xref: /linux/mm/vmstat.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 
32 #include "internal.h"
33 
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35 
36 #ifdef CONFIG_NUMA
37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38 
39 /* zero numa counters within a zone */
40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 	int item, cpu;
43 
44 	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 		atomic_long_set(&zone->vm_numa_stat[item], 0);
46 		for_each_online_cpu(cpu)
47 			per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 						= 0;
49 	}
50 }
51 
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
54 {
55 	struct zone *zone;
56 
57 	for_each_populated_zone(zone)
58 		zero_zone_numa_counters(zone);
59 }
60 
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
63 {
64 	int item;
65 
66 	for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 		atomic_long_set(&vm_numa_stat[item], 0);
68 }
69 
70 static void invalid_numa_statistics(void)
71 {
72 	zero_zones_numa_counters();
73 	zero_global_numa_counters();
74 }
75 
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77 
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 		void __user *buffer, size_t *length, loff_t *ppos)
80 {
81 	int ret, oldval;
82 
83 	mutex_lock(&vm_numa_stat_lock);
84 	if (write)
85 		oldval = sysctl_vm_numa_stat;
86 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 	if (ret || !write)
88 		goto out;
89 
90 	if (oldval == sysctl_vm_numa_stat)
91 		goto out;
92 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 		static_branch_enable(&vm_numa_stat_key);
94 		pr_info("enable numa statistics\n");
95 	} else {
96 		static_branch_disable(&vm_numa_stat_key);
97 		invalid_numa_statistics();
98 		pr_info("disable numa statistics, and clear numa counters\n");
99 	}
100 
101 out:
102 	mutex_unlock(&vm_numa_stat_lock);
103 	return ret;
104 }
105 #endif
106 
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 
111 static void sum_vm_events(unsigned long *ret)
112 {
113 	int cpu;
114 	int i;
115 
116 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 
118 	for_each_online_cpu(cpu) {
119 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 
121 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 			ret[i] += this->event[i];
123 	}
124 }
125 
126 /*
127  * Accumulate the vm event counters across all CPUs.
128  * The result is unavoidably approximate - it can change
129  * during and after execution of this function.
130 */
131 void all_vm_events(unsigned long *ret)
132 {
133 	get_online_cpus();
134 	sum_vm_events(ret);
135 	put_online_cpus();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138 
139 /*
140  * Fold the foreign cpu events into our own.
141  *
142  * This is adding to the events on one processor
143  * but keeps the global counts constant.
144  */
145 void vm_events_fold_cpu(int cpu)
146 {
147 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 	int i;
149 
150 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 		count_vm_events(i, fold_state->event[i]);
152 		fold_state->event[i] = 0;
153 	}
154 }
155 
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157 
158 /*
159  * Manage combined zone based / global counters
160  *
161  * vm_stat contains the global counters
162  */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_numa_stat);
168 EXPORT_SYMBOL(vm_node_stat);
169 
170 #ifdef CONFIG_SMP
171 
172 int calculate_pressure_threshold(struct zone *zone)
173 {
174 	int threshold;
175 	int watermark_distance;
176 
177 	/*
178 	 * As vmstats are not up to date, there is drift between the estimated
179 	 * and real values. For high thresholds and a high number of CPUs, it
180 	 * is possible for the min watermark to be breached while the estimated
181 	 * value looks fine. The pressure threshold is a reduced value such
182 	 * that even the maximum amount of drift will not accidentally breach
183 	 * the min watermark
184 	 */
185 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187 
188 	/*
189 	 * Maximum threshold is 125
190 	 */
191 	threshold = min(125, threshold);
192 
193 	return threshold;
194 }
195 
196 int calculate_normal_threshold(struct zone *zone)
197 {
198 	int threshold;
199 	int mem;	/* memory in 128 MB units */
200 
201 	/*
202 	 * The threshold scales with the number of processors and the amount
203 	 * of memory per zone. More memory means that we can defer updates for
204 	 * longer, more processors could lead to more contention.
205  	 * fls() is used to have a cheap way of logarithmic scaling.
206 	 *
207 	 * Some sample thresholds:
208 	 *
209 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
210 	 * ------------------------------------------------------------------
211 	 * 8		1		1	0.9-1 GB	4
212 	 * 16		2		2	0.9-1 GB	4
213 	 * 20 		2		2	1-2 GB		5
214 	 * 24		2		2	2-4 GB		6
215 	 * 28		2		2	4-8 GB		7
216 	 * 32		2		2	8-16 GB		8
217 	 * 4		2		2	<128M		1
218 	 * 30		4		3	2-4 GB		5
219 	 * 48		4		3	8-16 GB		8
220 	 * 32		8		4	1-2 GB		4
221 	 * 32		8		4	0.9-1GB		4
222 	 * 10		16		5	<128M		1
223 	 * 40		16		5	900M		4
224 	 * 70		64		7	2-4 GB		5
225 	 * 84		64		7	4-8 GB		6
226 	 * 108		512		9	4-8 GB		6
227 	 * 125		1024		10	8-16 GB		8
228 	 * 125		1024		10	16-32 GB	9
229 	 */
230 
231 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232 
233 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234 
235 	/*
236 	 * Maximum threshold is 125
237 	 */
238 	threshold = min(125, threshold);
239 
240 	return threshold;
241 }
242 
243 /*
244  * Refresh the thresholds for each zone.
245  */
246 void refresh_zone_stat_thresholds(void)
247 {
248 	struct pglist_data *pgdat;
249 	struct zone *zone;
250 	int cpu;
251 	int threshold;
252 
253 	/* Zero current pgdat thresholds */
254 	for_each_online_pgdat(pgdat) {
255 		for_each_online_cpu(cpu) {
256 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 		}
258 	}
259 
260 	for_each_populated_zone(zone) {
261 		struct pglist_data *pgdat = zone->zone_pgdat;
262 		unsigned long max_drift, tolerate_drift;
263 
264 		threshold = calculate_normal_threshold(zone);
265 
266 		for_each_online_cpu(cpu) {
267 			int pgdat_threshold;
268 
269 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 							= threshold;
271 
272 			/* Base nodestat threshold on the largest populated zone. */
273 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 				= max(threshold, pgdat_threshold);
276 		}
277 
278 		/*
279 		 * Only set percpu_drift_mark if there is a danger that
280 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 		 * the min watermark could be breached by an allocation
282 		 */
283 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 		max_drift = num_online_cpus() * threshold;
285 		if (max_drift > tolerate_drift)
286 			zone->percpu_drift_mark = high_wmark_pages(zone) +
287 					max_drift;
288 	}
289 }
290 
291 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 				int (*calculate_pressure)(struct zone *))
293 {
294 	struct zone *zone;
295 	int cpu;
296 	int threshold;
297 	int i;
298 
299 	for (i = 0; i < pgdat->nr_zones; i++) {
300 		zone = &pgdat->node_zones[i];
301 		if (!zone->percpu_drift_mark)
302 			continue;
303 
304 		threshold = (*calculate_pressure)(zone);
305 		for_each_online_cpu(cpu)
306 			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 							= threshold;
308 	}
309 }
310 
311 /*
312  * For use when we know that interrupts are disabled,
313  * or when we know that preemption is disabled and that
314  * particular counter cannot be updated from interrupt context.
315  */
316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 			   long delta)
318 {
319 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 	s8 __percpu *p = pcp->vm_stat_diff + item;
321 	long x;
322 	long t;
323 
324 	x = delta + __this_cpu_read(*p);
325 
326 	t = __this_cpu_read(pcp->stat_threshold);
327 
328 	if (unlikely(x > t || x < -t)) {
329 		zone_page_state_add(x, zone, item);
330 		x = 0;
331 	}
332 	__this_cpu_write(*p, x);
333 }
334 EXPORT_SYMBOL(__mod_zone_page_state);
335 
336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 				long delta)
338 {
339 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 	long x;
342 	long t;
343 
344 	x = delta + __this_cpu_read(*p);
345 
346 	t = __this_cpu_read(pcp->stat_threshold);
347 
348 	if (unlikely(x > t || x < -t)) {
349 		node_page_state_add(x, pgdat, item);
350 		x = 0;
351 	}
352 	__this_cpu_write(*p, x);
353 }
354 EXPORT_SYMBOL(__mod_node_page_state);
355 
356 /*
357  * Optimized increment and decrement functions.
358  *
359  * These are only for a single page and therefore can take a struct page *
360  * argument instead of struct zone *. This allows the inclusion of the code
361  * generated for page_zone(page) into the optimized functions.
362  *
363  * No overflow check is necessary and therefore the differential can be
364  * incremented or decremented in place which may allow the compilers to
365  * generate better code.
366  * The increment or decrement is known and therefore one boundary check can
367  * be omitted.
368  *
369  * NOTE: These functions are very performance sensitive. Change only
370  * with care.
371  *
372  * Some processors have inc/dec instructions that are atomic vs an interrupt.
373  * However, the code must first determine the differential location in a zone
374  * based on the processor number and then inc/dec the counter. There is no
375  * guarantee without disabling preemption that the processor will not change
376  * in between and therefore the atomicity vs. interrupt cannot be exploited
377  * in a useful way here.
378  */
379 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
380 {
381 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
382 	s8 __percpu *p = pcp->vm_stat_diff + item;
383 	s8 v, t;
384 
385 	v = __this_cpu_inc_return(*p);
386 	t = __this_cpu_read(pcp->stat_threshold);
387 	if (unlikely(v > t)) {
388 		s8 overstep = t >> 1;
389 
390 		zone_page_state_add(v + overstep, zone, item);
391 		__this_cpu_write(*p, -overstep);
392 	}
393 }
394 
395 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
396 {
397 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
398 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
399 	s8 v, t;
400 
401 	v = __this_cpu_inc_return(*p);
402 	t = __this_cpu_read(pcp->stat_threshold);
403 	if (unlikely(v > t)) {
404 		s8 overstep = t >> 1;
405 
406 		node_page_state_add(v + overstep, pgdat, item);
407 		__this_cpu_write(*p, -overstep);
408 	}
409 }
410 
411 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
412 {
413 	__inc_zone_state(page_zone(page), item);
414 }
415 EXPORT_SYMBOL(__inc_zone_page_state);
416 
417 void __inc_node_page_state(struct page *page, enum node_stat_item item)
418 {
419 	__inc_node_state(page_pgdat(page), item);
420 }
421 EXPORT_SYMBOL(__inc_node_page_state);
422 
423 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
424 {
425 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
426 	s8 __percpu *p = pcp->vm_stat_diff + item;
427 	s8 v, t;
428 
429 	v = __this_cpu_dec_return(*p);
430 	t = __this_cpu_read(pcp->stat_threshold);
431 	if (unlikely(v < - t)) {
432 		s8 overstep = t >> 1;
433 
434 		zone_page_state_add(v - overstep, zone, item);
435 		__this_cpu_write(*p, overstep);
436 	}
437 }
438 
439 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
440 {
441 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
442 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
443 	s8 v, t;
444 
445 	v = __this_cpu_dec_return(*p);
446 	t = __this_cpu_read(pcp->stat_threshold);
447 	if (unlikely(v < - t)) {
448 		s8 overstep = t >> 1;
449 
450 		node_page_state_add(v - overstep, pgdat, item);
451 		__this_cpu_write(*p, overstep);
452 	}
453 }
454 
455 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 {
457 	__dec_zone_state(page_zone(page), item);
458 }
459 EXPORT_SYMBOL(__dec_zone_page_state);
460 
461 void __dec_node_page_state(struct page *page, enum node_stat_item item)
462 {
463 	__dec_node_state(page_pgdat(page), item);
464 }
465 EXPORT_SYMBOL(__dec_node_page_state);
466 
467 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
468 /*
469  * If we have cmpxchg_local support then we do not need to incur the overhead
470  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
471  *
472  * mod_state() modifies the zone counter state through atomic per cpu
473  * operations.
474  *
475  * Overstep mode specifies how overstep should handled:
476  *     0       No overstepping
477  *     1       Overstepping half of threshold
478  *     -1      Overstepping minus half of threshold
479 */
480 static inline void mod_zone_state(struct zone *zone,
481        enum zone_stat_item item, long delta, int overstep_mode)
482 {
483 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
484 	s8 __percpu *p = pcp->vm_stat_diff + item;
485 	long o, n, t, z;
486 
487 	do {
488 		z = 0;  /* overflow to zone counters */
489 
490 		/*
491 		 * The fetching of the stat_threshold is racy. We may apply
492 		 * a counter threshold to the wrong the cpu if we get
493 		 * rescheduled while executing here. However, the next
494 		 * counter update will apply the threshold again and
495 		 * therefore bring the counter under the threshold again.
496 		 *
497 		 * Most of the time the thresholds are the same anyways
498 		 * for all cpus in a zone.
499 		 */
500 		t = this_cpu_read(pcp->stat_threshold);
501 
502 		o = this_cpu_read(*p);
503 		n = delta + o;
504 
505 		if (n > t || n < -t) {
506 			int os = overstep_mode * (t >> 1) ;
507 
508 			/* Overflow must be added to zone counters */
509 			z = n + os;
510 			n = -os;
511 		}
512 	} while (this_cpu_cmpxchg(*p, o, n) != o);
513 
514 	if (z)
515 		zone_page_state_add(z, zone, item);
516 }
517 
518 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
519 			 long delta)
520 {
521 	mod_zone_state(zone, item, delta, 0);
522 }
523 EXPORT_SYMBOL(mod_zone_page_state);
524 
525 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
526 {
527 	mod_zone_state(page_zone(page), item, 1, 1);
528 }
529 EXPORT_SYMBOL(inc_zone_page_state);
530 
531 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
532 {
533 	mod_zone_state(page_zone(page), item, -1, -1);
534 }
535 EXPORT_SYMBOL(dec_zone_page_state);
536 
537 static inline void mod_node_state(struct pglist_data *pgdat,
538        enum node_stat_item item, int delta, int overstep_mode)
539 {
540 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
541 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
542 	long o, n, t, z;
543 
544 	do {
545 		z = 0;  /* overflow to node counters */
546 
547 		/*
548 		 * The fetching of the stat_threshold is racy. We may apply
549 		 * a counter threshold to the wrong the cpu if we get
550 		 * rescheduled while executing here. However, the next
551 		 * counter update will apply the threshold again and
552 		 * therefore bring the counter under the threshold again.
553 		 *
554 		 * Most of the time the thresholds are the same anyways
555 		 * for all cpus in a node.
556 		 */
557 		t = this_cpu_read(pcp->stat_threshold);
558 
559 		o = this_cpu_read(*p);
560 		n = delta + o;
561 
562 		if (n > t || n < -t) {
563 			int os = overstep_mode * (t >> 1) ;
564 
565 			/* Overflow must be added to node counters */
566 			z = n + os;
567 			n = -os;
568 		}
569 	} while (this_cpu_cmpxchg(*p, o, n) != o);
570 
571 	if (z)
572 		node_page_state_add(z, pgdat, item);
573 }
574 
575 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
576 					long delta)
577 {
578 	mod_node_state(pgdat, item, delta, 0);
579 }
580 EXPORT_SYMBOL(mod_node_page_state);
581 
582 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
583 {
584 	mod_node_state(pgdat, item, 1, 1);
585 }
586 
587 void inc_node_page_state(struct page *page, enum node_stat_item item)
588 {
589 	mod_node_state(page_pgdat(page), item, 1, 1);
590 }
591 EXPORT_SYMBOL(inc_node_page_state);
592 
593 void dec_node_page_state(struct page *page, enum node_stat_item item)
594 {
595 	mod_node_state(page_pgdat(page), item, -1, -1);
596 }
597 EXPORT_SYMBOL(dec_node_page_state);
598 #else
599 /*
600  * Use interrupt disable to serialize counter updates
601  */
602 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
603 			 long delta)
604 {
605 	unsigned long flags;
606 
607 	local_irq_save(flags);
608 	__mod_zone_page_state(zone, item, delta);
609 	local_irq_restore(flags);
610 }
611 EXPORT_SYMBOL(mod_zone_page_state);
612 
613 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
614 {
615 	unsigned long flags;
616 	struct zone *zone;
617 
618 	zone = page_zone(page);
619 	local_irq_save(flags);
620 	__inc_zone_state(zone, item);
621 	local_irq_restore(flags);
622 }
623 EXPORT_SYMBOL(inc_zone_page_state);
624 
625 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
626 {
627 	unsigned long flags;
628 
629 	local_irq_save(flags);
630 	__dec_zone_page_state(page, item);
631 	local_irq_restore(flags);
632 }
633 EXPORT_SYMBOL(dec_zone_page_state);
634 
635 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
636 {
637 	unsigned long flags;
638 
639 	local_irq_save(flags);
640 	__inc_node_state(pgdat, item);
641 	local_irq_restore(flags);
642 }
643 EXPORT_SYMBOL(inc_node_state);
644 
645 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
646 					long delta)
647 {
648 	unsigned long flags;
649 
650 	local_irq_save(flags);
651 	__mod_node_page_state(pgdat, item, delta);
652 	local_irq_restore(flags);
653 }
654 EXPORT_SYMBOL(mod_node_page_state);
655 
656 void inc_node_page_state(struct page *page, enum node_stat_item item)
657 {
658 	unsigned long flags;
659 	struct pglist_data *pgdat;
660 
661 	pgdat = page_pgdat(page);
662 	local_irq_save(flags);
663 	__inc_node_state(pgdat, item);
664 	local_irq_restore(flags);
665 }
666 EXPORT_SYMBOL(inc_node_page_state);
667 
668 void dec_node_page_state(struct page *page, enum node_stat_item item)
669 {
670 	unsigned long flags;
671 
672 	local_irq_save(flags);
673 	__dec_node_page_state(page, item);
674 	local_irq_restore(flags);
675 }
676 EXPORT_SYMBOL(dec_node_page_state);
677 #endif
678 
679 /*
680  * Fold a differential into the global counters.
681  * Returns the number of counters updated.
682  */
683 #ifdef CONFIG_NUMA
684 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
685 {
686 	int i;
687 	int changes = 0;
688 
689 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
690 		if (zone_diff[i]) {
691 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
692 			changes++;
693 	}
694 
695 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
696 		if (numa_diff[i]) {
697 			atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
698 			changes++;
699 	}
700 
701 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
702 		if (node_diff[i]) {
703 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
704 			changes++;
705 	}
706 	return changes;
707 }
708 #else
709 static int fold_diff(int *zone_diff, int *node_diff)
710 {
711 	int i;
712 	int changes = 0;
713 
714 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
715 		if (zone_diff[i]) {
716 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
717 			changes++;
718 	}
719 
720 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
721 		if (node_diff[i]) {
722 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
723 			changes++;
724 	}
725 	return changes;
726 }
727 #endif /* CONFIG_NUMA */
728 
729 /*
730  * Update the zone counters for the current cpu.
731  *
732  * Note that refresh_cpu_vm_stats strives to only access
733  * node local memory. The per cpu pagesets on remote zones are placed
734  * in the memory local to the processor using that pageset. So the
735  * loop over all zones will access a series of cachelines local to
736  * the processor.
737  *
738  * The call to zone_page_state_add updates the cachelines with the
739  * statistics in the remote zone struct as well as the global cachelines
740  * with the global counters. These could cause remote node cache line
741  * bouncing and will have to be only done when necessary.
742  *
743  * The function returns the number of global counters updated.
744  */
745 static int refresh_cpu_vm_stats(bool do_pagesets)
746 {
747 	struct pglist_data *pgdat;
748 	struct zone *zone;
749 	int i;
750 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
751 #ifdef CONFIG_NUMA
752 	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
753 #endif
754 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
755 	int changes = 0;
756 
757 	for_each_populated_zone(zone) {
758 		struct per_cpu_pageset __percpu *p = zone->pageset;
759 
760 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
761 			int v;
762 
763 			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
764 			if (v) {
765 
766 				atomic_long_add(v, &zone->vm_stat[i]);
767 				global_zone_diff[i] += v;
768 #ifdef CONFIG_NUMA
769 				/* 3 seconds idle till flush */
770 				__this_cpu_write(p->expire, 3);
771 #endif
772 			}
773 		}
774 #ifdef CONFIG_NUMA
775 		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
776 			int v;
777 
778 			v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
779 			if (v) {
780 
781 				atomic_long_add(v, &zone->vm_numa_stat[i]);
782 				global_numa_diff[i] += v;
783 				__this_cpu_write(p->expire, 3);
784 			}
785 		}
786 
787 		if (do_pagesets) {
788 			cond_resched();
789 			/*
790 			 * Deal with draining the remote pageset of this
791 			 * processor
792 			 *
793 			 * Check if there are pages remaining in this pageset
794 			 * if not then there is nothing to expire.
795 			 */
796 			if (!__this_cpu_read(p->expire) ||
797 			       !__this_cpu_read(p->pcp.count))
798 				continue;
799 
800 			/*
801 			 * We never drain zones local to this processor.
802 			 */
803 			if (zone_to_nid(zone) == numa_node_id()) {
804 				__this_cpu_write(p->expire, 0);
805 				continue;
806 			}
807 
808 			if (__this_cpu_dec_return(p->expire))
809 				continue;
810 
811 			if (__this_cpu_read(p->pcp.count)) {
812 				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
813 				changes++;
814 			}
815 		}
816 #endif
817 	}
818 
819 	for_each_online_pgdat(pgdat) {
820 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
821 
822 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
823 			int v;
824 
825 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
826 			if (v) {
827 				atomic_long_add(v, &pgdat->vm_stat[i]);
828 				global_node_diff[i] += v;
829 			}
830 		}
831 	}
832 
833 #ifdef CONFIG_NUMA
834 	changes += fold_diff(global_zone_diff, global_numa_diff,
835 			     global_node_diff);
836 #else
837 	changes += fold_diff(global_zone_diff, global_node_diff);
838 #endif
839 	return changes;
840 }
841 
842 /*
843  * Fold the data for an offline cpu into the global array.
844  * There cannot be any access by the offline cpu and therefore
845  * synchronization is simplified.
846  */
847 void cpu_vm_stats_fold(int cpu)
848 {
849 	struct pglist_data *pgdat;
850 	struct zone *zone;
851 	int i;
852 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
853 #ifdef CONFIG_NUMA
854 	int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
855 #endif
856 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
857 
858 	for_each_populated_zone(zone) {
859 		struct per_cpu_pageset *p;
860 
861 		p = per_cpu_ptr(zone->pageset, cpu);
862 
863 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
864 			if (p->vm_stat_diff[i]) {
865 				int v;
866 
867 				v = p->vm_stat_diff[i];
868 				p->vm_stat_diff[i] = 0;
869 				atomic_long_add(v, &zone->vm_stat[i]);
870 				global_zone_diff[i] += v;
871 			}
872 
873 #ifdef CONFIG_NUMA
874 		for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
875 			if (p->vm_numa_stat_diff[i]) {
876 				int v;
877 
878 				v = p->vm_numa_stat_diff[i];
879 				p->vm_numa_stat_diff[i] = 0;
880 				atomic_long_add(v, &zone->vm_numa_stat[i]);
881 				global_numa_diff[i] += v;
882 			}
883 #endif
884 	}
885 
886 	for_each_online_pgdat(pgdat) {
887 		struct per_cpu_nodestat *p;
888 
889 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
890 
891 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
892 			if (p->vm_node_stat_diff[i]) {
893 				int v;
894 
895 				v = p->vm_node_stat_diff[i];
896 				p->vm_node_stat_diff[i] = 0;
897 				atomic_long_add(v, &pgdat->vm_stat[i]);
898 				global_node_diff[i] += v;
899 			}
900 	}
901 
902 #ifdef CONFIG_NUMA
903 	fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
904 #else
905 	fold_diff(global_zone_diff, global_node_diff);
906 #endif
907 }
908 
909 /*
910  * this is only called if !populated_zone(zone), which implies no other users of
911  * pset->vm_stat_diff[] exsist.
912  */
913 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
914 {
915 	int i;
916 
917 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
918 		if (pset->vm_stat_diff[i]) {
919 			int v = pset->vm_stat_diff[i];
920 			pset->vm_stat_diff[i] = 0;
921 			atomic_long_add(v, &zone->vm_stat[i]);
922 			atomic_long_add(v, &vm_zone_stat[i]);
923 		}
924 
925 #ifdef CONFIG_NUMA
926 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
927 		if (pset->vm_numa_stat_diff[i]) {
928 			int v = pset->vm_numa_stat_diff[i];
929 
930 			pset->vm_numa_stat_diff[i] = 0;
931 			atomic_long_add(v, &zone->vm_numa_stat[i]);
932 			atomic_long_add(v, &vm_numa_stat[i]);
933 		}
934 #endif
935 }
936 #endif
937 
938 #ifdef CONFIG_NUMA
939 void __inc_numa_state(struct zone *zone,
940 				 enum numa_stat_item item)
941 {
942 	struct per_cpu_pageset __percpu *pcp = zone->pageset;
943 	u16 __percpu *p = pcp->vm_numa_stat_diff + item;
944 	u16 v;
945 
946 	v = __this_cpu_inc_return(*p);
947 
948 	if (unlikely(v > NUMA_STATS_THRESHOLD)) {
949 		zone_numa_state_add(v, zone, item);
950 		__this_cpu_write(*p, 0);
951 	}
952 }
953 
954 /*
955  * Determine the per node value of a stat item. This function
956  * is called frequently in a NUMA machine, so try to be as
957  * frugal as possible.
958  */
959 unsigned long sum_zone_node_page_state(int node,
960 				 enum zone_stat_item item)
961 {
962 	struct zone *zones = NODE_DATA(node)->node_zones;
963 	int i;
964 	unsigned long count = 0;
965 
966 	for (i = 0; i < MAX_NR_ZONES; i++)
967 		count += zone_page_state(zones + i, item);
968 
969 	return count;
970 }
971 
972 /*
973  * Determine the per node value of a numa stat item. To avoid deviation,
974  * the per cpu stat number in vm_numa_stat_diff[] is also included.
975  */
976 unsigned long sum_zone_numa_state(int node,
977 				 enum numa_stat_item item)
978 {
979 	struct zone *zones = NODE_DATA(node)->node_zones;
980 	int i;
981 	unsigned long count = 0;
982 
983 	for (i = 0; i < MAX_NR_ZONES; i++)
984 		count += zone_numa_state_snapshot(zones + i, item);
985 
986 	return count;
987 }
988 
989 /*
990  * Determine the per node value of a stat item.
991  */
992 unsigned long node_page_state(struct pglist_data *pgdat,
993 				enum node_stat_item item)
994 {
995 	long x = atomic_long_read(&pgdat->vm_stat[item]);
996 #ifdef CONFIG_SMP
997 	if (x < 0)
998 		x = 0;
999 #endif
1000 	return x;
1001 }
1002 #endif
1003 
1004 #ifdef CONFIG_COMPACTION
1005 
1006 struct contig_page_info {
1007 	unsigned long free_pages;
1008 	unsigned long free_blocks_total;
1009 	unsigned long free_blocks_suitable;
1010 };
1011 
1012 /*
1013  * Calculate the number of free pages in a zone, how many contiguous
1014  * pages are free and how many are large enough to satisfy an allocation of
1015  * the target size. Note that this function makes no attempt to estimate
1016  * how many suitable free blocks there *might* be if MOVABLE pages were
1017  * migrated. Calculating that is possible, but expensive and can be
1018  * figured out from userspace
1019  */
1020 static void fill_contig_page_info(struct zone *zone,
1021 				unsigned int suitable_order,
1022 				struct contig_page_info *info)
1023 {
1024 	unsigned int order;
1025 
1026 	info->free_pages = 0;
1027 	info->free_blocks_total = 0;
1028 	info->free_blocks_suitable = 0;
1029 
1030 	for (order = 0; order < MAX_ORDER; order++) {
1031 		unsigned long blocks;
1032 
1033 		/* Count number of free blocks */
1034 		blocks = zone->free_area[order].nr_free;
1035 		info->free_blocks_total += blocks;
1036 
1037 		/* Count free base pages */
1038 		info->free_pages += blocks << order;
1039 
1040 		/* Count the suitable free blocks */
1041 		if (order >= suitable_order)
1042 			info->free_blocks_suitable += blocks <<
1043 						(order - suitable_order);
1044 	}
1045 }
1046 
1047 /*
1048  * A fragmentation index only makes sense if an allocation of a requested
1049  * size would fail. If that is true, the fragmentation index indicates
1050  * whether external fragmentation or a lack of memory was the problem.
1051  * The value can be used to determine if page reclaim or compaction
1052  * should be used
1053  */
1054 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1055 {
1056 	unsigned long requested = 1UL << order;
1057 
1058 	if (WARN_ON_ONCE(order >= MAX_ORDER))
1059 		return 0;
1060 
1061 	if (!info->free_blocks_total)
1062 		return 0;
1063 
1064 	/* Fragmentation index only makes sense when a request would fail */
1065 	if (info->free_blocks_suitable)
1066 		return -1000;
1067 
1068 	/*
1069 	 * Index is between 0 and 1 so return within 3 decimal places
1070 	 *
1071 	 * 0 => allocation would fail due to lack of memory
1072 	 * 1 => allocation would fail due to fragmentation
1073 	 */
1074 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1075 }
1076 
1077 /* Same as __fragmentation index but allocs contig_page_info on stack */
1078 int fragmentation_index(struct zone *zone, unsigned int order)
1079 {
1080 	struct contig_page_info info;
1081 
1082 	fill_contig_page_info(zone, order, &info);
1083 	return __fragmentation_index(order, &info);
1084 }
1085 #endif
1086 
1087 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1088 #ifdef CONFIG_ZONE_DMA
1089 #define TEXT_FOR_DMA(xx) xx "_dma",
1090 #else
1091 #define TEXT_FOR_DMA(xx)
1092 #endif
1093 
1094 #ifdef CONFIG_ZONE_DMA32
1095 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1096 #else
1097 #define TEXT_FOR_DMA32(xx)
1098 #endif
1099 
1100 #ifdef CONFIG_HIGHMEM
1101 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1102 #else
1103 #define TEXT_FOR_HIGHMEM(xx)
1104 #endif
1105 
1106 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1107 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
1108 
1109 const char * const vmstat_text[] = {
1110 	/* enum zone_stat_item countes */
1111 	"nr_free_pages",
1112 	"nr_zone_inactive_anon",
1113 	"nr_zone_active_anon",
1114 	"nr_zone_inactive_file",
1115 	"nr_zone_active_file",
1116 	"nr_zone_unevictable",
1117 	"nr_zone_write_pending",
1118 	"nr_mlock",
1119 	"nr_page_table_pages",
1120 	"nr_kernel_stack",
1121 	"nr_bounce",
1122 #if IS_ENABLED(CONFIG_ZSMALLOC)
1123 	"nr_zspages",
1124 #endif
1125 	"nr_free_cma",
1126 
1127 	/* enum numa_stat_item counters */
1128 #ifdef CONFIG_NUMA
1129 	"numa_hit",
1130 	"numa_miss",
1131 	"numa_foreign",
1132 	"numa_interleave",
1133 	"numa_local",
1134 	"numa_other",
1135 #endif
1136 
1137 	/* Node-based counters */
1138 	"nr_inactive_anon",
1139 	"nr_active_anon",
1140 	"nr_inactive_file",
1141 	"nr_active_file",
1142 	"nr_unevictable",
1143 	"nr_slab_reclaimable",
1144 	"nr_slab_unreclaimable",
1145 	"nr_isolated_anon",
1146 	"nr_isolated_file",
1147 	"workingset_nodes",
1148 	"workingset_refault",
1149 	"workingset_activate",
1150 	"workingset_restore",
1151 	"workingset_nodereclaim",
1152 	"nr_anon_pages",
1153 	"nr_mapped",
1154 	"nr_file_pages",
1155 	"nr_dirty",
1156 	"nr_writeback",
1157 	"nr_writeback_temp",
1158 	"nr_shmem",
1159 	"nr_shmem_hugepages",
1160 	"nr_shmem_pmdmapped",
1161 	"nr_file_hugepages",
1162 	"nr_file_pmdmapped",
1163 	"nr_anon_transparent_hugepages",
1164 	"nr_unstable",
1165 	"nr_vmscan_write",
1166 	"nr_vmscan_immediate_reclaim",
1167 	"nr_dirtied",
1168 	"nr_written",
1169 	"nr_kernel_misc_reclaimable",
1170 
1171 	/* enum writeback_stat_item counters */
1172 	"nr_dirty_threshold",
1173 	"nr_dirty_background_threshold",
1174 
1175 #ifdef CONFIG_VM_EVENT_COUNTERS
1176 	/* enum vm_event_item counters */
1177 	"pgpgin",
1178 	"pgpgout",
1179 	"pswpin",
1180 	"pswpout",
1181 
1182 	TEXTS_FOR_ZONES("pgalloc")
1183 	TEXTS_FOR_ZONES("allocstall")
1184 	TEXTS_FOR_ZONES("pgskip")
1185 
1186 	"pgfree",
1187 	"pgactivate",
1188 	"pgdeactivate",
1189 	"pglazyfree",
1190 
1191 	"pgfault",
1192 	"pgmajfault",
1193 	"pglazyfreed",
1194 
1195 	"pgrefill",
1196 	"pgsteal_kswapd",
1197 	"pgsteal_direct",
1198 	"pgscan_kswapd",
1199 	"pgscan_direct",
1200 	"pgscan_direct_throttle",
1201 
1202 #ifdef CONFIG_NUMA
1203 	"zone_reclaim_failed",
1204 #endif
1205 	"pginodesteal",
1206 	"slabs_scanned",
1207 	"kswapd_inodesteal",
1208 	"kswapd_low_wmark_hit_quickly",
1209 	"kswapd_high_wmark_hit_quickly",
1210 	"pageoutrun",
1211 
1212 	"pgrotated",
1213 
1214 	"drop_pagecache",
1215 	"drop_slab",
1216 	"oom_kill",
1217 
1218 #ifdef CONFIG_NUMA_BALANCING
1219 	"numa_pte_updates",
1220 	"numa_huge_pte_updates",
1221 	"numa_hint_faults",
1222 	"numa_hint_faults_local",
1223 	"numa_pages_migrated",
1224 #endif
1225 #ifdef CONFIG_MIGRATION
1226 	"pgmigrate_success",
1227 	"pgmigrate_fail",
1228 #endif
1229 #ifdef CONFIG_COMPACTION
1230 	"compact_migrate_scanned",
1231 	"compact_free_scanned",
1232 	"compact_isolated",
1233 	"compact_stall",
1234 	"compact_fail",
1235 	"compact_success",
1236 	"compact_daemon_wake",
1237 	"compact_daemon_migrate_scanned",
1238 	"compact_daemon_free_scanned",
1239 #endif
1240 
1241 #ifdef CONFIG_HUGETLB_PAGE
1242 	"htlb_buddy_alloc_success",
1243 	"htlb_buddy_alloc_fail",
1244 #endif
1245 	"unevictable_pgs_culled",
1246 	"unevictable_pgs_scanned",
1247 	"unevictable_pgs_rescued",
1248 	"unevictable_pgs_mlocked",
1249 	"unevictable_pgs_munlocked",
1250 	"unevictable_pgs_cleared",
1251 	"unevictable_pgs_stranded",
1252 
1253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1254 	"thp_fault_alloc",
1255 	"thp_fault_fallback",
1256 	"thp_collapse_alloc",
1257 	"thp_collapse_alloc_failed",
1258 	"thp_file_alloc",
1259 	"thp_file_mapped",
1260 	"thp_split_page",
1261 	"thp_split_page_failed",
1262 	"thp_deferred_split_page",
1263 	"thp_split_pmd",
1264 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1265 	"thp_split_pud",
1266 #endif
1267 	"thp_zero_page_alloc",
1268 	"thp_zero_page_alloc_failed",
1269 	"thp_swpout",
1270 	"thp_swpout_fallback",
1271 #endif
1272 #ifdef CONFIG_MEMORY_BALLOON
1273 	"balloon_inflate",
1274 	"balloon_deflate",
1275 #ifdef CONFIG_BALLOON_COMPACTION
1276 	"balloon_migrate",
1277 #endif
1278 #endif /* CONFIG_MEMORY_BALLOON */
1279 #ifdef CONFIG_DEBUG_TLBFLUSH
1280 	"nr_tlb_remote_flush",
1281 	"nr_tlb_remote_flush_received",
1282 	"nr_tlb_local_flush_all",
1283 	"nr_tlb_local_flush_one",
1284 #endif /* CONFIG_DEBUG_TLBFLUSH */
1285 
1286 #ifdef CONFIG_DEBUG_VM_VMACACHE
1287 	"vmacache_find_calls",
1288 	"vmacache_find_hits",
1289 #endif
1290 #ifdef CONFIG_SWAP
1291 	"swap_ra",
1292 	"swap_ra_hit",
1293 #endif
1294 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1295 };
1296 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1297 
1298 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1299      defined(CONFIG_PROC_FS)
1300 static void *frag_start(struct seq_file *m, loff_t *pos)
1301 {
1302 	pg_data_t *pgdat;
1303 	loff_t node = *pos;
1304 
1305 	for (pgdat = first_online_pgdat();
1306 	     pgdat && node;
1307 	     pgdat = next_online_pgdat(pgdat))
1308 		--node;
1309 
1310 	return pgdat;
1311 }
1312 
1313 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1314 {
1315 	pg_data_t *pgdat = (pg_data_t *)arg;
1316 
1317 	(*pos)++;
1318 	return next_online_pgdat(pgdat);
1319 }
1320 
1321 static void frag_stop(struct seq_file *m, void *arg)
1322 {
1323 }
1324 
1325 /*
1326  * Walk zones in a node and print using a callback.
1327  * If @assert_populated is true, only use callback for zones that are populated.
1328  */
1329 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1330 		bool assert_populated, bool nolock,
1331 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1332 {
1333 	struct zone *zone;
1334 	struct zone *node_zones = pgdat->node_zones;
1335 	unsigned long flags;
1336 
1337 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1338 		if (assert_populated && !populated_zone(zone))
1339 			continue;
1340 
1341 		if (!nolock)
1342 			spin_lock_irqsave(&zone->lock, flags);
1343 		print(m, pgdat, zone);
1344 		if (!nolock)
1345 			spin_unlock_irqrestore(&zone->lock, flags);
1346 	}
1347 }
1348 #endif
1349 
1350 #ifdef CONFIG_PROC_FS
1351 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1352 						struct zone *zone)
1353 {
1354 	int order;
1355 
1356 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1357 	for (order = 0; order < MAX_ORDER; ++order)
1358 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1359 	seq_putc(m, '\n');
1360 }
1361 
1362 /*
1363  * This walks the free areas for each zone.
1364  */
1365 static int frag_show(struct seq_file *m, void *arg)
1366 {
1367 	pg_data_t *pgdat = (pg_data_t *)arg;
1368 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1369 	return 0;
1370 }
1371 
1372 static void pagetypeinfo_showfree_print(struct seq_file *m,
1373 					pg_data_t *pgdat, struct zone *zone)
1374 {
1375 	int order, mtype;
1376 
1377 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1378 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1379 					pgdat->node_id,
1380 					zone->name,
1381 					migratetype_names[mtype]);
1382 		for (order = 0; order < MAX_ORDER; ++order) {
1383 			unsigned long freecount = 0;
1384 			struct free_area *area;
1385 			struct list_head *curr;
1386 
1387 			area = &(zone->free_area[order]);
1388 
1389 			list_for_each(curr, &area->free_list[mtype])
1390 				freecount++;
1391 			seq_printf(m, "%6lu ", freecount);
1392 		}
1393 		seq_putc(m, '\n');
1394 	}
1395 }
1396 
1397 /* Print out the free pages at each order for each migatetype */
1398 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1399 {
1400 	int order;
1401 	pg_data_t *pgdat = (pg_data_t *)arg;
1402 
1403 	/* Print header */
1404 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1405 	for (order = 0; order < MAX_ORDER; ++order)
1406 		seq_printf(m, "%6d ", order);
1407 	seq_putc(m, '\n');
1408 
1409 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1410 
1411 	return 0;
1412 }
1413 
1414 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1415 					pg_data_t *pgdat, struct zone *zone)
1416 {
1417 	int mtype;
1418 	unsigned long pfn;
1419 	unsigned long start_pfn = zone->zone_start_pfn;
1420 	unsigned long end_pfn = zone_end_pfn(zone);
1421 	unsigned long count[MIGRATE_TYPES] = { 0, };
1422 
1423 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1424 		struct page *page;
1425 
1426 		page = pfn_to_online_page(pfn);
1427 		if (!page)
1428 			continue;
1429 
1430 		/* Watch for unexpected holes punched in the memmap */
1431 		if (!memmap_valid_within(pfn, page, zone))
1432 			continue;
1433 
1434 		if (page_zone(page) != zone)
1435 			continue;
1436 
1437 		mtype = get_pageblock_migratetype(page);
1438 
1439 		if (mtype < MIGRATE_TYPES)
1440 			count[mtype]++;
1441 	}
1442 
1443 	/* Print counts */
1444 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1445 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1446 		seq_printf(m, "%12lu ", count[mtype]);
1447 	seq_putc(m, '\n');
1448 }
1449 
1450 /* Print out the number of pageblocks for each migratetype */
1451 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1452 {
1453 	int mtype;
1454 	pg_data_t *pgdat = (pg_data_t *)arg;
1455 
1456 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1457 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1458 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1459 	seq_putc(m, '\n');
1460 	walk_zones_in_node(m, pgdat, true, false,
1461 		pagetypeinfo_showblockcount_print);
1462 
1463 	return 0;
1464 }
1465 
1466 /*
1467  * Print out the number of pageblocks for each migratetype that contain pages
1468  * of other types. This gives an indication of how well fallbacks are being
1469  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1470  * to determine what is going on
1471  */
1472 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1473 {
1474 #ifdef CONFIG_PAGE_OWNER
1475 	int mtype;
1476 
1477 	if (!static_branch_unlikely(&page_owner_inited))
1478 		return;
1479 
1480 	drain_all_pages(NULL);
1481 
1482 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1483 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1484 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1485 	seq_putc(m, '\n');
1486 
1487 	walk_zones_in_node(m, pgdat, true, true,
1488 		pagetypeinfo_showmixedcount_print);
1489 #endif /* CONFIG_PAGE_OWNER */
1490 }
1491 
1492 /*
1493  * This prints out statistics in relation to grouping pages by mobility.
1494  * It is expensive to collect so do not constantly read the file.
1495  */
1496 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1497 {
1498 	pg_data_t *pgdat = (pg_data_t *)arg;
1499 
1500 	/* check memoryless node */
1501 	if (!node_state(pgdat->node_id, N_MEMORY))
1502 		return 0;
1503 
1504 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1505 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1506 	seq_putc(m, '\n');
1507 	pagetypeinfo_showfree(m, pgdat);
1508 	pagetypeinfo_showblockcount(m, pgdat);
1509 	pagetypeinfo_showmixedcount(m, pgdat);
1510 
1511 	return 0;
1512 }
1513 
1514 static const struct seq_operations fragmentation_op = {
1515 	.start	= frag_start,
1516 	.next	= frag_next,
1517 	.stop	= frag_stop,
1518 	.show	= frag_show,
1519 };
1520 
1521 static const struct seq_operations pagetypeinfo_op = {
1522 	.start	= frag_start,
1523 	.next	= frag_next,
1524 	.stop	= frag_stop,
1525 	.show	= pagetypeinfo_show,
1526 };
1527 
1528 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1529 {
1530 	int zid;
1531 
1532 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1533 		struct zone *compare = &pgdat->node_zones[zid];
1534 
1535 		if (populated_zone(compare))
1536 			return zone == compare;
1537 	}
1538 
1539 	return false;
1540 }
1541 
1542 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1543 							struct zone *zone)
1544 {
1545 	int i;
1546 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1547 	if (is_zone_first_populated(pgdat, zone)) {
1548 		seq_printf(m, "\n  per-node stats");
1549 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1550 			seq_printf(m, "\n      %-12s %lu",
1551 				vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
1552 				NR_VM_NUMA_STAT_ITEMS],
1553 				node_page_state(pgdat, i));
1554 		}
1555 	}
1556 	seq_printf(m,
1557 		   "\n  pages free     %lu"
1558 		   "\n        min      %lu"
1559 		   "\n        low      %lu"
1560 		   "\n        high     %lu"
1561 		   "\n        spanned  %lu"
1562 		   "\n        present  %lu"
1563 		   "\n        managed  %lu",
1564 		   zone_page_state(zone, NR_FREE_PAGES),
1565 		   min_wmark_pages(zone),
1566 		   low_wmark_pages(zone),
1567 		   high_wmark_pages(zone),
1568 		   zone->spanned_pages,
1569 		   zone->present_pages,
1570 		   zone_managed_pages(zone));
1571 
1572 	seq_printf(m,
1573 		   "\n        protection: (%ld",
1574 		   zone->lowmem_reserve[0]);
1575 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1576 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1577 	seq_putc(m, ')');
1578 
1579 	/* If unpopulated, no other information is useful */
1580 	if (!populated_zone(zone)) {
1581 		seq_putc(m, '\n');
1582 		return;
1583 	}
1584 
1585 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1586 		seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1587 				zone_page_state(zone, i));
1588 
1589 #ifdef CONFIG_NUMA
1590 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1591 		seq_printf(m, "\n      %-12s %lu",
1592 				vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1593 				zone_numa_state_snapshot(zone, i));
1594 #endif
1595 
1596 	seq_printf(m, "\n  pagesets");
1597 	for_each_online_cpu(i) {
1598 		struct per_cpu_pageset *pageset;
1599 
1600 		pageset = per_cpu_ptr(zone->pageset, i);
1601 		seq_printf(m,
1602 			   "\n    cpu: %i"
1603 			   "\n              count: %i"
1604 			   "\n              high:  %i"
1605 			   "\n              batch: %i",
1606 			   i,
1607 			   pageset->pcp.count,
1608 			   pageset->pcp.high,
1609 			   pageset->pcp.batch);
1610 #ifdef CONFIG_SMP
1611 		seq_printf(m, "\n  vm stats threshold: %d",
1612 				pageset->stat_threshold);
1613 #endif
1614 	}
1615 	seq_printf(m,
1616 		   "\n  node_unreclaimable:  %u"
1617 		   "\n  start_pfn:           %lu",
1618 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1619 		   zone->zone_start_pfn);
1620 	seq_putc(m, '\n');
1621 }
1622 
1623 /*
1624  * Output information about zones in @pgdat.  All zones are printed regardless
1625  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1626  * set of all zones and userspace would not be aware of such zones if they are
1627  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1628  */
1629 static int zoneinfo_show(struct seq_file *m, void *arg)
1630 {
1631 	pg_data_t *pgdat = (pg_data_t *)arg;
1632 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1633 	return 0;
1634 }
1635 
1636 static const struct seq_operations zoneinfo_op = {
1637 	.start	= frag_start, /* iterate over all zones. The same as in
1638 			       * fragmentation. */
1639 	.next	= frag_next,
1640 	.stop	= frag_stop,
1641 	.show	= zoneinfo_show,
1642 };
1643 
1644 enum writeback_stat_item {
1645 	NR_DIRTY_THRESHOLD,
1646 	NR_DIRTY_BG_THRESHOLD,
1647 	NR_VM_WRITEBACK_STAT_ITEMS,
1648 };
1649 
1650 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1651 {
1652 	unsigned long *v;
1653 	int i, stat_items_size;
1654 
1655 	if (*pos >= ARRAY_SIZE(vmstat_text))
1656 		return NULL;
1657 	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1658 			  NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) +
1659 			  NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1660 			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1661 
1662 #ifdef CONFIG_VM_EVENT_COUNTERS
1663 	stat_items_size += sizeof(struct vm_event_state);
1664 #endif
1665 
1666 	BUILD_BUG_ON(stat_items_size !=
1667 		     ARRAY_SIZE(vmstat_text) * sizeof(unsigned long));
1668 	v = kmalloc(stat_items_size, GFP_KERNEL);
1669 	m->private = v;
1670 	if (!v)
1671 		return ERR_PTR(-ENOMEM);
1672 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1673 		v[i] = global_zone_page_state(i);
1674 	v += NR_VM_ZONE_STAT_ITEMS;
1675 
1676 #ifdef CONFIG_NUMA
1677 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1678 		v[i] = global_numa_state(i);
1679 	v += NR_VM_NUMA_STAT_ITEMS;
1680 #endif
1681 
1682 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1683 		v[i] = global_node_page_state(i);
1684 	v += NR_VM_NODE_STAT_ITEMS;
1685 
1686 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1687 			    v + NR_DIRTY_THRESHOLD);
1688 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1689 
1690 #ifdef CONFIG_VM_EVENT_COUNTERS
1691 	all_vm_events(v);
1692 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1693 	v[PGPGOUT] /= 2;
1694 #endif
1695 	return (unsigned long *)m->private + *pos;
1696 }
1697 
1698 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1699 {
1700 	(*pos)++;
1701 	if (*pos >= ARRAY_SIZE(vmstat_text))
1702 		return NULL;
1703 	return (unsigned long *)m->private + *pos;
1704 }
1705 
1706 static int vmstat_show(struct seq_file *m, void *arg)
1707 {
1708 	unsigned long *l = arg;
1709 	unsigned long off = l - (unsigned long *)m->private;
1710 
1711 	seq_puts(m, vmstat_text[off]);
1712 	seq_put_decimal_ull(m, " ", *l);
1713 	seq_putc(m, '\n');
1714 	return 0;
1715 }
1716 
1717 static void vmstat_stop(struct seq_file *m, void *arg)
1718 {
1719 	kfree(m->private);
1720 	m->private = NULL;
1721 }
1722 
1723 static const struct seq_operations vmstat_op = {
1724 	.start	= vmstat_start,
1725 	.next	= vmstat_next,
1726 	.stop	= vmstat_stop,
1727 	.show	= vmstat_show,
1728 };
1729 #endif /* CONFIG_PROC_FS */
1730 
1731 #ifdef CONFIG_SMP
1732 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1733 int sysctl_stat_interval __read_mostly = HZ;
1734 
1735 #ifdef CONFIG_PROC_FS
1736 static void refresh_vm_stats(struct work_struct *work)
1737 {
1738 	refresh_cpu_vm_stats(true);
1739 }
1740 
1741 int vmstat_refresh(struct ctl_table *table, int write,
1742 		   void __user *buffer, size_t *lenp, loff_t *ppos)
1743 {
1744 	long val;
1745 	int err;
1746 	int i;
1747 
1748 	/*
1749 	 * The regular update, every sysctl_stat_interval, may come later
1750 	 * than expected: leaving a significant amount in per_cpu buckets.
1751 	 * This is particularly misleading when checking a quantity of HUGE
1752 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1753 	 * which can equally be echo'ed to or cat'ted from (by root),
1754 	 * can be used to update the stats just before reading them.
1755 	 *
1756 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1757 	 * transiently negative values, report an error here if any of
1758 	 * the stats is negative, so we know to go looking for imbalance.
1759 	 */
1760 	err = schedule_on_each_cpu(refresh_vm_stats);
1761 	if (err)
1762 		return err;
1763 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1764 		val = atomic_long_read(&vm_zone_stat[i]);
1765 		if (val < 0) {
1766 			pr_warn("%s: %s %ld\n",
1767 				__func__, vmstat_text[i], val);
1768 			err = -EINVAL;
1769 		}
1770 	}
1771 #ifdef CONFIG_NUMA
1772 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1773 		val = atomic_long_read(&vm_numa_stat[i]);
1774 		if (val < 0) {
1775 			pr_warn("%s: %s %ld\n",
1776 				__func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val);
1777 			err = -EINVAL;
1778 		}
1779 	}
1780 #endif
1781 	if (err)
1782 		return err;
1783 	if (write)
1784 		*ppos += *lenp;
1785 	else
1786 		*lenp = 0;
1787 	return 0;
1788 }
1789 #endif /* CONFIG_PROC_FS */
1790 
1791 static void vmstat_update(struct work_struct *w)
1792 {
1793 	if (refresh_cpu_vm_stats(true)) {
1794 		/*
1795 		 * Counters were updated so we expect more updates
1796 		 * to occur in the future. Keep on running the
1797 		 * update worker thread.
1798 		 */
1799 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1800 				this_cpu_ptr(&vmstat_work),
1801 				round_jiffies_relative(sysctl_stat_interval));
1802 	}
1803 }
1804 
1805 /*
1806  * Switch off vmstat processing and then fold all the remaining differentials
1807  * until the diffs stay at zero. The function is used by NOHZ and can only be
1808  * invoked when tick processing is not active.
1809  */
1810 /*
1811  * Check if the diffs for a certain cpu indicate that
1812  * an update is needed.
1813  */
1814 static bool need_update(int cpu)
1815 {
1816 	struct zone *zone;
1817 
1818 	for_each_populated_zone(zone) {
1819 		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1820 
1821 		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1822 #ifdef CONFIG_NUMA
1823 		BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1824 #endif
1825 
1826 		/*
1827 		 * The fast way of checking if there are any vmstat diffs.
1828 		 */
1829 		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1830 			       sizeof(p->vm_stat_diff[0])))
1831 			return true;
1832 #ifdef CONFIG_NUMA
1833 		if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1834 			       sizeof(p->vm_numa_stat_diff[0])))
1835 			return true;
1836 #endif
1837 	}
1838 	return false;
1839 }
1840 
1841 /*
1842  * Switch off vmstat processing and then fold all the remaining differentials
1843  * until the diffs stay at zero. The function is used by NOHZ and can only be
1844  * invoked when tick processing is not active.
1845  */
1846 void quiet_vmstat(void)
1847 {
1848 	if (system_state != SYSTEM_RUNNING)
1849 		return;
1850 
1851 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1852 		return;
1853 
1854 	if (!need_update(smp_processor_id()))
1855 		return;
1856 
1857 	/*
1858 	 * Just refresh counters and do not care about the pending delayed
1859 	 * vmstat_update. It doesn't fire that often to matter and canceling
1860 	 * it would be too expensive from this path.
1861 	 * vmstat_shepherd will take care about that for us.
1862 	 */
1863 	refresh_cpu_vm_stats(false);
1864 }
1865 
1866 /*
1867  * Shepherd worker thread that checks the
1868  * differentials of processors that have their worker
1869  * threads for vm statistics updates disabled because of
1870  * inactivity.
1871  */
1872 static void vmstat_shepherd(struct work_struct *w);
1873 
1874 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1875 
1876 static void vmstat_shepherd(struct work_struct *w)
1877 {
1878 	int cpu;
1879 
1880 	get_online_cpus();
1881 	/* Check processors whose vmstat worker threads have been disabled */
1882 	for_each_online_cpu(cpu) {
1883 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1884 
1885 		if (!delayed_work_pending(dw) && need_update(cpu))
1886 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1887 	}
1888 	put_online_cpus();
1889 
1890 	schedule_delayed_work(&shepherd,
1891 		round_jiffies_relative(sysctl_stat_interval));
1892 }
1893 
1894 static void __init start_shepherd_timer(void)
1895 {
1896 	int cpu;
1897 
1898 	for_each_possible_cpu(cpu)
1899 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1900 			vmstat_update);
1901 
1902 	schedule_delayed_work(&shepherd,
1903 		round_jiffies_relative(sysctl_stat_interval));
1904 }
1905 
1906 static void __init init_cpu_node_state(void)
1907 {
1908 	int node;
1909 
1910 	for_each_online_node(node) {
1911 		if (cpumask_weight(cpumask_of_node(node)) > 0)
1912 			node_set_state(node, N_CPU);
1913 	}
1914 }
1915 
1916 static int vmstat_cpu_online(unsigned int cpu)
1917 {
1918 	refresh_zone_stat_thresholds();
1919 	node_set_state(cpu_to_node(cpu), N_CPU);
1920 	return 0;
1921 }
1922 
1923 static int vmstat_cpu_down_prep(unsigned int cpu)
1924 {
1925 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1926 	return 0;
1927 }
1928 
1929 static int vmstat_cpu_dead(unsigned int cpu)
1930 {
1931 	const struct cpumask *node_cpus;
1932 	int node;
1933 
1934 	node = cpu_to_node(cpu);
1935 
1936 	refresh_zone_stat_thresholds();
1937 	node_cpus = cpumask_of_node(node);
1938 	if (cpumask_weight(node_cpus) > 0)
1939 		return 0;
1940 
1941 	node_clear_state(node, N_CPU);
1942 	return 0;
1943 }
1944 
1945 #endif
1946 
1947 struct workqueue_struct *mm_percpu_wq;
1948 
1949 void __init init_mm_internals(void)
1950 {
1951 	int ret __maybe_unused;
1952 
1953 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1954 
1955 #ifdef CONFIG_SMP
1956 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1957 					NULL, vmstat_cpu_dead);
1958 	if (ret < 0)
1959 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
1960 
1961 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1962 					vmstat_cpu_online,
1963 					vmstat_cpu_down_prep);
1964 	if (ret < 0)
1965 		pr_err("vmstat: failed to register 'online' hotplug state\n");
1966 
1967 	get_online_cpus();
1968 	init_cpu_node_state();
1969 	put_online_cpus();
1970 
1971 	start_shepherd_timer();
1972 #endif
1973 #ifdef CONFIG_PROC_FS
1974 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
1975 	proc_create_seq("pagetypeinfo", 0444, NULL, &pagetypeinfo_op);
1976 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
1977 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
1978 #endif
1979 }
1980 
1981 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1982 
1983 /*
1984  * Return an index indicating how much of the available free memory is
1985  * unusable for an allocation of the requested size.
1986  */
1987 static int unusable_free_index(unsigned int order,
1988 				struct contig_page_info *info)
1989 {
1990 	/* No free memory is interpreted as all free memory is unusable */
1991 	if (info->free_pages == 0)
1992 		return 1000;
1993 
1994 	/*
1995 	 * Index should be a value between 0 and 1. Return a value to 3
1996 	 * decimal places.
1997 	 *
1998 	 * 0 => no fragmentation
1999 	 * 1 => high fragmentation
2000 	 */
2001 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2002 
2003 }
2004 
2005 static void unusable_show_print(struct seq_file *m,
2006 					pg_data_t *pgdat, struct zone *zone)
2007 {
2008 	unsigned int order;
2009 	int index;
2010 	struct contig_page_info info;
2011 
2012 	seq_printf(m, "Node %d, zone %8s ",
2013 				pgdat->node_id,
2014 				zone->name);
2015 	for (order = 0; order < MAX_ORDER; ++order) {
2016 		fill_contig_page_info(zone, order, &info);
2017 		index = unusable_free_index(order, &info);
2018 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2019 	}
2020 
2021 	seq_putc(m, '\n');
2022 }
2023 
2024 /*
2025  * Display unusable free space index
2026  *
2027  * The unusable free space index measures how much of the available free
2028  * memory cannot be used to satisfy an allocation of a given size and is a
2029  * value between 0 and 1. The higher the value, the more of free memory is
2030  * unusable and by implication, the worse the external fragmentation is. This
2031  * can be expressed as a percentage by multiplying by 100.
2032  */
2033 static int unusable_show(struct seq_file *m, void *arg)
2034 {
2035 	pg_data_t *pgdat = (pg_data_t *)arg;
2036 
2037 	/* check memoryless node */
2038 	if (!node_state(pgdat->node_id, N_MEMORY))
2039 		return 0;
2040 
2041 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2042 
2043 	return 0;
2044 }
2045 
2046 static const struct seq_operations unusable_op = {
2047 	.start	= frag_start,
2048 	.next	= frag_next,
2049 	.stop	= frag_stop,
2050 	.show	= unusable_show,
2051 };
2052 
2053 static int unusable_open(struct inode *inode, struct file *file)
2054 {
2055 	return seq_open(file, &unusable_op);
2056 }
2057 
2058 static const struct file_operations unusable_file_ops = {
2059 	.open		= unusable_open,
2060 	.read		= seq_read,
2061 	.llseek		= seq_lseek,
2062 	.release	= seq_release,
2063 };
2064 
2065 static void extfrag_show_print(struct seq_file *m,
2066 					pg_data_t *pgdat, struct zone *zone)
2067 {
2068 	unsigned int order;
2069 	int index;
2070 
2071 	/* Alloc on stack as interrupts are disabled for zone walk */
2072 	struct contig_page_info info;
2073 
2074 	seq_printf(m, "Node %d, zone %8s ",
2075 				pgdat->node_id,
2076 				zone->name);
2077 	for (order = 0; order < MAX_ORDER; ++order) {
2078 		fill_contig_page_info(zone, order, &info);
2079 		index = __fragmentation_index(order, &info);
2080 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2081 	}
2082 
2083 	seq_putc(m, '\n');
2084 }
2085 
2086 /*
2087  * Display fragmentation index for orders that allocations would fail for
2088  */
2089 static int extfrag_show(struct seq_file *m, void *arg)
2090 {
2091 	pg_data_t *pgdat = (pg_data_t *)arg;
2092 
2093 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2094 
2095 	return 0;
2096 }
2097 
2098 static const struct seq_operations extfrag_op = {
2099 	.start	= frag_start,
2100 	.next	= frag_next,
2101 	.stop	= frag_stop,
2102 	.show	= extfrag_show,
2103 };
2104 
2105 static int extfrag_open(struct inode *inode, struct file *file)
2106 {
2107 	return seq_open(file, &extfrag_op);
2108 }
2109 
2110 static const struct file_operations extfrag_file_ops = {
2111 	.open		= extfrag_open,
2112 	.read		= seq_read,
2113 	.llseek		= seq_lseek,
2114 	.release	= seq_release,
2115 };
2116 
2117 static int __init extfrag_debug_init(void)
2118 {
2119 	struct dentry *extfrag_debug_root;
2120 
2121 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2122 
2123 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2124 			    &unusable_file_ops);
2125 
2126 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2127 			    &extfrag_file_ops);
2128 
2129 	return 0;
2130 }
2131 
2132 module_init(extfrag_debug_init);
2133 #endif
2134