1 /* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 * Copyright (C) 2008-2014 Christoph Lameter 11 */ 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/err.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/cpu.h> 18 #include <linux/cpumask.h> 19 #include <linux/vmstat.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/debugfs.h> 23 #include <linux/sched.h> 24 #include <linux/math64.h> 25 #include <linux/writeback.h> 26 #include <linux/compaction.h> 27 #include <linux/mm_inline.h> 28 #include <linux/page_ext.h> 29 #include <linux/page_owner.h> 30 31 #include "internal.h" 32 33 #ifdef CONFIG_VM_EVENT_COUNTERS 34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 35 EXPORT_PER_CPU_SYMBOL(vm_event_states); 36 37 static void sum_vm_events(unsigned long *ret) 38 { 39 int cpu; 40 int i; 41 42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 43 44 for_each_online_cpu(cpu) { 45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 46 47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 48 ret[i] += this->event[i]; 49 } 50 } 51 52 /* 53 * Accumulate the vm event counters across all CPUs. 54 * The result is unavoidably approximate - it can change 55 * during and after execution of this function. 56 */ 57 void all_vm_events(unsigned long *ret) 58 { 59 get_online_cpus(); 60 sum_vm_events(ret); 61 put_online_cpus(); 62 } 63 EXPORT_SYMBOL_GPL(all_vm_events); 64 65 /* 66 * Fold the foreign cpu events into our own. 67 * 68 * This is adding to the events on one processor 69 * but keeps the global counts constant. 70 */ 71 void vm_events_fold_cpu(int cpu) 72 { 73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 74 int i; 75 76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 77 count_vm_events(i, fold_state->event[i]); 78 fold_state->event[i] = 0; 79 } 80 } 81 82 #endif /* CONFIG_VM_EVENT_COUNTERS */ 83 84 /* 85 * Manage combined zone based / global counters 86 * 87 * vm_stat contains the global counters 88 */ 89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 90 EXPORT_SYMBOL(vm_stat); 91 92 #ifdef CONFIG_SMP 93 94 int calculate_pressure_threshold(struct zone *zone) 95 { 96 int threshold; 97 int watermark_distance; 98 99 /* 100 * As vmstats are not up to date, there is drift between the estimated 101 * and real values. For high thresholds and a high number of CPUs, it 102 * is possible for the min watermark to be breached while the estimated 103 * value looks fine. The pressure threshold is a reduced value such 104 * that even the maximum amount of drift will not accidentally breach 105 * the min watermark 106 */ 107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 108 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 109 110 /* 111 * Maximum threshold is 125 112 */ 113 threshold = min(125, threshold); 114 115 return threshold; 116 } 117 118 int calculate_normal_threshold(struct zone *zone) 119 { 120 int threshold; 121 int mem; /* memory in 128 MB units */ 122 123 /* 124 * The threshold scales with the number of processors and the amount 125 * of memory per zone. More memory means that we can defer updates for 126 * longer, more processors could lead to more contention. 127 * fls() is used to have a cheap way of logarithmic scaling. 128 * 129 * Some sample thresholds: 130 * 131 * Threshold Processors (fls) Zonesize fls(mem+1) 132 * ------------------------------------------------------------------ 133 * 8 1 1 0.9-1 GB 4 134 * 16 2 2 0.9-1 GB 4 135 * 20 2 2 1-2 GB 5 136 * 24 2 2 2-4 GB 6 137 * 28 2 2 4-8 GB 7 138 * 32 2 2 8-16 GB 8 139 * 4 2 2 <128M 1 140 * 30 4 3 2-4 GB 5 141 * 48 4 3 8-16 GB 8 142 * 32 8 4 1-2 GB 4 143 * 32 8 4 0.9-1GB 4 144 * 10 16 5 <128M 1 145 * 40 16 5 900M 4 146 * 70 64 7 2-4 GB 5 147 * 84 64 7 4-8 GB 6 148 * 108 512 9 4-8 GB 6 149 * 125 1024 10 8-16 GB 8 150 * 125 1024 10 16-32 GB 9 151 */ 152 153 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 154 155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 156 157 /* 158 * Maximum threshold is 125 159 */ 160 threshold = min(125, threshold); 161 162 return threshold; 163 } 164 165 /* 166 * Refresh the thresholds for each zone. 167 */ 168 void refresh_zone_stat_thresholds(void) 169 { 170 struct zone *zone; 171 int cpu; 172 int threshold; 173 174 for_each_populated_zone(zone) { 175 unsigned long max_drift, tolerate_drift; 176 177 threshold = calculate_normal_threshold(zone); 178 179 for_each_online_cpu(cpu) 180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 181 = threshold; 182 183 /* 184 * Only set percpu_drift_mark if there is a danger that 185 * NR_FREE_PAGES reports the low watermark is ok when in fact 186 * the min watermark could be breached by an allocation 187 */ 188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 189 max_drift = num_online_cpus() * threshold; 190 if (max_drift > tolerate_drift) 191 zone->percpu_drift_mark = high_wmark_pages(zone) + 192 max_drift; 193 } 194 } 195 196 void set_pgdat_percpu_threshold(pg_data_t *pgdat, 197 int (*calculate_pressure)(struct zone *)) 198 { 199 struct zone *zone; 200 int cpu; 201 int threshold; 202 int i; 203 204 for (i = 0; i < pgdat->nr_zones; i++) { 205 zone = &pgdat->node_zones[i]; 206 if (!zone->percpu_drift_mark) 207 continue; 208 209 threshold = (*calculate_pressure)(zone); 210 for_each_online_cpu(cpu) 211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 212 = threshold; 213 } 214 } 215 216 /* 217 * For use when we know that interrupts are disabled, 218 * or when we know that preemption is disabled and that 219 * particular counter cannot be updated from interrupt context. 220 */ 221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 222 long delta) 223 { 224 struct per_cpu_pageset __percpu *pcp = zone->pageset; 225 s8 __percpu *p = pcp->vm_stat_diff + item; 226 long x; 227 long t; 228 229 x = delta + __this_cpu_read(*p); 230 231 t = __this_cpu_read(pcp->stat_threshold); 232 233 if (unlikely(x > t || x < -t)) { 234 zone_page_state_add(x, zone, item); 235 x = 0; 236 } 237 __this_cpu_write(*p, x); 238 } 239 EXPORT_SYMBOL(__mod_zone_page_state); 240 241 /* 242 * Optimized increment and decrement functions. 243 * 244 * These are only for a single page and therefore can take a struct page * 245 * argument instead of struct zone *. This allows the inclusion of the code 246 * generated for page_zone(page) into the optimized functions. 247 * 248 * No overflow check is necessary and therefore the differential can be 249 * incremented or decremented in place which may allow the compilers to 250 * generate better code. 251 * The increment or decrement is known and therefore one boundary check can 252 * be omitted. 253 * 254 * NOTE: These functions are very performance sensitive. Change only 255 * with care. 256 * 257 * Some processors have inc/dec instructions that are atomic vs an interrupt. 258 * However, the code must first determine the differential location in a zone 259 * based on the processor number and then inc/dec the counter. There is no 260 * guarantee without disabling preemption that the processor will not change 261 * in between and therefore the atomicity vs. interrupt cannot be exploited 262 * in a useful way here. 263 */ 264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 265 { 266 struct per_cpu_pageset __percpu *pcp = zone->pageset; 267 s8 __percpu *p = pcp->vm_stat_diff + item; 268 s8 v, t; 269 270 v = __this_cpu_inc_return(*p); 271 t = __this_cpu_read(pcp->stat_threshold); 272 if (unlikely(v > t)) { 273 s8 overstep = t >> 1; 274 275 zone_page_state_add(v + overstep, zone, item); 276 __this_cpu_write(*p, -overstep); 277 } 278 } 279 280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 281 { 282 __inc_zone_state(page_zone(page), item); 283 } 284 EXPORT_SYMBOL(__inc_zone_page_state); 285 286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 287 { 288 struct per_cpu_pageset __percpu *pcp = zone->pageset; 289 s8 __percpu *p = pcp->vm_stat_diff + item; 290 s8 v, t; 291 292 v = __this_cpu_dec_return(*p); 293 t = __this_cpu_read(pcp->stat_threshold); 294 if (unlikely(v < - t)) { 295 s8 overstep = t >> 1; 296 297 zone_page_state_add(v - overstep, zone, item); 298 __this_cpu_write(*p, overstep); 299 } 300 } 301 302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 303 { 304 __dec_zone_state(page_zone(page), item); 305 } 306 EXPORT_SYMBOL(__dec_zone_page_state); 307 308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL 309 /* 310 * If we have cmpxchg_local support then we do not need to incur the overhead 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 312 * 313 * mod_state() modifies the zone counter state through atomic per cpu 314 * operations. 315 * 316 * Overstep mode specifies how overstep should handled: 317 * 0 No overstepping 318 * 1 Overstepping half of threshold 319 * -1 Overstepping minus half of threshold 320 */ 321 static inline void mod_state(struct zone *zone, enum zone_stat_item item, 322 long delta, int overstep_mode) 323 { 324 struct per_cpu_pageset __percpu *pcp = zone->pageset; 325 s8 __percpu *p = pcp->vm_stat_diff + item; 326 long o, n, t, z; 327 328 do { 329 z = 0; /* overflow to zone counters */ 330 331 /* 332 * The fetching of the stat_threshold is racy. We may apply 333 * a counter threshold to the wrong the cpu if we get 334 * rescheduled while executing here. However, the next 335 * counter update will apply the threshold again and 336 * therefore bring the counter under the threshold again. 337 * 338 * Most of the time the thresholds are the same anyways 339 * for all cpus in a zone. 340 */ 341 t = this_cpu_read(pcp->stat_threshold); 342 343 o = this_cpu_read(*p); 344 n = delta + o; 345 346 if (n > t || n < -t) { 347 int os = overstep_mode * (t >> 1) ; 348 349 /* Overflow must be added to zone counters */ 350 z = n + os; 351 n = -os; 352 } 353 } while (this_cpu_cmpxchg(*p, o, n) != o); 354 355 if (z) 356 zone_page_state_add(z, zone, item); 357 } 358 359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 360 long delta) 361 { 362 mod_state(zone, item, delta, 0); 363 } 364 EXPORT_SYMBOL(mod_zone_page_state); 365 366 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 367 { 368 mod_state(zone, item, 1, 1); 369 } 370 371 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 372 { 373 mod_state(page_zone(page), item, 1, 1); 374 } 375 EXPORT_SYMBOL(inc_zone_page_state); 376 377 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 378 { 379 mod_state(page_zone(page), item, -1, -1); 380 } 381 EXPORT_SYMBOL(dec_zone_page_state); 382 #else 383 /* 384 * Use interrupt disable to serialize counter updates 385 */ 386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 387 long delta) 388 { 389 unsigned long flags; 390 391 local_irq_save(flags); 392 __mod_zone_page_state(zone, item, delta); 393 local_irq_restore(flags); 394 } 395 EXPORT_SYMBOL(mod_zone_page_state); 396 397 void inc_zone_state(struct zone *zone, enum zone_stat_item item) 398 { 399 unsigned long flags; 400 401 local_irq_save(flags); 402 __inc_zone_state(zone, item); 403 local_irq_restore(flags); 404 } 405 406 void inc_zone_page_state(struct page *page, enum zone_stat_item item) 407 { 408 unsigned long flags; 409 struct zone *zone; 410 411 zone = page_zone(page); 412 local_irq_save(flags); 413 __inc_zone_state(zone, item); 414 local_irq_restore(flags); 415 } 416 EXPORT_SYMBOL(inc_zone_page_state); 417 418 void dec_zone_page_state(struct page *page, enum zone_stat_item item) 419 { 420 unsigned long flags; 421 422 local_irq_save(flags); 423 __dec_zone_page_state(page, item); 424 local_irq_restore(flags); 425 } 426 EXPORT_SYMBOL(dec_zone_page_state); 427 #endif 428 429 430 /* 431 * Fold a differential into the global counters. 432 * Returns the number of counters updated. 433 */ 434 static int fold_diff(int *diff) 435 { 436 int i; 437 int changes = 0; 438 439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 440 if (diff[i]) { 441 atomic_long_add(diff[i], &vm_stat[i]); 442 changes++; 443 } 444 return changes; 445 } 446 447 /* 448 * Update the zone counters for the current cpu. 449 * 450 * Note that refresh_cpu_vm_stats strives to only access 451 * node local memory. The per cpu pagesets on remote zones are placed 452 * in the memory local to the processor using that pageset. So the 453 * loop over all zones will access a series of cachelines local to 454 * the processor. 455 * 456 * The call to zone_page_state_add updates the cachelines with the 457 * statistics in the remote zone struct as well as the global cachelines 458 * with the global counters. These could cause remote node cache line 459 * bouncing and will have to be only done when necessary. 460 * 461 * The function returns the number of global counters updated. 462 */ 463 static int refresh_cpu_vm_stats(bool do_pagesets) 464 { 465 struct zone *zone; 466 int i; 467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 468 int changes = 0; 469 470 for_each_populated_zone(zone) { 471 struct per_cpu_pageset __percpu *p = zone->pageset; 472 473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 474 int v; 475 476 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 477 if (v) { 478 479 atomic_long_add(v, &zone->vm_stat[i]); 480 global_diff[i] += v; 481 #ifdef CONFIG_NUMA 482 /* 3 seconds idle till flush */ 483 __this_cpu_write(p->expire, 3); 484 #endif 485 } 486 } 487 #ifdef CONFIG_NUMA 488 if (do_pagesets) { 489 cond_resched(); 490 /* 491 * Deal with draining the remote pageset of this 492 * processor 493 * 494 * Check if there are pages remaining in this pageset 495 * if not then there is nothing to expire. 496 */ 497 if (!__this_cpu_read(p->expire) || 498 !__this_cpu_read(p->pcp.count)) 499 continue; 500 501 /* 502 * We never drain zones local to this processor. 503 */ 504 if (zone_to_nid(zone) == numa_node_id()) { 505 __this_cpu_write(p->expire, 0); 506 continue; 507 } 508 509 if (__this_cpu_dec_return(p->expire)) 510 continue; 511 512 if (__this_cpu_read(p->pcp.count)) { 513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 514 changes++; 515 } 516 } 517 #endif 518 } 519 changes += fold_diff(global_diff); 520 return changes; 521 } 522 523 /* 524 * Fold the data for an offline cpu into the global array. 525 * There cannot be any access by the offline cpu and therefore 526 * synchronization is simplified. 527 */ 528 void cpu_vm_stats_fold(int cpu) 529 { 530 struct zone *zone; 531 int i; 532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 533 534 for_each_populated_zone(zone) { 535 struct per_cpu_pageset *p; 536 537 p = per_cpu_ptr(zone->pageset, cpu); 538 539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 540 if (p->vm_stat_diff[i]) { 541 int v; 542 543 v = p->vm_stat_diff[i]; 544 p->vm_stat_diff[i] = 0; 545 atomic_long_add(v, &zone->vm_stat[i]); 546 global_diff[i] += v; 547 } 548 } 549 550 fold_diff(global_diff); 551 } 552 553 /* 554 * this is only called if !populated_zone(zone), which implies no other users of 555 * pset->vm_stat_diff[] exsist. 556 */ 557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 558 { 559 int i; 560 561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 562 if (pset->vm_stat_diff[i]) { 563 int v = pset->vm_stat_diff[i]; 564 pset->vm_stat_diff[i] = 0; 565 atomic_long_add(v, &zone->vm_stat[i]); 566 atomic_long_add(v, &vm_stat[i]); 567 } 568 } 569 #endif 570 571 #ifdef CONFIG_NUMA 572 /* 573 * zonelist = the list of zones passed to the allocator 574 * z = the zone from which the allocation occurred. 575 * 576 * Must be called with interrupts disabled. 577 * 578 * When __GFP_OTHER_NODE is set assume the node of the preferred 579 * zone is the local node. This is useful for daemons who allocate 580 * memory on behalf of other processes. 581 */ 582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 583 { 584 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 585 __inc_zone_state(z, NUMA_HIT); 586 } else { 587 __inc_zone_state(z, NUMA_MISS); 588 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 589 } 590 if (z->node == ((flags & __GFP_OTHER_NODE) ? 591 preferred_zone->node : numa_node_id())) 592 __inc_zone_state(z, NUMA_LOCAL); 593 else 594 __inc_zone_state(z, NUMA_OTHER); 595 } 596 597 /* 598 * Determine the per node value of a stat item. 599 */ 600 unsigned long node_page_state(int node, enum zone_stat_item item) 601 { 602 struct zone *zones = NODE_DATA(node)->node_zones; 603 604 return 605 #ifdef CONFIG_ZONE_DMA 606 zone_page_state(&zones[ZONE_DMA], item) + 607 #endif 608 #ifdef CONFIG_ZONE_DMA32 609 zone_page_state(&zones[ZONE_DMA32], item) + 610 #endif 611 #ifdef CONFIG_HIGHMEM 612 zone_page_state(&zones[ZONE_HIGHMEM], item) + 613 #endif 614 zone_page_state(&zones[ZONE_NORMAL], item) + 615 zone_page_state(&zones[ZONE_MOVABLE], item); 616 } 617 618 #endif 619 620 #ifdef CONFIG_COMPACTION 621 622 struct contig_page_info { 623 unsigned long free_pages; 624 unsigned long free_blocks_total; 625 unsigned long free_blocks_suitable; 626 }; 627 628 /* 629 * Calculate the number of free pages in a zone, how many contiguous 630 * pages are free and how many are large enough to satisfy an allocation of 631 * the target size. Note that this function makes no attempt to estimate 632 * how many suitable free blocks there *might* be if MOVABLE pages were 633 * migrated. Calculating that is possible, but expensive and can be 634 * figured out from userspace 635 */ 636 static void fill_contig_page_info(struct zone *zone, 637 unsigned int suitable_order, 638 struct contig_page_info *info) 639 { 640 unsigned int order; 641 642 info->free_pages = 0; 643 info->free_blocks_total = 0; 644 info->free_blocks_suitable = 0; 645 646 for (order = 0; order < MAX_ORDER; order++) { 647 unsigned long blocks; 648 649 /* Count number of free blocks */ 650 blocks = zone->free_area[order].nr_free; 651 info->free_blocks_total += blocks; 652 653 /* Count free base pages */ 654 info->free_pages += blocks << order; 655 656 /* Count the suitable free blocks */ 657 if (order >= suitable_order) 658 info->free_blocks_suitable += blocks << 659 (order - suitable_order); 660 } 661 } 662 663 /* 664 * A fragmentation index only makes sense if an allocation of a requested 665 * size would fail. If that is true, the fragmentation index indicates 666 * whether external fragmentation or a lack of memory was the problem. 667 * The value can be used to determine if page reclaim or compaction 668 * should be used 669 */ 670 static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 671 { 672 unsigned long requested = 1UL << order; 673 674 if (!info->free_blocks_total) 675 return 0; 676 677 /* Fragmentation index only makes sense when a request would fail */ 678 if (info->free_blocks_suitable) 679 return -1000; 680 681 /* 682 * Index is between 0 and 1 so return within 3 decimal places 683 * 684 * 0 => allocation would fail due to lack of memory 685 * 1 => allocation would fail due to fragmentation 686 */ 687 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 688 } 689 690 /* Same as __fragmentation index but allocs contig_page_info on stack */ 691 int fragmentation_index(struct zone *zone, unsigned int order) 692 { 693 struct contig_page_info info; 694 695 fill_contig_page_info(zone, order, &info); 696 return __fragmentation_index(order, &info); 697 } 698 #endif 699 700 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 701 #ifdef CONFIG_ZONE_DMA 702 #define TEXT_FOR_DMA(xx) xx "_dma", 703 #else 704 #define TEXT_FOR_DMA(xx) 705 #endif 706 707 #ifdef CONFIG_ZONE_DMA32 708 #define TEXT_FOR_DMA32(xx) xx "_dma32", 709 #else 710 #define TEXT_FOR_DMA32(xx) 711 #endif 712 713 #ifdef CONFIG_HIGHMEM 714 #define TEXT_FOR_HIGHMEM(xx) xx "_high", 715 #else 716 #define TEXT_FOR_HIGHMEM(xx) 717 #endif 718 719 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 720 TEXT_FOR_HIGHMEM(xx) xx "_movable", 721 722 const char * const vmstat_text[] = { 723 /* enum zone_stat_item countes */ 724 "nr_free_pages", 725 "nr_alloc_batch", 726 "nr_inactive_anon", 727 "nr_active_anon", 728 "nr_inactive_file", 729 "nr_active_file", 730 "nr_unevictable", 731 "nr_mlock", 732 "nr_anon_pages", 733 "nr_mapped", 734 "nr_file_pages", 735 "nr_dirty", 736 "nr_writeback", 737 "nr_slab_reclaimable", 738 "nr_slab_unreclaimable", 739 "nr_page_table_pages", 740 "nr_kernel_stack", 741 "nr_unstable", 742 "nr_bounce", 743 "nr_vmscan_write", 744 "nr_vmscan_immediate_reclaim", 745 "nr_writeback_temp", 746 "nr_isolated_anon", 747 "nr_isolated_file", 748 "nr_shmem", 749 "nr_dirtied", 750 "nr_written", 751 "nr_pages_scanned", 752 753 #ifdef CONFIG_NUMA 754 "numa_hit", 755 "numa_miss", 756 "numa_foreign", 757 "numa_interleave", 758 "numa_local", 759 "numa_other", 760 #endif 761 "workingset_refault", 762 "workingset_activate", 763 "workingset_nodereclaim", 764 "nr_anon_transparent_hugepages", 765 "nr_free_cma", 766 767 /* enum writeback_stat_item counters */ 768 "nr_dirty_threshold", 769 "nr_dirty_background_threshold", 770 771 #ifdef CONFIG_VM_EVENT_COUNTERS 772 /* enum vm_event_item counters */ 773 "pgpgin", 774 "pgpgout", 775 "pswpin", 776 "pswpout", 777 778 TEXTS_FOR_ZONES("pgalloc") 779 780 "pgfree", 781 "pgactivate", 782 "pgdeactivate", 783 784 "pgfault", 785 "pgmajfault", 786 "pglazyfreed", 787 788 TEXTS_FOR_ZONES("pgrefill") 789 TEXTS_FOR_ZONES("pgsteal_kswapd") 790 TEXTS_FOR_ZONES("pgsteal_direct") 791 TEXTS_FOR_ZONES("pgscan_kswapd") 792 TEXTS_FOR_ZONES("pgscan_direct") 793 "pgscan_direct_throttle", 794 795 #ifdef CONFIG_NUMA 796 "zone_reclaim_failed", 797 #endif 798 "pginodesteal", 799 "slabs_scanned", 800 "kswapd_inodesteal", 801 "kswapd_low_wmark_hit_quickly", 802 "kswapd_high_wmark_hit_quickly", 803 "pageoutrun", 804 "allocstall", 805 806 "pgrotated", 807 808 "drop_pagecache", 809 "drop_slab", 810 811 #ifdef CONFIG_NUMA_BALANCING 812 "numa_pte_updates", 813 "numa_huge_pte_updates", 814 "numa_hint_faults", 815 "numa_hint_faults_local", 816 "numa_pages_migrated", 817 #endif 818 #ifdef CONFIG_MIGRATION 819 "pgmigrate_success", 820 "pgmigrate_fail", 821 #endif 822 #ifdef CONFIG_COMPACTION 823 "compact_migrate_scanned", 824 "compact_free_scanned", 825 "compact_isolated", 826 "compact_stall", 827 "compact_fail", 828 "compact_success", 829 "compact_daemon_wake", 830 #endif 831 832 #ifdef CONFIG_HUGETLB_PAGE 833 "htlb_buddy_alloc_success", 834 "htlb_buddy_alloc_fail", 835 #endif 836 "unevictable_pgs_culled", 837 "unevictable_pgs_scanned", 838 "unevictable_pgs_rescued", 839 "unevictable_pgs_mlocked", 840 "unevictable_pgs_munlocked", 841 "unevictable_pgs_cleared", 842 "unevictable_pgs_stranded", 843 844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 845 "thp_fault_alloc", 846 "thp_fault_fallback", 847 "thp_collapse_alloc", 848 "thp_collapse_alloc_failed", 849 "thp_split_page", 850 "thp_split_page_failed", 851 "thp_deferred_split_page", 852 "thp_split_pmd", 853 "thp_zero_page_alloc", 854 "thp_zero_page_alloc_failed", 855 #endif 856 #ifdef CONFIG_MEMORY_BALLOON 857 "balloon_inflate", 858 "balloon_deflate", 859 #ifdef CONFIG_BALLOON_COMPACTION 860 "balloon_migrate", 861 #endif 862 #endif /* CONFIG_MEMORY_BALLOON */ 863 #ifdef CONFIG_DEBUG_TLBFLUSH 864 #ifdef CONFIG_SMP 865 "nr_tlb_remote_flush", 866 "nr_tlb_remote_flush_received", 867 #endif /* CONFIG_SMP */ 868 "nr_tlb_local_flush_all", 869 "nr_tlb_local_flush_one", 870 #endif /* CONFIG_DEBUG_TLBFLUSH */ 871 872 #ifdef CONFIG_DEBUG_VM_VMACACHE 873 "vmacache_find_calls", 874 "vmacache_find_hits", 875 "vmacache_full_flushes", 876 #endif 877 #endif /* CONFIG_VM_EVENTS_COUNTERS */ 878 }; 879 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 880 881 882 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 883 defined(CONFIG_PROC_FS) 884 static void *frag_start(struct seq_file *m, loff_t *pos) 885 { 886 pg_data_t *pgdat; 887 loff_t node = *pos; 888 889 for (pgdat = first_online_pgdat(); 890 pgdat && node; 891 pgdat = next_online_pgdat(pgdat)) 892 --node; 893 894 return pgdat; 895 } 896 897 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 898 { 899 pg_data_t *pgdat = (pg_data_t *)arg; 900 901 (*pos)++; 902 return next_online_pgdat(pgdat); 903 } 904 905 static void frag_stop(struct seq_file *m, void *arg) 906 { 907 } 908 909 /* Walk all the zones in a node and print using a callback */ 910 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 911 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 912 { 913 struct zone *zone; 914 struct zone *node_zones = pgdat->node_zones; 915 unsigned long flags; 916 917 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 918 if (!populated_zone(zone)) 919 continue; 920 921 spin_lock_irqsave(&zone->lock, flags); 922 print(m, pgdat, zone); 923 spin_unlock_irqrestore(&zone->lock, flags); 924 } 925 } 926 #endif 927 928 #ifdef CONFIG_PROC_FS 929 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 930 struct zone *zone) 931 { 932 int order; 933 934 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 935 for (order = 0; order < MAX_ORDER; ++order) 936 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 937 seq_putc(m, '\n'); 938 } 939 940 /* 941 * This walks the free areas for each zone. 942 */ 943 static int frag_show(struct seq_file *m, void *arg) 944 { 945 pg_data_t *pgdat = (pg_data_t *)arg; 946 walk_zones_in_node(m, pgdat, frag_show_print); 947 return 0; 948 } 949 950 static void pagetypeinfo_showfree_print(struct seq_file *m, 951 pg_data_t *pgdat, struct zone *zone) 952 { 953 int order, mtype; 954 955 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 956 seq_printf(m, "Node %4d, zone %8s, type %12s ", 957 pgdat->node_id, 958 zone->name, 959 migratetype_names[mtype]); 960 for (order = 0; order < MAX_ORDER; ++order) { 961 unsigned long freecount = 0; 962 struct free_area *area; 963 struct list_head *curr; 964 965 area = &(zone->free_area[order]); 966 967 list_for_each(curr, &area->free_list[mtype]) 968 freecount++; 969 seq_printf(m, "%6lu ", freecount); 970 } 971 seq_putc(m, '\n'); 972 } 973 } 974 975 /* Print out the free pages at each order for each migatetype */ 976 static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 977 { 978 int order; 979 pg_data_t *pgdat = (pg_data_t *)arg; 980 981 /* Print header */ 982 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 983 for (order = 0; order < MAX_ORDER; ++order) 984 seq_printf(m, "%6d ", order); 985 seq_putc(m, '\n'); 986 987 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 988 989 return 0; 990 } 991 992 static void pagetypeinfo_showblockcount_print(struct seq_file *m, 993 pg_data_t *pgdat, struct zone *zone) 994 { 995 int mtype; 996 unsigned long pfn; 997 unsigned long start_pfn = zone->zone_start_pfn; 998 unsigned long end_pfn = zone_end_pfn(zone); 999 unsigned long count[MIGRATE_TYPES] = { 0, }; 1000 1001 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1002 struct page *page; 1003 1004 if (!pfn_valid(pfn)) 1005 continue; 1006 1007 page = pfn_to_page(pfn); 1008 1009 /* Watch for unexpected holes punched in the memmap */ 1010 if (!memmap_valid_within(pfn, page, zone)) 1011 continue; 1012 1013 mtype = get_pageblock_migratetype(page); 1014 1015 if (mtype < MIGRATE_TYPES) 1016 count[mtype]++; 1017 } 1018 1019 /* Print counts */ 1020 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1021 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1022 seq_printf(m, "%12lu ", count[mtype]); 1023 seq_putc(m, '\n'); 1024 } 1025 1026 /* Print out the free pages at each order for each migratetype */ 1027 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1028 { 1029 int mtype; 1030 pg_data_t *pgdat = (pg_data_t *)arg; 1031 1032 seq_printf(m, "\n%-23s", "Number of blocks type "); 1033 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1034 seq_printf(m, "%12s ", migratetype_names[mtype]); 1035 seq_putc(m, '\n'); 1036 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 1037 1038 return 0; 1039 } 1040 1041 #ifdef CONFIG_PAGE_OWNER 1042 static void pagetypeinfo_showmixedcount_print(struct seq_file *m, 1043 pg_data_t *pgdat, 1044 struct zone *zone) 1045 { 1046 struct page *page; 1047 struct page_ext *page_ext; 1048 unsigned long pfn = zone->zone_start_pfn, block_end_pfn; 1049 unsigned long end_pfn = pfn + zone->spanned_pages; 1050 unsigned long count[MIGRATE_TYPES] = { 0, }; 1051 int pageblock_mt, page_mt; 1052 int i; 1053 1054 /* Scan block by block. First and last block may be incomplete */ 1055 pfn = zone->zone_start_pfn; 1056 1057 /* 1058 * Walk the zone in pageblock_nr_pages steps. If a page block spans 1059 * a zone boundary, it will be double counted between zones. This does 1060 * not matter as the mixed block count will still be correct 1061 */ 1062 for (; pfn < end_pfn; ) { 1063 if (!pfn_valid(pfn)) { 1064 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES); 1065 continue; 1066 } 1067 1068 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 1069 block_end_pfn = min(block_end_pfn, end_pfn); 1070 1071 page = pfn_to_page(pfn); 1072 pageblock_mt = get_pfnblock_migratetype(page, pfn); 1073 1074 for (; pfn < block_end_pfn; pfn++) { 1075 if (!pfn_valid_within(pfn)) 1076 continue; 1077 1078 page = pfn_to_page(pfn); 1079 if (PageBuddy(page)) { 1080 pfn += (1UL << page_order(page)) - 1; 1081 continue; 1082 } 1083 1084 if (PageReserved(page)) 1085 continue; 1086 1087 page_ext = lookup_page_ext(page); 1088 1089 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) 1090 continue; 1091 1092 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask); 1093 if (pageblock_mt != page_mt) { 1094 if (is_migrate_cma(pageblock_mt)) 1095 count[MIGRATE_MOVABLE]++; 1096 else 1097 count[pageblock_mt]++; 1098 1099 pfn = block_end_pfn; 1100 break; 1101 } 1102 pfn += (1UL << page_ext->order) - 1; 1103 } 1104 } 1105 1106 /* Print counts */ 1107 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1108 for (i = 0; i < MIGRATE_TYPES; i++) 1109 seq_printf(m, "%12lu ", count[i]); 1110 seq_putc(m, '\n'); 1111 } 1112 #endif /* CONFIG_PAGE_OWNER */ 1113 1114 /* 1115 * Print out the number of pageblocks for each migratetype that contain pages 1116 * of other types. This gives an indication of how well fallbacks are being 1117 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1118 * to determine what is going on 1119 */ 1120 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1121 { 1122 #ifdef CONFIG_PAGE_OWNER 1123 int mtype; 1124 1125 if (!static_branch_unlikely(&page_owner_inited)) 1126 return; 1127 1128 drain_all_pages(NULL); 1129 1130 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1131 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1132 seq_printf(m, "%12s ", migratetype_names[mtype]); 1133 seq_putc(m, '\n'); 1134 1135 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print); 1136 #endif /* CONFIG_PAGE_OWNER */ 1137 } 1138 1139 /* 1140 * This prints out statistics in relation to grouping pages by mobility. 1141 * It is expensive to collect so do not constantly read the file. 1142 */ 1143 static int pagetypeinfo_show(struct seq_file *m, void *arg) 1144 { 1145 pg_data_t *pgdat = (pg_data_t *)arg; 1146 1147 /* check memoryless node */ 1148 if (!node_state(pgdat->node_id, N_MEMORY)) 1149 return 0; 1150 1151 seq_printf(m, "Page block order: %d\n", pageblock_order); 1152 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1153 seq_putc(m, '\n'); 1154 pagetypeinfo_showfree(m, pgdat); 1155 pagetypeinfo_showblockcount(m, pgdat); 1156 pagetypeinfo_showmixedcount(m, pgdat); 1157 1158 return 0; 1159 } 1160 1161 static const struct seq_operations fragmentation_op = { 1162 .start = frag_start, 1163 .next = frag_next, 1164 .stop = frag_stop, 1165 .show = frag_show, 1166 }; 1167 1168 static int fragmentation_open(struct inode *inode, struct file *file) 1169 { 1170 return seq_open(file, &fragmentation_op); 1171 } 1172 1173 static const struct file_operations fragmentation_file_operations = { 1174 .open = fragmentation_open, 1175 .read = seq_read, 1176 .llseek = seq_lseek, 1177 .release = seq_release, 1178 }; 1179 1180 static const struct seq_operations pagetypeinfo_op = { 1181 .start = frag_start, 1182 .next = frag_next, 1183 .stop = frag_stop, 1184 .show = pagetypeinfo_show, 1185 }; 1186 1187 static int pagetypeinfo_open(struct inode *inode, struct file *file) 1188 { 1189 return seq_open(file, &pagetypeinfo_op); 1190 } 1191 1192 static const struct file_operations pagetypeinfo_file_ops = { 1193 .open = pagetypeinfo_open, 1194 .read = seq_read, 1195 .llseek = seq_lseek, 1196 .release = seq_release, 1197 }; 1198 1199 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1200 struct zone *zone) 1201 { 1202 int i; 1203 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1204 seq_printf(m, 1205 "\n pages free %lu" 1206 "\n min %lu" 1207 "\n low %lu" 1208 "\n high %lu" 1209 "\n scanned %lu" 1210 "\n spanned %lu" 1211 "\n present %lu" 1212 "\n managed %lu", 1213 zone_page_state(zone, NR_FREE_PAGES), 1214 min_wmark_pages(zone), 1215 low_wmark_pages(zone), 1216 high_wmark_pages(zone), 1217 zone_page_state(zone, NR_PAGES_SCANNED), 1218 zone->spanned_pages, 1219 zone->present_pages, 1220 zone->managed_pages); 1221 1222 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1223 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1224 zone_page_state(zone, i)); 1225 1226 seq_printf(m, 1227 "\n protection: (%ld", 1228 zone->lowmem_reserve[0]); 1229 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1230 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1231 seq_printf(m, 1232 ")" 1233 "\n pagesets"); 1234 for_each_online_cpu(i) { 1235 struct per_cpu_pageset *pageset; 1236 1237 pageset = per_cpu_ptr(zone->pageset, i); 1238 seq_printf(m, 1239 "\n cpu: %i" 1240 "\n count: %i" 1241 "\n high: %i" 1242 "\n batch: %i", 1243 i, 1244 pageset->pcp.count, 1245 pageset->pcp.high, 1246 pageset->pcp.batch); 1247 #ifdef CONFIG_SMP 1248 seq_printf(m, "\n vm stats threshold: %d", 1249 pageset->stat_threshold); 1250 #endif 1251 } 1252 seq_printf(m, 1253 "\n all_unreclaimable: %u" 1254 "\n start_pfn: %lu" 1255 "\n inactive_ratio: %u", 1256 !zone_reclaimable(zone), 1257 zone->zone_start_pfn, 1258 zone->inactive_ratio); 1259 seq_putc(m, '\n'); 1260 } 1261 1262 /* 1263 * Output information about zones in @pgdat. 1264 */ 1265 static int zoneinfo_show(struct seq_file *m, void *arg) 1266 { 1267 pg_data_t *pgdat = (pg_data_t *)arg; 1268 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1269 return 0; 1270 } 1271 1272 static const struct seq_operations zoneinfo_op = { 1273 .start = frag_start, /* iterate over all zones. The same as in 1274 * fragmentation. */ 1275 .next = frag_next, 1276 .stop = frag_stop, 1277 .show = zoneinfo_show, 1278 }; 1279 1280 static int zoneinfo_open(struct inode *inode, struct file *file) 1281 { 1282 return seq_open(file, &zoneinfo_op); 1283 } 1284 1285 static const struct file_operations proc_zoneinfo_file_operations = { 1286 .open = zoneinfo_open, 1287 .read = seq_read, 1288 .llseek = seq_lseek, 1289 .release = seq_release, 1290 }; 1291 1292 enum writeback_stat_item { 1293 NR_DIRTY_THRESHOLD, 1294 NR_DIRTY_BG_THRESHOLD, 1295 NR_VM_WRITEBACK_STAT_ITEMS, 1296 }; 1297 1298 static void *vmstat_start(struct seq_file *m, loff_t *pos) 1299 { 1300 unsigned long *v; 1301 int i, stat_items_size; 1302 1303 if (*pos >= ARRAY_SIZE(vmstat_text)) 1304 return NULL; 1305 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1306 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1307 1308 #ifdef CONFIG_VM_EVENT_COUNTERS 1309 stat_items_size += sizeof(struct vm_event_state); 1310 #endif 1311 1312 v = kmalloc(stat_items_size, GFP_KERNEL); 1313 m->private = v; 1314 if (!v) 1315 return ERR_PTR(-ENOMEM); 1316 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1317 v[i] = global_page_state(i); 1318 v += NR_VM_ZONE_STAT_ITEMS; 1319 1320 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1321 v + NR_DIRTY_THRESHOLD); 1322 v += NR_VM_WRITEBACK_STAT_ITEMS; 1323 1324 #ifdef CONFIG_VM_EVENT_COUNTERS 1325 all_vm_events(v); 1326 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1327 v[PGPGOUT] /= 2; 1328 #endif 1329 return (unsigned long *)m->private + *pos; 1330 } 1331 1332 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1333 { 1334 (*pos)++; 1335 if (*pos >= ARRAY_SIZE(vmstat_text)) 1336 return NULL; 1337 return (unsigned long *)m->private + *pos; 1338 } 1339 1340 static int vmstat_show(struct seq_file *m, void *arg) 1341 { 1342 unsigned long *l = arg; 1343 unsigned long off = l - (unsigned long *)m->private; 1344 1345 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1346 return 0; 1347 } 1348 1349 static void vmstat_stop(struct seq_file *m, void *arg) 1350 { 1351 kfree(m->private); 1352 m->private = NULL; 1353 } 1354 1355 static const struct seq_operations vmstat_op = { 1356 .start = vmstat_start, 1357 .next = vmstat_next, 1358 .stop = vmstat_stop, 1359 .show = vmstat_show, 1360 }; 1361 1362 static int vmstat_open(struct inode *inode, struct file *file) 1363 { 1364 return seq_open(file, &vmstat_op); 1365 } 1366 1367 static const struct file_operations proc_vmstat_file_operations = { 1368 .open = vmstat_open, 1369 .read = seq_read, 1370 .llseek = seq_lseek, 1371 .release = seq_release, 1372 }; 1373 #endif /* CONFIG_PROC_FS */ 1374 1375 #ifdef CONFIG_SMP 1376 static struct workqueue_struct *vmstat_wq; 1377 static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1378 int sysctl_stat_interval __read_mostly = HZ; 1379 static cpumask_var_t cpu_stat_off; 1380 1381 static void vmstat_update(struct work_struct *w) 1382 { 1383 if (refresh_cpu_vm_stats(true)) { 1384 /* 1385 * Counters were updated so we expect more updates 1386 * to occur in the future. Keep on running the 1387 * update worker thread. 1388 * If we were marked on cpu_stat_off clear the flag 1389 * so that vmstat_shepherd doesn't schedule us again. 1390 */ 1391 if (!cpumask_test_and_clear_cpu(smp_processor_id(), 1392 cpu_stat_off)) { 1393 queue_delayed_work_on(smp_processor_id(), vmstat_wq, 1394 this_cpu_ptr(&vmstat_work), 1395 round_jiffies_relative(sysctl_stat_interval)); 1396 } 1397 } else { 1398 /* 1399 * We did not update any counters so the app may be in 1400 * a mode where it does not cause counter updates. 1401 * We may be uselessly running vmstat_update. 1402 * Defer the checking for differentials to the 1403 * shepherd thread on a different processor. 1404 */ 1405 cpumask_set_cpu(smp_processor_id(), cpu_stat_off); 1406 } 1407 } 1408 1409 /* 1410 * Switch off vmstat processing and then fold all the remaining differentials 1411 * until the diffs stay at zero. The function is used by NOHZ and can only be 1412 * invoked when tick processing is not active. 1413 */ 1414 /* 1415 * Check if the diffs for a certain cpu indicate that 1416 * an update is needed. 1417 */ 1418 static bool need_update(int cpu) 1419 { 1420 struct zone *zone; 1421 1422 for_each_populated_zone(zone) { 1423 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1424 1425 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1426 /* 1427 * The fast way of checking if there are any vmstat diffs. 1428 * This works because the diffs are byte sized items. 1429 */ 1430 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS)) 1431 return true; 1432 1433 } 1434 return false; 1435 } 1436 1437 void quiet_vmstat(void) 1438 { 1439 if (system_state != SYSTEM_RUNNING) 1440 return; 1441 1442 /* 1443 * If we are already in hands of the shepherd then there 1444 * is nothing for us to do here. 1445 */ 1446 if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off)) 1447 return; 1448 1449 if (!need_update(smp_processor_id())) 1450 return; 1451 1452 /* 1453 * Just refresh counters and do not care about the pending delayed 1454 * vmstat_update. It doesn't fire that often to matter and canceling 1455 * it would be too expensive from this path. 1456 * vmstat_shepherd will take care about that for us. 1457 */ 1458 refresh_cpu_vm_stats(false); 1459 } 1460 1461 1462 /* 1463 * Shepherd worker thread that checks the 1464 * differentials of processors that have their worker 1465 * threads for vm statistics updates disabled because of 1466 * inactivity. 1467 */ 1468 static void vmstat_shepherd(struct work_struct *w); 1469 1470 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1471 1472 static void vmstat_shepherd(struct work_struct *w) 1473 { 1474 int cpu; 1475 1476 get_online_cpus(); 1477 /* Check processors whose vmstat worker threads have been disabled */ 1478 for_each_cpu(cpu, cpu_stat_off) { 1479 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1480 1481 if (need_update(cpu)) { 1482 if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off)) 1483 queue_delayed_work_on(cpu, vmstat_wq, dw, 0); 1484 } else { 1485 /* 1486 * Cancel the work if quiet_vmstat has put this 1487 * cpu on cpu_stat_off because the work item might 1488 * be still scheduled 1489 */ 1490 cancel_delayed_work(dw); 1491 } 1492 } 1493 put_online_cpus(); 1494 1495 schedule_delayed_work(&shepherd, 1496 round_jiffies_relative(sysctl_stat_interval)); 1497 } 1498 1499 static void __init start_shepherd_timer(void) 1500 { 1501 int cpu; 1502 1503 for_each_possible_cpu(cpu) 1504 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1505 vmstat_update); 1506 1507 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL)) 1508 BUG(); 1509 cpumask_copy(cpu_stat_off, cpu_online_mask); 1510 1511 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0); 1512 schedule_delayed_work(&shepherd, 1513 round_jiffies_relative(sysctl_stat_interval)); 1514 } 1515 1516 static void vmstat_cpu_dead(int node) 1517 { 1518 int cpu; 1519 1520 get_online_cpus(); 1521 for_each_online_cpu(cpu) 1522 if (cpu_to_node(cpu) == node) 1523 goto end; 1524 1525 node_clear_state(node, N_CPU); 1526 end: 1527 put_online_cpus(); 1528 } 1529 1530 /* 1531 * Use the cpu notifier to insure that the thresholds are recalculated 1532 * when necessary. 1533 */ 1534 static int vmstat_cpuup_callback(struct notifier_block *nfb, 1535 unsigned long action, 1536 void *hcpu) 1537 { 1538 long cpu = (long)hcpu; 1539 1540 switch (action) { 1541 case CPU_ONLINE: 1542 case CPU_ONLINE_FROZEN: 1543 refresh_zone_stat_thresholds(); 1544 node_set_state(cpu_to_node(cpu), N_CPU); 1545 cpumask_set_cpu(cpu, cpu_stat_off); 1546 break; 1547 case CPU_DOWN_PREPARE: 1548 case CPU_DOWN_PREPARE_FROZEN: 1549 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1550 cpumask_clear_cpu(cpu, cpu_stat_off); 1551 break; 1552 case CPU_DOWN_FAILED: 1553 case CPU_DOWN_FAILED_FROZEN: 1554 cpumask_set_cpu(cpu, cpu_stat_off); 1555 break; 1556 case CPU_DEAD: 1557 case CPU_DEAD_FROZEN: 1558 refresh_zone_stat_thresholds(); 1559 vmstat_cpu_dead(cpu_to_node(cpu)); 1560 break; 1561 default: 1562 break; 1563 } 1564 return NOTIFY_OK; 1565 } 1566 1567 static struct notifier_block vmstat_notifier = 1568 { &vmstat_cpuup_callback, NULL, 0 }; 1569 #endif 1570 1571 static int __init setup_vmstat(void) 1572 { 1573 #ifdef CONFIG_SMP 1574 cpu_notifier_register_begin(); 1575 __register_cpu_notifier(&vmstat_notifier); 1576 1577 start_shepherd_timer(); 1578 cpu_notifier_register_done(); 1579 #endif 1580 #ifdef CONFIG_PROC_FS 1581 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1582 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1583 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1584 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1585 #endif 1586 return 0; 1587 } 1588 module_init(setup_vmstat) 1589 1590 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1591 1592 /* 1593 * Return an index indicating how much of the available free memory is 1594 * unusable for an allocation of the requested size. 1595 */ 1596 static int unusable_free_index(unsigned int order, 1597 struct contig_page_info *info) 1598 { 1599 /* No free memory is interpreted as all free memory is unusable */ 1600 if (info->free_pages == 0) 1601 return 1000; 1602 1603 /* 1604 * Index should be a value between 0 and 1. Return a value to 3 1605 * decimal places. 1606 * 1607 * 0 => no fragmentation 1608 * 1 => high fragmentation 1609 */ 1610 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1611 1612 } 1613 1614 static void unusable_show_print(struct seq_file *m, 1615 pg_data_t *pgdat, struct zone *zone) 1616 { 1617 unsigned int order; 1618 int index; 1619 struct contig_page_info info; 1620 1621 seq_printf(m, "Node %d, zone %8s ", 1622 pgdat->node_id, 1623 zone->name); 1624 for (order = 0; order < MAX_ORDER; ++order) { 1625 fill_contig_page_info(zone, order, &info); 1626 index = unusable_free_index(order, &info); 1627 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1628 } 1629 1630 seq_putc(m, '\n'); 1631 } 1632 1633 /* 1634 * Display unusable free space index 1635 * 1636 * The unusable free space index measures how much of the available free 1637 * memory cannot be used to satisfy an allocation of a given size and is a 1638 * value between 0 and 1. The higher the value, the more of free memory is 1639 * unusable and by implication, the worse the external fragmentation is. This 1640 * can be expressed as a percentage by multiplying by 100. 1641 */ 1642 static int unusable_show(struct seq_file *m, void *arg) 1643 { 1644 pg_data_t *pgdat = (pg_data_t *)arg; 1645 1646 /* check memoryless node */ 1647 if (!node_state(pgdat->node_id, N_MEMORY)) 1648 return 0; 1649 1650 walk_zones_in_node(m, pgdat, unusable_show_print); 1651 1652 return 0; 1653 } 1654 1655 static const struct seq_operations unusable_op = { 1656 .start = frag_start, 1657 .next = frag_next, 1658 .stop = frag_stop, 1659 .show = unusable_show, 1660 }; 1661 1662 static int unusable_open(struct inode *inode, struct file *file) 1663 { 1664 return seq_open(file, &unusable_op); 1665 } 1666 1667 static const struct file_operations unusable_file_ops = { 1668 .open = unusable_open, 1669 .read = seq_read, 1670 .llseek = seq_lseek, 1671 .release = seq_release, 1672 }; 1673 1674 static void extfrag_show_print(struct seq_file *m, 1675 pg_data_t *pgdat, struct zone *zone) 1676 { 1677 unsigned int order; 1678 int index; 1679 1680 /* Alloc on stack as interrupts are disabled for zone walk */ 1681 struct contig_page_info info; 1682 1683 seq_printf(m, "Node %d, zone %8s ", 1684 pgdat->node_id, 1685 zone->name); 1686 for (order = 0; order < MAX_ORDER; ++order) { 1687 fill_contig_page_info(zone, order, &info); 1688 index = __fragmentation_index(order, &info); 1689 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1690 } 1691 1692 seq_putc(m, '\n'); 1693 } 1694 1695 /* 1696 * Display fragmentation index for orders that allocations would fail for 1697 */ 1698 static int extfrag_show(struct seq_file *m, void *arg) 1699 { 1700 pg_data_t *pgdat = (pg_data_t *)arg; 1701 1702 walk_zones_in_node(m, pgdat, extfrag_show_print); 1703 1704 return 0; 1705 } 1706 1707 static const struct seq_operations extfrag_op = { 1708 .start = frag_start, 1709 .next = frag_next, 1710 .stop = frag_stop, 1711 .show = extfrag_show, 1712 }; 1713 1714 static int extfrag_open(struct inode *inode, struct file *file) 1715 { 1716 return seq_open(file, &extfrag_op); 1717 } 1718 1719 static const struct file_operations extfrag_file_ops = { 1720 .open = extfrag_open, 1721 .read = seq_read, 1722 .llseek = seq_lseek, 1723 .release = seq_release, 1724 }; 1725 1726 static int __init extfrag_debug_init(void) 1727 { 1728 struct dentry *extfrag_debug_root; 1729 1730 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1731 if (!extfrag_debug_root) 1732 return -ENOMEM; 1733 1734 if (!debugfs_create_file("unusable_index", 0444, 1735 extfrag_debug_root, NULL, &unusable_file_ops)) 1736 goto fail; 1737 1738 if (!debugfs_create_file("extfrag_index", 0444, 1739 extfrag_debug_root, NULL, &extfrag_file_ops)) 1740 goto fail; 1741 1742 return 0; 1743 fail: 1744 debugfs_remove_recursive(extfrag_debug_root); 1745 return -ENOMEM; 1746 } 1747 1748 module_init(extfrag_debug_init); 1749 #endif 1750