Most of the time the thresholds are the same anyways
579 		 * for all cpus in a node.
580 		 */
581 		t = this_cpu_read(pcp->stat_threshold);
582 
583 		o = this_cpu_read(*p);
584 		n = delta + o;
585 
586 		if (abs(n) > t) {
587 			int os = overstep_mode * (t >> 1) ;
588 
589 			/* Overflow must be added to node counters */
590 			z = n + os;
591 			n = -os;
592 		}
593 	} while (this_cpu_cmpxchg(*p, o, n) != o);
594 
595 	if (z)
596 		node_page_state_add(z, pgdat, item);
597 }
598 
599 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
600 					long delta)
601 {
602 	mod_node_state(pgdat, item, delta, 0);
603 }
604 EXPORT_SYMBOL(mod_node_page_state);
605 
606 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
607 {
608 	mod_node_state(pgdat, item, 1, 1);
609 }
610 
611 void inc_node_page_state(struct page *page, enum node_stat_item item)
612 {
613 	mod_node_state(page_pgdat(page), item, 1, 1);
614 }
615 EXPORT_SYMBOL(inc_node_page_state);
616 
617 void dec_node_page_state(struct page *page, enum node_stat_item item)
618 {
619 	mod_node_state(page_pgdat(page), item, -1, -1);
620 }
621 EXPORT_SYMBOL(dec_node_page_state);
622 #else
623 /*
624  * Use interrupt disable to serialize counter updates
625  */
626 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
627 			 long delta)
628 {
629 	unsigned long flags;
630 
631 	local_irq_save(flags);
632 	__mod_zone_page_state(zone, item, delta);
633 	local_irq_restore(flags);
634 }
635 EXPORT_SYMBOL(mod_zone_page_state);
636 
637 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
638 {
639 	unsigned long flags;
640 	struct zone *zone;
641 
642 	zone = page_zone(page);
643 	local_irq_save(flags);
644 	__inc_zone_state(zone, item);
645 	local_irq_restore(flags);
646 }
647 EXPORT_SYMBOL(inc_zone_page_state);
648 
649 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
650 {
651 	unsigned long flags;
652 
653 	local_irq_save(flags);
654 	__dec_zone_page_state(page, item);
655 	local_irq_restore(flags);
656 }
657 EXPORT_SYMBOL(dec_zone_page_state);
658 
659 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
660 {
661 	unsigned long flags;
662 
663 	local_irq_save(flags);
664 	__inc_node_state(pgdat, item);
665 	local_irq_restore(flags);
666 }
667 EXPORT_SYMBOL(inc_node_state);
668 
669 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
670 					long delta)
671 {
672 	unsigned long flags;
673 
674 	local_irq_save(flags);
675 	__mod_node_page_state(pgdat, item, delta);
676 	local_irq_restore(flags);
677 }
678 EXPORT_SYMBOL(mod_node_page_state);
679 
680 void inc_node_page_state(struct page *page, enum node_stat_item item)
681 {
682 	unsigned long flags;
683 	struct pglist_data *pgdat;
684 
685 	pgdat = page_pgdat(page);
686 	local_irq_save(flags);
687 	__inc_node_state(pgdat, item);
688 	local_irq_restore(flags);
689 }
690 EXPORT_SYMBOL(inc_node_page_state);
691 
692 void dec_node_page_state(struct page *page, enum node_stat_item item)
693 {
694 	unsigned long flags;
695 
696 	local_irq_save(flags);
697 	__dec_node_page_state(page, item);
698 	local_irq_restore(flags);
699 }
700 EXPORT_SYMBOL(dec_node_page_state);
701 #endif
702 
703 /*
704  * Fold a differential into the global counters.
705  * Returns the number of counters updated.
706  */
707 static int fold_diff(int *zone_diff, int *node_diff)
708 {
709 	int i;
710 	int changes = 0;
711 
712 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
713 		if (zone_diff[i]) {
714 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
715 			changes++;
716 	}
717 
718 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
719 		if (node_diff[i]) {
720 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
721 			changes++;
722 	}
723 	return changes;
724 }
725 
726 #ifdef CONFIG_NUMA
727 static void fold_vm_zone_numa_events(struct zone *zone)
728 {
729 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
730 	int cpu;
731 	enum numa_stat_item item;
732 
733 	for_each_online_cpu(cpu) {
734 		struct per_cpu_zonestat *pzstats;
735 
736 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
737 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
738 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
739 	}
740 
741 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
742 		zone_numa_event_add(zone_numa_events[item], zone, item);
743 }
744 
745 void fold_vm_numa_events(void)
746 {
747 	struct zone *zone;
748 
749 	for_each_populated_zone(zone)
750 		fold_vm_zone_numa_events(zone);
751 }
752 #endif
753 
754 /*
755  * Update the zone counters for the current cpu.
756  *
757  * Note that refresh_cpu_vm_stats strives to only access
758  * node local memory. The per cpu pagesets on remote zones are placed
759  * in the memory local to the processor using that pageset. So the
760  * loop over all zones will access a series of cachelines local to
761  * the processor.
762  *
763  * The call to zone_page_state_add updates the cachelines with the
764  * statistics in the remote zone struct as well as the global cachelines
765  * with the global counters. These could cause remote node cache line
766  * bouncing and will have to be only done when necessary.
767  *
768  * The function returns the number of global counters updated.
769  */
770 static int refresh_cpu_vm_stats(bool do_pagesets)
771 {
772 	struct pglist_data *pgdat;
773 	struct zone *zone;
774 	int i;
775 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
776 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
777 	int changes = 0;
778 
779 	for_each_populated_zone(zone) {
780 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
781 #ifdef CONFIG_NUMA
782 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
783 #endif
784 
785 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
786 			int v;
787 
788 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
789 			if (v) {
790 
791 				atomic_long_add(v, &zone->vm_stat[i]);
792 				global_zone_diff[i] += v;
793 #ifdef CONFIG_NUMA
794 				/* 3 seconds idle till flush */
795 				__this_cpu_write(pcp->expire, 3);
796 #endif
797 			}
798 		}
799 #ifdef CONFIG_NUMA
800 
801 		if (do_pagesets) {
802 			cond_resched();
803 			/*
804 			 * Deal with draining the remote pageset of this
805 			 * processor
806 			 *
807 			 * Check if there are pages remaining in this pageset
808 			 * if not then there is nothing to expire.
809 			 */
810 			if (!__this_cpu_read(pcp->expire) ||
811 			       !__this_cpu_read(pcp->count))
812 				continue;
813 
814 			/*
815 			 * We never drain zones local to this processor.
816 			 */
817 			if (zone_to_nid(zone) == numa_node_id()) {
818 				__this_cpu_write(pcp->expire, 0);
819 				continue;
820 			}
821 
822 			if (__this_cpu_dec_return(pcp->expire))
823 				continue;
824 
825 			if (__this_cpu_read(pcp->count)) {
826 				drain_zone_pages(zone, this_cpu_ptr(pcp));
827 				changes++;
828 			}
829 		}
830 #endif
831 	}
832 
833 	for_each_online_pgdat(pgdat) {
834 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
835 
836 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
837 			int v;
838 
839 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
840 			if (v) {
841 				atomic_long_add(v, &pgdat->vm_stat[i]);
842 				global_node_diff[i] += v;
843 			}
844 		}
845 	}
846 
847 	changes += fold_diff(global_zone_diff, global_node_diff);
848 	return changes;
849 }
850 
851 /*
852  * Fold the data for an offline cpu into the global array.
853  * There cannot be any access by the offline cpu and therefore
854  * synchronization is simplified.
855  */
856 void cpu_vm_stats_fold(int cpu)
857 {
858 	struct pglist_data *pgdat;
859 	struct zone *zone;
860 	int i;
861 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
862 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
863 
864 	for_each_populated_zone(zone) {
865 		struct per_cpu_zonestat *pzstats;
866 
867 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
868 
869 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
870 			if (pzstats->vm_stat_diff[i]) {
871 				int v;
872 
873 				v = pzstats->vm_stat_diff[i];
874 				pzstats->vm_stat_diff[i] = 0;
875 				atomic_long_add(v, &zone->vm_stat[i]);
876 				global_zone_diff[i] += v;
877 			}
878 		}
879 #ifdef CONFIG_NUMA
880 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
881 			if (pzstats->vm_numa_event[i]) {
882 				unsigned long v;
883 
884 				v = pzstats->vm_numa_event[i];
885 				pzstats->vm_numa_event[i] = 0;
886 				zone_numa_event_add(v, zone, i);
887 			}
888 		}
889 #endif
890 	}
891 
892 	for_each_online_pgdat(pgdat) {
893 		struct per_cpu_nodestat *p;
894 
895 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
896 
897 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
898 			if (p->vm_node_stat_diff[i]) {
899 				int v;
900 
901 				v = p->vm_node_stat_diff[i];
902 				p->vm_node_stat_diff[i] = 0;
903 				atomic_long_add(v, &pgdat->vm_stat[i]);
904 				global_node_diff[i] += v;
905 			}
906 	}
907 
908 	fold_diff(global_zone_diff, global_node_diff);
909 }
910 
911 /*
912  * this is only called if !populated_zone(zone), which implies no other users of
913  * pset->vm_stat_diff[] exist.
914  */
915 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
916 {
917 	unsigned long v;
918 	int i;
919 
920 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
921 		if (pzstats->vm_stat_diff[i]) {
922 			v = pzstats->vm_stat_diff[i];
923 			pzstats->vm_stat_diff[i] = 0;
924 			zone_page_state_add(v, zone, i);
925 		}
926 	}
927 
928 #ifdef CONFIG_NUMA
929 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
930 		if (pzstats->vm_numa_event[i]) {
931 			v = pzstats->vm_numa_event[i];
932 			pzstats->vm_numa_event[i] = 0;
933 			zone_numa_event_add(v, zone, i);
934 		}
935 	}
936 #endif
937 }
938 #endif
939 
940 #ifdef CONFIG_NUMA
941 /*
942  * Determine the per node value of a stat item. This function
943  * is called frequently in a NUMA machine, so try to be as
944  * frugal as possible.
945  */
946 unsigned long sum_zone_node_page_state(int node,
947 				 enum zone_stat_item item)
948 {
949 	struct zone *zones = NODE_DATA(node)->node_zones;
950 	int i;
951 	unsigned long count = 0;
952 
953 	for (i = 0; i < MAX_NR_ZONES; i++)
954 		count += zone_page_state(zones + i, item);
955 
956 	return count;
957 }
958 
959 /* Determine the per node value of a numa stat item. */
960 unsigned long sum_zone_numa_event_state(int node,
961 				 enum numa_stat_item item)
962 {
963 	struct zone *zones = NODE_DATA(node)->node_zones;
964 	unsigned long count = 0;
965 	int i;
966 
967 	for (i = 0; i < MAX_NR_ZONES; i++)
968 		count += zone_numa_event_state(zones + i, item);
969 
970 	return count;
971 }
972 
973 /*
974  * Determine the per node value of a stat item.
975  */
976 unsigned long node_page_state_pages(struct pglist_data *pgdat,
977 				    enum node_stat_item item)
978 {
979 	long x = atomic_long_read(&pgdat->vm_stat[item]);
980 #ifdef CONFIG_SMP
981 	if (x < 0)
982 		x = 0;
983 #endif
984 	return x;
985 }
986 
987 unsigned long node_page_state(struct pglist_data *pgdat,
988 			      enum node_stat_item item)
989 {
990 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
991 
992 	return node_page_state_pages(pgdat, item);
993 }
994 #endif
995 
996 #ifdef CONFIG_COMPACTION
997 
998 struct contig_page_info {
999 	unsigned long free_pages;
1000 	unsigned long free_blocks_total;
1001 	unsigned long free_blocks_suitable;
1002 };
1003 
1004 /*
1005  * Calculate the number of free pages in a zone, how many contiguous
1006  * pages are free and how many are large enough to satisfy an allocation of
1007  * the target size. Note that this function makes no attempt to estimate
1008  * how many suitable free blocks there *might* be if MOVABLE pages were
1009  * migrated. Calculating that is possible, but expensive and can be
1010  * figured out from userspace
1011  */
1012 static void fill_contig_page_info(struct zone *zone,
1013 				unsigned int suitable_order,
1014 				struct contig_page_info *info)
1015 {
1016 	unsigned int order;
1017 
1018 	info->free_pages = 0;
1019 	info->free_blocks_total = 0;
1020 	info->free_blocks_suitable = 0;
1021 
1022 	for (order = 0; order < MAX_ORDER; order++) {
1023 		unsigned long blocks;
1024 
1025 		/* Count number of free blocks */
1026 		blocks = zone->free_area[order].nr_free;
1027 		info->free_blocks_total += blocks;
1028 
1029 		/* Count free base pages */
1030 		info->free_pages += blocks << order;
1031 
1032 		/* Count the suitable free blocks */
1033 		if (order >= suitable_order)
1034 			info->free_blocks_suitable += blocks <<
1035 						(order - suitable_order);
1036 	}
1037 }
1038 
1039 /*
1040  * A fragmentation index only makes sense if an allocation of a requested
1041  * size would fail. If that is true, the fragmentation index indicates
1042  * whether external fragmentation or a lack of memory was the problem.
1043  * The value can be used to determine if page reclaim or compaction
1044  * should be used
1045  */
1046 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1047 {
1048 	unsigned long requested = 1UL << order;
1049 
1050 	if (WARN_ON_ONCE(order >= MAX_ORDER))
1051 		return 0;
1052 
1053 	if (!info->free_blocks_total)
1054 		return 0;
1055 
1056 	/* Fragmentation index only makes sense when a request would fail */
1057 	if (info->free_blocks_suitable)
1058 		return -1000;
1059 
1060 	/*
1061 	 * Index is between 0 and 1 so return within 3 decimal places
1062 	 *
1063 	 * 0 => allocation would fail due to lack of memory
1064 	 * 1 => allocation would fail due to fragmentation
1065 	 */
1066 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1067 }
1068 
1069 /*
1070  * Calculates external fragmentation within a zone wrt the given order.
1071  * It is defined as the percentage of pages found in blocks of size
1072  * less than 1 << order. It returns values in range [0, 100].
1073  */
1074 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1075 {
1076 	struct contig_page_info info;
1077 
1078 	fill_contig_page_info(zone, order, &info);
1079 	if (info.free_pages == 0)
1080 		return 0;
1081 
1082 	return div_u64((info.free_pages -
1083 			(info.free_blocks_suitable << order)) * 100,
1084 			info.free_pages);
1085 }
1086 
1087 /* Same as __fragmentation index but allocs contig_page_info on stack */
1088 int fragmentation_index(struct zone *zone, unsigned int order)
1089 {
1090 	struct contig_page_info info;
1091 
1092 	fill_contig_page_info(zone, order, &info);
1093 	return __fragmentation_index(order, &info);
1094 }
1095 #endif
1096 
1097 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1098     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1099 #ifdef CONFIG_ZONE_DMA
1100 #define TEXT_FOR_DMA(xx) xx "_dma",
1101 #else
1102 #define TEXT_FOR_DMA(xx)
1103 #endif
1104 
1105 #ifdef CONFIG_ZONE_DMA32
1106 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1107 #else
1108 #define TEXT_FOR_DMA32(xx)
1109 #endif
1110 
1111 #ifdef CONFIG_HIGHMEM
1112 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1113 #else
1114 #define TEXT_FOR_HIGHMEM(xx)
1115 #endif
1116 
1117 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1118 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
1119 
1120 const char * const vmstat_text[] = {
1121 	/* enum zone_stat_item counters */
1122 	"nr_free_pages",
1123 	"nr_zone_inactive_anon",
1124 	"nr_zone_active_anon",
1125 	"nr_zone_inactive_file",
1126 	"nr_zone_active_file",
1127 	"nr_zone_unevictable",
1128 	"nr_zone_write_pending",
1129 	"nr_mlock",
1130 	"nr_bounce",
1131 #if IS_ENABLED(CONFIG_ZSMALLOC)
1132 	"nr_zspages",
1133 #endif
1134 	"nr_free_cma",
1135 
1136 	/* enum numa_stat_item counters */
1137 #ifdef CONFIG_NUMA
1138 	"numa_hit",
1139 	"numa_miss",
1140 	"numa_foreign",
1141 	"numa_interleave",
1142 	"numa_local",
1143 	"numa_other",
1144 #endif
1145 
1146 	/* enum node_stat_item counters */
1147 	"nr_inactive_anon",
1148 	"nr_active_anon",
1149 	"nr_inactive_file",
1150 	"nr_active_file",
1151 	"nr_unevictable",
1152 	"nr_slab_reclaimable",
1153 	"nr_slab_unreclaimable",
1154 	"nr_isolated_anon",
1155 	"nr_isolated_file",
1156 	"workingset_nodes",
1157 	"workingset_refault_anon",
1158 	"workingset_refault_file",
1159 	"workingset_activate_anon",
1160 	"workingset_activate_file",
1161 	"workingset_restore_anon",
1162 	"workingset_restore_file",
1163 	"workingset_nodereclaim",
1164 	"nr_anon_pages",
1165 	"nr_mapped",
1166 	"nr_file_pages",
1167 	"nr_dirty",
1168 	"nr_writeback",
1169 	"nr_writeback_temp",
1170 	"nr_shmem",
1171 	"nr_shmem_hugepages",
1172 	"nr_shmem_pmdmapped",
1173 	"nr_file_hugepages",
1174 	"nr_file_pmdmapped",
1175 	"nr_anon_transparent_hugepages",
1176 	"nr_vmscan_write",
1177 	"nr_vmscan_immediate_reclaim",
1178 	"nr_dirtied",
1179 	"nr_written",
1180 	"nr_kernel_misc_reclaimable",
1181 	"nr_foll_pin_acquired",
1182 	"nr_foll_pin_released",
1183 	"nr_kernel_stack",
1184 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1185 	"nr_shadow_call_stack",
1186 #endif
1187 	"nr_page_table_pages",
1188 #ifdef CONFIG_SWAP
1189 	"nr_swapcached",
1190 #endif
1191 
1192 	/* enum writeback_stat_item counters */
1193 	"nr_dirty_threshold",
1194 	"nr_dirty_background_threshold",
1195 
1196 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1197 	/* enum vm_event_item counters */
1198 	"pgpgin",
1199 	"pgpgout",
1200 	"pswpin",
1201 	"pswpout",
1202 
1203 	TEXTS_FOR_ZONES("pgalloc")
1204 	TEXTS_FOR_ZONES("allocstall")
1205 	TEXTS_FOR_ZONES("pgskip")
1206 
1207 	"pgfree",
1208 	"pgactivate",
1209 	"pgdeactivate",
1210 	"pglazyfree",
1211 
1212 	"pgfault",
1213 	"pgmajfault",
1214 	"pglazyfreed",
1215 
1216 	"pgrefill",
1217 	"pgreuse",
1218 	"pgsteal_kswapd",
1219 	"pgsteal_direct",
1220 	"pgdemote_kswapd",
1221 	"pgdemote_direct",
1222 	"pgscan_kswapd",
1223 	"pgscan_direct",
1224 	"pgscan_direct_throttle",
1225 	"pgscan_anon",
1226 	"pgscan_file",
1227 	"pgsteal_anon",
1228 	"pgsteal_file",
1229 
1230 #ifdef CONFIG_NUMA
1231 	"zone_reclaim_failed",
1232 #endif
1233 	"pginodesteal",
1234 	"slabs_scanned",
1235 	"kswapd_inodesteal",
1236 	"kswapd_low_wmark_hit_quickly",
1237 	"kswapd_high_wmark_hit_quickly",
1238 	"pageoutrun",
1239 
1240 	"pgrotated",
1241 
1242 	"drop_pagecache",
1243 	"drop_slab",
1244 	"oom_kill",
1245 
1246 #ifdef CONFIG_NUMA_BALANCING
1247 	"numa_pte_updates",
1248 	"numa_huge_pte_updates",
1249 	"numa_hint_faults",
1250 	"numa_hint_faults_local",
1251 	"numa_pages_migrated",
1252 #endif
1253 #ifdef CONFIG_MIGRATION
1254 	"pgmigrate_success",
1255 	"pgmigrate_fail",
1256 	"thp_migration_success",
1257 	"thp_migration_fail",
1258 	"thp_migration_split",
1259 #endif
1260 #ifdef CONFIG_COMPACTION
1261 	"compact_migrate_scanned",
1262 	"compact_free_scanned",
1263 	"compact_isolated",
1264 	"compact_stall",
1265 	"compact_fail",
1266 	"compact_success",
1267 	"compact_daemon_wake",
1268 	"compact_daemon_migrate_scanned",
1269 	"compact_daemon_free_scanned",
1270 #endif
1271 
1272 #ifdef CONFIG_HUGETLB_PAGE
1273 	"htlb_buddy_alloc_success",
1274 	"htlb_buddy_alloc_fail",
1275 #endif
1276 #ifdef CONFIG_CMA
1277 	"cma_alloc_success",
1278 	"cma_alloc_fail",
1279 #endif
1280 	"unevictable_pgs_culled",
1281 	"unevictable_pgs_scanned",
1282 	"unevictable_pgs_rescued",
1283 	"unevictable_pgs_mlocked",
1284 	"unevictable_pgs_munlocked",
1285 	"unevictable_pgs_cleared",
1286 	"unevictable_pgs_stranded",
1287 
1288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1289 	"thp_fault_alloc",
1290 	"thp_fault_fallback",
1291 	"thp_fault_fallback_charge",
1292 	"thp_collapse_alloc",
1293 	"thp_collapse_alloc_failed",
1294 	"thp_file_alloc",
1295 	"thp_file_fallback",
1296 	"thp_file_fallback_charge",
1297 	"thp_file_mapped",
1298 	"thp_split_page",
1299 	"thp_split_page_failed",
1300 	"thp_deferred_split_page",
1301 	"thp_split_pmd",
1302 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1303 	"thp_split_pud",
1304 #endif
1305 	"thp_zero_page_alloc",
1306 	"thp_zero_page_alloc_failed",
1307 	"thp_swpout",
1308 	"thp_swpout_fallback",
1309 #endif
1310 #ifdef CONFIG_MEMORY_BALLOON
1311 	"balloon_inflate",
1312 	"balloon_deflate",
1313 #ifdef CONFIG_BALLOON_COMPACTION
1314 	"balloon_migrate",
1315 #endif
1316 #endif /* CONFIG_MEMORY_BALLOON */
1317 #ifdef CONFIG_DEBUG_TLBFLUSH
1318 	"nr_tlb_remote_flush",
1319 	"nr_tlb_remote_flush_received",
1320 	"nr_tlb_local_flush_all",
1321 	"nr_tlb_local_flush_one",
1322 #endif /* CONFIG_DEBUG_TLBFLUSH */
1323 
1324 #ifdef CONFIG_DEBUG_VM_VMACACHE
1325 	"vmacache_find_calls",
1326 	"vmacache_find_hits",
1327 #endif
1328 #ifdef CONFIG_SWAP
1329 	"swap_ra",
1330 	"swap_ra_hit",
1331 #endif
1332 #ifdef CONFIG_X86
1333 	"direct_map_level2_splits",
1334 	"direct_map_level3_splits",
1335 #endif
1336 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1337 };
1338 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1339 
1340 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1341      defined(CONFIG_PROC_FS)
1342 static void *frag_start(struct seq_file *m, loff_t *pos)
1343 {
1344 	pg_data_t *pgdat;
1345 	loff_t node = *pos;
1346 
1347 	for (pgdat = first_online_pgdat();
1348 	     pgdat && node;
1349 	     pgdat = next_online_pgdat(pgdat))
1350 		--node;
1351 
1352 	return pgdat;
1353 }
1354 
1355 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1356 {
1357 	pg_data_t *pgdat = (pg_data_t *)arg;
1358 
1359 	(*pos)++;
1360 	return next_online_pgdat(pgdat);
1361 }
1362 
1363 static void frag_stop(struct seq_file *m, void *arg)
1364 {
1365 }
1366 
1367 /*
1368  * Walk zones in a node and print using a callback.
1369  * If @assert_populated is true, only use callback for zones that are populated.
1370  */
1371 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1372 		bool assert_populated, bool nolock,
1373 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1374 {
1375 	struct zone *zone;
1376 	struct zone *node_zones = pgdat->node_zones;
1377 	unsigned long flags;
1378 
1379 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1380 		if (assert_populated && !populated_zone(zone))
1381 			continue;
1382 
1383 		if (!nolock)
1384 			spin_lock_irqsave(&zone->lock, flags);
1385 		print(m, pgdat, zone);
1386 		if (!nolock)
1387 			spin_unlock_irqrestore(&zone->lock, flags);
1388 	}
1389 }
1390 #endif
1391 
1392 #ifdef CONFIG_PROC_FS
1393 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1394 						struct zone *zone)
1395 {
1396 	int order;
1397 
1398 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1399 	for (order = 0; order < MAX_ORDER; ++order)
1400 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1401 	seq_putc(m, '\n');
1402 }
1403 
1404 /*
1405  * This walks the free areas for each zone.
1406  */
1407 static int frag_show(struct seq_file *m, void *arg)
1408 {
1409 	pg_data_t *pgdat = (pg_data_t *)arg;
1410 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1411 	return 0;
1412 }
1413 
1414 static void pagetypeinfo_showfree_print(struct seq_file *m,
1415 					pg_data_t *pgdat, struct zone *zone)
1416 {
1417 	int order, mtype;
1418 
1419 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1420 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1421 					pgdat->node_id,
1422 					zone->name,
1423 					migratetype_names[mtype]);
1424 		for (order = 0; order < MAX_ORDER; ++order) {
1425 			unsigned long freecount = 0;
1426 			struct free_area *area;
1427 			struct list_head *curr;
1428 			bool overflow = false;
1429 
1430 			area = &(zone->free_area[order]);
1431 
1432 			list_for_each(curr, &area->free_list[mtype]) {
1433 				/*
1434 				 * Cap the free_list iteration because it might
1435 				 * be really large and we are under a spinlock
1436 				 * so a long time spent here could trigger a
1437 				 * hard lockup detector. Anyway this is a
1438 				 * debugging tool so knowing there is a handful
1439 				 * of pages of this order should be more than
1440 				 * sufficient.
1441 				 */
1442 				if (++freecount >= 100000) {
1443 					overflow = true;
1444 					break;
1445 				}
1446 			}
1447 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1448 			spin_unlock_irq(&zone->lock);
1449 			cond_resched();
1450 			spin_lock_irq(&zone->lock);
1451 		}
1452 		seq_putc(m, '\n');
1453 	}
1454 }
1455 
1456 /* Print out the free pages at each order for each migatetype */
1457 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1458 {
1459 	int order;
1460 	pg_data_t *pgdat = (pg_data_t *)arg;
1461 
1462 	/* Print header */
1463 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1464 	for (order = 0; order < MAX_ORDER; ++order)
1465 		seq_printf(m, "%6d ", order);
1466 	seq_putc(m, '\n');
1467 
1468 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1469 }
1470 
1471 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1472 					pg_data_t *pgdat, struct zone *zone)
1473 {
1474 	int mtype;
1475 	unsigned long pfn;
1476 	unsigned long start_pfn = zone->zone_start_pfn;
1477 	unsigned long end_pfn = zone_end_pfn(zone);
1478 	unsigned long count[MIGRATE_TYPES] = { 0, };
1479 
1480 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1481 		struct page *page;
1482 
1483 		page = pfn_to_online_page(pfn);
1484 		if (!page)
1485 			continue;
1486 
1487 		if (page_zone(page) != zone)
1488 			continue;
1489 
1490 		mtype = get_pageblock_migratetype(page);
1491 
1492 		if (mtype < MIGRATE_TYPES)
1493 			count[mtype]++;
1494 	}
1495 
1496 	/* Print counts */
1497 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1498 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1499 		seq_printf(m, "%12lu ", count[mtype]);
1500 	seq_putc(m, '\n');
1501 }
1502 
1503 /* Print out the number of pageblocks for each migratetype */
1504 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1505 {
1506 	int mtype;
1507 	pg_data_t *pgdat = (pg_data_t *)arg;
1508 
1509 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1510 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1511 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1512 	seq_putc(m, '\n');
1513 	walk_zones_in_node(m, pgdat, true, false,
1514 		pagetypeinfo_showblockcount_print);
1515 }
1516 
1517 /*
1518  * Print out the number of pageblocks for each migratetype that contain pages
1519  * of other types. This gives an indication of how well fallbacks are being
1520  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1521  * to determine what is going on
1522  */
1523 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1524 {
1525 #ifdef CONFIG_PAGE_OWNER
1526 	int mtype;
1527 
1528 	if (!static_branch_unlikely(&page_owner_inited))
1529 		return;
1530 
1531 	drain_all_pages(NULL);
1532 
1533 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1534 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1535 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1536 	seq_putc(m, '\n');
1537 
1538 	walk_zones_in_node(m, pgdat, true, true,
1539 		pagetypeinfo_showmixedcount_print);
1540 #endif /* CONFIG_PAGE_OWNER */
1541 }
1542 
1543 /*
1544  * This prints out statistics in relation to grouping pages by mobility.
1545  * It is expensive to collect so do not constantly read the file.
1546  */
1547 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1548 {
1549 	pg_data_t *pgdat = (pg_data_t *)arg;
1550 
1551 	/* check memoryless node */
1552 	if (!node_state(pgdat->node_id, N_MEMORY))
1553 		return 0;
1554 
1555 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1556 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1557 	seq_putc(m, '\n');
1558 	pagetypeinfo_showfree(m, pgdat);
1559 	pagetypeinfo_showblockcount(m, pgdat);
1560 	pagetypeinfo_showmixedcount(m, pgdat);
1561 
1562 	return 0;
1563 }
1564 
1565 static const struct seq_operations fragmentation_op = {
1566 	.start	= frag_start,
1567 	.next	= frag_next,
1568 	.stop	= frag_stop,
1569 	.show	= frag_show,
1570 };
1571 
1572 static const struct seq_operations pagetypeinfo_op = {
1573 	.start	= frag_start,
1574 	.next	= frag_next,
1575 	.stop	= frag_stop,
1576 	.show	= pagetypeinfo_show,
1577 };
1578 
1579 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1580 {
1581 	int zid;
1582 
1583 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 		struct zone *compare = &pgdat->node_zones[zid];
1585 
1586 		if (populated_zone(compare))
1587 			return zone == compare;
1588 	}
1589 
1590 	return false;
1591 }
1592 
1593 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1594 							struct zone *zone)
1595 {
1596 	int i;
1597 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1598 	if (is_zone_first_populated(pgdat, zone)) {
1599 		seq_printf(m, "\n  per-node stats");
1600 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1601 			unsigned long pages = node_page_state_pages(pgdat, i);
1602 
1603 			if (vmstat_item_print_in_thp(i))
1604 				pages /= HPAGE_PMD_NR;
1605 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1606 				   pages);
1607 		}
1608 	}
1609 	seq_printf(m,
1610 		   "\n  pages free     %lu"
1611 		   "\n        min      %lu"
1612 		   "\n        low      %lu"
1613 		   "\n        high     %lu"
1614 		   "\n        spanned  %lu"
1615 		   "\n        present  %lu"
1616 		   "\n        managed  %lu"
1617 		   "\n        cma      %lu",
1618 		   zone_page_state(zone, NR_FREE_PAGES),
1619 		   min_wmark_pages(zone),
1620 		   low_wmark_pages(zone),
1621 		   high_wmark_pages(zone),
1622 		   zone->spanned_pages,
1623 		   zone->present_pages,
1624 		   zone_managed_pages(zone),
1625 		   zone_cma_pages(zone));
1626 
1627 	seq_printf(m,
1628 		   "\n        protection: (%ld",
1629 		   zone->lowmem_reserve[0]);
1630 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1631 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1632 	seq_putc(m, ')');
1633 
1634 	/* If unpopulated, no other information is useful */
1635 	if (!populated_zone(zone)) {
1636 		seq_putc(m, '\n');
1637 		return;
1638 	}
1639 
1640 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1641 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1642 			   zone_page_state(zone, i));
1643 
1644 #ifdef CONFIG_NUMA
1645 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1646 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1647 			   zone_numa_event_state(zone, i));
1648 #endif
1649 
1650 	seq_printf(m, "\n  pagesets");
1651 	for_each_online_cpu(i) {
1652 		struct per_cpu_pages *pcp;
1653 		struct per_cpu_zonestat __maybe_unused *pzstats;
1654 
1655 		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1656 		seq_printf(m,
1657 			   "\n    cpu: %i"
1658 			   "\n              count: %i"
1659 			   "\n              high:  %i"
1660 			   "\n              batch: %i",
1661 			   i,
1662 			   pcp->count,
1663 			   pcp->high,
1664 			   pcp->batch);
1665 #ifdef CONFIG_SMP
1666 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1667 		seq_printf(m, "\n  vm stats threshold: %d",
1668 				pzstats->stat_threshold);
1669 #endif
1670 	}
1671 	seq_printf(m,
1672 		   "\n  node_unreclaimable:  %u"
1673 		   "\n  start_pfn:           %lu",
1674 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1675 		   zone->zone_start_pfn);
1676 	seq_putc(m, '\n');
1677 }
1678 
1679 /*
1680  * Output information about zones in @pgdat.  All zones are printed regardless
1681  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1682  * set of all zones and userspace would not be aware of such zones if they are
1683  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1684  */
1685 static int zoneinfo_show(struct seq_file *m, void *arg)
1686 {
1687 	pg_data_t *pgdat = (pg_data_t *)arg;
1688 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1689 	return 0;
1690 }
1691 
1692 static const struct seq_operations zoneinfo_op = {
1693 	.start	= frag_start, /* iterate over all zones. The same as in
1694 			       * fragmentation. */
1695 	.next	= frag_next,
1696 	.stop	= frag_stop,
1697 	.show	= zoneinfo_show,
1698 };
1699 
1700 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1701 			 NR_VM_NUMA_EVENT_ITEMS + \
1702 			 NR_VM_NODE_STAT_ITEMS + \
1703 			 NR_VM_WRITEBACK_STAT_ITEMS + \
1704 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1705 			  NR_VM_EVENT_ITEMS : 0))
1706 
1707 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1708 {
1709 	unsigned long *v;
1710 	int i;
1711 
1712 	if (*pos >= NR_VMSTAT_ITEMS)
1713 		return NULL;
1714 
1715 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1716 	fold_vm_numa_events();
1717 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1718 	m->private = v;
1719 	if (!v)
1720 		return ERR_PTR(-ENOMEM);
1721 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1722 		v[i] = global_zone_page_state(i);
1723 	v += NR_VM_ZONE_STAT_ITEMS;
1724 
1725 #ifdef CONFIG_NUMA
1726 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1727 		v[i] = global_numa_event_state(i);
1728 	v += NR_VM_NUMA_EVENT_ITEMS;
1729 #endif
1730 
1731 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1732 		v[i] = global_node_page_state_pages(i);
1733 		if (vmstat_item_print_in_thp(i))
1734 			v[i] /= HPAGE_PMD_NR;
1735 	}
1736 	v += NR_VM_NODE_STAT_ITEMS;
1737 
1738 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1739 			    v + NR_DIRTY_THRESHOLD);
1740 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1741 
1742 #ifdef CONFIG_VM_EVENT_COUNTERS
1743 	all_vm_events(v);
1744 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1745 	v[PGPGOUT] /= 2;
1746 #endif
1747 	return (unsigned long *)m->private + *pos;
1748 }
1749 
1750 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1751 {
1752 	(*pos)++;
1753 	if (*pos >= NR_VMSTAT_ITEMS)
1754 		return NULL;
1755 	return (unsigned long *)m->private + *pos;
1756 }
1757 
1758 static int vmstat_show(struct seq_file *m, void *arg)
1759 {
1760 	unsigned long *l = arg;
1761 	unsigned long off = l - (unsigned long *)m->private;
1762 
1763 	seq_puts(m, vmstat_text[off]);
1764 	seq_put_decimal_ull(m, " ", *l);
1765 	seq_putc(m, '\n');
1766 
1767 	if (off == NR_VMSTAT_ITEMS - 1) {
1768 		/*
1769 		 * We've come to the end - add any deprecated counters to avoid
1770 		 * breaking userspace which might depend on them being present.
1771 		 */
1772 		seq_puts(m, "nr_unstable 0\n");
1773 	}
1774 	return 0;
1775 }
1776 
1777 static void vmstat_stop(struct seq_file *m, void *arg)
1778 {
1779 	kfree(m->private);
1780 	m->private = NULL;
1781 }
1782 
1783 static const struct seq_operations vmstat_op = {
1784 	.start	= vmstat_start,
1785 	.next	= vmstat_next,
1786 	.stop	= vmstat_stop,
1787 	.show	= vmstat_show,
1788 };
1789 #endif /* CONFIG_PROC_FS */
1790 
1791 #ifdef CONFIG_SMP
1792 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1793 int sysctl_stat_interval __read_mostly = HZ;
1794 
1795 #ifdef CONFIG_PROC_FS
1796 static void refresh_vm_stats(struct work_struct *work)
1797 {
1798 	refresh_cpu_vm_stats(true);
1799 }
1800 
1801 int vmstat_refresh(struct ctl_table *table, int write,
1802 		   void *buffer, size_t *lenp, loff_t *ppos)
1803 {
1804 	long val;
1805 	int err;
1806 	int i;
1807 
1808 	/*
1809 	 * The regular update, every sysctl_stat_interval, may come later
1810 	 * than expected: leaving a significant amount in per_cpu buckets.
1811 	 * This is particularly misleading when checking a quantity of HUGE
1812 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1813 	 * which can equally be echo'ed to or cat'ted from (by root),
1814 	 * can be used to update the stats just before reading them.
1815 	 *
1816 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1817 	 * transiently negative values, report an error here if any of
1818 	 * the stats is negative, so we know to go looking for imbalance.
1819 	 */
1820 	err = schedule_on_each_cpu(refresh_vm_stats);
1821 	if (err)
1822 		return err;
1823 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1824 		/*
1825 		 * Skip checking stats known to go negative occasionally.
1826 		 */
1827 		switch (i) {
1828 		case NR_ZONE_WRITE_PENDING:
1829 		case NR_FREE_CMA_PAGES:
1830 			continue;
1831 		}
1832 		val = atomic_long_read(&vm_zone_stat[i]);
1833 		if (val < 0) {
1834 			pr_warn("%s: %s %ld\n",
1835 				__func__, zone_stat_name(i), val);
1836 		}
1837 	}
1838 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1839 		/*
1840 		 * Skip checking stats known to go negative occasionally.
1841 		 */
1842 		switch (i) {
1843 		case NR_WRITEBACK:
1844 			continue;
1845 		}
1846 		val = atomic_long_read(&vm_node_stat[i]);
1847 		if (val < 0) {
1848 			pr_warn("%s: %s %ld\n",
1849 				__func__, node_stat_name(i), val);
1850 		}
1851 	}
1852 	if (write)
1853 		*ppos += *lenp;
1854 	else
1855 		*lenp = 0;
1856 	return 0;
1857 }
1858 #endif /* CONFIG_PROC_FS */
1859 
1860 static void vmstat_update(struct work_struct *w)
1861 {
1862 	if (refresh_cpu_vm_stats(true)) {
1863 		/*
1864 		 * Counters were updated so we expect more updates
1865 		 * to occur in the future. Keep on running the
1866 		 * update worker thread.
1867 		 */
1868 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1869 				this_cpu_ptr(&vmstat_work),
1870 				round_jiffies_relative(sysctl_stat_interval));
1871 	}
1872 }
1873 
1874 /*
1875  * Check if the diffs for a certain cpu indicate that
1876  * an update is needed.
1877  */
1878 static bool need_update(int cpu)
1879 {
1880 	pg_data_t *last_pgdat = NULL;
1881 	struct zone *zone;
1882 
1883 	for_each_populated_zone(zone) {
1884 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1885 		struct per_cpu_nodestat *n;
1886 
1887 		/*
1888 		 * The fast way of checking if there are any vmstat diffs.
1889 		 */
1890 		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1891 			return true;
1892 
1893 		if (last_pgdat == zone->zone_pgdat)
1894 			continue;
1895 		last_pgdat = zone->zone_pgdat;
1896 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1897 		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1898 			return true;
1899 	}
1900 	return false;
1901 }
1902 
1903 /*
1904  * Switch off vmstat processing and then fold all the remaining differentials
1905  * until the diffs stay at zero. The function is used by NOHZ and can only be
1906  * invoked when tick processing is not active.
1907  */
1908 void quiet_vmstat(void)
1909 {
1910 	if (system_state != SYSTEM_RUNNING)
1911 		return;
1912 
1913 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1914 		return;
1915 
1916 	if (!need_update(smp_processor_id()))
1917 		return;
1918 
1919 	/*
1920 	 * Just refresh counters and do not care about the pending delayed
1921 	 * vmstat_update. It doesn't fire that often to matter and canceling
1922 	 * it would be too expensive from this path.
1923 	 * vmstat_shepherd will take care about that for us.
1924 	 */
1925 	refresh_cpu_vm_stats(false);
1926 }
1927 
1928 /*
1929  * Shepherd worker thread that checks the
1930  * differentials of processors that have their worker
1931  * threads for vm statistics updates disabled because of
1932  * inactivity.
1933  */
1934 static void vmstat_shepherd(struct work_struct *w);
1935 
1936 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1937 
1938 static void vmstat_shepherd(struct work_struct *w)
1939 {
1940 	int cpu;
1941 
1942 	cpus_read_lock();
1943 	/* Check processors whose vmstat worker threads have been disabled */
1944 	for_each_online_cpu(cpu) {
1945 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1946 
1947 		if (!delayed_work_pending(dw) && need_update(cpu))
1948 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1949 
1950 		cond_resched();
1951 	}
1952 	cpus_read_unlock();
1953 
1954 	schedule_delayed_work(&shepherd,
1955 		round_jiffies_relative(sysctl_stat_interval));
1956 }
1957 
1958 static void __init start_shepherd_timer(void)
1959 {
1960 	int cpu;
1961 
1962 	for_each_possible_cpu(cpu)
1963 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1964 			vmstat_update);
1965 
1966 	schedule_delayed_work(&shepherd,
1967 		round_jiffies_relative(sysctl_stat_interval));
1968 }
1969 
1970 static void __init init_cpu_node_state(void)
1971 {
1972 	int node;
1973 
1974 	for_each_online_node(node) {
1975 		if (cpumask_weight(cpumask_of_node(node)) > 0)
1976 			node_set_state(node, N_CPU);
1977 	}
1978 }
1979 
1980 static int vmstat_cpu_online(unsigned int cpu)
1981 {
1982 	refresh_zone_stat_thresholds();
1983 	node_set_state(cpu_to_node(cpu), N_CPU);
1984 	return 0;
1985 }
1986 
1987 static int vmstat_cpu_down_prep(unsigned int cpu)
1988 {
1989 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1990 	return 0;
1991 }
1992 
1993 static int vmstat_cpu_dead(unsigned int cpu)
1994 {
1995 	const struct cpumask *node_cpus;
1996 	int node;
1997 
1998 	node = cpu_to_node(cpu);
1999 
2000 	refresh_zone_stat_thresholds();
2001 	node_cpus = cpumask_of_node(node);
2002 	if (cpumask_weight(node_cpus) > 0)
2003 		return 0;
2004 
2005 	node_clear_state(node, N_CPU);
2006 	return 0;
2007 }
2008 
2009 #endif
2010 
2011 struct workqueue_struct *mm_percpu_wq;
2012 
2013 void __init init_mm_internals(void)
2014 {
2015 	int ret __maybe_unused;
2016 
2017 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2018 
2019 #ifdef CONFIG_SMP
2020 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2021 					NULL, vmstat_cpu_dead);
2022 	if (ret < 0)
2023 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2024 
2025 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2026 					vmstat_cpu_online,
2027 					vmstat_cpu_down_prep);
2028 	if (ret < 0)
2029 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2030 
2031 	cpus_read_lock();
2032 	init_cpu_node_state();
2033 	cpus_read_unlock();
2034 
2035 	start_shepherd_timer();
2036 #endif
2037 #ifdef CONFIG_PROC_FS
2038 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2039 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2040 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2041 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2042 #endif
2043 }
2044 
2045 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2046 
2047 /*
2048  * Return an index indicating how much of the available free memory is
2049  * unusable for an allocation of the requested size.
2050  */
2051 static int unusable_free_index(unsigned int order,
2052 				struct contig_page_info *info)
2053 {
2054 	/* No free memory is interpreted as all free memory is unusable */
2055 	if (info->free_pages == 0)
2056 		return 1000;
2057 
2058 	/*
2059 	 * Index should be a value between 0 and 1. Return a value to 3
2060 	 * decimal places.
2061 	 *
2062 	 * 0 => no fragmentation
2063 	 * 1 => high fragmentation
2064 	 */
2065 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2066 
2067 }
2068 
2069 static void unusable_show_print(struct seq_file *m,
2070 					pg_data_t *pgdat, struct zone *zone)
2071 {
2072 	unsigned int order;
2073 	int index;
2074 	struct contig_page_info info;
2075 
2076 	seq_printf(m, "Node %d, zone %8s ",
2077 				pgdat->node_id,
2078 				zone->name);
2079 	for (order = 0; order < MAX_ORDER; ++order) {
2080 		fill_contig_page_info(zone, order, &info);
2081 		index = unusable_free_index(order, &info);
2082 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2083 	}
2084 
2085 	seq_putc(m, '\n');
2086 }
2087 
2088 /*
2089  * Display unusable free space index
2090  *
2091  * The unusable free space index measures how much of the available free
2092  * memory cannot be used to satisfy an allocation of a given size and is a
2093  * value between 0 and 1. The higher the value, the more of free memory is
2094  * unusable and by implication, the worse the external fragmentation is. This
2095  * can be expressed as a percentage by multiplying by 100.
2096  */
2097 static int unusable_show(struct seq_file *m, void *arg)
2098 {
2099 	pg_data_t *pgdat = (pg_data_t *)arg;
2100 
2101 	/* check memoryless node */
2102 	if (!node_state(pgdat->node_id, N_MEMORY))
2103 		return 0;
2104 
2105 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2106 
2107 	return 0;
2108 }
2109 
2110 static const struct seq_operations unusable_sops = {
2111 	.start	= frag_start,
2112 	.next	= frag_next,
2113 	.stop	= frag_stop,
2114 	.show	= unusable_show,
2115 };
2116 
2117 DEFINE_SEQ_ATTRIBUTE(unusable);
2118 
2119 static void extfrag_show_print(struct seq_file *m,
2120 					pg_data_t *pgdat, struct zone *zone)
2121 {
2122 	unsigned int order;
2123 	int index;
2124 
2125 	/* Alloc on stack as interrupts are disabled for zone walk */
2126 	struct contig_page_info info;
2127 
2128 	seq_printf(m, "Node %d, zone %8s ",
2129 				pgdat->node_id,
2130 				zone->name);
2131 	for (order = 0; order < MAX_ORDER; ++order) {
2132 		fill_contig_page_info(zone, order, &info);
2133 		index = __fragmentation_index(order, &info);
2134 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2135 	}
2136 
2137 	seq_putc(m, '\n');
2138 }
2139 
2140 /*
2141  * Display fragmentation index for orders that allocations would fail for
2142  */
2143 static int extfrag_show(struct seq_file *m, void *arg)
2144 {
2145 	pg_data_t *pgdat = (pg_data_t *)arg;
2146 
2147 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2148 
2149 	return 0;
2150 }
2151 
2152 static const struct seq_operations extfrag_sops = {
2153 	.start	= frag_start,
2154 	.next	= frag_next,
2155 	.stop	= frag_stop,
2156 	.show	= extfrag_show,
2157 };
2158 
2159 DEFINE_SEQ_ATTRIBUTE(extfrag);
2160 
2161 static int __init extfrag_debug_init(void)
2162 {
2163 	struct dentry *extfrag_debug_root;
2164 
2165 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2166 
2167 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2168 			    &unusable_fops);
2169 
2170 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2171 			    &extfrag_fops);
2172 
2173 	return 0;
2174 }
2175 
2176 module_init(extfrag_debug_init);
2177 #endif
2178