xref: /linux/mm/vmstat.c (revision 2c373e75155bcc9c81060cdc07ee1b59e113bd2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31 
32 #include "internal.h"
33 
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36 
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 	int item, cpu;
41 
42 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 		atomic_long_set(&zone->vm_numa_event[item], 0);
44 		for_each_online_cpu(cpu) {
45 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 						= 0;
47 		}
48 	}
49 }
50 
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54 	struct zone *zone;
55 
56 	for_each_populated_zone(zone)
57 		zero_zone_numa_counters(zone);
58 }
59 
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63 	int item;
64 
65 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 		atomic_long_set(&vm_numa_event[item], 0);
67 }
68 
69 static void invalid_numa_statistics(void)
70 {
71 	zero_zones_numa_counters();
72 	zero_global_numa_counters();
73 }
74 
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76 
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 		void *buffer, size_t *length, loff_t *ppos)
79 {
80 	int ret, oldval;
81 
82 	mutex_lock(&vm_numa_stat_lock);
83 	if (write)
84 		oldval = sysctl_vm_numa_stat;
85 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 	if (ret || !write)
87 		goto out;
88 
89 	if (oldval == sysctl_vm_numa_stat)
90 		goto out;
91 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 		static_branch_enable(&vm_numa_stat_key);
93 		pr_info("enable numa statistics\n");
94 	} else {
95 		static_branch_disable(&vm_numa_stat_key);
96 		invalid_numa_statistics();
97 		pr_info("disable numa statistics, and clear numa counters\n");
98 	}
99 
100 out:
101 	mutex_unlock(&vm_numa_stat_lock);
102 	return ret;
103 }
104 #endif
105 
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109 
110 static void sum_vm_events(unsigned long *ret)
111 {
112 	int cpu;
113 	int i;
114 
115 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116 
117 	for_each_online_cpu(cpu) {
118 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119 
120 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 			ret[i] += this->event[i];
122 	}
123 }
124 
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132 	cpus_read_lock();
133 	sum_vm_events(ret);
134 	cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137 
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
144 void vm_events_fold_cpu(int cpu)
145 {
146 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 	int i;
148 
149 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 		count_vm_events(i, fold_state->event[i]);
151 		fold_state->event[i] = 0;
152 	}
153 }
154 
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156 
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167 
168 #ifdef CONFIG_NUMA
169 static void fold_vm_zone_numa_events(struct zone *zone)
170 {
171 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 	int cpu;
173 	enum numa_stat_item item;
174 
175 	for_each_online_cpu(cpu) {
176 		struct per_cpu_zonestat *pzstats;
177 
178 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 	}
182 
183 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 		zone_numa_event_add(zone_numa_events[item], zone, item);
185 }
186 
187 void fold_vm_numa_events(void)
188 {
189 	struct zone *zone;
190 
191 	for_each_populated_zone(zone)
192 		fold_vm_zone_numa_events(zone);
193 }
194 #endif
195 
196 #ifdef CONFIG_SMP
197 
198 int calculate_pressure_threshold(struct zone *zone)
199 {
200 	int threshold;
201 	int watermark_distance;
202 
203 	/*
204 	 * As vmstats are not up to date, there is drift between the estimated
205 	 * and real values. For high thresholds and a high number of CPUs, it
206 	 * is possible for the min watermark to be breached while the estimated
207 	 * value looks fine. The pressure threshold is a reduced value such
208 	 * that even the maximum amount of drift will not accidentally breach
209 	 * the min watermark
210 	 */
211 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213 
214 	/*
215 	 * Maximum threshold is 125
216 	 */
217 	threshold = min(125, threshold);
218 
219 	return threshold;
220 }
221 
222 int calculate_normal_threshold(struct zone *zone)
223 {
224 	int threshold;
225 	int mem;	/* memory in 128 MB units */
226 
227 	/*
228 	 * The threshold scales with the number of processors and the amount
229 	 * of memory per zone. More memory means that we can defer updates for
230 	 * longer, more processors could lead to more contention.
231  	 * fls() is used to have a cheap way of logarithmic scaling.
232 	 *
233 	 * Some sample thresholds:
234 	 *
235 	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
236 	 * ------------------------------------------------------------------
237 	 * 8		1		1	0.9-1 GB	4
238 	 * 16		2		2	0.9-1 GB	4
239 	 * 20 		2		2	1-2 GB		5
240 	 * 24		2		2	2-4 GB		6
241 	 * 28		2		2	4-8 GB		7
242 	 * 32		2		2	8-16 GB		8
243 	 * 4		2		2	<128M		1
244 	 * 30		4		3	2-4 GB		5
245 	 * 48		4		3	8-16 GB		8
246 	 * 32		8		4	1-2 GB		4
247 	 * 32		8		4	0.9-1GB		4
248 	 * 10		16		5	<128M		1
249 	 * 40		16		5	900M		4
250 	 * 70		64		7	2-4 GB		5
251 	 * 84		64		7	4-8 GB		6
252 	 * 108		512		9	4-8 GB		6
253 	 * 125		1024		10	8-16 GB		8
254 	 * 125		1024		10	16-32 GB	9
255 	 */
256 
257 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258 
259 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260 
261 	/*
262 	 * Maximum threshold is 125
263 	 */
264 	threshold = min(125, threshold);
265 
266 	return threshold;
267 }
268 
269 /*
270  * Refresh the thresholds for each zone.
271  */
272 void refresh_zone_stat_thresholds(void)
273 {
274 	struct pglist_data *pgdat;
275 	struct zone *zone;
276 	int cpu;
277 	int threshold;
278 
279 	/* Zero current pgdat thresholds */
280 	for_each_online_pgdat(pgdat) {
281 		for_each_online_cpu(cpu) {
282 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 		}
284 	}
285 
286 	for_each_populated_zone(zone) {
287 		struct pglist_data *pgdat = zone->zone_pgdat;
288 		unsigned long max_drift, tolerate_drift;
289 
290 		threshold = calculate_normal_threshold(zone);
291 
292 		for_each_online_cpu(cpu) {
293 			int pgdat_threshold;
294 
295 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 							= threshold;
297 
298 			/* Base nodestat threshold on the largest populated zone. */
299 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 				= max(threshold, pgdat_threshold);
302 		}
303 
304 		/*
305 		 * Only set percpu_drift_mark if there is a danger that
306 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 		 * the min watermark could be breached by an allocation
308 		 */
309 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 		max_drift = num_online_cpus() * threshold;
311 		if (max_drift > tolerate_drift)
312 			zone->percpu_drift_mark = high_wmark_pages(zone) +
313 					max_drift;
314 	}
315 }
316 
317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 				int (*calculate_pressure)(struct zone *))
319 {
320 	struct zone *zone;
321 	int cpu;
322 	int threshold;
323 	int i;
324 
325 	for (i = 0; i < pgdat->nr_zones; i++) {
326 		zone = &pgdat->node_zones[i];
327 		if (!zone->percpu_drift_mark)
328 			continue;
329 
330 		threshold = (*calculate_pressure)(zone);
331 		for_each_online_cpu(cpu)
332 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 							= threshold;
334 	}
335 }
336 
337 /*
338  * For use when we know that interrupts are disabled,
339  * or when we know that preemption is disabled and that
340  * particular counter cannot be updated from interrupt context.
341  */
342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 			   long delta)
344 {
345 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 	s8 __percpu *p = pcp->vm_stat_diff + item;
347 	long x;
348 	long t;
349 
350 	/*
351 	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 	 * atomicity is provided by IRQs being disabled -- either explicitly
353 	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 	 * CPU migrations and preemption potentially corrupts a counter so
355 	 * disable preemption.
356 	 */
357 	preempt_disable_nested();
358 
359 	x = delta + __this_cpu_read(*p);
360 
361 	t = __this_cpu_read(pcp->stat_threshold);
362 
363 	if (unlikely(abs(x) > t)) {
364 		zone_page_state_add(x, zone, item);
365 		x = 0;
366 	}
367 	__this_cpu_write(*p, x);
368 
369 	preempt_enable_nested();
370 }
371 EXPORT_SYMBOL(__mod_zone_page_state);
372 
373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 				long delta)
375 {
376 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 	long x;
379 	long t;
380 
381 	if (vmstat_item_in_bytes(item)) {
382 		/*
383 		 * Only cgroups use subpage accounting right now; at
384 		 * the global level, these items still change in
385 		 * multiples of whole pages. Store them as pages
386 		 * internally to keep the per-cpu counters compact.
387 		 */
388 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 		delta >>= PAGE_SHIFT;
390 	}
391 
392 	/* See __mod_node_page_state */
393 	preempt_disable_nested();
394 
395 	x = delta + __this_cpu_read(*p);
396 
397 	t = __this_cpu_read(pcp->stat_threshold);
398 
399 	if (unlikely(abs(x) > t)) {
400 		node_page_state_add(x, pgdat, item);
401 		x = 0;
402 	}
403 	__this_cpu_write(*p, x);
404 
405 	preempt_enable_nested();
406 }
407 EXPORT_SYMBOL(__mod_node_page_state);
408 
409 /*
410  * Optimized increment and decrement functions.
411  *
412  * These are only for a single page and therefore can take a struct page *
413  * argument instead of struct zone *. This allows the inclusion of the code
414  * generated for page_zone(page) into the optimized functions.
415  *
416  * No overflow check is necessary and therefore the differential can be
417  * incremented or decremented in place which may allow the compilers to
418  * generate better code.
419  * The increment or decrement is known and therefore one boundary check can
420  * be omitted.
421  *
422  * NOTE: These functions are very performance sensitive. Change only
423  * with care.
424  *
425  * Some processors have inc/dec instructions that are atomic vs an interrupt.
426  * However, the code must first determine the differential location in a zone
427  * based on the processor number and then inc/dec the counter. There is no
428  * guarantee without disabling preemption that the processor will not change
429  * in between and therefore the atomicity vs. interrupt cannot be exploited
430  * in a useful way here.
431  */
432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433 {
434 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 	s8 __percpu *p = pcp->vm_stat_diff + item;
436 	s8 v, t;
437 
438 	/* See __mod_node_page_state */
439 	preempt_disable_nested();
440 
441 	v = __this_cpu_inc_return(*p);
442 	t = __this_cpu_read(pcp->stat_threshold);
443 	if (unlikely(v > t)) {
444 		s8 overstep = t >> 1;
445 
446 		zone_page_state_add(v + overstep, zone, item);
447 		__this_cpu_write(*p, -overstep);
448 	}
449 
450 	preempt_enable_nested();
451 }
452 
453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454 {
455 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 	s8 v, t;
458 
459 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460 
461 	/* See __mod_node_page_state */
462 	preempt_disable_nested();
463 
464 	v = __this_cpu_inc_return(*p);
465 	t = __this_cpu_read(pcp->stat_threshold);
466 	if (unlikely(v > t)) {
467 		s8 overstep = t >> 1;
468 
469 		node_page_state_add(v + overstep, pgdat, item);
470 		__this_cpu_write(*p, -overstep);
471 	}
472 
473 	preempt_enable_nested();
474 }
475 
476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477 {
478 	__inc_zone_state(page_zone(page), item);
479 }
480 EXPORT_SYMBOL(__inc_zone_page_state);
481 
482 void __inc_node_page_state(struct page *page, enum node_stat_item item)
483 {
484 	__inc_node_state(page_pgdat(page), item);
485 }
486 EXPORT_SYMBOL(__inc_node_page_state);
487 
488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489 {
490 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 	s8 __percpu *p = pcp->vm_stat_diff + item;
492 	s8 v, t;
493 
494 	/* See __mod_node_page_state */
495 	preempt_disable_nested();
496 
497 	v = __this_cpu_dec_return(*p);
498 	t = __this_cpu_read(pcp->stat_threshold);
499 	if (unlikely(v < - t)) {
500 		s8 overstep = t >> 1;
501 
502 		zone_page_state_add(v - overstep, zone, item);
503 		__this_cpu_write(*p, overstep);
504 	}
505 
506 	preempt_enable_nested();
507 }
508 
509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510 {
511 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 	s8 v, t;
514 
515 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516 
517 	/* See __mod_node_page_state */
518 	preempt_disable_nested();
519 
520 	v = __this_cpu_dec_return(*p);
521 	t = __this_cpu_read(pcp->stat_threshold);
522 	if (unlikely(v < - t)) {
523 		s8 overstep = t >> 1;
524 
525 		node_page_state_add(v - overstep, pgdat, item);
526 		__this_cpu_write(*p, overstep);
527 	}
528 
529 	preempt_enable_nested();
530 }
531 
532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533 {
534 	__dec_zone_state(page_zone(page), item);
535 }
536 EXPORT_SYMBOL(__dec_zone_page_state);
537 
538 void __dec_node_page_state(struct page *page, enum node_stat_item item)
539 {
540 	__dec_node_state(page_pgdat(page), item);
541 }
542 EXPORT_SYMBOL(__dec_node_page_state);
543 
544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545 /*
546  * If we have cmpxchg_local support then we do not need to incur the overhead
547  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548  *
549  * mod_state() modifies the zone counter state through atomic per cpu
550  * operations.
551  *
552  * Overstep mode specifies how overstep should handled:
553  *     0       No overstepping
554  *     1       Overstepping half of threshold
555  *     -1      Overstepping minus half of threshold
556 */
557 static inline void mod_zone_state(struct zone *zone,
558        enum zone_stat_item item, long delta, int overstep_mode)
559 {
560 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 	s8 __percpu *p = pcp->vm_stat_diff + item;
562 	long n, t, z;
563 	s8 o;
564 
565 	o = this_cpu_read(*p);
566 	do {
567 		z = 0;  /* overflow to zone counters */
568 
569 		/*
570 		 * The fetching of the stat_threshold is racy. We may apply
571 		 * a counter threshold to the wrong the cpu if we get
572 		 * rescheduled while executing here. However, the next
573 		 * counter update will apply the threshold again and
574 		 * therefore bring the counter under the threshold again.
575 		 *
576 		 * Most of the time the thresholds are the same anyways
577 		 * for all cpus in a zone.
578 		 */
579 		t = this_cpu_read(pcp->stat_threshold);
580 
581 		n = delta + (long)o;
582 
583 		if (abs(n) > t) {
584 			int os = overstep_mode * (t >> 1) ;
585 
586 			/* Overflow must be added to zone counters */
587 			z = n + os;
588 			n = -os;
589 		}
590 	} while (!this_cpu_try_cmpxchg(*p, &o, n));
591 
592 	if (z)
593 		zone_page_state_add(z, zone, item);
594 }
595 
596 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597 			 long delta)
598 {
599 	mod_zone_state(zone, item, delta, 0);
600 }
601 EXPORT_SYMBOL(mod_zone_page_state);
602 
603 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604 {
605 	mod_zone_state(page_zone(page), item, 1, 1);
606 }
607 EXPORT_SYMBOL(inc_zone_page_state);
608 
609 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610 {
611 	mod_zone_state(page_zone(page), item, -1, -1);
612 }
613 EXPORT_SYMBOL(dec_zone_page_state);
614 
615 static inline void mod_node_state(struct pglist_data *pgdat,
616        enum node_stat_item item, int delta, int overstep_mode)
617 {
618 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
620 	long n, t, z;
621 	s8 o;
622 
623 	if (vmstat_item_in_bytes(item)) {
624 		/*
625 		 * Only cgroups use subpage accounting right now; at
626 		 * the global level, these items still change in
627 		 * multiples of whole pages. Store them as pages
628 		 * internally to keep the per-cpu counters compact.
629 		 */
630 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
631 		delta >>= PAGE_SHIFT;
632 	}
633 
634 	o = this_cpu_read(*p);
635 	do {
636 		z = 0;  /* overflow to node counters */
637 
638 		/*
639 		 * The fetching of the stat_threshold is racy. We may apply
640 		 * a counter threshold to the wrong the cpu if we get
641 		 * rescheduled while executing here. However, the next
642 		 * counter update will apply the threshold again and
643 		 * therefore bring the counter under the threshold again.
644 		 *
645 		 * Most of the time the thresholds are the same anyways
646 		 * for all cpus in a node.
647 		 */
648 		t = this_cpu_read(pcp->stat_threshold);
649 
650 		n = delta + (long)o;
651 
652 		if (abs(n) > t) {
653 			int os = overstep_mode * (t >> 1) ;
654 
655 			/* Overflow must be added to node counters */
656 			z = n + os;
657 			n = -os;
658 		}
659 	} while (!this_cpu_try_cmpxchg(*p, &o, n));
660 
661 	if (z)
662 		node_page_state_add(z, pgdat, item);
663 }
664 
665 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
666 					long delta)
667 {
668 	mod_node_state(pgdat, item, delta, 0);
669 }
670 EXPORT_SYMBOL(mod_node_page_state);
671 
672 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
673 {
674 	mod_node_state(pgdat, item, 1, 1);
675 }
676 
677 void inc_node_page_state(struct page *page, enum node_stat_item item)
678 {
679 	mod_node_state(page_pgdat(page), item, 1, 1);
680 }
681 EXPORT_SYMBOL(inc_node_page_state);
682 
683 void dec_node_page_state(struct page *page, enum node_stat_item item)
684 {
685 	mod_node_state(page_pgdat(page), item, -1, -1);
686 }
687 EXPORT_SYMBOL(dec_node_page_state);
688 #else
689 /*
690  * Use interrupt disable to serialize counter updates
691  */
692 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
693 			 long delta)
694 {
695 	unsigned long flags;
696 
697 	local_irq_save(flags);
698 	__mod_zone_page_state(zone, item, delta);
699 	local_irq_restore(flags);
700 }
701 EXPORT_SYMBOL(mod_zone_page_state);
702 
703 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
704 {
705 	unsigned long flags;
706 	struct zone *zone;
707 
708 	zone = page_zone(page);
709 	local_irq_save(flags);
710 	__inc_zone_state(zone, item);
711 	local_irq_restore(flags);
712 }
713 EXPORT_SYMBOL(inc_zone_page_state);
714 
715 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
716 {
717 	unsigned long flags;
718 
719 	local_irq_save(flags);
720 	__dec_zone_page_state(page, item);
721 	local_irq_restore(flags);
722 }
723 EXPORT_SYMBOL(dec_zone_page_state);
724 
725 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
726 {
727 	unsigned long flags;
728 
729 	local_irq_save(flags);
730 	__inc_node_state(pgdat, item);
731 	local_irq_restore(flags);
732 }
733 EXPORT_SYMBOL(inc_node_state);
734 
735 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
736 					long delta)
737 {
738 	unsigned long flags;
739 
740 	local_irq_save(flags);
741 	__mod_node_page_state(pgdat, item, delta);
742 	local_irq_restore(flags);
743 }
744 EXPORT_SYMBOL(mod_node_page_state);
745 
746 void inc_node_page_state(struct page *page, enum node_stat_item item)
747 {
748 	unsigned long flags;
749 	struct pglist_data *pgdat;
750 
751 	pgdat = page_pgdat(page);
752 	local_irq_save(flags);
753 	__inc_node_state(pgdat, item);
754 	local_irq_restore(flags);
755 }
756 EXPORT_SYMBOL(inc_node_page_state);
757 
758 void dec_node_page_state(struct page *page, enum node_stat_item item)
759 {
760 	unsigned long flags;
761 
762 	local_irq_save(flags);
763 	__dec_node_page_state(page, item);
764 	local_irq_restore(flags);
765 }
766 EXPORT_SYMBOL(dec_node_page_state);
767 #endif
768 
769 /*
770  * Fold a differential into the global counters.
771  * Returns the number of counters updated.
772  */
773 static int fold_diff(int *zone_diff, int *node_diff)
774 {
775 	int i;
776 	int changes = 0;
777 
778 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
779 		if (zone_diff[i]) {
780 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
781 			changes++;
782 	}
783 
784 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
785 		if (node_diff[i]) {
786 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
787 			changes++;
788 	}
789 	return changes;
790 }
791 
792 /*
793  * Update the zone counters for the current cpu.
794  *
795  * Note that refresh_cpu_vm_stats strives to only access
796  * node local memory. The per cpu pagesets on remote zones are placed
797  * in the memory local to the processor using that pageset. So the
798  * loop over all zones will access a series of cachelines local to
799  * the processor.
800  *
801  * The call to zone_page_state_add updates the cachelines with the
802  * statistics in the remote zone struct as well as the global cachelines
803  * with the global counters. These could cause remote node cache line
804  * bouncing and will have to be only done when necessary.
805  *
806  * The function returns the number of global counters updated.
807  */
808 static int refresh_cpu_vm_stats(bool do_pagesets)
809 {
810 	struct pglist_data *pgdat;
811 	struct zone *zone;
812 	int i;
813 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
814 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
815 	int changes = 0;
816 
817 	for_each_populated_zone(zone) {
818 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
819 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820 
821 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 			int v;
823 
824 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 			if (v) {
826 
827 				atomic_long_add(v, &zone->vm_stat[i]);
828 				global_zone_diff[i] += v;
829 #ifdef CONFIG_NUMA
830 				/* 3 seconds idle till flush */
831 				__this_cpu_write(pcp->expire, 3);
832 #endif
833 			}
834 		}
835 
836 		if (do_pagesets) {
837 			cond_resched();
838 
839 			changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
840 #ifdef CONFIG_NUMA
841 			/*
842 			 * Deal with draining the remote pageset of this
843 			 * processor
844 			 *
845 			 * Check if there are pages remaining in this pageset
846 			 * if not then there is nothing to expire.
847 			 */
848 			if (!__this_cpu_read(pcp->expire) ||
849 			       !__this_cpu_read(pcp->count))
850 				continue;
851 
852 			/*
853 			 * We never drain zones local to this processor.
854 			 */
855 			if (zone_to_nid(zone) == numa_node_id()) {
856 				__this_cpu_write(pcp->expire, 0);
857 				continue;
858 			}
859 
860 			if (__this_cpu_dec_return(pcp->expire)) {
861 				changes++;
862 				continue;
863 			}
864 
865 			if (__this_cpu_read(pcp->count)) {
866 				drain_zone_pages(zone, this_cpu_ptr(pcp));
867 				changes++;
868 			}
869 #endif
870 		}
871 	}
872 
873 	for_each_online_pgdat(pgdat) {
874 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
875 
876 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
877 			int v;
878 
879 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
880 			if (v) {
881 				atomic_long_add(v, &pgdat->vm_stat[i]);
882 				global_node_diff[i] += v;
883 			}
884 		}
885 	}
886 
887 	changes += fold_diff(global_zone_diff, global_node_diff);
888 	return changes;
889 }
890 
891 /*
892  * Fold the data for an offline cpu into the global array.
893  * There cannot be any access by the offline cpu and therefore
894  * synchronization is simplified.
895  */
896 void cpu_vm_stats_fold(int cpu)
897 {
898 	struct pglist_data *pgdat;
899 	struct zone *zone;
900 	int i;
901 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
902 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
903 
904 	for_each_populated_zone(zone) {
905 		struct per_cpu_zonestat *pzstats;
906 
907 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
908 
909 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
910 			if (pzstats->vm_stat_diff[i]) {
911 				int v;
912 
913 				v = pzstats->vm_stat_diff[i];
914 				pzstats->vm_stat_diff[i] = 0;
915 				atomic_long_add(v, &zone->vm_stat[i]);
916 				global_zone_diff[i] += v;
917 			}
918 		}
919 #ifdef CONFIG_NUMA
920 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
921 			if (pzstats->vm_numa_event[i]) {
922 				unsigned long v;
923 
924 				v = pzstats->vm_numa_event[i];
925 				pzstats->vm_numa_event[i] = 0;
926 				zone_numa_event_add(v, zone, i);
927 			}
928 		}
929 #endif
930 	}
931 
932 	for_each_online_pgdat(pgdat) {
933 		struct per_cpu_nodestat *p;
934 
935 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
936 
937 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
938 			if (p->vm_node_stat_diff[i]) {
939 				int v;
940 
941 				v = p->vm_node_stat_diff[i];
942 				p->vm_node_stat_diff[i] = 0;
943 				atomic_long_add(v, &pgdat->vm_stat[i]);
944 				global_node_diff[i] += v;
945 			}
946 	}
947 
948 	fold_diff(global_zone_diff, global_node_diff);
949 }
950 
951 /*
952  * this is only called if !populated_zone(zone), which implies no other users of
953  * pset->vm_stat_diff[] exist.
954  */
955 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
956 {
957 	unsigned long v;
958 	int i;
959 
960 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
961 		if (pzstats->vm_stat_diff[i]) {
962 			v = pzstats->vm_stat_diff[i];
963 			pzstats->vm_stat_diff[i] = 0;
964 			zone_page_state_add(v, zone, i);
965 		}
966 	}
967 
968 #ifdef CONFIG_NUMA
969 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
970 		if (pzstats->vm_numa_event[i]) {
971 			v = pzstats->vm_numa_event[i];
972 			pzstats->vm_numa_event[i] = 0;
973 			zone_numa_event_add(v, zone, i);
974 		}
975 	}
976 #endif
977 }
978 #endif
979 
980 #ifdef CONFIG_NUMA
981 /*
982  * Determine the per node value of a stat item. This function
983  * is called frequently in a NUMA machine, so try to be as
984  * frugal as possible.
985  */
986 unsigned long sum_zone_node_page_state(int node,
987 				 enum zone_stat_item item)
988 {
989 	struct zone *zones = NODE_DATA(node)->node_zones;
990 	int i;
991 	unsigned long count = 0;
992 
993 	for (i = 0; i < MAX_NR_ZONES; i++)
994 		count += zone_page_state(zones + i, item);
995 
996 	return count;
997 }
998 
999 /* Determine the per node value of a numa stat item. */
1000 unsigned long sum_zone_numa_event_state(int node,
1001 				 enum numa_stat_item item)
1002 {
1003 	struct zone *zones = NODE_DATA(node)->node_zones;
1004 	unsigned long count = 0;
1005 	int i;
1006 
1007 	for (i = 0; i < MAX_NR_ZONES; i++)
1008 		count += zone_numa_event_state(zones + i, item);
1009 
1010 	return count;
1011 }
1012 
1013 /*
1014  * Determine the per node value of a stat item.
1015  */
1016 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1017 				    enum node_stat_item item)
1018 {
1019 	long x = atomic_long_read(&pgdat->vm_stat[item]);
1020 #ifdef CONFIG_SMP
1021 	if (x < 0)
1022 		x = 0;
1023 #endif
1024 	return x;
1025 }
1026 
1027 unsigned long node_page_state(struct pglist_data *pgdat,
1028 			      enum node_stat_item item)
1029 {
1030 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1031 
1032 	return node_page_state_pages(pgdat, item);
1033 }
1034 #endif
1035 
1036 #ifdef CONFIG_COMPACTION
1037 
1038 struct contig_page_info {
1039 	unsigned long free_pages;
1040 	unsigned long free_blocks_total;
1041 	unsigned long free_blocks_suitable;
1042 };
1043 
1044 /*
1045  * Calculate the number of free pages in a zone, how many contiguous
1046  * pages are free and how many are large enough to satisfy an allocation of
1047  * the target size. Note that this function makes no attempt to estimate
1048  * how many suitable free blocks there *might* be if MOVABLE pages were
1049  * migrated. Calculating that is possible, but expensive and can be
1050  * figured out from userspace
1051  */
1052 static void fill_contig_page_info(struct zone *zone,
1053 				unsigned int suitable_order,
1054 				struct contig_page_info *info)
1055 {
1056 	unsigned int order;
1057 
1058 	info->free_pages = 0;
1059 	info->free_blocks_total = 0;
1060 	info->free_blocks_suitable = 0;
1061 
1062 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
1063 		unsigned long blocks;
1064 
1065 		/*
1066 		 * Count number of free blocks.
1067 		 *
1068 		 * Access to nr_free is lockless as nr_free is used only for
1069 		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1070 		 */
1071 		blocks = data_race(zone->free_area[order].nr_free);
1072 		info->free_blocks_total += blocks;
1073 
1074 		/* Count free base pages */
1075 		info->free_pages += blocks << order;
1076 
1077 		/* Count the suitable free blocks */
1078 		if (order >= suitable_order)
1079 			info->free_blocks_suitable += blocks <<
1080 						(order - suitable_order);
1081 	}
1082 }
1083 
1084 /*
1085  * A fragmentation index only makes sense if an allocation of a requested
1086  * size would fail. If that is true, the fragmentation index indicates
1087  * whether external fragmentation or a lack of memory was the problem.
1088  * The value can be used to determine if page reclaim or compaction
1089  * should be used
1090  */
1091 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1092 {
1093 	unsigned long requested = 1UL << order;
1094 
1095 	if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1096 		return 0;
1097 
1098 	if (!info->free_blocks_total)
1099 		return 0;
1100 
1101 	/* Fragmentation index only makes sense when a request would fail */
1102 	if (info->free_blocks_suitable)
1103 		return -1000;
1104 
1105 	/*
1106 	 * Index is between 0 and 1 so return within 3 decimal places
1107 	 *
1108 	 * 0 => allocation would fail due to lack of memory
1109 	 * 1 => allocation would fail due to fragmentation
1110 	 */
1111 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1112 }
1113 
1114 /*
1115  * Calculates external fragmentation within a zone wrt the given order.
1116  * It is defined as the percentage of pages found in blocks of size
1117  * less than 1 << order. It returns values in range [0, 100].
1118  */
1119 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1120 {
1121 	struct contig_page_info info;
1122 
1123 	fill_contig_page_info(zone, order, &info);
1124 	if (info.free_pages == 0)
1125 		return 0;
1126 
1127 	return div_u64((info.free_pages -
1128 			(info.free_blocks_suitable << order)) * 100,
1129 			info.free_pages);
1130 }
1131 
1132 /* Same as __fragmentation index but allocs contig_page_info on stack */
1133 int fragmentation_index(struct zone *zone, unsigned int order)
1134 {
1135 	struct contig_page_info info;
1136 
1137 	fill_contig_page_info(zone, order, &info);
1138 	return __fragmentation_index(order, &info);
1139 }
1140 #endif
1141 
1142 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1143     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1144 #ifdef CONFIG_ZONE_DMA
1145 #define TEXT_FOR_DMA(xx) xx "_dma",
1146 #else
1147 #define TEXT_FOR_DMA(xx)
1148 #endif
1149 
1150 #ifdef CONFIG_ZONE_DMA32
1151 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1152 #else
1153 #define TEXT_FOR_DMA32(xx)
1154 #endif
1155 
1156 #ifdef CONFIG_HIGHMEM
1157 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1158 #else
1159 #define TEXT_FOR_HIGHMEM(xx)
1160 #endif
1161 
1162 #ifdef CONFIG_ZONE_DEVICE
1163 #define TEXT_FOR_DEVICE(xx) xx "_device",
1164 #else
1165 #define TEXT_FOR_DEVICE(xx)
1166 #endif
1167 
1168 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1169 					TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1170 					TEXT_FOR_DEVICE(xx)
1171 
1172 const char * const vmstat_text[] = {
1173 	/* enum zone_stat_item counters */
1174 	"nr_free_pages",
1175 	"nr_zone_inactive_anon",
1176 	"nr_zone_active_anon",
1177 	"nr_zone_inactive_file",
1178 	"nr_zone_active_file",
1179 	"nr_zone_unevictable",
1180 	"nr_zone_write_pending",
1181 	"nr_mlock",
1182 	"nr_bounce",
1183 #if IS_ENABLED(CONFIG_ZSMALLOC)
1184 	"nr_zspages",
1185 #endif
1186 	"nr_free_cma",
1187 #ifdef CONFIG_UNACCEPTED_MEMORY
1188 	"nr_unaccepted",
1189 #endif
1190 
1191 	/* enum numa_stat_item counters */
1192 #ifdef CONFIG_NUMA
1193 	"numa_hit",
1194 	"numa_miss",
1195 	"numa_foreign",
1196 	"numa_interleave",
1197 	"numa_local",
1198 	"numa_other",
1199 #endif
1200 
1201 	/* enum node_stat_item counters */
1202 	"nr_inactive_anon",
1203 	"nr_active_anon",
1204 	"nr_inactive_file",
1205 	"nr_active_file",
1206 	"nr_unevictable",
1207 	"nr_slab_reclaimable",
1208 	"nr_slab_unreclaimable",
1209 	"nr_isolated_anon",
1210 	"nr_isolated_file",
1211 	"workingset_nodes",
1212 	"workingset_refault_anon",
1213 	"workingset_refault_file",
1214 	"workingset_activate_anon",
1215 	"workingset_activate_file",
1216 	"workingset_restore_anon",
1217 	"workingset_restore_file",
1218 	"workingset_nodereclaim",
1219 	"nr_anon_pages",
1220 	"nr_mapped",
1221 	"nr_file_pages",
1222 	"nr_dirty",
1223 	"nr_writeback",
1224 	"nr_writeback_temp",
1225 	"nr_shmem",
1226 	"nr_shmem_hugepages",
1227 	"nr_shmem_pmdmapped",
1228 	"nr_file_hugepages",
1229 	"nr_file_pmdmapped",
1230 	"nr_anon_transparent_hugepages",
1231 	"nr_vmscan_write",
1232 	"nr_vmscan_immediate_reclaim",
1233 	"nr_dirtied",
1234 	"nr_written",
1235 	"nr_throttled_written",
1236 	"nr_kernel_misc_reclaimable",
1237 	"nr_foll_pin_acquired",
1238 	"nr_foll_pin_released",
1239 	"nr_kernel_stack",
1240 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1241 	"nr_shadow_call_stack",
1242 #endif
1243 	"nr_page_table_pages",
1244 	"nr_sec_page_table_pages",
1245 #ifdef CONFIG_SWAP
1246 	"nr_swapcached",
1247 #endif
1248 #ifdef CONFIG_NUMA_BALANCING
1249 	"pgpromote_success",
1250 	"pgpromote_candidate",
1251 #endif
1252 	"pgdemote_kswapd",
1253 	"pgdemote_direct",
1254 	"pgdemote_khugepaged",
1255 
1256 	/* enum writeback_stat_item counters */
1257 	"nr_dirty_threshold",
1258 	"nr_dirty_background_threshold",
1259 
1260 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1261 	/* enum vm_event_item counters */
1262 	"pgpgin",
1263 	"pgpgout",
1264 	"pswpin",
1265 	"pswpout",
1266 
1267 	TEXTS_FOR_ZONES("pgalloc")
1268 	TEXTS_FOR_ZONES("allocstall")
1269 	TEXTS_FOR_ZONES("pgskip")
1270 
1271 	"pgfree",
1272 	"pgactivate",
1273 	"pgdeactivate",
1274 	"pglazyfree",
1275 
1276 	"pgfault",
1277 	"pgmajfault",
1278 	"pglazyfreed",
1279 
1280 	"pgrefill",
1281 	"pgreuse",
1282 	"pgsteal_kswapd",
1283 	"pgsteal_direct",
1284 	"pgsteal_khugepaged",
1285 	"pgscan_kswapd",
1286 	"pgscan_direct",
1287 	"pgscan_khugepaged",
1288 	"pgscan_direct_throttle",
1289 	"pgscan_anon",
1290 	"pgscan_file",
1291 	"pgsteal_anon",
1292 	"pgsteal_file",
1293 
1294 #ifdef CONFIG_NUMA
1295 	"zone_reclaim_failed",
1296 #endif
1297 	"pginodesteal",
1298 	"slabs_scanned",
1299 	"kswapd_inodesteal",
1300 	"kswapd_low_wmark_hit_quickly",
1301 	"kswapd_high_wmark_hit_quickly",
1302 	"pageoutrun",
1303 
1304 	"pgrotated",
1305 
1306 	"drop_pagecache",
1307 	"drop_slab",
1308 	"oom_kill",
1309 
1310 #ifdef CONFIG_NUMA_BALANCING
1311 	"numa_pte_updates",
1312 	"numa_huge_pte_updates",
1313 	"numa_hint_faults",
1314 	"numa_hint_faults_local",
1315 	"numa_pages_migrated",
1316 #endif
1317 #ifdef CONFIG_MIGRATION
1318 	"pgmigrate_success",
1319 	"pgmigrate_fail",
1320 	"thp_migration_success",
1321 	"thp_migration_fail",
1322 	"thp_migration_split",
1323 #endif
1324 #ifdef CONFIG_COMPACTION
1325 	"compact_migrate_scanned",
1326 	"compact_free_scanned",
1327 	"compact_isolated",
1328 	"compact_stall",
1329 	"compact_fail",
1330 	"compact_success",
1331 	"compact_daemon_wake",
1332 	"compact_daemon_migrate_scanned",
1333 	"compact_daemon_free_scanned",
1334 #endif
1335 
1336 #ifdef CONFIG_HUGETLB_PAGE
1337 	"htlb_buddy_alloc_success",
1338 	"htlb_buddy_alloc_fail",
1339 #endif
1340 #ifdef CONFIG_CMA
1341 	"cma_alloc_success",
1342 	"cma_alloc_fail",
1343 #endif
1344 	"unevictable_pgs_culled",
1345 	"unevictable_pgs_scanned",
1346 	"unevictable_pgs_rescued",
1347 	"unevictable_pgs_mlocked",
1348 	"unevictable_pgs_munlocked",
1349 	"unevictable_pgs_cleared",
1350 	"unevictable_pgs_stranded",
1351 
1352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353 	"thp_fault_alloc",
1354 	"thp_fault_fallback",
1355 	"thp_fault_fallback_charge",
1356 	"thp_collapse_alloc",
1357 	"thp_collapse_alloc_failed",
1358 	"thp_file_alloc",
1359 	"thp_file_fallback",
1360 	"thp_file_fallback_charge",
1361 	"thp_file_mapped",
1362 	"thp_split_page",
1363 	"thp_split_page_failed",
1364 	"thp_deferred_split_page",
1365 	"thp_split_pmd",
1366 	"thp_scan_exceed_none_pte",
1367 	"thp_scan_exceed_swap_pte",
1368 	"thp_scan_exceed_share_pte",
1369 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1370 	"thp_split_pud",
1371 #endif
1372 	"thp_zero_page_alloc",
1373 	"thp_zero_page_alloc_failed",
1374 	"thp_swpout",
1375 	"thp_swpout_fallback",
1376 #endif
1377 #ifdef CONFIG_MEMORY_BALLOON
1378 	"balloon_inflate",
1379 	"balloon_deflate",
1380 #ifdef CONFIG_BALLOON_COMPACTION
1381 	"balloon_migrate",
1382 #endif
1383 #endif /* CONFIG_MEMORY_BALLOON */
1384 #ifdef CONFIG_DEBUG_TLBFLUSH
1385 	"nr_tlb_remote_flush",
1386 	"nr_tlb_remote_flush_received",
1387 	"nr_tlb_local_flush_all",
1388 	"nr_tlb_local_flush_one",
1389 #endif /* CONFIG_DEBUG_TLBFLUSH */
1390 
1391 #ifdef CONFIG_SWAP
1392 	"swap_ra",
1393 	"swap_ra_hit",
1394 #ifdef CONFIG_KSM
1395 	"ksm_swpin_copy",
1396 #endif
1397 #endif
1398 #ifdef CONFIG_KSM
1399 	"cow_ksm",
1400 #endif
1401 #ifdef CONFIG_ZSWAP
1402 	"zswpin",
1403 	"zswpout",
1404 	"zswpwb",
1405 #endif
1406 #ifdef CONFIG_X86
1407 	"direct_map_level2_splits",
1408 	"direct_map_level3_splits",
1409 #endif
1410 #ifdef CONFIG_PER_VMA_LOCK_STATS
1411 	"vma_lock_success",
1412 	"vma_lock_abort",
1413 	"vma_lock_retry",
1414 	"vma_lock_miss",
1415 #endif
1416 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1417 };
1418 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1419 
1420 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1421      defined(CONFIG_PROC_FS)
1422 static void *frag_start(struct seq_file *m, loff_t *pos)
1423 {
1424 	pg_data_t *pgdat;
1425 	loff_t node = *pos;
1426 
1427 	for (pgdat = first_online_pgdat();
1428 	     pgdat && node;
1429 	     pgdat = next_online_pgdat(pgdat))
1430 		--node;
1431 
1432 	return pgdat;
1433 }
1434 
1435 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1436 {
1437 	pg_data_t *pgdat = (pg_data_t *)arg;
1438 
1439 	(*pos)++;
1440 	return next_online_pgdat(pgdat);
1441 }
1442 
1443 static void frag_stop(struct seq_file *m, void *arg)
1444 {
1445 }
1446 
1447 /*
1448  * Walk zones in a node and print using a callback.
1449  * If @assert_populated is true, only use callback for zones that are populated.
1450  */
1451 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1452 		bool assert_populated, bool nolock,
1453 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1454 {
1455 	struct zone *zone;
1456 	struct zone *node_zones = pgdat->node_zones;
1457 	unsigned long flags;
1458 
1459 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1460 		if (assert_populated && !populated_zone(zone))
1461 			continue;
1462 
1463 		if (!nolock)
1464 			spin_lock_irqsave(&zone->lock, flags);
1465 		print(m, pgdat, zone);
1466 		if (!nolock)
1467 			spin_unlock_irqrestore(&zone->lock, flags);
1468 	}
1469 }
1470 #endif
1471 
1472 #ifdef CONFIG_PROC_FS
1473 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1474 						struct zone *zone)
1475 {
1476 	int order;
1477 
1478 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1479 	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1480 		/*
1481 		 * Access to nr_free is lockless as nr_free is used only for
1482 		 * printing purposes. Use data_race to avoid KCSAN warning.
1483 		 */
1484 		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1485 	seq_putc(m, '\n');
1486 }
1487 
1488 /*
1489  * This walks the free areas for each zone.
1490  */
1491 static int frag_show(struct seq_file *m, void *arg)
1492 {
1493 	pg_data_t *pgdat = (pg_data_t *)arg;
1494 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1495 	return 0;
1496 }
1497 
1498 static void pagetypeinfo_showfree_print(struct seq_file *m,
1499 					pg_data_t *pgdat, struct zone *zone)
1500 {
1501 	int order, mtype;
1502 
1503 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1504 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1505 					pgdat->node_id,
1506 					zone->name,
1507 					migratetype_names[mtype]);
1508 		for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1509 			unsigned long freecount = 0;
1510 			struct free_area *area;
1511 			struct list_head *curr;
1512 			bool overflow = false;
1513 
1514 			area = &(zone->free_area[order]);
1515 
1516 			list_for_each(curr, &area->free_list[mtype]) {
1517 				/*
1518 				 * Cap the free_list iteration because it might
1519 				 * be really large and we are under a spinlock
1520 				 * so a long time spent here could trigger a
1521 				 * hard lockup detector. Anyway this is a
1522 				 * debugging tool so knowing there is a handful
1523 				 * of pages of this order should be more than
1524 				 * sufficient.
1525 				 */
1526 				if (++freecount >= 100000) {
1527 					overflow = true;
1528 					break;
1529 				}
1530 			}
1531 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1532 			spin_unlock_irq(&zone->lock);
1533 			cond_resched();
1534 			spin_lock_irq(&zone->lock);
1535 		}
1536 		seq_putc(m, '\n');
1537 	}
1538 }
1539 
1540 /* Print out the free pages at each order for each migatetype */
1541 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1542 {
1543 	int order;
1544 	pg_data_t *pgdat = (pg_data_t *)arg;
1545 
1546 	/* Print header */
1547 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1548 	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1549 		seq_printf(m, "%6d ", order);
1550 	seq_putc(m, '\n');
1551 
1552 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1553 }
1554 
1555 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1556 					pg_data_t *pgdat, struct zone *zone)
1557 {
1558 	int mtype;
1559 	unsigned long pfn;
1560 	unsigned long start_pfn = zone->zone_start_pfn;
1561 	unsigned long end_pfn = zone_end_pfn(zone);
1562 	unsigned long count[MIGRATE_TYPES] = { 0, };
1563 
1564 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1565 		struct page *page;
1566 
1567 		page = pfn_to_online_page(pfn);
1568 		if (!page)
1569 			continue;
1570 
1571 		if (page_zone(page) != zone)
1572 			continue;
1573 
1574 		mtype = get_pageblock_migratetype(page);
1575 
1576 		if (mtype < MIGRATE_TYPES)
1577 			count[mtype]++;
1578 	}
1579 
1580 	/* Print counts */
1581 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1582 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1583 		seq_printf(m, "%12lu ", count[mtype]);
1584 	seq_putc(m, '\n');
1585 }
1586 
1587 /* Print out the number of pageblocks for each migratetype */
1588 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1589 {
1590 	int mtype;
1591 	pg_data_t *pgdat = (pg_data_t *)arg;
1592 
1593 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1594 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1595 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1596 	seq_putc(m, '\n');
1597 	walk_zones_in_node(m, pgdat, true, false,
1598 		pagetypeinfo_showblockcount_print);
1599 }
1600 
1601 /*
1602  * Print out the number of pageblocks for each migratetype that contain pages
1603  * of other types. This gives an indication of how well fallbacks are being
1604  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1605  * to determine what is going on
1606  */
1607 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1608 {
1609 #ifdef CONFIG_PAGE_OWNER
1610 	int mtype;
1611 
1612 	if (!static_branch_unlikely(&page_owner_inited))
1613 		return;
1614 
1615 	drain_all_pages(NULL);
1616 
1617 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1618 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1619 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1620 	seq_putc(m, '\n');
1621 
1622 	walk_zones_in_node(m, pgdat, true, true,
1623 		pagetypeinfo_showmixedcount_print);
1624 #endif /* CONFIG_PAGE_OWNER */
1625 }
1626 
1627 /*
1628  * This prints out statistics in relation to grouping pages by mobility.
1629  * It is expensive to collect so do not constantly read the file.
1630  */
1631 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1632 {
1633 	pg_data_t *pgdat = (pg_data_t *)arg;
1634 
1635 	/* check memoryless node */
1636 	if (!node_state(pgdat->node_id, N_MEMORY))
1637 		return 0;
1638 
1639 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1640 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1641 	seq_putc(m, '\n');
1642 	pagetypeinfo_showfree(m, pgdat);
1643 	pagetypeinfo_showblockcount(m, pgdat);
1644 	pagetypeinfo_showmixedcount(m, pgdat);
1645 
1646 	return 0;
1647 }
1648 
1649 static const struct seq_operations fragmentation_op = {
1650 	.start	= frag_start,
1651 	.next	= frag_next,
1652 	.stop	= frag_stop,
1653 	.show	= frag_show,
1654 };
1655 
1656 static const struct seq_operations pagetypeinfo_op = {
1657 	.start	= frag_start,
1658 	.next	= frag_next,
1659 	.stop	= frag_stop,
1660 	.show	= pagetypeinfo_show,
1661 };
1662 
1663 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1664 {
1665 	int zid;
1666 
1667 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1668 		struct zone *compare = &pgdat->node_zones[zid];
1669 
1670 		if (populated_zone(compare))
1671 			return zone == compare;
1672 	}
1673 
1674 	return false;
1675 }
1676 
1677 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1678 							struct zone *zone)
1679 {
1680 	int i;
1681 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1682 	if (is_zone_first_populated(pgdat, zone)) {
1683 		seq_printf(m, "\n  per-node stats");
1684 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1685 			unsigned long pages = node_page_state_pages(pgdat, i);
1686 
1687 			if (vmstat_item_print_in_thp(i))
1688 				pages /= HPAGE_PMD_NR;
1689 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1690 				   pages);
1691 		}
1692 	}
1693 	seq_printf(m,
1694 		   "\n  pages free     %lu"
1695 		   "\n        boost    %lu"
1696 		   "\n        min      %lu"
1697 		   "\n        low      %lu"
1698 		   "\n        high     %lu"
1699 		   "\n        spanned  %lu"
1700 		   "\n        present  %lu"
1701 		   "\n        managed  %lu"
1702 		   "\n        cma      %lu",
1703 		   zone_page_state(zone, NR_FREE_PAGES),
1704 		   zone->watermark_boost,
1705 		   min_wmark_pages(zone),
1706 		   low_wmark_pages(zone),
1707 		   high_wmark_pages(zone),
1708 		   zone->spanned_pages,
1709 		   zone->present_pages,
1710 		   zone_managed_pages(zone),
1711 		   zone_cma_pages(zone));
1712 
1713 	seq_printf(m,
1714 		   "\n        protection: (%ld",
1715 		   zone->lowmem_reserve[0]);
1716 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1717 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1718 	seq_putc(m, ')');
1719 
1720 	/* If unpopulated, no other information is useful */
1721 	if (!populated_zone(zone)) {
1722 		seq_putc(m, '\n');
1723 		return;
1724 	}
1725 
1726 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1727 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1728 			   zone_page_state(zone, i));
1729 
1730 #ifdef CONFIG_NUMA
1731 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1732 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1733 			   zone_numa_event_state(zone, i));
1734 #endif
1735 
1736 	seq_printf(m, "\n  pagesets");
1737 	for_each_online_cpu(i) {
1738 		struct per_cpu_pages *pcp;
1739 		struct per_cpu_zonestat __maybe_unused *pzstats;
1740 
1741 		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1742 		seq_printf(m,
1743 			   "\n    cpu: %i"
1744 			   "\n              count: %i"
1745 			   "\n              high:  %i"
1746 			   "\n              batch: %i",
1747 			   i,
1748 			   pcp->count,
1749 			   pcp->high,
1750 			   pcp->batch);
1751 #ifdef CONFIG_SMP
1752 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1753 		seq_printf(m, "\n  vm stats threshold: %d",
1754 				pzstats->stat_threshold);
1755 #endif
1756 	}
1757 	seq_printf(m,
1758 		   "\n  node_unreclaimable:  %u"
1759 		   "\n  start_pfn:           %lu",
1760 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1761 		   zone->zone_start_pfn);
1762 	seq_putc(m, '\n');
1763 }
1764 
1765 /*
1766  * Output information about zones in @pgdat.  All zones are printed regardless
1767  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1768  * set of all zones and userspace would not be aware of such zones if they are
1769  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1770  */
1771 static int zoneinfo_show(struct seq_file *m, void *arg)
1772 {
1773 	pg_data_t *pgdat = (pg_data_t *)arg;
1774 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1775 	return 0;
1776 }
1777 
1778 static const struct seq_operations zoneinfo_op = {
1779 	.start	= frag_start, /* iterate over all zones. The same as in
1780 			       * fragmentation. */
1781 	.next	= frag_next,
1782 	.stop	= frag_stop,
1783 	.show	= zoneinfo_show,
1784 };
1785 
1786 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1787 			 NR_VM_NUMA_EVENT_ITEMS + \
1788 			 NR_VM_NODE_STAT_ITEMS + \
1789 			 NR_VM_WRITEBACK_STAT_ITEMS + \
1790 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1791 			  NR_VM_EVENT_ITEMS : 0))
1792 
1793 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1794 {
1795 	unsigned long *v;
1796 	int i;
1797 
1798 	if (*pos >= NR_VMSTAT_ITEMS)
1799 		return NULL;
1800 
1801 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1802 	fold_vm_numa_events();
1803 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1804 	m->private = v;
1805 	if (!v)
1806 		return ERR_PTR(-ENOMEM);
1807 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1808 		v[i] = global_zone_page_state(i);
1809 	v += NR_VM_ZONE_STAT_ITEMS;
1810 
1811 #ifdef CONFIG_NUMA
1812 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1813 		v[i] = global_numa_event_state(i);
1814 	v += NR_VM_NUMA_EVENT_ITEMS;
1815 #endif
1816 
1817 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1818 		v[i] = global_node_page_state_pages(i);
1819 		if (vmstat_item_print_in_thp(i))
1820 			v[i] /= HPAGE_PMD_NR;
1821 	}
1822 	v += NR_VM_NODE_STAT_ITEMS;
1823 
1824 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1825 			    v + NR_DIRTY_THRESHOLD);
1826 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1827 
1828 #ifdef CONFIG_VM_EVENT_COUNTERS
1829 	all_vm_events(v);
1830 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1831 	v[PGPGOUT] /= 2;
1832 #endif
1833 	return (unsigned long *)m->private + *pos;
1834 }
1835 
1836 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1837 {
1838 	(*pos)++;
1839 	if (*pos >= NR_VMSTAT_ITEMS)
1840 		return NULL;
1841 	return (unsigned long *)m->private + *pos;
1842 }
1843 
1844 static int vmstat_show(struct seq_file *m, void *arg)
1845 {
1846 	unsigned long *l = arg;
1847 	unsigned long off = l - (unsigned long *)m->private;
1848 
1849 	seq_puts(m, vmstat_text[off]);
1850 	seq_put_decimal_ull(m, " ", *l);
1851 	seq_putc(m, '\n');
1852 
1853 	if (off == NR_VMSTAT_ITEMS - 1) {
1854 		/*
1855 		 * We've come to the end - add any deprecated counters to avoid
1856 		 * breaking userspace which might depend on them being present.
1857 		 */
1858 		seq_puts(m, "nr_unstable 0\n");
1859 	}
1860 	return 0;
1861 }
1862 
1863 static void vmstat_stop(struct seq_file *m, void *arg)
1864 {
1865 	kfree(m->private);
1866 	m->private = NULL;
1867 }
1868 
1869 static const struct seq_operations vmstat_op = {
1870 	.start	= vmstat_start,
1871 	.next	= vmstat_next,
1872 	.stop	= vmstat_stop,
1873 	.show	= vmstat_show,
1874 };
1875 #endif /* CONFIG_PROC_FS */
1876 
1877 #ifdef CONFIG_SMP
1878 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1879 int sysctl_stat_interval __read_mostly = HZ;
1880 
1881 #ifdef CONFIG_PROC_FS
1882 static void refresh_vm_stats(struct work_struct *work)
1883 {
1884 	refresh_cpu_vm_stats(true);
1885 }
1886 
1887 int vmstat_refresh(struct ctl_table *table, int write,
1888 		   void *buffer, size_t *lenp, loff_t *ppos)
1889 {
1890 	long val;
1891 	int err;
1892 	int i;
1893 
1894 	/*
1895 	 * The regular update, every sysctl_stat_interval, may come later
1896 	 * than expected: leaving a significant amount in per_cpu buckets.
1897 	 * This is particularly misleading when checking a quantity of HUGE
1898 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1899 	 * which can equally be echo'ed to or cat'ted from (by root),
1900 	 * can be used to update the stats just before reading them.
1901 	 *
1902 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1903 	 * transiently negative values, report an error here if any of
1904 	 * the stats is negative, so we know to go looking for imbalance.
1905 	 */
1906 	err = schedule_on_each_cpu(refresh_vm_stats);
1907 	if (err)
1908 		return err;
1909 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1910 		/*
1911 		 * Skip checking stats known to go negative occasionally.
1912 		 */
1913 		switch (i) {
1914 		case NR_ZONE_WRITE_PENDING:
1915 		case NR_FREE_CMA_PAGES:
1916 			continue;
1917 		}
1918 		val = atomic_long_read(&vm_zone_stat[i]);
1919 		if (val < 0) {
1920 			pr_warn("%s: %s %ld\n",
1921 				__func__, zone_stat_name(i), val);
1922 		}
1923 	}
1924 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1925 		/*
1926 		 * Skip checking stats known to go negative occasionally.
1927 		 */
1928 		switch (i) {
1929 		case NR_WRITEBACK:
1930 			continue;
1931 		}
1932 		val = atomic_long_read(&vm_node_stat[i]);
1933 		if (val < 0) {
1934 			pr_warn("%s: %s %ld\n",
1935 				__func__, node_stat_name(i), val);
1936 		}
1937 	}
1938 	if (write)
1939 		*ppos += *lenp;
1940 	else
1941 		*lenp = 0;
1942 	return 0;
1943 }
1944 #endif /* CONFIG_PROC_FS */
1945 
1946 static void vmstat_update(struct work_struct *w)
1947 {
1948 	if (refresh_cpu_vm_stats(true)) {
1949 		/*
1950 		 * Counters were updated so we expect more updates
1951 		 * to occur in the future. Keep on running the
1952 		 * update worker thread.
1953 		 */
1954 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1955 				this_cpu_ptr(&vmstat_work),
1956 				round_jiffies_relative(sysctl_stat_interval));
1957 	}
1958 }
1959 
1960 /*
1961  * Check if the diffs for a certain cpu indicate that
1962  * an update is needed.
1963  */
1964 static bool need_update(int cpu)
1965 {
1966 	pg_data_t *last_pgdat = NULL;
1967 	struct zone *zone;
1968 
1969 	for_each_populated_zone(zone) {
1970 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1971 		struct per_cpu_nodestat *n;
1972 
1973 		/*
1974 		 * The fast way of checking if there are any vmstat diffs.
1975 		 */
1976 		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1977 			return true;
1978 
1979 		if (last_pgdat == zone->zone_pgdat)
1980 			continue;
1981 		last_pgdat = zone->zone_pgdat;
1982 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1983 		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1984 			return true;
1985 	}
1986 	return false;
1987 }
1988 
1989 /*
1990  * Switch off vmstat processing and then fold all the remaining differentials
1991  * until the diffs stay at zero. The function is used by NOHZ and can only be
1992  * invoked when tick processing is not active.
1993  */
1994 void quiet_vmstat(void)
1995 {
1996 	if (system_state != SYSTEM_RUNNING)
1997 		return;
1998 
1999 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2000 		return;
2001 
2002 	if (!need_update(smp_processor_id()))
2003 		return;
2004 
2005 	/*
2006 	 * Just refresh counters and do not care about the pending delayed
2007 	 * vmstat_update. It doesn't fire that often to matter and canceling
2008 	 * it would be too expensive from this path.
2009 	 * vmstat_shepherd will take care about that for us.
2010 	 */
2011 	refresh_cpu_vm_stats(false);
2012 }
2013 
2014 /*
2015  * Shepherd worker thread that checks the
2016  * differentials of processors that have their worker
2017  * threads for vm statistics updates disabled because of
2018  * inactivity.
2019  */
2020 static void vmstat_shepherd(struct work_struct *w);
2021 
2022 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2023 
2024 static void vmstat_shepherd(struct work_struct *w)
2025 {
2026 	int cpu;
2027 
2028 	cpus_read_lock();
2029 	/* Check processors whose vmstat worker threads have been disabled */
2030 	for_each_online_cpu(cpu) {
2031 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2032 
2033 		/*
2034 		 * In kernel users of vmstat counters either require the precise value and
2035 		 * they are using zone_page_state_snapshot interface or they can live with
2036 		 * an imprecision as the regular flushing can happen at arbitrary time and
2037 		 * cumulative error can grow (see calculate_normal_threshold).
2038 		 *
2039 		 * From that POV the regular flushing can be postponed for CPUs that have
2040 		 * been isolated from the kernel interference without critical
2041 		 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2042 		 * for all isolated CPUs to avoid interference with the isolated workload.
2043 		 */
2044 		if (cpu_is_isolated(cpu))
2045 			continue;
2046 
2047 		if (!delayed_work_pending(dw) && need_update(cpu))
2048 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2049 
2050 		cond_resched();
2051 	}
2052 	cpus_read_unlock();
2053 
2054 	schedule_delayed_work(&shepherd,
2055 		round_jiffies_relative(sysctl_stat_interval));
2056 }
2057 
2058 static void __init start_shepherd_timer(void)
2059 {
2060 	int cpu;
2061 
2062 	for_each_possible_cpu(cpu)
2063 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2064 			vmstat_update);
2065 
2066 	schedule_delayed_work(&shepherd,
2067 		round_jiffies_relative(sysctl_stat_interval));
2068 }
2069 
2070 static void __init init_cpu_node_state(void)
2071 {
2072 	int node;
2073 
2074 	for_each_online_node(node) {
2075 		if (!cpumask_empty(cpumask_of_node(node)))
2076 			node_set_state(node, N_CPU);
2077 	}
2078 }
2079 
2080 static int vmstat_cpu_online(unsigned int cpu)
2081 {
2082 	refresh_zone_stat_thresholds();
2083 
2084 	if (!node_state(cpu_to_node(cpu), N_CPU)) {
2085 		node_set_state(cpu_to_node(cpu), N_CPU);
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 static int vmstat_cpu_down_prep(unsigned int cpu)
2092 {
2093 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2094 	return 0;
2095 }
2096 
2097 static int vmstat_cpu_dead(unsigned int cpu)
2098 {
2099 	const struct cpumask *node_cpus;
2100 	int node;
2101 
2102 	node = cpu_to_node(cpu);
2103 
2104 	refresh_zone_stat_thresholds();
2105 	node_cpus = cpumask_of_node(node);
2106 	if (!cpumask_empty(node_cpus))
2107 		return 0;
2108 
2109 	node_clear_state(node, N_CPU);
2110 
2111 	return 0;
2112 }
2113 
2114 #endif
2115 
2116 struct workqueue_struct *mm_percpu_wq;
2117 
2118 void __init init_mm_internals(void)
2119 {
2120 	int ret __maybe_unused;
2121 
2122 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2123 
2124 #ifdef CONFIG_SMP
2125 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2126 					NULL, vmstat_cpu_dead);
2127 	if (ret < 0)
2128 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2129 
2130 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2131 					vmstat_cpu_online,
2132 					vmstat_cpu_down_prep);
2133 	if (ret < 0)
2134 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2135 
2136 	cpus_read_lock();
2137 	init_cpu_node_state();
2138 	cpus_read_unlock();
2139 
2140 	start_shepherd_timer();
2141 #endif
2142 #ifdef CONFIG_PROC_FS
2143 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2144 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2145 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2146 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2147 #endif
2148 }
2149 
2150 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2151 
2152 /*
2153  * Return an index indicating how much of the available free memory is
2154  * unusable for an allocation of the requested size.
2155  */
2156 static int unusable_free_index(unsigned int order,
2157 				struct contig_page_info *info)
2158 {
2159 	/* No free memory is interpreted as all free memory is unusable */
2160 	if (info->free_pages == 0)
2161 		return 1000;
2162 
2163 	/*
2164 	 * Index should be a value between 0 and 1. Return a value to 3
2165 	 * decimal places.
2166 	 *
2167 	 * 0 => no fragmentation
2168 	 * 1 => high fragmentation
2169 	 */
2170 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2171 
2172 }
2173 
2174 static void unusable_show_print(struct seq_file *m,
2175 					pg_data_t *pgdat, struct zone *zone)
2176 {
2177 	unsigned int order;
2178 	int index;
2179 	struct contig_page_info info;
2180 
2181 	seq_printf(m, "Node %d, zone %8s ",
2182 				pgdat->node_id,
2183 				zone->name);
2184 	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2185 		fill_contig_page_info(zone, order, &info);
2186 		index = unusable_free_index(order, &info);
2187 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2188 	}
2189 
2190 	seq_putc(m, '\n');
2191 }
2192 
2193 /*
2194  * Display unusable free space index
2195  *
2196  * The unusable free space index measures how much of the available free
2197  * memory cannot be used to satisfy an allocation of a given size and is a
2198  * value between 0 and 1. The higher the value, the more of free memory is
2199  * unusable and by implication, the worse the external fragmentation is. This
2200  * can be expressed as a percentage by multiplying by 100.
2201  */
2202 static int unusable_show(struct seq_file *m, void *arg)
2203 {
2204 	pg_data_t *pgdat = (pg_data_t *)arg;
2205 
2206 	/* check memoryless node */
2207 	if (!node_state(pgdat->node_id, N_MEMORY))
2208 		return 0;
2209 
2210 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2211 
2212 	return 0;
2213 }
2214 
2215 static const struct seq_operations unusable_sops = {
2216 	.start	= frag_start,
2217 	.next	= frag_next,
2218 	.stop	= frag_stop,
2219 	.show	= unusable_show,
2220 };
2221 
2222 DEFINE_SEQ_ATTRIBUTE(unusable);
2223 
2224 static void extfrag_show_print(struct seq_file *m,
2225 					pg_data_t *pgdat, struct zone *zone)
2226 {
2227 	unsigned int order;
2228 	int index;
2229 
2230 	/* Alloc on stack as interrupts are disabled for zone walk */
2231 	struct contig_page_info info;
2232 
2233 	seq_printf(m, "Node %d, zone %8s ",
2234 				pgdat->node_id,
2235 				zone->name);
2236 	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2237 		fill_contig_page_info(zone, order, &info);
2238 		index = __fragmentation_index(order, &info);
2239 		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2240 	}
2241 
2242 	seq_putc(m, '\n');
2243 }
2244 
2245 /*
2246  * Display fragmentation index for orders that allocations would fail for
2247  */
2248 static int extfrag_show(struct seq_file *m, void *arg)
2249 {
2250 	pg_data_t *pgdat = (pg_data_t *)arg;
2251 
2252 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2253 
2254 	return 0;
2255 }
2256 
2257 static const struct seq_operations extfrag_sops = {
2258 	.start	= frag_start,
2259 	.next	= frag_next,
2260 	.stop	= frag_stop,
2261 	.show	= extfrag_show,
2262 };
2263 
2264 DEFINE_SEQ_ATTRIBUTE(extfrag);
2265 
2266 static int __init extfrag_debug_init(void)
2267 {
2268 	struct dentry *extfrag_debug_root;
2269 
2270 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2271 
2272 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2273 			    &unusable_fops);
2274 
2275 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2276 			    &extfrag_fops);
2277 
2278 	return 0;
2279 }
2280 
2281 module_init(extfrag_debug_init);
2282 #endif
2283