1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 #ifdef CONFIG_MEMCG 96 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 97 int *proactive_swappiness; 98 #endif 99 100 /* Can active folios be deactivated as part of reclaim? */ 101 #define DEACTIVATE_ANON 1 102 #define DEACTIVATE_FILE 2 103 unsigned int may_deactivate:2; 104 unsigned int force_deactivate:1; 105 unsigned int skipped_deactivate:1; 106 107 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 108 unsigned int may_writepage:1; 109 110 /* Can mapped folios be reclaimed? */ 111 unsigned int may_unmap:1; 112 113 /* Can folios be swapped as part of reclaim? */ 114 unsigned int may_swap:1; 115 116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 117 unsigned int no_cache_trim_mode:1; 118 119 /* Has cache_trim_mode failed at least once? */ 120 unsigned int cache_trim_mode_failed:1; 121 122 /* Proactive reclaim invoked by userspace through memory.reclaim */ 123 unsigned int proactive:1; 124 125 /* 126 * Cgroup memory below memory.low is protected as long as we 127 * don't threaten to OOM. If any cgroup is reclaimed at 128 * reduced force or passed over entirely due to its memory.low 129 * setting (memcg_low_skipped), and nothing is reclaimed as a 130 * result, then go back for one more cycle that reclaims the protected 131 * memory (memcg_low_reclaim) to avert OOM. 132 */ 133 unsigned int memcg_low_reclaim:1; 134 unsigned int memcg_low_skipped:1; 135 136 /* Shared cgroup tree walk failed, rescan the whole tree */ 137 unsigned int memcg_full_walk:1; 138 139 unsigned int hibernation_mode:1; 140 141 /* One of the zones is ready for compaction */ 142 unsigned int compaction_ready:1; 143 144 /* There is easily reclaimable cold cache in the current node */ 145 unsigned int cache_trim_mode:1; 146 147 /* The file folios on the current node are dangerously low */ 148 unsigned int file_is_tiny:1; 149 150 /* Always discard instead of demoting to lower tier memory */ 151 unsigned int no_demotion:1; 152 153 /* Allocation order */ 154 s8 order; 155 156 /* Scan (total_size >> priority) pages at once */ 157 s8 priority; 158 159 /* The highest zone to isolate folios for reclaim from */ 160 s8 reclaim_idx; 161 162 /* This context's GFP mask */ 163 gfp_t gfp_mask; 164 165 /* Incremented by the number of inactive pages that were scanned */ 166 unsigned long nr_scanned; 167 168 /* Number of pages freed so far during a call to shrink_zones() */ 169 unsigned long nr_reclaimed; 170 171 struct { 172 unsigned int dirty; 173 unsigned int unqueued_dirty; 174 unsigned int congested; 175 unsigned int writeback; 176 unsigned int immediate; 177 unsigned int file_taken; 178 unsigned int taken; 179 } nr; 180 181 /* for recording the reclaimed slab by now */ 182 struct reclaim_state reclaim_state; 183 }; 184 185 #ifdef ARCH_HAS_PREFETCHW 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 187 do { \ 188 if ((_folio)->lru.prev != _base) { \ 189 struct folio *prev; \ 190 \ 191 prev = lru_to_folio(&(_folio->lru)); \ 192 prefetchw(&prev->_field); \ 193 } \ 194 } while (0) 195 #else 196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 197 #endif 198 199 /* 200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 201 */ 202 int vm_swappiness = 60; 203 204 #ifdef CONFIG_MEMCG 205 206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 207 static bool cgroup_reclaim(struct scan_control *sc) 208 { 209 return sc->target_mem_cgroup; 210 } 211 212 /* 213 * Returns true for reclaim on the root cgroup. This is true for direct 214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 215 */ 216 static bool root_reclaim(struct scan_control *sc) 217 { 218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 219 } 220 221 /** 222 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 223 * @sc: scan_control in question 224 * 225 * The normal page dirty throttling mechanism in balance_dirty_pages() is 226 * completely broken with the legacy memcg and direct stalling in 227 * shrink_folio_list() is used for throttling instead, which lacks all the 228 * niceties such as fairness, adaptive pausing, bandwidth proportional 229 * allocation and configurability. 230 * 231 * This function tests whether the vmscan currently in progress can assume 232 * that the normal dirty throttling mechanism is operational. 233 */ 234 static bool writeback_throttling_sane(struct scan_control *sc) 235 { 236 if (!cgroup_reclaim(sc)) 237 return true; 238 #ifdef CONFIG_CGROUP_WRITEBACK 239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 240 return true; 241 #endif 242 return false; 243 } 244 245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 246 { 247 if (sc->proactive && sc->proactive_swappiness) 248 return *sc->proactive_swappiness; 249 return mem_cgroup_swappiness(memcg); 250 } 251 #else 252 static bool cgroup_reclaim(struct scan_control *sc) 253 { 254 return false; 255 } 256 257 static bool root_reclaim(struct scan_control *sc) 258 { 259 return true; 260 } 261 262 static bool writeback_throttling_sane(struct scan_control *sc) 263 { 264 return true; 265 } 266 267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 268 { 269 return READ_ONCE(vm_swappiness); 270 } 271 #endif 272 273 static void set_task_reclaim_state(struct task_struct *task, 274 struct reclaim_state *rs) 275 { 276 /* Check for an overwrite */ 277 WARN_ON_ONCE(rs && task->reclaim_state); 278 279 /* Check for the nulling of an already-nulled member */ 280 WARN_ON_ONCE(!rs && !task->reclaim_state); 281 282 task->reclaim_state = rs; 283 } 284 285 /* 286 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 287 * scan_control->nr_reclaimed. 288 */ 289 static void flush_reclaim_state(struct scan_control *sc) 290 { 291 /* 292 * Currently, reclaim_state->reclaimed includes three types of pages 293 * freed outside of vmscan: 294 * (1) Slab pages. 295 * (2) Clean file pages from pruned inodes (on highmem systems). 296 * (3) XFS freed buffer pages. 297 * 298 * For all of these cases, we cannot universally link the pages to a 299 * single memcg. For example, a memcg-aware shrinker can free one object 300 * charged to the target memcg, causing an entire page to be freed. 301 * If we count the entire page as reclaimed from the memcg, we end up 302 * overestimating the reclaimed amount (potentially under-reclaiming). 303 * 304 * Only count such pages for global reclaim to prevent under-reclaiming 305 * from the target memcg; preventing unnecessary retries during memcg 306 * charging and false positives from proactive reclaim. 307 * 308 * For uncommon cases where the freed pages were actually mostly 309 * charged to the target memcg, we end up underestimating the reclaimed 310 * amount. This should be fine. The freed pages will be uncharged 311 * anyway, even if they are not counted here properly, and we will be 312 * able to make forward progress in charging (which is usually in a 313 * retry loop). 314 * 315 * We can go one step further, and report the uncharged objcg pages in 316 * memcg reclaim, to make reporting more accurate and reduce 317 * underestimation, but it's probably not worth the complexity for now. 318 */ 319 if (current->reclaim_state && root_reclaim(sc)) { 320 sc->nr_reclaimed += current->reclaim_state->reclaimed; 321 current->reclaim_state->reclaimed = 0; 322 } 323 } 324 325 static bool can_demote(int nid, struct scan_control *sc) 326 { 327 if (!numa_demotion_enabled) 328 return false; 329 if (sc && sc->no_demotion) 330 return false; 331 if (next_demotion_node(nid) == NUMA_NO_NODE) 332 return false; 333 334 return true; 335 } 336 337 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 338 int nid, 339 struct scan_control *sc) 340 { 341 if (memcg == NULL) { 342 /* 343 * For non-memcg reclaim, is there 344 * space in any swap device? 345 */ 346 if (get_nr_swap_pages() > 0) 347 return true; 348 } else { 349 /* Is the memcg below its swap limit? */ 350 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 351 return true; 352 } 353 354 /* 355 * The page can not be swapped. 356 * 357 * Can it be reclaimed from this node via demotion? 358 */ 359 return can_demote(nid, sc); 360 } 361 362 /* 363 * This misses isolated folios which are not accounted for to save counters. 364 * As the data only determines if reclaim or compaction continues, it is 365 * not expected that isolated folios will be a dominating factor. 366 */ 367 unsigned long zone_reclaimable_pages(struct zone *zone) 368 { 369 unsigned long nr; 370 371 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 372 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 373 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 374 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 375 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 376 377 return nr; 378 } 379 380 /** 381 * lruvec_lru_size - Returns the number of pages on the given LRU list. 382 * @lruvec: lru vector 383 * @lru: lru to use 384 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 385 */ 386 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 387 int zone_idx) 388 { 389 unsigned long size = 0; 390 int zid; 391 392 for (zid = 0; zid <= zone_idx; zid++) { 393 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 394 395 if (!managed_zone(zone)) 396 continue; 397 398 if (!mem_cgroup_disabled()) 399 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 400 else 401 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 402 } 403 return size; 404 } 405 406 static unsigned long drop_slab_node(int nid) 407 { 408 unsigned long freed = 0; 409 struct mem_cgroup *memcg = NULL; 410 411 memcg = mem_cgroup_iter(NULL, NULL, NULL); 412 do { 413 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 414 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 415 416 return freed; 417 } 418 419 void drop_slab(void) 420 { 421 int nid; 422 int shift = 0; 423 unsigned long freed; 424 425 do { 426 freed = 0; 427 for_each_online_node(nid) { 428 if (fatal_signal_pending(current)) 429 return; 430 431 freed += drop_slab_node(nid); 432 } 433 } while ((freed >> shift++) > 1); 434 } 435 436 static int reclaimer_offset(void) 437 { 438 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 439 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 440 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 441 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 442 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 443 PGSCAN_DIRECT - PGSCAN_KSWAPD); 444 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 445 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 446 447 if (current_is_kswapd()) 448 return 0; 449 if (current_is_khugepaged()) 450 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 451 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 452 } 453 454 static inline int is_page_cache_freeable(struct folio *folio) 455 { 456 /* 457 * A freeable page cache folio is referenced only by the caller 458 * that isolated the folio, the page cache and optional filesystem 459 * private data at folio->private. 460 */ 461 return folio_ref_count(folio) - folio_test_private(folio) == 462 1 + folio_nr_pages(folio); 463 } 464 465 /* 466 * We detected a synchronous write error writing a folio out. Probably 467 * -ENOSPC. We need to propagate that into the address_space for a subsequent 468 * fsync(), msync() or close(). 469 * 470 * The tricky part is that after writepage we cannot touch the mapping: nothing 471 * prevents it from being freed up. But we have a ref on the folio and once 472 * that folio is locked, the mapping is pinned. 473 * 474 * We're allowed to run sleeping folio_lock() here because we know the caller has 475 * __GFP_FS. 476 */ 477 static void handle_write_error(struct address_space *mapping, 478 struct folio *folio, int error) 479 { 480 folio_lock(folio); 481 if (folio_mapping(folio) == mapping) 482 mapping_set_error(mapping, error); 483 folio_unlock(folio); 484 } 485 486 static bool skip_throttle_noprogress(pg_data_t *pgdat) 487 { 488 int reclaimable = 0, write_pending = 0; 489 int i; 490 491 /* 492 * If kswapd is disabled, reschedule if necessary but do not 493 * throttle as the system is likely near OOM. 494 */ 495 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 496 return true; 497 498 /* 499 * If there are a lot of dirty/writeback folios then do not 500 * throttle as throttling will occur when the folios cycle 501 * towards the end of the LRU if still under writeback. 502 */ 503 for (i = 0; i < MAX_NR_ZONES; i++) { 504 struct zone *zone = pgdat->node_zones + i; 505 506 if (!managed_zone(zone)) 507 continue; 508 509 reclaimable += zone_reclaimable_pages(zone); 510 write_pending += zone_page_state_snapshot(zone, 511 NR_ZONE_WRITE_PENDING); 512 } 513 if (2 * write_pending <= reclaimable) 514 return true; 515 516 return false; 517 } 518 519 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 520 { 521 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 522 long timeout, ret; 523 DEFINE_WAIT(wait); 524 525 /* 526 * Do not throttle user workers, kthreads other than kswapd or 527 * workqueues. They may be required for reclaim to make 528 * forward progress (e.g. journalling workqueues or kthreads). 529 */ 530 if (!current_is_kswapd() && 531 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 532 cond_resched(); 533 return; 534 } 535 536 /* 537 * These figures are pulled out of thin air. 538 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 539 * parallel reclaimers which is a short-lived event so the timeout is 540 * short. Failing to make progress or waiting on writeback are 541 * potentially long-lived events so use a longer timeout. This is shaky 542 * logic as a failure to make progress could be due to anything from 543 * writeback to a slow device to excessive referenced folios at the tail 544 * of the inactive LRU. 545 */ 546 switch(reason) { 547 case VMSCAN_THROTTLE_WRITEBACK: 548 timeout = HZ/10; 549 550 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 551 WRITE_ONCE(pgdat->nr_reclaim_start, 552 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 553 } 554 555 break; 556 case VMSCAN_THROTTLE_CONGESTED: 557 fallthrough; 558 case VMSCAN_THROTTLE_NOPROGRESS: 559 if (skip_throttle_noprogress(pgdat)) { 560 cond_resched(); 561 return; 562 } 563 564 timeout = 1; 565 566 break; 567 case VMSCAN_THROTTLE_ISOLATED: 568 timeout = HZ/50; 569 break; 570 default: 571 WARN_ON_ONCE(1); 572 timeout = HZ; 573 break; 574 } 575 576 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 577 ret = schedule_timeout(timeout); 578 finish_wait(wqh, &wait); 579 580 if (reason == VMSCAN_THROTTLE_WRITEBACK) 581 atomic_dec(&pgdat->nr_writeback_throttled); 582 583 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 584 jiffies_to_usecs(timeout - ret), 585 reason); 586 } 587 588 /* 589 * Account for folios written if tasks are throttled waiting on dirty 590 * folios to clean. If enough folios have been cleaned since throttling 591 * started then wakeup the throttled tasks. 592 */ 593 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 594 int nr_throttled) 595 { 596 unsigned long nr_written; 597 598 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 599 600 /* 601 * This is an inaccurate read as the per-cpu deltas may not 602 * be synchronised. However, given that the system is 603 * writeback throttled, it is not worth taking the penalty 604 * of getting an accurate count. At worst, the throttle 605 * timeout guarantees forward progress. 606 */ 607 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 608 READ_ONCE(pgdat->nr_reclaim_start); 609 610 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 611 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 612 } 613 614 /* possible outcome of pageout() */ 615 typedef enum { 616 /* failed to write folio out, folio is locked */ 617 PAGE_KEEP, 618 /* move folio to the active list, folio is locked */ 619 PAGE_ACTIVATE, 620 /* folio has been sent to the disk successfully, folio is unlocked */ 621 PAGE_SUCCESS, 622 /* folio is clean and locked */ 623 PAGE_CLEAN, 624 } pageout_t; 625 626 /* 627 * pageout is called by shrink_folio_list() for each dirty folio. 628 * Calls ->writepage(). 629 */ 630 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 631 struct swap_iocb **plug) 632 { 633 /* 634 * If the folio is dirty, only perform writeback if that write 635 * will be non-blocking. To prevent this allocation from being 636 * stalled by pagecache activity. But note that there may be 637 * stalls if we need to run get_block(). We could test 638 * PagePrivate for that. 639 * 640 * If this process is currently in __generic_file_write_iter() against 641 * this folio's queue, we can perform writeback even if that 642 * will block. 643 * 644 * If the folio is swapcache, write it back even if that would 645 * block, for some throttling. This happens by accident, because 646 * swap_backing_dev_info is bust: it doesn't reflect the 647 * congestion state of the swapdevs. Easy to fix, if needed. 648 */ 649 if (!is_page_cache_freeable(folio)) 650 return PAGE_KEEP; 651 if (!mapping) { 652 /* 653 * Some data journaling orphaned folios can have 654 * folio->mapping == NULL while being dirty with clean buffers. 655 */ 656 if (folio_test_private(folio)) { 657 if (try_to_free_buffers(folio)) { 658 folio_clear_dirty(folio); 659 pr_info("%s: orphaned folio\n", __func__); 660 return PAGE_CLEAN; 661 } 662 } 663 return PAGE_KEEP; 664 } 665 if (mapping->a_ops->writepage == NULL) 666 return PAGE_ACTIVATE; 667 668 if (folio_clear_dirty_for_io(folio)) { 669 int res; 670 struct writeback_control wbc = { 671 .sync_mode = WB_SYNC_NONE, 672 .nr_to_write = SWAP_CLUSTER_MAX, 673 .range_start = 0, 674 .range_end = LLONG_MAX, 675 .for_reclaim = 1, 676 .swap_plug = plug, 677 }; 678 679 folio_set_reclaim(folio); 680 res = mapping->a_ops->writepage(&folio->page, &wbc); 681 if (res < 0) 682 handle_write_error(mapping, folio, res); 683 if (res == AOP_WRITEPAGE_ACTIVATE) { 684 folio_clear_reclaim(folio); 685 return PAGE_ACTIVATE; 686 } 687 688 if (!folio_test_writeback(folio)) { 689 /* synchronous write or broken a_ops? */ 690 folio_clear_reclaim(folio); 691 } 692 trace_mm_vmscan_write_folio(folio); 693 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 694 return PAGE_SUCCESS; 695 } 696 697 return PAGE_CLEAN; 698 } 699 700 /* 701 * Same as remove_mapping, but if the folio is removed from the mapping, it 702 * gets returned with a refcount of 0. 703 */ 704 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 705 bool reclaimed, struct mem_cgroup *target_memcg) 706 { 707 int refcount; 708 void *shadow = NULL; 709 710 BUG_ON(!folio_test_locked(folio)); 711 BUG_ON(mapping != folio_mapping(folio)); 712 713 if (!folio_test_swapcache(folio)) 714 spin_lock(&mapping->host->i_lock); 715 xa_lock_irq(&mapping->i_pages); 716 /* 717 * The non racy check for a busy folio. 718 * 719 * Must be careful with the order of the tests. When someone has 720 * a ref to the folio, it may be possible that they dirty it then 721 * drop the reference. So if the dirty flag is tested before the 722 * refcount here, then the following race may occur: 723 * 724 * get_user_pages(&page); 725 * [user mapping goes away] 726 * write_to(page); 727 * !folio_test_dirty(folio) [good] 728 * folio_set_dirty(folio); 729 * folio_put(folio); 730 * !refcount(folio) [good, discard it] 731 * 732 * [oops, our write_to data is lost] 733 * 734 * Reversing the order of the tests ensures such a situation cannot 735 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 736 * load is not satisfied before that of folio->_refcount. 737 * 738 * Note that if the dirty flag is always set via folio_mark_dirty, 739 * and thus under the i_pages lock, then this ordering is not required. 740 */ 741 refcount = 1 + folio_nr_pages(folio); 742 if (!folio_ref_freeze(folio, refcount)) 743 goto cannot_free; 744 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 745 if (unlikely(folio_test_dirty(folio))) { 746 folio_ref_unfreeze(folio, refcount); 747 goto cannot_free; 748 } 749 750 if (folio_test_swapcache(folio)) { 751 swp_entry_t swap = folio->swap; 752 753 if (reclaimed && !mapping_exiting(mapping)) 754 shadow = workingset_eviction(folio, target_memcg); 755 __delete_from_swap_cache(folio, swap, shadow); 756 mem_cgroup_swapout(folio, swap); 757 xa_unlock_irq(&mapping->i_pages); 758 put_swap_folio(folio, swap); 759 } else { 760 void (*free_folio)(struct folio *); 761 762 free_folio = mapping->a_ops->free_folio; 763 /* 764 * Remember a shadow entry for reclaimed file cache in 765 * order to detect refaults, thus thrashing, later on. 766 * 767 * But don't store shadows in an address space that is 768 * already exiting. This is not just an optimization, 769 * inode reclaim needs to empty out the radix tree or 770 * the nodes are lost. Don't plant shadows behind its 771 * back. 772 * 773 * We also don't store shadows for DAX mappings because the 774 * only page cache folios found in these are zero pages 775 * covering holes, and because we don't want to mix DAX 776 * exceptional entries and shadow exceptional entries in the 777 * same address_space. 778 */ 779 if (reclaimed && folio_is_file_lru(folio) && 780 !mapping_exiting(mapping) && !dax_mapping(mapping)) 781 shadow = workingset_eviction(folio, target_memcg); 782 __filemap_remove_folio(folio, shadow); 783 xa_unlock_irq(&mapping->i_pages); 784 if (mapping_shrinkable(mapping)) 785 inode_add_lru(mapping->host); 786 spin_unlock(&mapping->host->i_lock); 787 788 if (free_folio) 789 free_folio(folio); 790 } 791 792 return 1; 793 794 cannot_free: 795 xa_unlock_irq(&mapping->i_pages); 796 if (!folio_test_swapcache(folio)) 797 spin_unlock(&mapping->host->i_lock); 798 return 0; 799 } 800 801 /** 802 * remove_mapping() - Attempt to remove a folio from its mapping. 803 * @mapping: The address space. 804 * @folio: The folio to remove. 805 * 806 * If the folio is dirty, under writeback or if someone else has a ref 807 * on it, removal will fail. 808 * Return: The number of pages removed from the mapping. 0 if the folio 809 * could not be removed. 810 * Context: The caller should have a single refcount on the folio and 811 * hold its lock. 812 */ 813 long remove_mapping(struct address_space *mapping, struct folio *folio) 814 { 815 if (__remove_mapping(mapping, folio, false, NULL)) { 816 /* 817 * Unfreezing the refcount with 1 effectively 818 * drops the pagecache ref for us without requiring another 819 * atomic operation. 820 */ 821 folio_ref_unfreeze(folio, 1); 822 return folio_nr_pages(folio); 823 } 824 return 0; 825 } 826 827 /** 828 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 829 * @folio: Folio to be returned to an LRU list. 830 * 831 * Add previously isolated @folio to appropriate LRU list. 832 * The folio may still be unevictable for other reasons. 833 * 834 * Context: lru_lock must not be held, interrupts must be enabled. 835 */ 836 void folio_putback_lru(struct folio *folio) 837 { 838 folio_add_lru(folio); 839 folio_put(folio); /* drop ref from isolate */ 840 } 841 842 enum folio_references { 843 FOLIOREF_RECLAIM, 844 FOLIOREF_RECLAIM_CLEAN, 845 FOLIOREF_KEEP, 846 FOLIOREF_ACTIVATE, 847 }; 848 849 static enum folio_references folio_check_references(struct folio *folio, 850 struct scan_control *sc) 851 { 852 int referenced_ptes, referenced_folio; 853 unsigned long vm_flags; 854 855 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 856 &vm_flags); 857 referenced_folio = folio_test_clear_referenced(folio); 858 859 /* 860 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 861 * Let the folio, now marked Mlocked, be moved to the unevictable list. 862 */ 863 if (vm_flags & VM_LOCKED) 864 return FOLIOREF_ACTIVATE; 865 866 /* rmap lock contention: rotate */ 867 if (referenced_ptes == -1) 868 return FOLIOREF_KEEP; 869 870 if (referenced_ptes) { 871 /* 872 * All mapped folios start out with page table 873 * references from the instantiating fault, so we need 874 * to look twice if a mapped file/anon folio is used more 875 * than once. 876 * 877 * Mark it and spare it for another trip around the 878 * inactive list. Another page table reference will 879 * lead to its activation. 880 * 881 * Note: the mark is set for activated folios as well 882 * so that recently deactivated but used folios are 883 * quickly recovered. 884 */ 885 folio_set_referenced(folio); 886 887 if (referenced_folio || referenced_ptes > 1) 888 return FOLIOREF_ACTIVATE; 889 890 /* 891 * Activate file-backed executable folios after first usage. 892 */ 893 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 894 return FOLIOREF_ACTIVATE; 895 896 return FOLIOREF_KEEP; 897 } 898 899 /* Reclaim if clean, defer dirty folios to writeback */ 900 if (referenced_folio && folio_is_file_lru(folio)) 901 return FOLIOREF_RECLAIM_CLEAN; 902 903 return FOLIOREF_RECLAIM; 904 } 905 906 /* Check if a folio is dirty or under writeback */ 907 static void folio_check_dirty_writeback(struct folio *folio, 908 bool *dirty, bool *writeback) 909 { 910 struct address_space *mapping; 911 912 /* 913 * Anonymous folios are not handled by flushers and must be written 914 * from reclaim context. Do not stall reclaim based on them. 915 * MADV_FREE anonymous folios are put into inactive file list too. 916 * They could be mistakenly treated as file lru. So further anon 917 * test is needed. 918 */ 919 if (!folio_is_file_lru(folio) || 920 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 921 *dirty = false; 922 *writeback = false; 923 return; 924 } 925 926 /* By default assume that the folio flags are accurate */ 927 *dirty = folio_test_dirty(folio); 928 *writeback = folio_test_writeback(folio); 929 930 /* Verify dirty/writeback state if the filesystem supports it */ 931 if (!folio_test_private(folio)) 932 return; 933 934 mapping = folio_mapping(folio); 935 if (mapping && mapping->a_ops->is_dirty_writeback) 936 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 937 } 938 939 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 940 { 941 struct folio *dst; 942 nodemask_t *allowed_mask; 943 struct migration_target_control *mtc; 944 945 mtc = (struct migration_target_control *)private; 946 947 allowed_mask = mtc->nmask; 948 /* 949 * make sure we allocate from the target node first also trying to 950 * demote or reclaim pages from the target node via kswapd if we are 951 * low on free memory on target node. If we don't do this and if 952 * we have free memory on the slower(lower) memtier, we would start 953 * allocating pages from slower(lower) memory tiers without even forcing 954 * a demotion of cold pages from the target memtier. This can result 955 * in the kernel placing hot pages in slower(lower) memory tiers. 956 */ 957 mtc->nmask = NULL; 958 mtc->gfp_mask |= __GFP_THISNODE; 959 dst = alloc_migration_target(src, (unsigned long)mtc); 960 if (dst) 961 return dst; 962 963 mtc->gfp_mask &= ~__GFP_THISNODE; 964 mtc->nmask = allowed_mask; 965 966 return alloc_migration_target(src, (unsigned long)mtc); 967 } 968 969 /* 970 * Take folios on @demote_folios and attempt to demote them to another node. 971 * Folios which are not demoted are left on @demote_folios. 972 */ 973 static unsigned int demote_folio_list(struct list_head *demote_folios, 974 struct pglist_data *pgdat) 975 { 976 int target_nid = next_demotion_node(pgdat->node_id); 977 unsigned int nr_succeeded; 978 nodemask_t allowed_mask; 979 980 struct migration_target_control mtc = { 981 /* 982 * Allocate from 'node', or fail quickly and quietly. 983 * When this happens, 'page' will likely just be discarded 984 * instead of migrated. 985 */ 986 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 987 __GFP_NOMEMALLOC | GFP_NOWAIT, 988 .nid = target_nid, 989 .nmask = &allowed_mask, 990 .reason = MR_DEMOTION, 991 }; 992 993 if (list_empty(demote_folios)) 994 return 0; 995 996 if (target_nid == NUMA_NO_NODE) 997 return 0; 998 999 node_get_allowed_targets(pgdat, &allowed_mask); 1000 1001 /* Demotion ignores all cpuset and mempolicy settings */ 1002 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1003 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1004 &nr_succeeded); 1005 1006 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(), 1007 nr_succeeded); 1008 1009 return nr_succeeded; 1010 } 1011 1012 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1013 { 1014 if (gfp_mask & __GFP_FS) 1015 return true; 1016 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1017 return false; 1018 /* 1019 * We can "enter_fs" for swap-cache with only __GFP_IO 1020 * providing this isn't SWP_FS_OPS. 1021 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1022 * but that will never affect SWP_FS_OPS, so the data_race 1023 * is safe. 1024 */ 1025 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1026 } 1027 1028 /* 1029 * shrink_folio_list() returns the number of reclaimed pages 1030 */ 1031 static unsigned int shrink_folio_list(struct list_head *folio_list, 1032 struct pglist_data *pgdat, struct scan_control *sc, 1033 struct reclaim_stat *stat, bool ignore_references) 1034 { 1035 struct folio_batch free_folios; 1036 LIST_HEAD(ret_folios); 1037 LIST_HEAD(demote_folios); 1038 unsigned int nr_reclaimed = 0; 1039 unsigned int pgactivate = 0; 1040 bool do_demote_pass; 1041 struct swap_iocb *plug = NULL; 1042 1043 folio_batch_init(&free_folios); 1044 memset(stat, 0, sizeof(*stat)); 1045 cond_resched(); 1046 do_demote_pass = can_demote(pgdat->node_id, sc); 1047 1048 retry: 1049 while (!list_empty(folio_list)) { 1050 struct address_space *mapping; 1051 struct folio *folio; 1052 enum folio_references references = FOLIOREF_RECLAIM; 1053 bool dirty, writeback; 1054 unsigned int nr_pages; 1055 1056 cond_resched(); 1057 1058 folio = lru_to_folio(folio_list); 1059 list_del(&folio->lru); 1060 1061 if (!folio_trylock(folio)) 1062 goto keep; 1063 1064 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1065 1066 nr_pages = folio_nr_pages(folio); 1067 1068 /* Account the number of base pages */ 1069 sc->nr_scanned += nr_pages; 1070 1071 if (unlikely(!folio_evictable(folio))) 1072 goto activate_locked; 1073 1074 if (!sc->may_unmap && folio_mapped(folio)) 1075 goto keep_locked; 1076 1077 /* folio_update_gen() tried to promote this page? */ 1078 if (lru_gen_enabled() && !ignore_references && 1079 folio_mapped(folio) && folio_test_referenced(folio)) 1080 goto keep_locked; 1081 1082 /* 1083 * The number of dirty pages determines if a node is marked 1084 * reclaim_congested. kswapd will stall and start writing 1085 * folios if the tail of the LRU is all dirty unqueued folios. 1086 */ 1087 folio_check_dirty_writeback(folio, &dirty, &writeback); 1088 if (dirty || writeback) 1089 stat->nr_dirty += nr_pages; 1090 1091 if (dirty && !writeback) 1092 stat->nr_unqueued_dirty += nr_pages; 1093 1094 /* 1095 * Treat this folio as congested if folios are cycling 1096 * through the LRU so quickly that the folios marked 1097 * for immediate reclaim are making it to the end of 1098 * the LRU a second time. 1099 */ 1100 if (writeback && folio_test_reclaim(folio)) 1101 stat->nr_congested += nr_pages; 1102 1103 /* 1104 * If a folio at the tail of the LRU is under writeback, there 1105 * are three cases to consider. 1106 * 1107 * 1) If reclaim is encountering an excessive number 1108 * of folios under writeback and this folio has both 1109 * the writeback and reclaim flags set, then it 1110 * indicates that folios are being queued for I/O but 1111 * are being recycled through the LRU before the I/O 1112 * can complete. Waiting on the folio itself risks an 1113 * indefinite stall if it is impossible to writeback 1114 * the folio due to I/O error or disconnected storage 1115 * so instead note that the LRU is being scanned too 1116 * quickly and the caller can stall after the folio 1117 * list has been processed. 1118 * 1119 * 2) Global or new memcg reclaim encounters a folio that is 1120 * not marked for immediate reclaim, or the caller does not 1121 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1122 * not to fs). In this case mark the folio for immediate 1123 * reclaim and continue scanning. 1124 * 1125 * Require may_enter_fs() because we would wait on fs, which 1126 * may not have submitted I/O yet. And the loop driver might 1127 * enter reclaim, and deadlock if it waits on a folio for 1128 * which it is needed to do the write (loop masks off 1129 * __GFP_IO|__GFP_FS for this reason); but more thought 1130 * would probably show more reasons. 1131 * 1132 * 3) Legacy memcg encounters a folio that already has the 1133 * reclaim flag set. memcg does not have any dirty folio 1134 * throttling so we could easily OOM just because too many 1135 * folios are in writeback and there is nothing else to 1136 * reclaim. Wait for the writeback to complete. 1137 * 1138 * In cases 1) and 2) we activate the folios to get them out of 1139 * the way while we continue scanning for clean folios on the 1140 * inactive list and refilling from the active list. The 1141 * observation here is that waiting for disk writes is more 1142 * expensive than potentially causing reloads down the line. 1143 * Since they're marked for immediate reclaim, they won't put 1144 * memory pressure on the cache working set any longer than it 1145 * takes to write them to disk. 1146 */ 1147 if (folio_test_writeback(folio)) { 1148 /* Case 1 above */ 1149 if (current_is_kswapd() && 1150 folio_test_reclaim(folio) && 1151 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1152 stat->nr_immediate += nr_pages; 1153 goto activate_locked; 1154 1155 /* Case 2 above */ 1156 } else if (writeback_throttling_sane(sc) || 1157 !folio_test_reclaim(folio) || 1158 !may_enter_fs(folio, sc->gfp_mask)) { 1159 /* 1160 * This is slightly racy - 1161 * folio_end_writeback() might have 1162 * just cleared the reclaim flag, then 1163 * setting the reclaim flag here ends up 1164 * interpreted as the readahead flag - but 1165 * that does not matter enough to care. 1166 * What we do want is for this folio to 1167 * have the reclaim flag set next time 1168 * memcg reclaim reaches the tests above, 1169 * so it will then wait for writeback to 1170 * avoid OOM; and it's also appropriate 1171 * in global reclaim. 1172 */ 1173 folio_set_reclaim(folio); 1174 stat->nr_writeback += nr_pages; 1175 goto activate_locked; 1176 1177 /* Case 3 above */ 1178 } else { 1179 folio_unlock(folio); 1180 folio_wait_writeback(folio); 1181 /* then go back and try same folio again */ 1182 list_add_tail(&folio->lru, folio_list); 1183 continue; 1184 } 1185 } 1186 1187 if (!ignore_references) 1188 references = folio_check_references(folio, sc); 1189 1190 switch (references) { 1191 case FOLIOREF_ACTIVATE: 1192 goto activate_locked; 1193 case FOLIOREF_KEEP: 1194 stat->nr_ref_keep += nr_pages; 1195 goto keep_locked; 1196 case FOLIOREF_RECLAIM: 1197 case FOLIOREF_RECLAIM_CLEAN: 1198 ; /* try to reclaim the folio below */ 1199 } 1200 1201 /* 1202 * Before reclaiming the folio, try to relocate 1203 * its contents to another node. 1204 */ 1205 if (do_demote_pass && 1206 (thp_migration_supported() || !folio_test_large(folio))) { 1207 list_add(&folio->lru, &demote_folios); 1208 folio_unlock(folio); 1209 continue; 1210 } 1211 1212 /* 1213 * Anonymous process memory has backing store? 1214 * Try to allocate it some swap space here. 1215 * Lazyfree folio could be freed directly 1216 */ 1217 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1218 if (!folio_test_swapcache(folio)) { 1219 if (!(sc->gfp_mask & __GFP_IO)) 1220 goto keep_locked; 1221 if (folio_maybe_dma_pinned(folio)) 1222 goto keep_locked; 1223 if (folio_test_large(folio)) { 1224 /* cannot split folio, skip it */ 1225 if (!can_split_folio(folio, NULL)) 1226 goto activate_locked; 1227 /* 1228 * Split partially mapped folios right away. 1229 * We can free the unmapped pages without IO. 1230 */ 1231 if (data_race(!list_empty(&folio->_deferred_list)) && 1232 split_folio_to_list(folio, folio_list)) 1233 goto activate_locked; 1234 } 1235 if (!add_to_swap(folio)) { 1236 int __maybe_unused order = folio_order(folio); 1237 1238 if (!folio_test_large(folio)) 1239 goto activate_locked_split; 1240 /* Fallback to swap normal pages */ 1241 if (split_folio_to_list(folio, folio_list)) 1242 goto activate_locked; 1243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1244 if (nr_pages >= HPAGE_PMD_NR) { 1245 count_memcg_folio_events(folio, 1246 THP_SWPOUT_FALLBACK, 1); 1247 count_vm_event(THP_SWPOUT_FALLBACK); 1248 } 1249 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1250 #endif 1251 if (!add_to_swap(folio)) 1252 goto activate_locked_split; 1253 } 1254 } 1255 } else if (folio_test_swapbacked(folio) && 1256 folio_test_large(folio)) { 1257 /* Split shmem folio */ 1258 if (split_folio_to_list(folio, folio_list)) 1259 goto keep_locked; 1260 } 1261 1262 /* 1263 * If the folio was split above, the tail pages will make 1264 * their own pass through this function and be accounted 1265 * then. 1266 */ 1267 if ((nr_pages > 1) && !folio_test_large(folio)) { 1268 sc->nr_scanned -= (nr_pages - 1); 1269 nr_pages = 1; 1270 } 1271 1272 /* 1273 * The folio is mapped into the page tables of one or more 1274 * processes. Try to unmap it here. 1275 */ 1276 if (folio_mapped(folio)) { 1277 enum ttu_flags flags = TTU_BATCH_FLUSH; 1278 bool was_swapbacked = folio_test_swapbacked(folio); 1279 1280 if (folio_test_pmd_mappable(folio)) 1281 flags |= TTU_SPLIT_HUGE_PMD; 1282 /* 1283 * Without TTU_SYNC, try_to_unmap will only begin to 1284 * hold PTL from the first present PTE within a large 1285 * folio. Some initial PTEs might be skipped due to 1286 * races with parallel PTE writes in which PTEs can be 1287 * cleared temporarily before being written new present 1288 * values. This will lead to a large folio is still 1289 * mapped while some subpages have been partially 1290 * unmapped after try_to_unmap; TTU_SYNC helps 1291 * try_to_unmap acquire PTL from the first PTE, 1292 * eliminating the influence of temporary PTE values. 1293 */ 1294 if (folio_test_large(folio)) 1295 flags |= TTU_SYNC; 1296 1297 try_to_unmap(folio, flags); 1298 if (folio_mapped(folio)) { 1299 stat->nr_unmap_fail += nr_pages; 1300 if (!was_swapbacked && 1301 folio_test_swapbacked(folio)) 1302 stat->nr_lazyfree_fail += nr_pages; 1303 goto activate_locked; 1304 } 1305 } 1306 1307 /* 1308 * Folio is unmapped now so it cannot be newly pinned anymore. 1309 * No point in trying to reclaim folio if it is pinned. 1310 * Furthermore we don't want to reclaim underlying fs metadata 1311 * if the folio is pinned and thus potentially modified by the 1312 * pinning process as that may upset the filesystem. 1313 */ 1314 if (folio_maybe_dma_pinned(folio)) 1315 goto activate_locked; 1316 1317 mapping = folio_mapping(folio); 1318 if (folio_test_dirty(folio)) { 1319 /* 1320 * Only kswapd can writeback filesystem folios 1321 * to avoid risk of stack overflow. But avoid 1322 * injecting inefficient single-folio I/O into 1323 * flusher writeback as much as possible: only 1324 * write folios when we've encountered many 1325 * dirty folios, and when we've already scanned 1326 * the rest of the LRU for clean folios and see 1327 * the same dirty folios again (with the reclaim 1328 * flag set). 1329 */ 1330 if (folio_is_file_lru(folio) && 1331 (!current_is_kswapd() || 1332 !folio_test_reclaim(folio) || 1333 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1334 /* 1335 * Immediately reclaim when written back. 1336 * Similar in principle to folio_deactivate() 1337 * except we already have the folio isolated 1338 * and know it's dirty 1339 */ 1340 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1341 nr_pages); 1342 folio_set_reclaim(folio); 1343 1344 goto activate_locked; 1345 } 1346 1347 if (references == FOLIOREF_RECLAIM_CLEAN) 1348 goto keep_locked; 1349 if (!may_enter_fs(folio, sc->gfp_mask)) 1350 goto keep_locked; 1351 if (!sc->may_writepage) 1352 goto keep_locked; 1353 1354 /* 1355 * Folio is dirty. Flush the TLB if a writable entry 1356 * potentially exists to avoid CPU writes after I/O 1357 * starts and then write it out here. 1358 */ 1359 try_to_unmap_flush_dirty(); 1360 switch (pageout(folio, mapping, &plug)) { 1361 case PAGE_KEEP: 1362 goto keep_locked; 1363 case PAGE_ACTIVATE: 1364 goto activate_locked; 1365 case PAGE_SUCCESS: 1366 stat->nr_pageout += nr_pages; 1367 1368 if (folio_test_writeback(folio)) 1369 goto keep; 1370 if (folio_test_dirty(folio)) 1371 goto keep; 1372 1373 /* 1374 * A synchronous write - probably a ramdisk. Go 1375 * ahead and try to reclaim the folio. 1376 */ 1377 if (!folio_trylock(folio)) 1378 goto keep; 1379 if (folio_test_dirty(folio) || 1380 folio_test_writeback(folio)) 1381 goto keep_locked; 1382 mapping = folio_mapping(folio); 1383 fallthrough; 1384 case PAGE_CLEAN: 1385 ; /* try to free the folio below */ 1386 } 1387 } 1388 1389 /* 1390 * If the folio has buffers, try to free the buffer 1391 * mappings associated with this folio. If we succeed 1392 * we try to free the folio as well. 1393 * 1394 * We do this even if the folio is dirty. 1395 * filemap_release_folio() does not perform I/O, but it 1396 * is possible for a folio to have the dirty flag set, 1397 * but it is actually clean (all its buffers are clean). 1398 * This happens if the buffers were written out directly, 1399 * with submit_bh(). ext3 will do this, as well as 1400 * the blockdev mapping. filemap_release_folio() will 1401 * discover that cleanness and will drop the buffers 1402 * and mark the folio clean - it can be freed. 1403 * 1404 * Rarely, folios can have buffers and no ->mapping. 1405 * These are the folios which were not successfully 1406 * invalidated in truncate_cleanup_folio(). We try to 1407 * drop those buffers here and if that worked, and the 1408 * folio is no longer mapped into process address space 1409 * (refcount == 1) it can be freed. Otherwise, leave 1410 * the folio on the LRU so it is swappable. 1411 */ 1412 if (folio_needs_release(folio)) { 1413 if (!filemap_release_folio(folio, sc->gfp_mask)) 1414 goto activate_locked; 1415 if (!mapping && folio_ref_count(folio) == 1) { 1416 folio_unlock(folio); 1417 if (folio_put_testzero(folio)) 1418 goto free_it; 1419 else { 1420 /* 1421 * rare race with speculative reference. 1422 * the speculative reference will free 1423 * this folio shortly, so we may 1424 * increment nr_reclaimed here (and 1425 * leave it off the LRU). 1426 */ 1427 nr_reclaimed += nr_pages; 1428 continue; 1429 } 1430 } 1431 } 1432 1433 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1434 /* follow __remove_mapping for reference */ 1435 if (!folio_ref_freeze(folio, 1)) 1436 goto keep_locked; 1437 /* 1438 * The folio has only one reference left, which is 1439 * from the isolation. After the caller puts the 1440 * folio back on the lru and drops the reference, the 1441 * folio will be freed anyway. It doesn't matter 1442 * which lru it goes on. So we don't bother checking 1443 * the dirty flag here. 1444 */ 1445 count_vm_events(PGLAZYFREED, nr_pages); 1446 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1447 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1448 sc->target_mem_cgroup)) 1449 goto keep_locked; 1450 1451 folio_unlock(folio); 1452 free_it: 1453 /* 1454 * Folio may get swapped out as a whole, need to account 1455 * all pages in it. 1456 */ 1457 nr_reclaimed += nr_pages; 1458 1459 folio_undo_large_rmappable(folio); 1460 if (folio_batch_add(&free_folios, folio) == 0) { 1461 mem_cgroup_uncharge_folios(&free_folios); 1462 try_to_unmap_flush(); 1463 free_unref_folios(&free_folios); 1464 } 1465 continue; 1466 1467 activate_locked_split: 1468 /* 1469 * The tail pages that are failed to add into swap cache 1470 * reach here. Fixup nr_scanned and nr_pages. 1471 */ 1472 if (nr_pages > 1) { 1473 sc->nr_scanned -= (nr_pages - 1); 1474 nr_pages = 1; 1475 } 1476 activate_locked: 1477 /* Not a candidate for swapping, so reclaim swap space. */ 1478 if (folio_test_swapcache(folio) && 1479 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1480 folio_free_swap(folio); 1481 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1482 if (!folio_test_mlocked(folio)) { 1483 int type = folio_is_file_lru(folio); 1484 folio_set_active(folio); 1485 stat->nr_activate[type] += nr_pages; 1486 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1487 } 1488 keep_locked: 1489 folio_unlock(folio); 1490 keep: 1491 list_add(&folio->lru, &ret_folios); 1492 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1493 folio_test_unevictable(folio), folio); 1494 } 1495 /* 'folio_list' is always empty here */ 1496 1497 /* Migrate folios selected for demotion */ 1498 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 1499 /* Folios that could not be demoted are still in @demote_folios */ 1500 if (!list_empty(&demote_folios)) { 1501 /* Folios which weren't demoted go back on @folio_list */ 1502 list_splice_init(&demote_folios, folio_list); 1503 1504 /* 1505 * goto retry to reclaim the undemoted folios in folio_list if 1506 * desired. 1507 * 1508 * Reclaiming directly from top tier nodes is not often desired 1509 * due to it breaking the LRU ordering: in general memory 1510 * should be reclaimed from lower tier nodes and demoted from 1511 * top tier nodes. 1512 * 1513 * However, disabling reclaim from top tier nodes entirely 1514 * would cause ooms in edge scenarios where lower tier memory 1515 * is unreclaimable for whatever reason, eg memory being 1516 * mlocked or too hot to reclaim. We can disable reclaim 1517 * from top tier nodes in proactive reclaim though as that is 1518 * not real memory pressure. 1519 */ 1520 if (!sc->proactive) { 1521 do_demote_pass = false; 1522 goto retry; 1523 } 1524 } 1525 1526 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1527 1528 mem_cgroup_uncharge_folios(&free_folios); 1529 try_to_unmap_flush(); 1530 free_unref_folios(&free_folios); 1531 1532 list_splice(&ret_folios, folio_list); 1533 count_vm_events(PGACTIVATE, pgactivate); 1534 1535 if (plug) 1536 swap_write_unplug(plug); 1537 return nr_reclaimed; 1538 } 1539 1540 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1541 struct list_head *folio_list) 1542 { 1543 struct scan_control sc = { 1544 .gfp_mask = GFP_KERNEL, 1545 .may_unmap = 1, 1546 }; 1547 struct reclaim_stat stat; 1548 unsigned int nr_reclaimed; 1549 struct folio *folio, *next; 1550 LIST_HEAD(clean_folios); 1551 unsigned int noreclaim_flag; 1552 1553 list_for_each_entry_safe(folio, next, folio_list, lru) { 1554 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1555 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1556 !folio_test_unevictable(folio)) { 1557 folio_clear_active(folio); 1558 list_move(&folio->lru, &clean_folios); 1559 } 1560 } 1561 1562 /* 1563 * We should be safe here since we are only dealing with file pages and 1564 * we are not kswapd and therefore cannot write dirty file pages. But 1565 * call memalloc_noreclaim_save() anyway, just in case these conditions 1566 * change in the future. 1567 */ 1568 noreclaim_flag = memalloc_noreclaim_save(); 1569 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1570 &stat, true); 1571 memalloc_noreclaim_restore(noreclaim_flag); 1572 1573 list_splice(&clean_folios, folio_list); 1574 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1575 -(long)nr_reclaimed); 1576 /* 1577 * Since lazyfree pages are isolated from file LRU from the beginning, 1578 * they will rotate back to anonymous LRU in the end if it failed to 1579 * discard so isolated count will be mismatched. 1580 * Compensate the isolated count for both LRU lists. 1581 */ 1582 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1583 stat.nr_lazyfree_fail); 1584 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1585 -(long)stat.nr_lazyfree_fail); 1586 return nr_reclaimed; 1587 } 1588 1589 /* 1590 * Update LRU sizes after isolating pages. The LRU size updates must 1591 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1592 */ 1593 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1594 enum lru_list lru, unsigned long *nr_zone_taken) 1595 { 1596 int zid; 1597 1598 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1599 if (!nr_zone_taken[zid]) 1600 continue; 1601 1602 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1603 } 1604 1605 } 1606 1607 #ifdef CONFIG_CMA 1608 /* 1609 * It is waste of effort to scan and reclaim CMA pages if it is not available 1610 * for current allocation context. Kswapd can not be enrolled as it can not 1611 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL 1612 */ 1613 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1614 { 1615 return !current_is_kswapd() && 1616 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE && 1617 folio_migratetype(folio) == MIGRATE_CMA; 1618 } 1619 #else 1620 static bool skip_cma(struct folio *folio, struct scan_control *sc) 1621 { 1622 return false; 1623 } 1624 #endif 1625 1626 /* 1627 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1628 * 1629 * lruvec->lru_lock is heavily contended. Some of the functions that 1630 * shrink the lists perform better by taking out a batch of pages 1631 * and working on them outside the LRU lock. 1632 * 1633 * For pagecache intensive workloads, this function is the hottest 1634 * spot in the kernel (apart from copy_*_user functions). 1635 * 1636 * Lru_lock must be held before calling this function. 1637 * 1638 * @nr_to_scan: The number of eligible pages to look through on the list. 1639 * @lruvec: The LRU vector to pull pages from. 1640 * @dst: The temp list to put pages on to. 1641 * @nr_scanned: The number of pages that were scanned. 1642 * @sc: The scan_control struct for this reclaim session 1643 * @lru: LRU list id for isolating 1644 * 1645 * returns how many pages were moved onto *@dst. 1646 */ 1647 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1648 struct lruvec *lruvec, struct list_head *dst, 1649 unsigned long *nr_scanned, struct scan_control *sc, 1650 enum lru_list lru) 1651 { 1652 struct list_head *src = &lruvec->lists[lru]; 1653 unsigned long nr_taken = 0; 1654 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1655 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1656 unsigned long skipped = 0; 1657 unsigned long scan, total_scan, nr_pages; 1658 LIST_HEAD(folios_skipped); 1659 1660 total_scan = 0; 1661 scan = 0; 1662 while (scan < nr_to_scan && !list_empty(src)) { 1663 struct list_head *move_to = src; 1664 struct folio *folio; 1665 1666 folio = lru_to_folio(src); 1667 prefetchw_prev_lru_folio(folio, src, flags); 1668 1669 nr_pages = folio_nr_pages(folio); 1670 total_scan += nr_pages; 1671 1672 if (folio_zonenum(folio) > sc->reclaim_idx || 1673 skip_cma(folio, sc)) { 1674 nr_skipped[folio_zonenum(folio)] += nr_pages; 1675 move_to = &folios_skipped; 1676 goto move; 1677 } 1678 1679 /* 1680 * Do not count skipped folios because that makes the function 1681 * return with no isolated folios if the LRU mostly contains 1682 * ineligible folios. This causes the VM to not reclaim any 1683 * folios, triggering a premature OOM. 1684 * Account all pages in a folio. 1685 */ 1686 scan += nr_pages; 1687 1688 if (!folio_test_lru(folio)) 1689 goto move; 1690 if (!sc->may_unmap && folio_mapped(folio)) 1691 goto move; 1692 1693 /* 1694 * Be careful not to clear the lru flag until after we're 1695 * sure the folio is not being freed elsewhere -- the 1696 * folio release code relies on it. 1697 */ 1698 if (unlikely(!folio_try_get(folio))) 1699 goto move; 1700 1701 if (!folio_test_clear_lru(folio)) { 1702 /* Another thread is already isolating this folio */ 1703 folio_put(folio); 1704 goto move; 1705 } 1706 1707 nr_taken += nr_pages; 1708 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1709 move_to = dst; 1710 move: 1711 list_move(&folio->lru, move_to); 1712 } 1713 1714 /* 1715 * Splice any skipped folios to the start of the LRU list. Note that 1716 * this disrupts the LRU order when reclaiming for lower zones but 1717 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1718 * scanning would soon rescan the same folios to skip and waste lots 1719 * of cpu cycles. 1720 */ 1721 if (!list_empty(&folios_skipped)) { 1722 int zid; 1723 1724 list_splice(&folios_skipped, src); 1725 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1726 if (!nr_skipped[zid]) 1727 continue; 1728 1729 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1730 skipped += nr_skipped[zid]; 1731 } 1732 } 1733 *nr_scanned = total_scan; 1734 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1735 total_scan, skipped, nr_taken, lru); 1736 update_lru_sizes(lruvec, lru, nr_zone_taken); 1737 return nr_taken; 1738 } 1739 1740 /** 1741 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1742 * @folio: Folio to isolate from its LRU list. 1743 * 1744 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1745 * corresponding to whatever LRU list the folio was on. 1746 * 1747 * The folio will have its LRU flag cleared. If it was found on the 1748 * active list, it will have the Active flag set. If it was found on the 1749 * unevictable list, it will have the Unevictable flag set. These flags 1750 * may need to be cleared by the caller before letting the page go. 1751 * 1752 * Context: 1753 * 1754 * (1) Must be called with an elevated refcount on the folio. This is a 1755 * fundamental difference from isolate_lru_folios() (which is called 1756 * without a stable reference). 1757 * (2) The lru_lock must not be held. 1758 * (3) Interrupts must be enabled. 1759 * 1760 * Return: true if the folio was removed from an LRU list. 1761 * false if the folio was not on an LRU list. 1762 */ 1763 bool folio_isolate_lru(struct folio *folio) 1764 { 1765 bool ret = false; 1766 1767 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1768 1769 if (folio_test_clear_lru(folio)) { 1770 struct lruvec *lruvec; 1771 1772 folio_get(folio); 1773 lruvec = folio_lruvec_lock_irq(folio); 1774 lruvec_del_folio(lruvec, folio); 1775 unlock_page_lruvec_irq(lruvec); 1776 ret = true; 1777 } 1778 1779 return ret; 1780 } 1781 1782 /* 1783 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1784 * then get rescheduled. When there are massive number of tasks doing page 1785 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1786 * the LRU list will go small and be scanned faster than necessary, leading to 1787 * unnecessary swapping, thrashing and OOM. 1788 */ 1789 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1790 struct scan_control *sc) 1791 { 1792 unsigned long inactive, isolated; 1793 bool too_many; 1794 1795 if (current_is_kswapd()) 1796 return false; 1797 1798 if (!writeback_throttling_sane(sc)) 1799 return false; 1800 1801 if (file) { 1802 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1803 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1804 } else { 1805 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1806 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1807 } 1808 1809 /* 1810 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1811 * won't get blocked by normal direct-reclaimers, forming a circular 1812 * deadlock. 1813 */ 1814 if (gfp_has_io_fs(sc->gfp_mask)) 1815 inactive >>= 3; 1816 1817 too_many = isolated > inactive; 1818 1819 /* Wake up tasks throttled due to too_many_isolated. */ 1820 if (!too_many) 1821 wake_throttle_isolated(pgdat); 1822 1823 return too_many; 1824 } 1825 1826 /* 1827 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1828 * 1829 * Returns the number of pages moved to the given lruvec. 1830 */ 1831 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1832 struct list_head *list) 1833 { 1834 int nr_pages, nr_moved = 0; 1835 struct folio_batch free_folios; 1836 1837 folio_batch_init(&free_folios); 1838 while (!list_empty(list)) { 1839 struct folio *folio = lru_to_folio(list); 1840 1841 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1842 list_del(&folio->lru); 1843 if (unlikely(!folio_evictable(folio))) { 1844 spin_unlock_irq(&lruvec->lru_lock); 1845 folio_putback_lru(folio); 1846 spin_lock_irq(&lruvec->lru_lock); 1847 continue; 1848 } 1849 1850 /* 1851 * The folio_set_lru needs to be kept here for list integrity. 1852 * Otherwise: 1853 * #0 move_folios_to_lru #1 release_pages 1854 * if (!folio_put_testzero()) 1855 * if (folio_put_testzero()) 1856 * !lru //skip lru_lock 1857 * folio_set_lru() 1858 * list_add(&folio->lru,) 1859 * list_add(&folio->lru,) 1860 */ 1861 folio_set_lru(folio); 1862 1863 if (unlikely(folio_put_testzero(folio))) { 1864 __folio_clear_lru_flags(folio); 1865 1866 folio_undo_large_rmappable(folio); 1867 if (folio_batch_add(&free_folios, folio) == 0) { 1868 spin_unlock_irq(&lruvec->lru_lock); 1869 mem_cgroup_uncharge_folios(&free_folios); 1870 free_unref_folios(&free_folios); 1871 spin_lock_irq(&lruvec->lru_lock); 1872 } 1873 1874 continue; 1875 } 1876 1877 /* 1878 * All pages were isolated from the same lruvec (and isolation 1879 * inhibits memcg migration). 1880 */ 1881 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1882 lruvec_add_folio(lruvec, folio); 1883 nr_pages = folio_nr_pages(folio); 1884 nr_moved += nr_pages; 1885 if (folio_test_active(folio)) 1886 workingset_age_nonresident(lruvec, nr_pages); 1887 } 1888 1889 if (free_folios.nr) { 1890 spin_unlock_irq(&lruvec->lru_lock); 1891 mem_cgroup_uncharge_folios(&free_folios); 1892 free_unref_folios(&free_folios); 1893 spin_lock_irq(&lruvec->lru_lock); 1894 } 1895 1896 return nr_moved; 1897 } 1898 1899 /* 1900 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1901 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1902 * we should not throttle. Otherwise it is safe to do so. 1903 */ 1904 static int current_may_throttle(void) 1905 { 1906 return !(current->flags & PF_LOCAL_THROTTLE); 1907 } 1908 1909 /* 1910 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1911 * of reclaimed pages 1912 */ 1913 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1914 struct lruvec *lruvec, struct scan_control *sc, 1915 enum lru_list lru) 1916 { 1917 LIST_HEAD(folio_list); 1918 unsigned long nr_scanned; 1919 unsigned int nr_reclaimed = 0; 1920 unsigned long nr_taken; 1921 struct reclaim_stat stat; 1922 bool file = is_file_lru(lru); 1923 enum vm_event_item item; 1924 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1925 bool stalled = false; 1926 1927 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1928 if (stalled) 1929 return 0; 1930 1931 /* wait a bit for the reclaimer. */ 1932 stalled = true; 1933 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1934 1935 /* We are about to die and free our memory. Return now. */ 1936 if (fatal_signal_pending(current)) 1937 return SWAP_CLUSTER_MAX; 1938 } 1939 1940 lru_add_drain(); 1941 1942 spin_lock_irq(&lruvec->lru_lock); 1943 1944 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1945 &nr_scanned, sc, lru); 1946 1947 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1948 item = PGSCAN_KSWAPD + reclaimer_offset(); 1949 if (!cgroup_reclaim(sc)) 1950 __count_vm_events(item, nr_scanned); 1951 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1952 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1953 1954 spin_unlock_irq(&lruvec->lru_lock); 1955 1956 if (nr_taken == 0) 1957 return 0; 1958 1959 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1960 1961 spin_lock_irq(&lruvec->lru_lock); 1962 move_folios_to_lru(lruvec, &folio_list); 1963 1964 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1965 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1966 if (!cgroup_reclaim(sc)) 1967 __count_vm_events(item, nr_reclaimed); 1968 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1969 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1970 spin_unlock_irq(&lruvec->lru_lock); 1971 1972 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1973 1974 /* 1975 * If dirty folios are scanned that are not queued for IO, it 1976 * implies that flushers are not doing their job. This can 1977 * happen when memory pressure pushes dirty folios to the end of 1978 * the LRU before the dirty limits are breached and the dirty 1979 * data has expired. It can also happen when the proportion of 1980 * dirty folios grows not through writes but through memory 1981 * pressure reclaiming all the clean cache. And in some cases, 1982 * the flushers simply cannot keep up with the allocation 1983 * rate. Nudge the flusher threads in case they are asleep. 1984 */ 1985 if (stat.nr_unqueued_dirty == nr_taken) { 1986 wakeup_flusher_threads(WB_REASON_VMSCAN); 1987 /* 1988 * For cgroupv1 dirty throttling is achieved by waking up 1989 * the kernel flusher here and later waiting on folios 1990 * which are in writeback to finish (see shrink_folio_list()). 1991 * 1992 * Flusher may not be able to issue writeback quickly 1993 * enough for cgroupv1 writeback throttling to work 1994 * on a large system. 1995 */ 1996 if (!writeback_throttling_sane(sc)) 1997 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 1998 } 1999 2000 sc->nr.dirty += stat.nr_dirty; 2001 sc->nr.congested += stat.nr_congested; 2002 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2003 sc->nr.writeback += stat.nr_writeback; 2004 sc->nr.immediate += stat.nr_immediate; 2005 sc->nr.taken += nr_taken; 2006 if (file) 2007 sc->nr.file_taken += nr_taken; 2008 2009 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2010 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2011 return nr_reclaimed; 2012 } 2013 2014 /* 2015 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2016 * 2017 * We move them the other way if the folio is referenced by one or more 2018 * processes. 2019 * 2020 * If the folios are mostly unmapped, the processing is fast and it is 2021 * appropriate to hold lru_lock across the whole operation. But if 2022 * the folios are mapped, the processing is slow (folio_referenced()), so 2023 * we should drop lru_lock around each folio. It's impossible to balance 2024 * this, so instead we remove the folios from the LRU while processing them. 2025 * It is safe to rely on the active flag against the non-LRU folios in here 2026 * because nobody will play with that bit on a non-LRU folio. 2027 * 2028 * The downside is that we have to touch folio->_refcount against each folio. 2029 * But we had to alter folio->flags anyway. 2030 */ 2031 static void shrink_active_list(unsigned long nr_to_scan, 2032 struct lruvec *lruvec, 2033 struct scan_control *sc, 2034 enum lru_list lru) 2035 { 2036 unsigned long nr_taken; 2037 unsigned long nr_scanned; 2038 unsigned long vm_flags; 2039 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2040 LIST_HEAD(l_active); 2041 LIST_HEAD(l_inactive); 2042 unsigned nr_deactivate, nr_activate; 2043 unsigned nr_rotated = 0; 2044 bool file = is_file_lru(lru); 2045 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2046 2047 lru_add_drain(); 2048 2049 spin_lock_irq(&lruvec->lru_lock); 2050 2051 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2052 &nr_scanned, sc, lru); 2053 2054 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2055 2056 if (!cgroup_reclaim(sc)) 2057 __count_vm_events(PGREFILL, nr_scanned); 2058 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2059 2060 spin_unlock_irq(&lruvec->lru_lock); 2061 2062 while (!list_empty(&l_hold)) { 2063 struct folio *folio; 2064 2065 cond_resched(); 2066 folio = lru_to_folio(&l_hold); 2067 list_del(&folio->lru); 2068 2069 if (unlikely(!folio_evictable(folio))) { 2070 folio_putback_lru(folio); 2071 continue; 2072 } 2073 2074 if (unlikely(buffer_heads_over_limit)) { 2075 if (folio_needs_release(folio) && 2076 folio_trylock(folio)) { 2077 filemap_release_folio(folio, 0); 2078 folio_unlock(folio); 2079 } 2080 } 2081 2082 /* Referenced or rmap lock contention: rotate */ 2083 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2084 &vm_flags) != 0) { 2085 /* 2086 * Identify referenced, file-backed active folios and 2087 * give them one more trip around the active list. So 2088 * that executable code get better chances to stay in 2089 * memory under moderate memory pressure. Anon folios 2090 * are not likely to be evicted by use-once streaming 2091 * IO, plus JVM can create lots of anon VM_EXEC folios, 2092 * so we ignore them here. 2093 */ 2094 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2095 nr_rotated += folio_nr_pages(folio); 2096 list_add(&folio->lru, &l_active); 2097 continue; 2098 } 2099 } 2100 2101 folio_clear_active(folio); /* we are de-activating */ 2102 folio_set_workingset(folio); 2103 list_add(&folio->lru, &l_inactive); 2104 } 2105 2106 /* 2107 * Move folios back to the lru list. 2108 */ 2109 spin_lock_irq(&lruvec->lru_lock); 2110 2111 nr_activate = move_folios_to_lru(lruvec, &l_active); 2112 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2113 2114 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2115 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2116 2117 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2118 spin_unlock_irq(&lruvec->lru_lock); 2119 2120 if (nr_rotated) 2121 lru_note_cost(lruvec, file, 0, nr_rotated); 2122 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2123 nr_deactivate, nr_rotated, sc->priority, file); 2124 } 2125 2126 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2127 struct pglist_data *pgdat) 2128 { 2129 struct reclaim_stat dummy_stat; 2130 unsigned int nr_reclaimed; 2131 struct folio *folio; 2132 struct scan_control sc = { 2133 .gfp_mask = GFP_KERNEL, 2134 .may_writepage = 1, 2135 .may_unmap = 1, 2136 .may_swap = 1, 2137 .no_demotion = 1, 2138 }; 2139 2140 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true); 2141 while (!list_empty(folio_list)) { 2142 folio = lru_to_folio(folio_list); 2143 list_del(&folio->lru); 2144 folio_putback_lru(folio); 2145 } 2146 2147 return nr_reclaimed; 2148 } 2149 2150 unsigned long reclaim_pages(struct list_head *folio_list) 2151 { 2152 int nid; 2153 unsigned int nr_reclaimed = 0; 2154 LIST_HEAD(node_folio_list); 2155 unsigned int noreclaim_flag; 2156 2157 if (list_empty(folio_list)) 2158 return nr_reclaimed; 2159 2160 noreclaim_flag = memalloc_noreclaim_save(); 2161 2162 nid = folio_nid(lru_to_folio(folio_list)); 2163 do { 2164 struct folio *folio = lru_to_folio(folio_list); 2165 2166 if (nid == folio_nid(folio)) { 2167 folio_clear_active(folio); 2168 list_move(&folio->lru, &node_folio_list); 2169 continue; 2170 } 2171 2172 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2173 nid = folio_nid(lru_to_folio(folio_list)); 2174 } while (!list_empty(folio_list)); 2175 2176 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2177 2178 memalloc_noreclaim_restore(noreclaim_flag); 2179 2180 return nr_reclaimed; 2181 } 2182 2183 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2184 struct lruvec *lruvec, struct scan_control *sc) 2185 { 2186 if (is_active_lru(lru)) { 2187 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2188 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2189 else 2190 sc->skipped_deactivate = 1; 2191 return 0; 2192 } 2193 2194 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2195 } 2196 2197 /* 2198 * The inactive anon list should be small enough that the VM never has 2199 * to do too much work. 2200 * 2201 * The inactive file list should be small enough to leave most memory 2202 * to the established workingset on the scan-resistant active list, 2203 * but large enough to avoid thrashing the aggregate readahead window. 2204 * 2205 * Both inactive lists should also be large enough that each inactive 2206 * folio has a chance to be referenced again before it is reclaimed. 2207 * 2208 * If that fails and refaulting is observed, the inactive list grows. 2209 * 2210 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2211 * on this LRU, maintained by the pageout code. An inactive_ratio 2212 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2213 * 2214 * total target max 2215 * memory ratio inactive 2216 * ------------------------------------- 2217 * 10MB 1 5MB 2218 * 100MB 1 50MB 2219 * 1GB 3 250MB 2220 * 10GB 10 0.9GB 2221 * 100GB 31 3GB 2222 * 1TB 101 10GB 2223 * 10TB 320 32GB 2224 */ 2225 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2226 { 2227 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2228 unsigned long inactive, active; 2229 unsigned long inactive_ratio; 2230 unsigned long gb; 2231 2232 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2233 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2234 2235 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2236 if (gb) 2237 inactive_ratio = int_sqrt(10 * gb); 2238 else 2239 inactive_ratio = 1; 2240 2241 return inactive * inactive_ratio < active; 2242 } 2243 2244 enum scan_balance { 2245 SCAN_EQUAL, 2246 SCAN_FRACT, 2247 SCAN_ANON, 2248 SCAN_FILE, 2249 }; 2250 2251 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2252 { 2253 unsigned long file; 2254 struct lruvec *target_lruvec; 2255 2256 if (lru_gen_enabled()) 2257 return; 2258 2259 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2260 2261 /* 2262 * Flush the memory cgroup stats, so that we read accurate per-memcg 2263 * lruvec stats for heuristics. 2264 */ 2265 mem_cgroup_flush_stats(sc->target_mem_cgroup); 2266 2267 /* 2268 * Determine the scan balance between anon and file LRUs. 2269 */ 2270 spin_lock_irq(&target_lruvec->lru_lock); 2271 sc->anon_cost = target_lruvec->anon_cost; 2272 sc->file_cost = target_lruvec->file_cost; 2273 spin_unlock_irq(&target_lruvec->lru_lock); 2274 2275 /* 2276 * Target desirable inactive:active list ratios for the anon 2277 * and file LRU lists. 2278 */ 2279 if (!sc->force_deactivate) { 2280 unsigned long refaults; 2281 2282 /* 2283 * When refaults are being observed, it means a new 2284 * workingset is being established. Deactivate to get 2285 * rid of any stale active pages quickly. 2286 */ 2287 refaults = lruvec_page_state(target_lruvec, 2288 WORKINGSET_ACTIVATE_ANON); 2289 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2290 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2291 sc->may_deactivate |= DEACTIVATE_ANON; 2292 else 2293 sc->may_deactivate &= ~DEACTIVATE_ANON; 2294 2295 refaults = lruvec_page_state(target_lruvec, 2296 WORKINGSET_ACTIVATE_FILE); 2297 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2298 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2299 sc->may_deactivate |= DEACTIVATE_FILE; 2300 else 2301 sc->may_deactivate &= ~DEACTIVATE_FILE; 2302 } else 2303 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2304 2305 /* 2306 * If we have plenty of inactive file pages that aren't 2307 * thrashing, try to reclaim those first before touching 2308 * anonymous pages. 2309 */ 2310 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2311 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2312 !sc->no_cache_trim_mode) 2313 sc->cache_trim_mode = 1; 2314 else 2315 sc->cache_trim_mode = 0; 2316 2317 /* 2318 * Prevent the reclaimer from falling into the cache trap: as 2319 * cache pages start out inactive, every cache fault will tip 2320 * the scan balance towards the file LRU. And as the file LRU 2321 * shrinks, so does the window for rotation from references. 2322 * This means we have a runaway feedback loop where a tiny 2323 * thrashing file LRU becomes infinitely more attractive than 2324 * anon pages. Try to detect this based on file LRU size. 2325 */ 2326 if (!cgroup_reclaim(sc)) { 2327 unsigned long total_high_wmark = 0; 2328 unsigned long free, anon; 2329 int z; 2330 2331 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2332 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2333 node_page_state(pgdat, NR_INACTIVE_FILE); 2334 2335 for (z = 0; z < MAX_NR_ZONES; z++) { 2336 struct zone *zone = &pgdat->node_zones[z]; 2337 2338 if (!managed_zone(zone)) 2339 continue; 2340 2341 total_high_wmark += high_wmark_pages(zone); 2342 } 2343 2344 /* 2345 * Consider anon: if that's low too, this isn't a 2346 * runaway file reclaim problem, but rather just 2347 * extreme pressure. Reclaim as per usual then. 2348 */ 2349 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2350 2351 sc->file_is_tiny = 2352 file + free <= total_high_wmark && 2353 !(sc->may_deactivate & DEACTIVATE_ANON) && 2354 anon >> sc->priority; 2355 } 2356 } 2357 2358 /* 2359 * Determine how aggressively the anon and file LRU lists should be 2360 * scanned. 2361 * 2362 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2363 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2364 */ 2365 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2366 unsigned long *nr) 2367 { 2368 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2369 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2370 unsigned long anon_cost, file_cost, total_cost; 2371 int swappiness = sc_swappiness(sc, memcg); 2372 u64 fraction[ANON_AND_FILE]; 2373 u64 denominator = 0; /* gcc */ 2374 enum scan_balance scan_balance; 2375 unsigned long ap, fp; 2376 enum lru_list lru; 2377 2378 /* If we have no swap space, do not bother scanning anon folios. */ 2379 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2380 scan_balance = SCAN_FILE; 2381 goto out; 2382 } 2383 2384 /* 2385 * Global reclaim will swap to prevent OOM even with no 2386 * swappiness, but memcg users want to use this knob to 2387 * disable swapping for individual groups completely when 2388 * using the memory controller's swap limit feature would be 2389 * too expensive. 2390 */ 2391 if (cgroup_reclaim(sc) && !swappiness) { 2392 scan_balance = SCAN_FILE; 2393 goto out; 2394 } 2395 2396 /* 2397 * Do not apply any pressure balancing cleverness when the 2398 * system is close to OOM, scan both anon and file equally 2399 * (unless the swappiness setting disagrees with swapping). 2400 */ 2401 if (!sc->priority && swappiness) { 2402 scan_balance = SCAN_EQUAL; 2403 goto out; 2404 } 2405 2406 /* 2407 * If the system is almost out of file pages, force-scan anon. 2408 */ 2409 if (sc->file_is_tiny) { 2410 scan_balance = SCAN_ANON; 2411 goto out; 2412 } 2413 2414 /* 2415 * If there is enough inactive page cache, we do not reclaim 2416 * anything from the anonymous working right now. 2417 */ 2418 if (sc->cache_trim_mode) { 2419 scan_balance = SCAN_FILE; 2420 goto out; 2421 } 2422 2423 scan_balance = SCAN_FRACT; 2424 /* 2425 * Calculate the pressure balance between anon and file pages. 2426 * 2427 * The amount of pressure we put on each LRU is inversely 2428 * proportional to the cost of reclaiming each list, as 2429 * determined by the share of pages that are refaulting, times 2430 * the relative IO cost of bringing back a swapped out 2431 * anonymous page vs reloading a filesystem page (swappiness). 2432 * 2433 * Although we limit that influence to ensure no list gets 2434 * left behind completely: at least a third of the pressure is 2435 * applied, before swappiness. 2436 * 2437 * With swappiness at 100, anon and file have equal IO cost. 2438 */ 2439 total_cost = sc->anon_cost + sc->file_cost; 2440 anon_cost = total_cost + sc->anon_cost; 2441 file_cost = total_cost + sc->file_cost; 2442 total_cost = anon_cost + file_cost; 2443 2444 ap = swappiness * (total_cost + 1); 2445 ap /= anon_cost + 1; 2446 2447 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2448 fp /= file_cost + 1; 2449 2450 fraction[0] = ap; 2451 fraction[1] = fp; 2452 denominator = ap + fp; 2453 out: 2454 for_each_evictable_lru(lru) { 2455 bool file = is_file_lru(lru); 2456 unsigned long lruvec_size; 2457 unsigned long low, min; 2458 unsigned long scan; 2459 2460 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2461 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2462 &min, &low); 2463 2464 if (min || low) { 2465 /* 2466 * Scale a cgroup's reclaim pressure by proportioning 2467 * its current usage to its memory.low or memory.min 2468 * setting. 2469 * 2470 * This is important, as otherwise scanning aggression 2471 * becomes extremely binary -- from nothing as we 2472 * approach the memory protection threshold, to totally 2473 * nominal as we exceed it. This results in requiring 2474 * setting extremely liberal protection thresholds. It 2475 * also means we simply get no protection at all if we 2476 * set it too low, which is not ideal. 2477 * 2478 * If there is any protection in place, we reduce scan 2479 * pressure by how much of the total memory used is 2480 * within protection thresholds. 2481 * 2482 * There is one special case: in the first reclaim pass, 2483 * we skip over all groups that are within their low 2484 * protection. If that fails to reclaim enough pages to 2485 * satisfy the reclaim goal, we come back and override 2486 * the best-effort low protection. However, we still 2487 * ideally want to honor how well-behaved groups are in 2488 * that case instead of simply punishing them all 2489 * equally. As such, we reclaim them based on how much 2490 * memory they are using, reducing the scan pressure 2491 * again by how much of the total memory used is under 2492 * hard protection. 2493 */ 2494 unsigned long cgroup_size = mem_cgroup_size(memcg); 2495 unsigned long protection; 2496 2497 /* memory.low scaling, make sure we retry before OOM */ 2498 if (!sc->memcg_low_reclaim && low > min) { 2499 protection = low; 2500 sc->memcg_low_skipped = 1; 2501 } else { 2502 protection = min; 2503 } 2504 2505 /* Avoid TOCTOU with earlier protection check */ 2506 cgroup_size = max(cgroup_size, protection); 2507 2508 scan = lruvec_size - lruvec_size * protection / 2509 (cgroup_size + 1); 2510 2511 /* 2512 * Minimally target SWAP_CLUSTER_MAX pages to keep 2513 * reclaim moving forwards, avoiding decrementing 2514 * sc->priority further than desirable. 2515 */ 2516 scan = max(scan, SWAP_CLUSTER_MAX); 2517 } else { 2518 scan = lruvec_size; 2519 } 2520 2521 scan >>= sc->priority; 2522 2523 /* 2524 * If the cgroup's already been deleted, make sure to 2525 * scrape out the remaining cache. 2526 */ 2527 if (!scan && !mem_cgroup_online(memcg)) 2528 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2529 2530 switch (scan_balance) { 2531 case SCAN_EQUAL: 2532 /* Scan lists relative to size */ 2533 break; 2534 case SCAN_FRACT: 2535 /* 2536 * Scan types proportional to swappiness and 2537 * their relative recent reclaim efficiency. 2538 * Make sure we don't miss the last page on 2539 * the offlined memory cgroups because of a 2540 * round-off error. 2541 */ 2542 scan = mem_cgroup_online(memcg) ? 2543 div64_u64(scan * fraction[file], denominator) : 2544 DIV64_U64_ROUND_UP(scan * fraction[file], 2545 denominator); 2546 break; 2547 case SCAN_FILE: 2548 case SCAN_ANON: 2549 /* Scan one type exclusively */ 2550 if ((scan_balance == SCAN_FILE) != file) 2551 scan = 0; 2552 break; 2553 default: 2554 /* Look ma, no brain */ 2555 BUG(); 2556 } 2557 2558 nr[lru] = scan; 2559 } 2560 } 2561 2562 /* 2563 * Anonymous LRU management is a waste if there is 2564 * ultimately no way to reclaim the memory. 2565 */ 2566 static bool can_age_anon_pages(struct pglist_data *pgdat, 2567 struct scan_control *sc) 2568 { 2569 /* Aging the anon LRU is valuable if swap is present: */ 2570 if (total_swap_pages > 0) 2571 return true; 2572 2573 /* Also valuable if anon pages can be demoted: */ 2574 return can_demote(pgdat->node_id, sc); 2575 } 2576 2577 #ifdef CONFIG_LRU_GEN 2578 2579 #ifdef CONFIG_LRU_GEN_ENABLED 2580 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2581 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2582 #else 2583 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2584 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2585 #endif 2586 2587 static bool should_walk_mmu(void) 2588 { 2589 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2590 } 2591 2592 static bool should_clear_pmd_young(void) 2593 { 2594 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2595 } 2596 2597 /****************************************************************************** 2598 * shorthand helpers 2599 ******************************************************************************/ 2600 2601 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2602 2603 #define DEFINE_MAX_SEQ(lruvec) \ 2604 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2605 2606 #define DEFINE_MIN_SEQ(lruvec) \ 2607 unsigned long min_seq[ANON_AND_FILE] = { \ 2608 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2609 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2610 } 2611 2612 #define for_each_gen_type_zone(gen, type, zone) \ 2613 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2614 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2615 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2616 2617 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2618 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2619 2620 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2621 { 2622 struct pglist_data *pgdat = NODE_DATA(nid); 2623 2624 #ifdef CONFIG_MEMCG 2625 if (memcg) { 2626 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2627 2628 /* see the comment in mem_cgroup_lruvec() */ 2629 if (!lruvec->pgdat) 2630 lruvec->pgdat = pgdat; 2631 2632 return lruvec; 2633 } 2634 #endif 2635 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2636 2637 return &pgdat->__lruvec; 2638 } 2639 2640 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2641 { 2642 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2643 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2644 2645 if (!sc->may_swap) 2646 return 0; 2647 2648 if (!can_demote(pgdat->node_id, sc) && 2649 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2650 return 0; 2651 2652 return sc_swappiness(sc, memcg); 2653 } 2654 2655 static int get_nr_gens(struct lruvec *lruvec, int type) 2656 { 2657 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2658 } 2659 2660 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2661 { 2662 /* see the comment on lru_gen_folio */ 2663 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2664 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2665 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2666 } 2667 2668 /****************************************************************************** 2669 * Bloom filters 2670 ******************************************************************************/ 2671 2672 /* 2673 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2674 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2675 * bits in a bitmap, k is the number of hash functions and n is the number of 2676 * inserted items. 2677 * 2678 * Page table walkers use one of the two filters to reduce their search space. 2679 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2680 * aging uses the double-buffering technique to flip to the other filter each 2681 * time it produces a new generation. For non-leaf entries that have enough 2682 * leaf entries, the aging carries them over to the next generation in 2683 * walk_pmd_range(); the eviction also report them when walking the rmap 2684 * in lru_gen_look_around(). 2685 * 2686 * For future optimizations: 2687 * 1. It's not necessary to keep both filters all the time. The spare one can be 2688 * freed after the RCU grace period and reallocated if needed again. 2689 * 2. And when reallocating, it's worth scaling its size according to the number 2690 * of inserted entries in the other filter, to reduce the memory overhead on 2691 * small systems and false positives on large systems. 2692 * 3. Jenkins' hash function is an alternative to Knuth's. 2693 */ 2694 #define BLOOM_FILTER_SHIFT 15 2695 2696 static inline int filter_gen_from_seq(unsigned long seq) 2697 { 2698 return seq % NR_BLOOM_FILTERS; 2699 } 2700 2701 static void get_item_key(void *item, int *key) 2702 { 2703 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2704 2705 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2706 2707 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2708 key[1] = hash >> BLOOM_FILTER_SHIFT; 2709 } 2710 2711 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2712 void *item) 2713 { 2714 int key[2]; 2715 unsigned long *filter; 2716 int gen = filter_gen_from_seq(seq); 2717 2718 filter = READ_ONCE(mm_state->filters[gen]); 2719 if (!filter) 2720 return true; 2721 2722 get_item_key(item, key); 2723 2724 return test_bit(key[0], filter) && test_bit(key[1], filter); 2725 } 2726 2727 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2728 void *item) 2729 { 2730 int key[2]; 2731 unsigned long *filter; 2732 int gen = filter_gen_from_seq(seq); 2733 2734 filter = READ_ONCE(mm_state->filters[gen]); 2735 if (!filter) 2736 return; 2737 2738 get_item_key(item, key); 2739 2740 if (!test_bit(key[0], filter)) 2741 set_bit(key[0], filter); 2742 if (!test_bit(key[1], filter)) 2743 set_bit(key[1], filter); 2744 } 2745 2746 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2747 { 2748 unsigned long *filter; 2749 int gen = filter_gen_from_seq(seq); 2750 2751 filter = mm_state->filters[gen]; 2752 if (filter) { 2753 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2754 return; 2755 } 2756 2757 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2758 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2759 WRITE_ONCE(mm_state->filters[gen], filter); 2760 } 2761 2762 /****************************************************************************** 2763 * mm_struct list 2764 ******************************************************************************/ 2765 2766 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2767 2768 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2769 { 2770 static struct lru_gen_mm_list mm_list = { 2771 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2772 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2773 }; 2774 2775 #ifdef CONFIG_MEMCG 2776 if (memcg) 2777 return &memcg->mm_list; 2778 #endif 2779 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2780 2781 return &mm_list; 2782 } 2783 2784 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2785 { 2786 return &lruvec->mm_state; 2787 } 2788 2789 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2790 { 2791 int key; 2792 struct mm_struct *mm; 2793 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2794 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2795 2796 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2797 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2798 2799 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2800 return NULL; 2801 2802 clear_bit(key, &mm->lru_gen.bitmap); 2803 2804 return mmget_not_zero(mm) ? mm : NULL; 2805 } 2806 2807 void lru_gen_add_mm(struct mm_struct *mm) 2808 { 2809 int nid; 2810 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2811 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2812 2813 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2814 #ifdef CONFIG_MEMCG 2815 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2816 mm->lru_gen.memcg = memcg; 2817 #endif 2818 spin_lock(&mm_list->lock); 2819 2820 for_each_node_state(nid, N_MEMORY) { 2821 struct lruvec *lruvec = get_lruvec(memcg, nid); 2822 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2823 2824 /* the first addition since the last iteration */ 2825 if (mm_state->tail == &mm_list->fifo) 2826 mm_state->tail = &mm->lru_gen.list; 2827 } 2828 2829 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2830 2831 spin_unlock(&mm_list->lock); 2832 } 2833 2834 void lru_gen_del_mm(struct mm_struct *mm) 2835 { 2836 int nid; 2837 struct lru_gen_mm_list *mm_list; 2838 struct mem_cgroup *memcg = NULL; 2839 2840 if (list_empty(&mm->lru_gen.list)) 2841 return; 2842 2843 #ifdef CONFIG_MEMCG 2844 memcg = mm->lru_gen.memcg; 2845 #endif 2846 mm_list = get_mm_list(memcg); 2847 2848 spin_lock(&mm_list->lock); 2849 2850 for_each_node(nid) { 2851 struct lruvec *lruvec = get_lruvec(memcg, nid); 2852 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2853 2854 /* where the current iteration continues after */ 2855 if (mm_state->head == &mm->lru_gen.list) 2856 mm_state->head = mm_state->head->prev; 2857 2858 /* where the last iteration ended before */ 2859 if (mm_state->tail == &mm->lru_gen.list) 2860 mm_state->tail = mm_state->tail->next; 2861 } 2862 2863 list_del_init(&mm->lru_gen.list); 2864 2865 spin_unlock(&mm_list->lock); 2866 2867 #ifdef CONFIG_MEMCG 2868 mem_cgroup_put(mm->lru_gen.memcg); 2869 mm->lru_gen.memcg = NULL; 2870 #endif 2871 } 2872 2873 #ifdef CONFIG_MEMCG 2874 void lru_gen_migrate_mm(struct mm_struct *mm) 2875 { 2876 struct mem_cgroup *memcg; 2877 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2878 2879 VM_WARN_ON_ONCE(task->mm != mm); 2880 lockdep_assert_held(&task->alloc_lock); 2881 2882 /* for mm_update_next_owner() */ 2883 if (mem_cgroup_disabled()) 2884 return; 2885 2886 /* migration can happen before addition */ 2887 if (!mm->lru_gen.memcg) 2888 return; 2889 2890 rcu_read_lock(); 2891 memcg = mem_cgroup_from_task(task); 2892 rcu_read_unlock(); 2893 if (memcg == mm->lru_gen.memcg) 2894 return; 2895 2896 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2897 2898 lru_gen_del_mm(mm); 2899 lru_gen_add_mm(mm); 2900 } 2901 #endif 2902 2903 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2904 2905 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2906 { 2907 return NULL; 2908 } 2909 2910 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2911 { 2912 return NULL; 2913 } 2914 2915 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2916 { 2917 return NULL; 2918 } 2919 2920 #endif 2921 2922 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2923 { 2924 int i; 2925 int hist; 2926 struct lruvec *lruvec = walk->lruvec; 2927 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2928 2929 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2930 2931 hist = lru_hist_from_seq(walk->seq); 2932 2933 for (i = 0; i < NR_MM_STATS; i++) { 2934 WRITE_ONCE(mm_state->stats[hist][i], 2935 mm_state->stats[hist][i] + walk->mm_stats[i]); 2936 walk->mm_stats[i] = 0; 2937 } 2938 2939 if (NR_HIST_GENS > 1 && last) { 2940 hist = lru_hist_from_seq(walk->seq + 1); 2941 2942 for (i = 0; i < NR_MM_STATS; i++) 2943 WRITE_ONCE(mm_state->stats[hist][i], 0); 2944 } 2945 } 2946 2947 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2948 { 2949 bool first = false; 2950 bool last = false; 2951 struct mm_struct *mm = NULL; 2952 struct lruvec *lruvec = walk->lruvec; 2953 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2954 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2955 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2956 2957 /* 2958 * mm_state->seq is incremented after each iteration of mm_list. There 2959 * are three interesting cases for this page table walker: 2960 * 1. It tries to start a new iteration with a stale max_seq: there is 2961 * nothing left to do. 2962 * 2. It started the next iteration: it needs to reset the Bloom filter 2963 * so that a fresh set of PTE tables can be recorded. 2964 * 3. It ended the current iteration: it needs to reset the mm stats 2965 * counters and tell its caller to increment max_seq. 2966 */ 2967 spin_lock(&mm_list->lock); 2968 2969 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2970 2971 if (walk->seq <= mm_state->seq) 2972 goto done; 2973 2974 if (!mm_state->head) 2975 mm_state->head = &mm_list->fifo; 2976 2977 if (mm_state->head == &mm_list->fifo) 2978 first = true; 2979 2980 do { 2981 mm_state->head = mm_state->head->next; 2982 if (mm_state->head == &mm_list->fifo) { 2983 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2984 last = true; 2985 break; 2986 } 2987 2988 /* force scan for those added after the last iteration */ 2989 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2990 mm_state->tail = mm_state->head->next; 2991 walk->force_scan = true; 2992 } 2993 } while (!(mm = get_next_mm(walk))); 2994 done: 2995 if (*iter || last) 2996 reset_mm_stats(walk, last); 2997 2998 spin_unlock(&mm_list->lock); 2999 3000 if (mm && first) 3001 reset_bloom_filter(mm_state, walk->seq + 1); 3002 3003 if (*iter) 3004 mmput_async(*iter); 3005 3006 *iter = mm; 3007 3008 return last; 3009 } 3010 3011 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 3012 { 3013 bool success = false; 3014 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3015 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3016 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3017 3018 spin_lock(&mm_list->lock); 3019 3020 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3021 3022 if (seq > mm_state->seq) { 3023 mm_state->head = NULL; 3024 mm_state->tail = NULL; 3025 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3026 success = true; 3027 } 3028 3029 spin_unlock(&mm_list->lock); 3030 3031 return success; 3032 } 3033 3034 /****************************************************************************** 3035 * PID controller 3036 ******************************************************************************/ 3037 3038 /* 3039 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3040 * 3041 * The P term is refaulted/(evicted+protected) from a tier in the generation 3042 * currently being evicted; the I term is the exponential moving average of the 3043 * P term over the generations previously evicted, using the smoothing factor 3044 * 1/2; the D term isn't supported. 3045 * 3046 * The setpoint (SP) is always the first tier of one type; the process variable 3047 * (PV) is either any tier of the other type or any other tier of the same 3048 * type. 3049 * 3050 * The error is the difference between the SP and the PV; the correction is to 3051 * turn off protection when SP>PV or turn on protection when SP<PV. 3052 * 3053 * For future optimizations: 3054 * 1. The D term may discount the other two terms over time so that long-lived 3055 * generations can resist stale information. 3056 */ 3057 struct ctrl_pos { 3058 unsigned long refaulted; 3059 unsigned long total; 3060 int gain; 3061 }; 3062 3063 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3064 struct ctrl_pos *pos) 3065 { 3066 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3067 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3068 3069 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3070 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3071 pos->total = lrugen->avg_total[type][tier] + 3072 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3073 if (tier) 3074 pos->total += lrugen->protected[hist][type][tier - 1]; 3075 pos->gain = gain; 3076 } 3077 3078 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3079 { 3080 int hist, tier; 3081 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3082 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3083 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3084 3085 lockdep_assert_held(&lruvec->lru_lock); 3086 3087 if (!carryover && !clear) 3088 return; 3089 3090 hist = lru_hist_from_seq(seq); 3091 3092 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3093 if (carryover) { 3094 unsigned long sum; 3095 3096 sum = lrugen->avg_refaulted[type][tier] + 3097 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3098 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3099 3100 sum = lrugen->avg_total[type][tier] + 3101 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3102 if (tier) 3103 sum += lrugen->protected[hist][type][tier - 1]; 3104 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3105 } 3106 3107 if (clear) { 3108 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3109 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3110 if (tier) 3111 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3112 } 3113 } 3114 } 3115 3116 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3117 { 3118 /* 3119 * Return true if the PV has a limited number of refaults or a lower 3120 * refaulted/total than the SP. 3121 */ 3122 return pv->refaulted < MIN_LRU_BATCH || 3123 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3124 (sp->refaulted + 1) * pv->total * pv->gain; 3125 } 3126 3127 /****************************************************************************** 3128 * the aging 3129 ******************************************************************************/ 3130 3131 /* promote pages accessed through page tables */ 3132 static int folio_update_gen(struct folio *folio, int gen) 3133 { 3134 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3135 3136 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3137 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3138 3139 do { 3140 /* lru_gen_del_folio() has isolated this page? */ 3141 if (!(old_flags & LRU_GEN_MASK)) { 3142 /* for shrink_folio_list() */ 3143 new_flags = old_flags | BIT(PG_referenced); 3144 continue; 3145 } 3146 3147 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3148 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3149 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3150 3151 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3152 } 3153 3154 /* protect pages accessed multiple times through file descriptors */ 3155 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3156 { 3157 int type = folio_is_file_lru(folio); 3158 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3159 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3160 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3161 3162 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3163 3164 do { 3165 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3166 /* folio_update_gen() has promoted this page? */ 3167 if (new_gen >= 0 && new_gen != old_gen) 3168 return new_gen; 3169 3170 new_gen = (old_gen + 1) % MAX_NR_GENS; 3171 3172 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3173 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3174 /* for folio_end_writeback() */ 3175 if (reclaiming) 3176 new_flags |= BIT(PG_reclaim); 3177 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3178 3179 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3180 3181 return new_gen; 3182 } 3183 3184 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3185 int old_gen, int new_gen) 3186 { 3187 int type = folio_is_file_lru(folio); 3188 int zone = folio_zonenum(folio); 3189 int delta = folio_nr_pages(folio); 3190 3191 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3192 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3193 3194 walk->batched++; 3195 3196 walk->nr_pages[old_gen][type][zone] -= delta; 3197 walk->nr_pages[new_gen][type][zone] += delta; 3198 } 3199 3200 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3201 { 3202 int gen, type, zone; 3203 struct lruvec *lruvec = walk->lruvec; 3204 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3205 3206 walk->batched = 0; 3207 3208 for_each_gen_type_zone(gen, type, zone) { 3209 enum lru_list lru = type * LRU_INACTIVE_FILE; 3210 int delta = walk->nr_pages[gen][type][zone]; 3211 3212 if (!delta) 3213 continue; 3214 3215 walk->nr_pages[gen][type][zone] = 0; 3216 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3217 lrugen->nr_pages[gen][type][zone] + delta); 3218 3219 if (lru_gen_is_active(lruvec, gen)) 3220 lru += LRU_ACTIVE; 3221 __update_lru_size(lruvec, lru, zone, delta); 3222 } 3223 } 3224 3225 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3226 { 3227 struct address_space *mapping; 3228 struct vm_area_struct *vma = args->vma; 3229 struct lru_gen_mm_walk *walk = args->private; 3230 3231 if (!vma_is_accessible(vma)) 3232 return true; 3233 3234 if (is_vm_hugetlb_page(vma)) 3235 return true; 3236 3237 if (!vma_has_recency(vma)) 3238 return true; 3239 3240 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3241 return true; 3242 3243 if (vma == get_gate_vma(vma->vm_mm)) 3244 return true; 3245 3246 if (vma_is_anonymous(vma)) 3247 return !walk->can_swap; 3248 3249 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3250 return true; 3251 3252 mapping = vma->vm_file->f_mapping; 3253 if (mapping_unevictable(mapping)) 3254 return true; 3255 3256 if (shmem_mapping(mapping)) 3257 return !walk->can_swap; 3258 3259 /* to exclude special mappings like dax, etc. */ 3260 return !mapping->a_ops->read_folio; 3261 } 3262 3263 /* 3264 * Some userspace memory allocators map many single-page VMAs. Instead of 3265 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3266 * table to reduce zigzags and improve cache performance. 3267 */ 3268 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3269 unsigned long *vm_start, unsigned long *vm_end) 3270 { 3271 unsigned long start = round_up(*vm_end, size); 3272 unsigned long end = (start | ~mask) + 1; 3273 VMA_ITERATOR(vmi, args->mm, start); 3274 3275 VM_WARN_ON_ONCE(mask & size); 3276 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3277 3278 for_each_vma(vmi, args->vma) { 3279 if (end && end <= args->vma->vm_start) 3280 return false; 3281 3282 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3283 continue; 3284 3285 *vm_start = max(start, args->vma->vm_start); 3286 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3287 3288 return true; 3289 } 3290 3291 return false; 3292 } 3293 3294 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3295 { 3296 unsigned long pfn = pte_pfn(pte); 3297 3298 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3299 3300 if (!pte_present(pte) || is_zero_pfn(pfn)) 3301 return -1; 3302 3303 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3304 return -1; 3305 3306 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3307 return -1; 3308 3309 return pfn; 3310 } 3311 3312 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3313 { 3314 unsigned long pfn = pmd_pfn(pmd); 3315 3316 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3317 3318 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3319 return -1; 3320 3321 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3322 return -1; 3323 3324 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3325 return -1; 3326 3327 return pfn; 3328 } 3329 3330 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3331 struct pglist_data *pgdat, bool can_swap) 3332 { 3333 struct folio *folio; 3334 3335 /* try to avoid unnecessary memory loads */ 3336 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3337 return NULL; 3338 3339 folio = pfn_folio(pfn); 3340 if (folio_nid(folio) != pgdat->node_id) 3341 return NULL; 3342 3343 if (folio_memcg_rcu(folio) != memcg) 3344 return NULL; 3345 3346 /* file VMAs can contain anon pages from COW */ 3347 if (!folio_is_file_lru(folio) && !can_swap) 3348 return NULL; 3349 3350 return folio; 3351 } 3352 3353 static bool suitable_to_scan(int total, int young) 3354 { 3355 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3356 3357 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3358 return young * n >= total; 3359 } 3360 3361 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3362 struct mm_walk *args) 3363 { 3364 int i; 3365 pte_t *pte; 3366 spinlock_t *ptl; 3367 unsigned long addr; 3368 int total = 0; 3369 int young = 0; 3370 struct lru_gen_mm_walk *walk = args->private; 3371 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3372 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3373 DEFINE_MAX_SEQ(walk->lruvec); 3374 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3375 3376 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3377 if (!pte) 3378 return false; 3379 if (!spin_trylock(ptl)) { 3380 pte_unmap(pte); 3381 return false; 3382 } 3383 3384 arch_enter_lazy_mmu_mode(); 3385 restart: 3386 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3387 unsigned long pfn; 3388 struct folio *folio; 3389 pte_t ptent = ptep_get(pte + i); 3390 3391 total++; 3392 walk->mm_stats[MM_LEAF_TOTAL]++; 3393 3394 pfn = get_pte_pfn(ptent, args->vma, addr); 3395 if (pfn == -1) 3396 continue; 3397 3398 if (!pte_young(ptent)) { 3399 walk->mm_stats[MM_LEAF_OLD]++; 3400 continue; 3401 } 3402 3403 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3404 if (!folio) 3405 continue; 3406 3407 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3408 VM_WARN_ON_ONCE(true); 3409 3410 young++; 3411 walk->mm_stats[MM_LEAF_YOUNG]++; 3412 3413 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3414 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3415 !folio_test_swapcache(folio))) 3416 folio_mark_dirty(folio); 3417 3418 old_gen = folio_update_gen(folio, new_gen); 3419 if (old_gen >= 0 && old_gen != new_gen) 3420 update_batch_size(walk, folio, old_gen, new_gen); 3421 } 3422 3423 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3424 goto restart; 3425 3426 arch_leave_lazy_mmu_mode(); 3427 pte_unmap_unlock(pte, ptl); 3428 3429 return suitable_to_scan(total, young); 3430 } 3431 3432 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3433 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3434 { 3435 int i; 3436 pmd_t *pmd; 3437 spinlock_t *ptl; 3438 struct lru_gen_mm_walk *walk = args->private; 3439 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3440 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3441 DEFINE_MAX_SEQ(walk->lruvec); 3442 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3443 3444 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3445 3446 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3447 if (*first == -1) { 3448 *first = addr; 3449 bitmap_zero(bitmap, MIN_LRU_BATCH); 3450 return; 3451 } 3452 3453 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3454 if (i && i <= MIN_LRU_BATCH) { 3455 __set_bit(i - 1, bitmap); 3456 return; 3457 } 3458 3459 pmd = pmd_offset(pud, *first); 3460 3461 ptl = pmd_lockptr(args->mm, pmd); 3462 if (!spin_trylock(ptl)) 3463 goto done; 3464 3465 arch_enter_lazy_mmu_mode(); 3466 3467 do { 3468 unsigned long pfn; 3469 struct folio *folio; 3470 3471 /* don't round down the first address */ 3472 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3473 3474 pfn = get_pmd_pfn(pmd[i], vma, addr); 3475 if (pfn == -1) 3476 goto next; 3477 3478 if (!pmd_trans_huge(pmd[i])) { 3479 if (should_clear_pmd_young()) 3480 pmdp_test_and_clear_young(vma, addr, pmd + i); 3481 goto next; 3482 } 3483 3484 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3485 if (!folio) 3486 goto next; 3487 3488 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3489 goto next; 3490 3491 walk->mm_stats[MM_LEAF_YOUNG]++; 3492 3493 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3494 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3495 !folio_test_swapcache(folio))) 3496 folio_mark_dirty(folio); 3497 3498 old_gen = folio_update_gen(folio, new_gen); 3499 if (old_gen >= 0 && old_gen != new_gen) 3500 update_batch_size(walk, folio, old_gen, new_gen); 3501 next: 3502 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3503 } while (i <= MIN_LRU_BATCH); 3504 3505 arch_leave_lazy_mmu_mode(); 3506 spin_unlock(ptl); 3507 done: 3508 *first = -1; 3509 } 3510 3511 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3512 struct mm_walk *args) 3513 { 3514 int i; 3515 pmd_t *pmd; 3516 unsigned long next; 3517 unsigned long addr; 3518 struct vm_area_struct *vma; 3519 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3520 unsigned long first = -1; 3521 struct lru_gen_mm_walk *walk = args->private; 3522 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3523 3524 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3525 3526 /* 3527 * Finish an entire PMD in two passes: the first only reaches to PTE 3528 * tables to avoid taking the PMD lock; the second, if necessary, takes 3529 * the PMD lock to clear the accessed bit in PMD entries. 3530 */ 3531 pmd = pmd_offset(pud, start & PUD_MASK); 3532 restart: 3533 /* walk_pte_range() may call get_next_vma() */ 3534 vma = args->vma; 3535 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3536 pmd_t val = pmdp_get_lockless(pmd + i); 3537 3538 next = pmd_addr_end(addr, end); 3539 3540 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3541 walk->mm_stats[MM_LEAF_TOTAL]++; 3542 continue; 3543 } 3544 3545 if (pmd_trans_huge(val)) { 3546 unsigned long pfn = pmd_pfn(val); 3547 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3548 3549 walk->mm_stats[MM_LEAF_TOTAL]++; 3550 3551 if (!pmd_young(val)) { 3552 walk->mm_stats[MM_LEAF_OLD]++; 3553 continue; 3554 } 3555 3556 /* try to avoid unnecessary memory loads */ 3557 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3558 continue; 3559 3560 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3561 continue; 3562 } 3563 3564 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3565 3566 if (should_clear_pmd_young()) { 3567 if (!pmd_young(val)) 3568 continue; 3569 3570 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3571 } 3572 3573 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3574 continue; 3575 3576 walk->mm_stats[MM_NONLEAF_FOUND]++; 3577 3578 if (!walk_pte_range(&val, addr, next, args)) 3579 continue; 3580 3581 walk->mm_stats[MM_NONLEAF_ADDED]++; 3582 3583 /* carry over to the next generation */ 3584 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3585 } 3586 3587 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3588 3589 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3590 goto restart; 3591 } 3592 3593 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3594 struct mm_walk *args) 3595 { 3596 int i; 3597 pud_t *pud; 3598 unsigned long addr; 3599 unsigned long next; 3600 struct lru_gen_mm_walk *walk = args->private; 3601 3602 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3603 3604 pud = pud_offset(p4d, start & P4D_MASK); 3605 restart: 3606 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3607 pud_t val = READ_ONCE(pud[i]); 3608 3609 next = pud_addr_end(addr, end); 3610 3611 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3612 continue; 3613 3614 walk_pmd_range(&val, addr, next, args); 3615 3616 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3617 end = (addr | ~PUD_MASK) + 1; 3618 goto done; 3619 } 3620 } 3621 3622 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3623 goto restart; 3624 3625 end = round_up(end, P4D_SIZE); 3626 done: 3627 if (!end || !args->vma) 3628 return 1; 3629 3630 walk->next_addr = max(end, args->vma->vm_start); 3631 3632 return -EAGAIN; 3633 } 3634 3635 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3636 { 3637 static const struct mm_walk_ops mm_walk_ops = { 3638 .test_walk = should_skip_vma, 3639 .p4d_entry = walk_pud_range, 3640 .walk_lock = PGWALK_RDLOCK, 3641 }; 3642 3643 int err; 3644 struct lruvec *lruvec = walk->lruvec; 3645 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3646 3647 walk->next_addr = FIRST_USER_ADDRESS; 3648 3649 do { 3650 DEFINE_MAX_SEQ(lruvec); 3651 3652 err = -EBUSY; 3653 3654 /* another thread might have called inc_max_seq() */ 3655 if (walk->seq != max_seq) 3656 break; 3657 3658 /* folio_update_gen() requires stable folio_memcg() */ 3659 if (!mem_cgroup_trylock_pages(memcg)) 3660 break; 3661 3662 /* the caller might be holding the lock for write */ 3663 if (mmap_read_trylock(mm)) { 3664 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3665 3666 mmap_read_unlock(mm); 3667 } 3668 3669 mem_cgroup_unlock_pages(); 3670 3671 if (walk->batched) { 3672 spin_lock_irq(&lruvec->lru_lock); 3673 reset_batch_size(walk); 3674 spin_unlock_irq(&lruvec->lru_lock); 3675 } 3676 3677 cond_resched(); 3678 } while (err == -EAGAIN); 3679 } 3680 3681 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3682 { 3683 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3684 3685 if (pgdat && current_is_kswapd()) { 3686 VM_WARN_ON_ONCE(walk); 3687 3688 walk = &pgdat->mm_walk; 3689 } else if (!walk && force_alloc) { 3690 VM_WARN_ON_ONCE(current_is_kswapd()); 3691 3692 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3693 } 3694 3695 current->reclaim_state->mm_walk = walk; 3696 3697 return walk; 3698 } 3699 3700 static void clear_mm_walk(void) 3701 { 3702 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3703 3704 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3705 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3706 3707 current->reclaim_state->mm_walk = NULL; 3708 3709 if (!current_is_kswapd()) 3710 kfree(walk); 3711 } 3712 3713 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3714 { 3715 int zone; 3716 int remaining = MAX_LRU_BATCH; 3717 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3718 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3719 3720 if (type == LRU_GEN_ANON && !can_swap) 3721 goto done; 3722 3723 /* prevent cold/hot inversion if force_scan is true */ 3724 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3725 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3726 3727 while (!list_empty(head)) { 3728 struct folio *folio = lru_to_folio(head); 3729 3730 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3731 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3732 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3733 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3734 3735 new_gen = folio_inc_gen(lruvec, folio, false); 3736 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3737 3738 if (!--remaining) 3739 return false; 3740 } 3741 } 3742 done: 3743 reset_ctrl_pos(lruvec, type, true); 3744 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3745 3746 return true; 3747 } 3748 3749 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3750 { 3751 int gen, type, zone; 3752 bool success = false; 3753 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3754 DEFINE_MIN_SEQ(lruvec); 3755 3756 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3757 3758 /* find the oldest populated generation */ 3759 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3760 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3761 gen = lru_gen_from_seq(min_seq[type]); 3762 3763 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3764 if (!list_empty(&lrugen->folios[gen][type][zone])) 3765 goto next; 3766 } 3767 3768 min_seq[type]++; 3769 } 3770 next: 3771 ; 3772 } 3773 3774 /* see the comment on lru_gen_folio */ 3775 if (can_swap) { 3776 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3777 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3778 } 3779 3780 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3781 if (min_seq[type] == lrugen->min_seq[type]) 3782 continue; 3783 3784 reset_ctrl_pos(lruvec, type, true); 3785 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3786 success = true; 3787 } 3788 3789 return success; 3790 } 3791 3792 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3793 bool can_swap, bool force_scan) 3794 { 3795 bool success; 3796 int prev, next; 3797 int type, zone; 3798 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3799 restart: 3800 if (seq < READ_ONCE(lrugen->max_seq)) 3801 return false; 3802 3803 spin_lock_irq(&lruvec->lru_lock); 3804 3805 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3806 3807 success = seq == lrugen->max_seq; 3808 if (!success) 3809 goto unlock; 3810 3811 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3812 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3813 continue; 3814 3815 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3816 3817 if (inc_min_seq(lruvec, type, can_swap)) 3818 continue; 3819 3820 spin_unlock_irq(&lruvec->lru_lock); 3821 cond_resched(); 3822 goto restart; 3823 } 3824 3825 /* 3826 * Update the active/inactive LRU sizes for compatibility. Both sides of 3827 * the current max_seq need to be covered, since max_seq+1 can overlap 3828 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3829 * overlap, cold/hot inversion happens. 3830 */ 3831 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3832 next = lru_gen_from_seq(lrugen->max_seq + 1); 3833 3834 for (type = 0; type < ANON_AND_FILE; type++) { 3835 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3836 enum lru_list lru = type * LRU_INACTIVE_FILE; 3837 long delta = lrugen->nr_pages[prev][type][zone] - 3838 lrugen->nr_pages[next][type][zone]; 3839 3840 if (!delta) 3841 continue; 3842 3843 __update_lru_size(lruvec, lru, zone, delta); 3844 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3845 } 3846 } 3847 3848 for (type = 0; type < ANON_AND_FILE; type++) 3849 reset_ctrl_pos(lruvec, type, false); 3850 3851 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3852 /* make sure preceding modifications appear */ 3853 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3854 unlock: 3855 spin_unlock_irq(&lruvec->lru_lock); 3856 3857 return success; 3858 } 3859 3860 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3861 bool can_swap, bool force_scan) 3862 { 3863 bool success; 3864 struct lru_gen_mm_walk *walk; 3865 struct mm_struct *mm = NULL; 3866 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3867 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3868 3869 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3870 3871 if (!mm_state) 3872 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3873 3874 /* see the comment in iterate_mm_list() */ 3875 if (seq <= READ_ONCE(mm_state->seq)) 3876 return false; 3877 3878 /* 3879 * If the hardware doesn't automatically set the accessed bit, fallback 3880 * to lru_gen_look_around(), which only clears the accessed bit in a 3881 * handful of PTEs. Spreading the work out over a period of time usually 3882 * is less efficient, but it avoids bursty page faults. 3883 */ 3884 if (!should_walk_mmu()) { 3885 success = iterate_mm_list_nowalk(lruvec, seq); 3886 goto done; 3887 } 3888 3889 walk = set_mm_walk(NULL, true); 3890 if (!walk) { 3891 success = iterate_mm_list_nowalk(lruvec, seq); 3892 goto done; 3893 } 3894 3895 walk->lruvec = lruvec; 3896 walk->seq = seq; 3897 walk->can_swap = can_swap; 3898 walk->force_scan = force_scan; 3899 3900 do { 3901 success = iterate_mm_list(walk, &mm); 3902 if (mm) 3903 walk_mm(mm, walk); 3904 } while (mm); 3905 done: 3906 if (success) { 3907 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3908 WARN_ON_ONCE(!success); 3909 } 3910 3911 return success; 3912 } 3913 3914 /****************************************************************************** 3915 * working set protection 3916 ******************************************************************************/ 3917 3918 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 3919 { 3920 int priority; 3921 unsigned long reclaimable; 3922 3923 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 3924 return; 3925 /* 3926 * Determine the initial priority based on 3927 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 3928 * where reclaimed_to_scanned_ratio = inactive / total. 3929 */ 3930 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 3931 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3932 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 3933 3934 /* round down reclaimable and round up sc->nr_to_reclaim */ 3935 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 3936 3937 /* 3938 * The estimation is based on LRU pages only, so cap it to prevent 3939 * overshoots of shrinker objects by large margins. 3940 */ 3941 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 3942 } 3943 3944 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3945 { 3946 int gen, type, zone; 3947 unsigned long total = 0; 3948 bool can_swap = get_swappiness(lruvec, sc); 3949 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3950 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3951 DEFINE_MAX_SEQ(lruvec); 3952 DEFINE_MIN_SEQ(lruvec); 3953 3954 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3955 unsigned long seq; 3956 3957 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3958 gen = lru_gen_from_seq(seq); 3959 3960 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3961 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3962 } 3963 } 3964 3965 /* whether the size is big enough to be helpful */ 3966 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3967 } 3968 3969 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3970 unsigned long min_ttl) 3971 { 3972 int gen; 3973 unsigned long birth; 3974 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3975 DEFINE_MIN_SEQ(lruvec); 3976 3977 if (mem_cgroup_below_min(NULL, memcg)) 3978 return false; 3979 3980 if (!lruvec_is_sizable(lruvec, sc)) 3981 return false; 3982 3983 /* see the comment on lru_gen_folio */ 3984 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3985 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3986 3987 return time_is_before_jiffies(birth + min_ttl); 3988 } 3989 3990 /* to protect the working set of the last N jiffies */ 3991 static unsigned long lru_gen_min_ttl __read_mostly; 3992 3993 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3994 { 3995 struct mem_cgroup *memcg; 3996 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 3997 bool reclaimable = !min_ttl; 3998 3999 VM_WARN_ON_ONCE(!current_is_kswapd()); 4000 4001 set_initial_priority(pgdat, sc); 4002 4003 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4004 do { 4005 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4006 4007 mem_cgroup_calculate_protection(NULL, memcg); 4008 4009 if (!reclaimable) 4010 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 4011 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4012 4013 /* 4014 * The main goal is to OOM kill if every generation from all memcgs is 4015 * younger than min_ttl. However, another possibility is all memcgs are 4016 * either too small or below min. 4017 */ 4018 if (!reclaimable && mutex_trylock(&oom_lock)) { 4019 struct oom_control oc = { 4020 .gfp_mask = sc->gfp_mask, 4021 }; 4022 4023 out_of_memory(&oc); 4024 4025 mutex_unlock(&oom_lock); 4026 } 4027 } 4028 4029 /****************************************************************************** 4030 * rmap/PT walk feedback 4031 ******************************************************************************/ 4032 4033 /* 4034 * This function exploits spatial locality when shrink_folio_list() walks the 4035 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4036 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4037 * the PTE table to the Bloom filter. This forms a feedback loop between the 4038 * eviction and the aging. 4039 */ 4040 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4041 { 4042 int i; 4043 unsigned long start; 4044 unsigned long end; 4045 struct lru_gen_mm_walk *walk; 4046 int young = 0; 4047 pte_t *pte = pvmw->pte; 4048 unsigned long addr = pvmw->address; 4049 struct vm_area_struct *vma = pvmw->vma; 4050 struct folio *folio = pfn_folio(pvmw->pfn); 4051 bool can_swap = !folio_is_file_lru(folio); 4052 struct mem_cgroup *memcg = folio_memcg(folio); 4053 struct pglist_data *pgdat = folio_pgdat(folio); 4054 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4055 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4056 DEFINE_MAX_SEQ(lruvec); 4057 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4058 4059 lockdep_assert_held(pvmw->ptl); 4060 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4061 4062 if (spin_is_contended(pvmw->ptl)) 4063 return; 4064 4065 /* exclude special VMAs containing anon pages from COW */ 4066 if (vma->vm_flags & VM_SPECIAL) 4067 return; 4068 4069 /* avoid taking the LRU lock under the PTL when possible */ 4070 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4071 4072 start = max(addr & PMD_MASK, vma->vm_start); 4073 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4074 4075 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4076 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4077 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4078 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4079 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4080 else { 4081 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4082 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4083 } 4084 } 4085 4086 /* folio_update_gen() requires stable folio_memcg() */ 4087 if (!mem_cgroup_trylock_pages(memcg)) 4088 return; 4089 4090 arch_enter_lazy_mmu_mode(); 4091 4092 pte -= (addr - start) / PAGE_SIZE; 4093 4094 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4095 unsigned long pfn; 4096 pte_t ptent = ptep_get(pte + i); 4097 4098 pfn = get_pte_pfn(ptent, vma, addr); 4099 if (pfn == -1) 4100 continue; 4101 4102 if (!pte_young(ptent)) 4103 continue; 4104 4105 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4106 if (!folio) 4107 continue; 4108 4109 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4110 VM_WARN_ON_ONCE(true); 4111 4112 young++; 4113 4114 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4115 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4116 !folio_test_swapcache(folio))) 4117 folio_mark_dirty(folio); 4118 4119 if (walk) { 4120 old_gen = folio_update_gen(folio, new_gen); 4121 if (old_gen >= 0 && old_gen != new_gen) 4122 update_batch_size(walk, folio, old_gen, new_gen); 4123 4124 continue; 4125 } 4126 4127 old_gen = folio_lru_gen(folio); 4128 if (old_gen < 0) 4129 folio_set_referenced(folio); 4130 else if (old_gen != new_gen) 4131 folio_activate(folio); 4132 } 4133 4134 arch_leave_lazy_mmu_mode(); 4135 mem_cgroup_unlock_pages(); 4136 4137 /* feedback from rmap walkers to page table walkers */ 4138 if (mm_state && suitable_to_scan(i, young)) 4139 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4140 } 4141 4142 /****************************************************************************** 4143 * memcg LRU 4144 ******************************************************************************/ 4145 4146 /* see the comment on MEMCG_NR_GENS */ 4147 enum { 4148 MEMCG_LRU_NOP, 4149 MEMCG_LRU_HEAD, 4150 MEMCG_LRU_TAIL, 4151 MEMCG_LRU_OLD, 4152 MEMCG_LRU_YOUNG, 4153 }; 4154 4155 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4156 { 4157 int seg; 4158 int old, new; 4159 unsigned long flags; 4160 int bin = get_random_u32_below(MEMCG_NR_BINS); 4161 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4162 4163 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4164 4165 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4166 4167 seg = 0; 4168 new = old = lruvec->lrugen.gen; 4169 4170 /* see the comment on MEMCG_NR_GENS */ 4171 if (op == MEMCG_LRU_HEAD) 4172 seg = MEMCG_LRU_HEAD; 4173 else if (op == MEMCG_LRU_TAIL) 4174 seg = MEMCG_LRU_TAIL; 4175 else if (op == MEMCG_LRU_OLD) 4176 new = get_memcg_gen(pgdat->memcg_lru.seq); 4177 else if (op == MEMCG_LRU_YOUNG) 4178 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4179 else 4180 VM_WARN_ON_ONCE(true); 4181 4182 WRITE_ONCE(lruvec->lrugen.seg, seg); 4183 WRITE_ONCE(lruvec->lrugen.gen, new); 4184 4185 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4186 4187 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4188 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4189 else 4190 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4191 4192 pgdat->memcg_lru.nr_memcgs[old]--; 4193 pgdat->memcg_lru.nr_memcgs[new]++; 4194 4195 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4196 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4197 4198 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4199 } 4200 4201 #ifdef CONFIG_MEMCG 4202 4203 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4204 { 4205 int gen; 4206 int nid; 4207 int bin = get_random_u32_below(MEMCG_NR_BINS); 4208 4209 for_each_node(nid) { 4210 struct pglist_data *pgdat = NODE_DATA(nid); 4211 struct lruvec *lruvec = get_lruvec(memcg, nid); 4212 4213 spin_lock_irq(&pgdat->memcg_lru.lock); 4214 4215 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4216 4217 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4218 4219 lruvec->lrugen.gen = gen; 4220 4221 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4222 pgdat->memcg_lru.nr_memcgs[gen]++; 4223 4224 spin_unlock_irq(&pgdat->memcg_lru.lock); 4225 } 4226 } 4227 4228 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4229 { 4230 int nid; 4231 4232 for_each_node(nid) { 4233 struct lruvec *lruvec = get_lruvec(memcg, nid); 4234 4235 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4236 } 4237 } 4238 4239 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4240 { 4241 int gen; 4242 int nid; 4243 4244 for_each_node(nid) { 4245 struct pglist_data *pgdat = NODE_DATA(nid); 4246 struct lruvec *lruvec = get_lruvec(memcg, nid); 4247 4248 spin_lock_irq(&pgdat->memcg_lru.lock); 4249 4250 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4251 goto unlock; 4252 4253 gen = lruvec->lrugen.gen; 4254 4255 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4256 pgdat->memcg_lru.nr_memcgs[gen]--; 4257 4258 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4259 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4260 unlock: 4261 spin_unlock_irq(&pgdat->memcg_lru.lock); 4262 } 4263 } 4264 4265 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4266 { 4267 struct lruvec *lruvec = get_lruvec(memcg, nid); 4268 4269 /* see the comment on MEMCG_NR_GENS */ 4270 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4271 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4272 } 4273 4274 #endif /* CONFIG_MEMCG */ 4275 4276 /****************************************************************************** 4277 * the eviction 4278 ******************************************************************************/ 4279 4280 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4281 int tier_idx) 4282 { 4283 bool success; 4284 int gen = folio_lru_gen(folio); 4285 int type = folio_is_file_lru(folio); 4286 int zone = folio_zonenum(folio); 4287 int delta = folio_nr_pages(folio); 4288 int refs = folio_lru_refs(folio); 4289 int tier = lru_tier_from_refs(refs); 4290 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4291 4292 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4293 4294 /* unevictable */ 4295 if (!folio_evictable(folio)) { 4296 success = lru_gen_del_folio(lruvec, folio, true); 4297 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4298 folio_set_unevictable(folio); 4299 lruvec_add_folio(lruvec, folio); 4300 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4301 return true; 4302 } 4303 4304 /* promoted */ 4305 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4306 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4307 return true; 4308 } 4309 4310 /* protected */ 4311 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4312 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4313 4314 gen = folio_inc_gen(lruvec, folio, false); 4315 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4316 4317 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4318 lrugen->protected[hist][type][tier - 1] + delta); 4319 return true; 4320 } 4321 4322 /* ineligible */ 4323 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) { 4324 gen = folio_inc_gen(lruvec, folio, false); 4325 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4326 return true; 4327 } 4328 4329 /* waiting for writeback */ 4330 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4331 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4332 gen = folio_inc_gen(lruvec, folio, true); 4333 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4334 return true; 4335 } 4336 4337 return false; 4338 } 4339 4340 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4341 { 4342 bool success; 4343 4344 /* swap constrained */ 4345 if (!(sc->gfp_mask & __GFP_IO) && 4346 (folio_test_dirty(folio) || 4347 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4348 return false; 4349 4350 /* raced with release_pages() */ 4351 if (!folio_try_get(folio)) 4352 return false; 4353 4354 /* raced with another isolation */ 4355 if (!folio_test_clear_lru(folio)) { 4356 folio_put(folio); 4357 return false; 4358 } 4359 4360 /* see the comment on MAX_NR_TIERS */ 4361 if (!folio_test_referenced(folio)) 4362 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4363 4364 /* for shrink_folio_list() */ 4365 folio_clear_reclaim(folio); 4366 folio_clear_referenced(folio); 4367 4368 success = lru_gen_del_folio(lruvec, folio, true); 4369 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4370 4371 return true; 4372 } 4373 4374 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4375 int type, int tier, struct list_head *list) 4376 { 4377 int i; 4378 int gen; 4379 enum vm_event_item item; 4380 int sorted = 0; 4381 int scanned = 0; 4382 int isolated = 0; 4383 int skipped = 0; 4384 int remaining = MAX_LRU_BATCH; 4385 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4386 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4387 4388 VM_WARN_ON_ONCE(!list_empty(list)); 4389 4390 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4391 return 0; 4392 4393 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4394 4395 for (i = MAX_NR_ZONES; i > 0; i--) { 4396 LIST_HEAD(moved); 4397 int skipped_zone = 0; 4398 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4399 struct list_head *head = &lrugen->folios[gen][type][zone]; 4400 4401 while (!list_empty(head)) { 4402 struct folio *folio = lru_to_folio(head); 4403 int delta = folio_nr_pages(folio); 4404 4405 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4406 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4407 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4408 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4409 4410 scanned += delta; 4411 4412 if (sort_folio(lruvec, folio, sc, tier)) 4413 sorted += delta; 4414 else if (isolate_folio(lruvec, folio, sc)) { 4415 list_add(&folio->lru, list); 4416 isolated += delta; 4417 } else { 4418 list_move(&folio->lru, &moved); 4419 skipped_zone += delta; 4420 } 4421 4422 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4423 break; 4424 } 4425 4426 if (skipped_zone) { 4427 list_splice(&moved, head); 4428 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4429 skipped += skipped_zone; 4430 } 4431 4432 if (!remaining || isolated >= MIN_LRU_BATCH) 4433 break; 4434 } 4435 4436 item = PGSCAN_KSWAPD + reclaimer_offset(); 4437 if (!cgroup_reclaim(sc)) { 4438 __count_vm_events(item, isolated); 4439 __count_vm_events(PGREFILL, sorted); 4440 } 4441 __count_memcg_events(memcg, item, isolated); 4442 __count_memcg_events(memcg, PGREFILL, sorted); 4443 __count_vm_events(PGSCAN_ANON + type, isolated); 4444 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4445 scanned, skipped, isolated, 4446 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4447 4448 /* 4449 * There might not be eligible folios due to reclaim_idx. Check the 4450 * remaining to prevent livelock if it's not making progress. 4451 */ 4452 return isolated || !remaining ? scanned : 0; 4453 } 4454 4455 static int get_tier_idx(struct lruvec *lruvec, int type) 4456 { 4457 int tier; 4458 struct ctrl_pos sp, pv; 4459 4460 /* 4461 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4462 * This value is chosen because any other tier would have at least twice 4463 * as many refaults as the first tier. 4464 */ 4465 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4466 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4467 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4468 if (!positive_ctrl_err(&sp, &pv)) 4469 break; 4470 } 4471 4472 return tier - 1; 4473 } 4474 4475 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4476 { 4477 int type, tier; 4478 struct ctrl_pos sp, pv; 4479 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness }; 4480 4481 /* 4482 * Compare the first tier of anon with that of file to determine which 4483 * type to scan. Also need to compare other tiers of the selected type 4484 * with the first tier of the other type to determine the last tier (of 4485 * the selected type) to evict. 4486 */ 4487 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4488 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4489 type = positive_ctrl_err(&sp, &pv); 4490 4491 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4492 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4493 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4494 if (!positive_ctrl_err(&sp, &pv)) 4495 break; 4496 } 4497 4498 *tier_idx = tier - 1; 4499 4500 return type; 4501 } 4502 4503 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4504 int *type_scanned, struct list_head *list) 4505 { 4506 int i; 4507 int type; 4508 int scanned; 4509 int tier = -1; 4510 DEFINE_MIN_SEQ(lruvec); 4511 4512 /* 4513 * Try to make the obvious choice first, and if anon and file are both 4514 * available from the same generation, 4515 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4516 * first. 4517 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4518 * exist than clean swapcache. 4519 */ 4520 if (!swappiness) 4521 type = LRU_GEN_FILE; 4522 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4523 type = LRU_GEN_ANON; 4524 else if (swappiness == 1) 4525 type = LRU_GEN_FILE; 4526 else if (swappiness == MAX_SWAPPINESS) 4527 type = LRU_GEN_ANON; 4528 else if (!(sc->gfp_mask & __GFP_IO)) 4529 type = LRU_GEN_FILE; 4530 else 4531 type = get_type_to_scan(lruvec, swappiness, &tier); 4532 4533 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4534 if (tier < 0) 4535 tier = get_tier_idx(lruvec, type); 4536 4537 scanned = scan_folios(lruvec, sc, type, tier, list); 4538 if (scanned) 4539 break; 4540 4541 type = !type; 4542 tier = -1; 4543 } 4544 4545 *type_scanned = type; 4546 4547 return scanned; 4548 } 4549 4550 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4551 { 4552 int type; 4553 int scanned; 4554 int reclaimed; 4555 LIST_HEAD(list); 4556 LIST_HEAD(clean); 4557 struct folio *folio; 4558 struct folio *next; 4559 enum vm_event_item item; 4560 struct reclaim_stat stat; 4561 struct lru_gen_mm_walk *walk; 4562 bool skip_retry = false; 4563 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4564 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4565 4566 spin_lock_irq(&lruvec->lru_lock); 4567 4568 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4569 4570 scanned += try_to_inc_min_seq(lruvec, swappiness); 4571 4572 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4573 scanned = 0; 4574 4575 spin_unlock_irq(&lruvec->lru_lock); 4576 4577 if (list_empty(&list)) 4578 return scanned; 4579 retry: 4580 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4581 sc->nr_reclaimed += reclaimed; 4582 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4583 scanned, reclaimed, &stat, sc->priority, 4584 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4585 4586 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4587 if (!folio_evictable(folio)) { 4588 list_del(&folio->lru); 4589 folio_putback_lru(folio); 4590 continue; 4591 } 4592 4593 if (folio_test_reclaim(folio) && 4594 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4595 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4596 if (folio_test_workingset(folio)) 4597 folio_set_referenced(folio); 4598 continue; 4599 } 4600 4601 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4602 folio_mapped(folio) || folio_test_locked(folio) || 4603 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4604 /* don't add rejected folios to the oldest generation */ 4605 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4606 BIT(PG_active)); 4607 continue; 4608 } 4609 4610 /* retry folios that may have missed folio_rotate_reclaimable() */ 4611 list_move(&folio->lru, &clean); 4612 } 4613 4614 spin_lock_irq(&lruvec->lru_lock); 4615 4616 move_folios_to_lru(lruvec, &list); 4617 4618 walk = current->reclaim_state->mm_walk; 4619 if (walk && walk->batched) { 4620 walk->lruvec = lruvec; 4621 reset_batch_size(walk); 4622 } 4623 4624 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4625 if (!cgroup_reclaim(sc)) 4626 __count_vm_events(item, reclaimed); 4627 __count_memcg_events(memcg, item, reclaimed); 4628 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4629 4630 spin_unlock_irq(&lruvec->lru_lock); 4631 4632 list_splice_init(&clean, &list); 4633 4634 if (!list_empty(&list)) { 4635 skip_retry = true; 4636 goto retry; 4637 } 4638 4639 return scanned; 4640 } 4641 4642 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4643 bool can_swap, unsigned long *nr_to_scan) 4644 { 4645 int gen, type, zone; 4646 unsigned long old = 0; 4647 unsigned long young = 0; 4648 unsigned long total = 0; 4649 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4650 DEFINE_MIN_SEQ(lruvec); 4651 4652 /* whether this lruvec is completely out of cold folios */ 4653 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4654 *nr_to_scan = 0; 4655 return true; 4656 } 4657 4658 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4659 unsigned long seq; 4660 4661 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4662 unsigned long size = 0; 4663 4664 gen = lru_gen_from_seq(seq); 4665 4666 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4667 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4668 4669 total += size; 4670 if (seq == max_seq) 4671 young += size; 4672 else if (seq + MIN_NR_GENS == max_seq) 4673 old += size; 4674 } 4675 } 4676 4677 *nr_to_scan = total; 4678 4679 /* 4680 * The aging tries to be lazy to reduce the overhead, while the eviction 4681 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4682 * ideal number of generations is MIN_NR_GENS+1. 4683 */ 4684 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4685 return false; 4686 4687 /* 4688 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4689 * of the total number of pages for each generation. A reasonable range 4690 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4691 * aging cares about the upper bound of hot pages, while the eviction 4692 * cares about the lower bound of cold pages. 4693 */ 4694 if (young * MIN_NR_GENS > total) 4695 return true; 4696 if (old * (MIN_NR_GENS + 2) < total) 4697 return true; 4698 4699 return false; 4700 } 4701 4702 /* 4703 * For future optimizations: 4704 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4705 * reclaim. 4706 */ 4707 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4708 { 4709 bool success; 4710 unsigned long nr_to_scan; 4711 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4712 DEFINE_MAX_SEQ(lruvec); 4713 4714 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4715 return -1; 4716 4717 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4718 4719 /* try to scrape all its memory if this memcg was deleted */ 4720 if (nr_to_scan && !mem_cgroup_online(memcg)) 4721 return nr_to_scan; 4722 4723 /* try to get away with not aging at the default priority */ 4724 if (!success || sc->priority == DEF_PRIORITY) 4725 return nr_to_scan >> sc->priority; 4726 4727 /* stop scanning this lruvec as it's low on cold folios */ 4728 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4729 } 4730 4731 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4732 { 4733 int i; 4734 enum zone_watermarks mark; 4735 4736 /* don't abort memcg reclaim to ensure fairness */ 4737 if (!root_reclaim(sc)) 4738 return false; 4739 4740 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4741 return true; 4742 4743 /* check the order to exclude compaction-induced reclaim */ 4744 if (!current_is_kswapd() || sc->order) 4745 return false; 4746 4747 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4748 WMARK_PROMO : WMARK_HIGH; 4749 4750 for (i = 0; i <= sc->reclaim_idx; i++) { 4751 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4752 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4753 4754 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4755 return false; 4756 } 4757 4758 /* kswapd should abort if all eligible zones are safe */ 4759 return true; 4760 } 4761 4762 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4763 { 4764 long nr_to_scan; 4765 unsigned long scanned = 0; 4766 int swappiness = get_swappiness(lruvec, sc); 4767 4768 while (true) { 4769 int delta; 4770 4771 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4772 if (nr_to_scan <= 0) 4773 break; 4774 4775 delta = evict_folios(lruvec, sc, swappiness); 4776 if (!delta) 4777 break; 4778 4779 scanned += delta; 4780 if (scanned >= nr_to_scan) 4781 break; 4782 4783 if (should_abort_scan(lruvec, sc)) 4784 break; 4785 4786 cond_resched(); 4787 } 4788 4789 /* whether this lruvec should be rotated */ 4790 return nr_to_scan < 0; 4791 } 4792 4793 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4794 { 4795 bool success; 4796 unsigned long scanned = sc->nr_scanned; 4797 unsigned long reclaimed = sc->nr_reclaimed; 4798 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4799 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4800 4801 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4802 if (mem_cgroup_below_min(NULL, memcg)) 4803 return MEMCG_LRU_YOUNG; 4804 4805 if (mem_cgroup_below_low(NULL, memcg)) { 4806 /* see the comment on MEMCG_NR_GENS */ 4807 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4808 return MEMCG_LRU_TAIL; 4809 4810 memcg_memory_event(memcg, MEMCG_LOW); 4811 } 4812 4813 success = try_to_shrink_lruvec(lruvec, sc); 4814 4815 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4816 4817 if (!sc->proactive) 4818 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4819 sc->nr_reclaimed - reclaimed); 4820 4821 flush_reclaim_state(sc); 4822 4823 if (success && mem_cgroup_online(memcg)) 4824 return MEMCG_LRU_YOUNG; 4825 4826 if (!success && lruvec_is_sizable(lruvec, sc)) 4827 return 0; 4828 4829 /* one retry if offlined or too small */ 4830 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4831 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4832 } 4833 4834 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4835 { 4836 int op; 4837 int gen; 4838 int bin; 4839 int first_bin; 4840 struct lruvec *lruvec; 4841 struct lru_gen_folio *lrugen; 4842 struct mem_cgroup *memcg; 4843 struct hlist_nulls_node *pos; 4844 4845 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4846 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4847 restart: 4848 op = 0; 4849 memcg = NULL; 4850 4851 rcu_read_lock(); 4852 4853 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4854 if (op) { 4855 lru_gen_rotate_memcg(lruvec, op); 4856 op = 0; 4857 } 4858 4859 mem_cgroup_put(memcg); 4860 memcg = NULL; 4861 4862 if (gen != READ_ONCE(lrugen->gen)) 4863 continue; 4864 4865 lruvec = container_of(lrugen, struct lruvec, lrugen); 4866 memcg = lruvec_memcg(lruvec); 4867 4868 if (!mem_cgroup_tryget(memcg)) { 4869 lru_gen_release_memcg(memcg); 4870 memcg = NULL; 4871 continue; 4872 } 4873 4874 rcu_read_unlock(); 4875 4876 op = shrink_one(lruvec, sc); 4877 4878 rcu_read_lock(); 4879 4880 if (should_abort_scan(lruvec, sc)) 4881 break; 4882 } 4883 4884 rcu_read_unlock(); 4885 4886 if (op) 4887 lru_gen_rotate_memcg(lruvec, op); 4888 4889 mem_cgroup_put(memcg); 4890 4891 if (!is_a_nulls(pos)) 4892 return; 4893 4894 /* restart if raced with lru_gen_rotate_memcg() */ 4895 if (gen != get_nulls_value(pos)) 4896 goto restart; 4897 4898 /* try the rest of the bins of the current generation */ 4899 bin = get_memcg_bin(bin + 1); 4900 if (bin != first_bin) 4901 goto restart; 4902 } 4903 4904 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4905 { 4906 struct blk_plug plug; 4907 4908 VM_WARN_ON_ONCE(root_reclaim(sc)); 4909 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4910 4911 lru_add_drain(); 4912 4913 blk_start_plug(&plug); 4914 4915 set_mm_walk(NULL, sc->proactive); 4916 4917 if (try_to_shrink_lruvec(lruvec, sc)) 4918 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4919 4920 clear_mm_walk(); 4921 4922 blk_finish_plug(&plug); 4923 } 4924 4925 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4926 { 4927 struct blk_plug plug; 4928 unsigned long reclaimed = sc->nr_reclaimed; 4929 4930 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4931 4932 /* 4933 * Unmapped clean folios are already prioritized. Scanning for more of 4934 * them is likely futile and can cause high reclaim latency when there 4935 * is a large number of memcgs. 4936 */ 4937 if (!sc->may_writepage || !sc->may_unmap) 4938 goto done; 4939 4940 lru_add_drain(); 4941 4942 blk_start_plug(&plug); 4943 4944 set_mm_walk(pgdat, sc->proactive); 4945 4946 set_initial_priority(pgdat, sc); 4947 4948 if (current_is_kswapd()) 4949 sc->nr_reclaimed = 0; 4950 4951 if (mem_cgroup_disabled()) 4952 shrink_one(&pgdat->__lruvec, sc); 4953 else 4954 shrink_many(pgdat, sc); 4955 4956 if (current_is_kswapd()) 4957 sc->nr_reclaimed += reclaimed; 4958 4959 clear_mm_walk(); 4960 4961 blk_finish_plug(&plug); 4962 done: 4963 /* kswapd should never fail */ 4964 pgdat->kswapd_failures = 0; 4965 } 4966 4967 /****************************************************************************** 4968 * state change 4969 ******************************************************************************/ 4970 4971 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4972 { 4973 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4974 4975 if (lrugen->enabled) { 4976 enum lru_list lru; 4977 4978 for_each_evictable_lru(lru) { 4979 if (!list_empty(&lruvec->lists[lru])) 4980 return false; 4981 } 4982 } else { 4983 int gen, type, zone; 4984 4985 for_each_gen_type_zone(gen, type, zone) { 4986 if (!list_empty(&lrugen->folios[gen][type][zone])) 4987 return false; 4988 } 4989 } 4990 4991 return true; 4992 } 4993 4994 static bool fill_evictable(struct lruvec *lruvec) 4995 { 4996 enum lru_list lru; 4997 int remaining = MAX_LRU_BATCH; 4998 4999 for_each_evictable_lru(lru) { 5000 int type = is_file_lru(lru); 5001 bool active = is_active_lru(lru); 5002 struct list_head *head = &lruvec->lists[lru]; 5003 5004 while (!list_empty(head)) { 5005 bool success; 5006 struct folio *folio = lru_to_folio(head); 5007 5008 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5009 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5010 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5011 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5012 5013 lruvec_del_folio(lruvec, folio); 5014 success = lru_gen_add_folio(lruvec, folio, false); 5015 VM_WARN_ON_ONCE(!success); 5016 5017 if (!--remaining) 5018 return false; 5019 } 5020 } 5021 5022 return true; 5023 } 5024 5025 static bool drain_evictable(struct lruvec *lruvec) 5026 { 5027 int gen, type, zone; 5028 int remaining = MAX_LRU_BATCH; 5029 5030 for_each_gen_type_zone(gen, type, zone) { 5031 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5032 5033 while (!list_empty(head)) { 5034 bool success; 5035 struct folio *folio = lru_to_folio(head); 5036 5037 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5038 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5039 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5040 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5041 5042 success = lru_gen_del_folio(lruvec, folio, false); 5043 VM_WARN_ON_ONCE(!success); 5044 lruvec_add_folio(lruvec, folio); 5045 5046 if (!--remaining) 5047 return false; 5048 } 5049 } 5050 5051 return true; 5052 } 5053 5054 static void lru_gen_change_state(bool enabled) 5055 { 5056 static DEFINE_MUTEX(state_mutex); 5057 5058 struct mem_cgroup *memcg; 5059 5060 cgroup_lock(); 5061 cpus_read_lock(); 5062 get_online_mems(); 5063 mutex_lock(&state_mutex); 5064 5065 if (enabled == lru_gen_enabled()) 5066 goto unlock; 5067 5068 if (enabled) 5069 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5070 else 5071 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5072 5073 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5074 do { 5075 int nid; 5076 5077 for_each_node(nid) { 5078 struct lruvec *lruvec = get_lruvec(memcg, nid); 5079 5080 spin_lock_irq(&lruvec->lru_lock); 5081 5082 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5083 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5084 5085 lruvec->lrugen.enabled = enabled; 5086 5087 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5088 spin_unlock_irq(&lruvec->lru_lock); 5089 cond_resched(); 5090 spin_lock_irq(&lruvec->lru_lock); 5091 } 5092 5093 spin_unlock_irq(&lruvec->lru_lock); 5094 } 5095 5096 cond_resched(); 5097 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5098 unlock: 5099 mutex_unlock(&state_mutex); 5100 put_online_mems(); 5101 cpus_read_unlock(); 5102 cgroup_unlock(); 5103 } 5104 5105 /****************************************************************************** 5106 * sysfs interface 5107 ******************************************************************************/ 5108 5109 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5110 { 5111 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5112 } 5113 5114 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5115 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5116 const char *buf, size_t len) 5117 { 5118 unsigned int msecs; 5119 5120 if (kstrtouint(buf, 0, &msecs)) 5121 return -EINVAL; 5122 5123 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5124 5125 return len; 5126 } 5127 5128 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5129 5130 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5131 { 5132 unsigned int caps = 0; 5133 5134 if (get_cap(LRU_GEN_CORE)) 5135 caps |= BIT(LRU_GEN_CORE); 5136 5137 if (should_walk_mmu()) 5138 caps |= BIT(LRU_GEN_MM_WALK); 5139 5140 if (should_clear_pmd_young()) 5141 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5142 5143 return sysfs_emit(buf, "0x%04x\n", caps); 5144 } 5145 5146 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5147 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5148 const char *buf, size_t len) 5149 { 5150 int i; 5151 unsigned int caps; 5152 5153 if (tolower(*buf) == 'n') 5154 caps = 0; 5155 else if (tolower(*buf) == 'y') 5156 caps = -1; 5157 else if (kstrtouint(buf, 0, &caps)) 5158 return -EINVAL; 5159 5160 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5161 bool enabled = caps & BIT(i); 5162 5163 if (i == LRU_GEN_CORE) 5164 lru_gen_change_state(enabled); 5165 else if (enabled) 5166 static_branch_enable(&lru_gen_caps[i]); 5167 else 5168 static_branch_disable(&lru_gen_caps[i]); 5169 } 5170 5171 return len; 5172 } 5173 5174 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5175 5176 static struct attribute *lru_gen_attrs[] = { 5177 &lru_gen_min_ttl_attr.attr, 5178 &lru_gen_enabled_attr.attr, 5179 NULL 5180 }; 5181 5182 static const struct attribute_group lru_gen_attr_group = { 5183 .name = "lru_gen", 5184 .attrs = lru_gen_attrs, 5185 }; 5186 5187 /****************************************************************************** 5188 * debugfs interface 5189 ******************************************************************************/ 5190 5191 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5192 { 5193 struct mem_cgroup *memcg; 5194 loff_t nr_to_skip = *pos; 5195 5196 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5197 if (!m->private) 5198 return ERR_PTR(-ENOMEM); 5199 5200 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5201 do { 5202 int nid; 5203 5204 for_each_node_state(nid, N_MEMORY) { 5205 if (!nr_to_skip--) 5206 return get_lruvec(memcg, nid); 5207 } 5208 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5209 5210 return NULL; 5211 } 5212 5213 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5214 { 5215 if (!IS_ERR_OR_NULL(v)) 5216 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5217 5218 kvfree(m->private); 5219 m->private = NULL; 5220 } 5221 5222 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5223 { 5224 int nid = lruvec_pgdat(v)->node_id; 5225 struct mem_cgroup *memcg = lruvec_memcg(v); 5226 5227 ++*pos; 5228 5229 nid = next_memory_node(nid); 5230 if (nid == MAX_NUMNODES) { 5231 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5232 if (!memcg) 5233 return NULL; 5234 5235 nid = first_memory_node; 5236 } 5237 5238 return get_lruvec(memcg, nid); 5239 } 5240 5241 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5242 unsigned long max_seq, unsigned long *min_seq, 5243 unsigned long seq) 5244 { 5245 int i; 5246 int type, tier; 5247 int hist = lru_hist_from_seq(seq); 5248 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5249 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5250 5251 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5252 seq_printf(m, " %10d", tier); 5253 for (type = 0; type < ANON_AND_FILE; type++) { 5254 const char *s = " "; 5255 unsigned long n[3] = {}; 5256 5257 if (seq == max_seq) { 5258 s = "RT "; 5259 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5260 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5261 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5262 s = "rep"; 5263 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5264 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5265 if (tier) 5266 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5267 } 5268 5269 for (i = 0; i < 3; i++) 5270 seq_printf(m, " %10lu%c", n[i], s[i]); 5271 } 5272 seq_putc(m, '\n'); 5273 } 5274 5275 if (!mm_state) 5276 return; 5277 5278 seq_puts(m, " "); 5279 for (i = 0; i < NR_MM_STATS; i++) { 5280 const char *s = " "; 5281 unsigned long n = 0; 5282 5283 if (seq == max_seq && NR_HIST_GENS == 1) { 5284 s = "LOYNFA"; 5285 n = READ_ONCE(mm_state->stats[hist][i]); 5286 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5287 s = "loynfa"; 5288 n = READ_ONCE(mm_state->stats[hist][i]); 5289 } 5290 5291 seq_printf(m, " %10lu%c", n, s[i]); 5292 } 5293 seq_putc(m, '\n'); 5294 } 5295 5296 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5297 static int lru_gen_seq_show(struct seq_file *m, void *v) 5298 { 5299 unsigned long seq; 5300 bool full = !debugfs_real_fops(m->file)->write; 5301 struct lruvec *lruvec = v; 5302 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5303 int nid = lruvec_pgdat(lruvec)->node_id; 5304 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5305 DEFINE_MAX_SEQ(lruvec); 5306 DEFINE_MIN_SEQ(lruvec); 5307 5308 if (nid == first_memory_node) { 5309 const char *path = memcg ? m->private : ""; 5310 5311 #ifdef CONFIG_MEMCG 5312 if (memcg) 5313 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5314 #endif 5315 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5316 } 5317 5318 seq_printf(m, " node %5d\n", nid); 5319 5320 if (!full) 5321 seq = min_seq[LRU_GEN_ANON]; 5322 else if (max_seq >= MAX_NR_GENS) 5323 seq = max_seq - MAX_NR_GENS + 1; 5324 else 5325 seq = 0; 5326 5327 for (; seq <= max_seq; seq++) { 5328 int type, zone; 5329 int gen = lru_gen_from_seq(seq); 5330 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5331 5332 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5333 5334 for (type = 0; type < ANON_AND_FILE; type++) { 5335 unsigned long size = 0; 5336 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5337 5338 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5339 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5340 5341 seq_printf(m, " %10lu%c", size, mark); 5342 } 5343 5344 seq_putc(m, '\n'); 5345 5346 if (full) 5347 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5348 } 5349 5350 return 0; 5351 } 5352 5353 static const struct seq_operations lru_gen_seq_ops = { 5354 .start = lru_gen_seq_start, 5355 .stop = lru_gen_seq_stop, 5356 .next = lru_gen_seq_next, 5357 .show = lru_gen_seq_show, 5358 }; 5359 5360 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5361 bool can_swap, bool force_scan) 5362 { 5363 DEFINE_MAX_SEQ(lruvec); 5364 DEFINE_MIN_SEQ(lruvec); 5365 5366 if (seq < max_seq) 5367 return 0; 5368 5369 if (seq > max_seq) 5370 return -EINVAL; 5371 5372 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5373 return -ERANGE; 5374 5375 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5376 5377 return 0; 5378 } 5379 5380 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5381 int swappiness, unsigned long nr_to_reclaim) 5382 { 5383 DEFINE_MAX_SEQ(lruvec); 5384 5385 if (seq + MIN_NR_GENS > max_seq) 5386 return -EINVAL; 5387 5388 sc->nr_reclaimed = 0; 5389 5390 while (!signal_pending(current)) { 5391 DEFINE_MIN_SEQ(lruvec); 5392 5393 if (seq < min_seq[!swappiness]) 5394 return 0; 5395 5396 if (sc->nr_reclaimed >= nr_to_reclaim) 5397 return 0; 5398 5399 if (!evict_folios(lruvec, sc, swappiness)) 5400 return 0; 5401 5402 cond_resched(); 5403 } 5404 5405 return -EINTR; 5406 } 5407 5408 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5409 struct scan_control *sc, int swappiness, unsigned long opt) 5410 { 5411 struct lruvec *lruvec; 5412 int err = -EINVAL; 5413 struct mem_cgroup *memcg = NULL; 5414 5415 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5416 return -EINVAL; 5417 5418 if (!mem_cgroup_disabled()) { 5419 rcu_read_lock(); 5420 5421 memcg = mem_cgroup_from_id(memcg_id); 5422 if (!mem_cgroup_tryget(memcg)) 5423 memcg = NULL; 5424 5425 rcu_read_unlock(); 5426 5427 if (!memcg) 5428 return -EINVAL; 5429 } 5430 5431 if (memcg_id != mem_cgroup_id(memcg)) 5432 goto done; 5433 5434 lruvec = get_lruvec(memcg, nid); 5435 5436 if (swappiness < MIN_SWAPPINESS) 5437 swappiness = get_swappiness(lruvec, sc); 5438 else if (swappiness > MAX_SWAPPINESS) 5439 goto done; 5440 5441 switch (cmd) { 5442 case '+': 5443 err = run_aging(lruvec, seq, swappiness, opt); 5444 break; 5445 case '-': 5446 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5447 break; 5448 } 5449 done: 5450 mem_cgroup_put(memcg); 5451 5452 return err; 5453 } 5454 5455 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5456 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5457 size_t len, loff_t *pos) 5458 { 5459 void *buf; 5460 char *cur, *next; 5461 unsigned int flags; 5462 struct blk_plug plug; 5463 int err = -EINVAL; 5464 struct scan_control sc = { 5465 .may_writepage = true, 5466 .may_unmap = true, 5467 .may_swap = true, 5468 .reclaim_idx = MAX_NR_ZONES - 1, 5469 .gfp_mask = GFP_KERNEL, 5470 }; 5471 5472 buf = kvmalloc(len + 1, GFP_KERNEL); 5473 if (!buf) 5474 return -ENOMEM; 5475 5476 if (copy_from_user(buf, src, len)) { 5477 kvfree(buf); 5478 return -EFAULT; 5479 } 5480 5481 set_task_reclaim_state(current, &sc.reclaim_state); 5482 flags = memalloc_noreclaim_save(); 5483 blk_start_plug(&plug); 5484 if (!set_mm_walk(NULL, true)) { 5485 err = -ENOMEM; 5486 goto done; 5487 } 5488 5489 next = buf; 5490 next[len] = '\0'; 5491 5492 while ((cur = strsep(&next, ",;\n"))) { 5493 int n; 5494 int end; 5495 char cmd; 5496 unsigned int memcg_id; 5497 unsigned int nid; 5498 unsigned long seq; 5499 unsigned int swappiness = -1; 5500 unsigned long opt = -1; 5501 5502 cur = skip_spaces(cur); 5503 if (!*cur) 5504 continue; 5505 5506 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5507 &seq, &end, &swappiness, &end, &opt, &end); 5508 if (n < 4 || cur[end]) { 5509 err = -EINVAL; 5510 break; 5511 } 5512 5513 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5514 if (err) 5515 break; 5516 } 5517 done: 5518 clear_mm_walk(); 5519 blk_finish_plug(&plug); 5520 memalloc_noreclaim_restore(flags); 5521 set_task_reclaim_state(current, NULL); 5522 5523 kvfree(buf); 5524 5525 return err ? : len; 5526 } 5527 5528 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5529 { 5530 return seq_open(file, &lru_gen_seq_ops); 5531 } 5532 5533 static const struct file_operations lru_gen_rw_fops = { 5534 .open = lru_gen_seq_open, 5535 .read = seq_read, 5536 .write = lru_gen_seq_write, 5537 .llseek = seq_lseek, 5538 .release = seq_release, 5539 }; 5540 5541 static const struct file_operations lru_gen_ro_fops = { 5542 .open = lru_gen_seq_open, 5543 .read = seq_read, 5544 .llseek = seq_lseek, 5545 .release = seq_release, 5546 }; 5547 5548 /****************************************************************************** 5549 * initialization 5550 ******************************************************************************/ 5551 5552 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5553 { 5554 int i, j; 5555 5556 spin_lock_init(&pgdat->memcg_lru.lock); 5557 5558 for (i = 0; i < MEMCG_NR_GENS; i++) { 5559 for (j = 0; j < MEMCG_NR_BINS; j++) 5560 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5561 } 5562 } 5563 5564 void lru_gen_init_lruvec(struct lruvec *lruvec) 5565 { 5566 int i; 5567 int gen, type, zone; 5568 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5569 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5570 5571 lrugen->max_seq = MIN_NR_GENS + 1; 5572 lrugen->enabled = lru_gen_enabled(); 5573 5574 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5575 lrugen->timestamps[i] = jiffies; 5576 5577 for_each_gen_type_zone(gen, type, zone) 5578 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5579 5580 if (mm_state) 5581 mm_state->seq = MIN_NR_GENS; 5582 } 5583 5584 #ifdef CONFIG_MEMCG 5585 5586 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5587 { 5588 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5589 5590 if (!mm_list) 5591 return; 5592 5593 INIT_LIST_HEAD(&mm_list->fifo); 5594 spin_lock_init(&mm_list->lock); 5595 } 5596 5597 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5598 { 5599 int i; 5600 int nid; 5601 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5602 5603 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5604 5605 for_each_node(nid) { 5606 struct lruvec *lruvec = get_lruvec(memcg, nid); 5607 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5608 5609 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5610 sizeof(lruvec->lrugen.nr_pages))); 5611 5612 lruvec->lrugen.list.next = LIST_POISON1; 5613 5614 if (!mm_state) 5615 continue; 5616 5617 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5618 bitmap_free(mm_state->filters[i]); 5619 mm_state->filters[i] = NULL; 5620 } 5621 } 5622 } 5623 5624 #endif /* CONFIG_MEMCG */ 5625 5626 static int __init init_lru_gen(void) 5627 { 5628 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5629 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5630 5631 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5632 pr_err("lru_gen: failed to create sysfs group\n"); 5633 5634 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5635 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5636 5637 return 0; 5638 }; 5639 late_initcall(init_lru_gen); 5640 5641 #else /* !CONFIG_LRU_GEN */ 5642 5643 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5644 { 5645 BUILD_BUG(); 5646 } 5647 5648 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5649 { 5650 BUILD_BUG(); 5651 } 5652 5653 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5654 { 5655 BUILD_BUG(); 5656 } 5657 5658 #endif /* CONFIG_LRU_GEN */ 5659 5660 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5661 { 5662 unsigned long nr[NR_LRU_LISTS]; 5663 unsigned long targets[NR_LRU_LISTS]; 5664 unsigned long nr_to_scan; 5665 enum lru_list lru; 5666 unsigned long nr_reclaimed = 0; 5667 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5668 bool proportional_reclaim; 5669 struct blk_plug plug; 5670 5671 if (lru_gen_enabled() && !root_reclaim(sc)) { 5672 lru_gen_shrink_lruvec(lruvec, sc); 5673 return; 5674 } 5675 5676 get_scan_count(lruvec, sc, nr); 5677 5678 /* Record the original scan target for proportional adjustments later */ 5679 memcpy(targets, nr, sizeof(nr)); 5680 5681 /* 5682 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5683 * event that can occur when there is little memory pressure e.g. 5684 * multiple streaming readers/writers. Hence, we do not abort scanning 5685 * when the requested number of pages are reclaimed when scanning at 5686 * DEF_PRIORITY on the assumption that the fact we are direct 5687 * reclaiming implies that kswapd is not keeping up and it is best to 5688 * do a batch of work at once. For memcg reclaim one check is made to 5689 * abort proportional reclaim if either the file or anon lru has already 5690 * dropped to zero at the first pass. 5691 */ 5692 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5693 sc->priority == DEF_PRIORITY); 5694 5695 blk_start_plug(&plug); 5696 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5697 nr[LRU_INACTIVE_FILE]) { 5698 unsigned long nr_anon, nr_file, percentage; 5699 unsigned long nr_scanned; 5700 5701 for_each_evictable_lru(lru) { 5702 if (nr[lru]) { 5703 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5704 nr[lru] -= nr_to_scan; 5705 5706 nr_reclaimed += shrink_list(lru, nr_to_scan, 5707 lruvec, sc); 5708 } 5709 } 5710 5711 cond_resched(); 5712 5713 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5714 continue; 5715 5716 /* 5717 * For kswapd and memcg, reclaim at least the number of pages 5718 * requested. Ensure that the anon and file LRUs are scanned 5719 * proportionally what was requested by get_scan_count(). We 5720 * stop reclaiming one LRU and reduce the amount scanning 5721 * proportional to the original scan target. 5722 */ 5723 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5724 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5725 5726 /* 5727 * It's just vindictive to attack the larger once the smaller 5728 * has gone to zero. And given the way we stop scanning the 5729 * smaller below, this makes sure that we only make one nudge 5730 * towards proportionality once we've got nr_to_reclaim. 5731 */ 5732 if (!nr_file || !nr_anon) 5733 break; 5734 5735 if (nr_file > nr_anon) { 5736 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5737 targets[LRU_ACTIVE_ANON] + 1; 5738 lru = LRU_BASE; 5739 percentage = nr_anon * 100 / scan_target; 5740 } else { 5741 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5742 targets[LRU_ACTIVE_FILE] + 1; 5743 lru = LRU_FILE; 5744 percentage = nr_file * 100 / scan_target; 5745 } 5746 5747 /* Stop scanning the smaller of the LRU */ 5748 nr[lru] = 0; 5749 nr[lru + LRU_ACTIVE] = 0; 5750 5751 /* 5752 * Recalculate the other LRU scan count based on its original 5753 * scan target and the percentage scanning already complete 5754 */ 5755 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5756 nr_scanned = targets[lru] - nr[lru]; 5757 nr[lru] = targets[lru] * (100 - percentage) / 100; 5758 nr[lru] -= min(nr[lru], nr_scanned); 5759 5760 lru += LRU_ACTIVE; 5761 nr_scanned = targets[lru] - nr[lru]; 5762 nr[lru] = targets[lru] * (100 - percentage) / 100; 5763 nr[lru] -= min(nr[lru], nr_scanned); 5764 } 5765 blk_finish_plug(&plug); 5766 sc->nr_reclaimed += nr_reclaimed; 5767 5768 /* 5769 * Even if we did not try to evict anon pages at all, we want to 5770 * rebalance the anon lru active/inactive ratio. 5771 */ 5772 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5773 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5774 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5775 sc, LRU_ACTIVE_ANON); 5776 } 5777 5778 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5779 static bool in_reclaim_compaction(struct scan_control *sc) 5780 { 5781 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5782 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5783 sc->priority < DEF_PRIORITY - 2)) 5784 return true; 5785 5786 return false; 5787 } 5788 5789 /* 5790 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5791 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5792 * true if more pages should be reclaimed such that when the page allocator 5793 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5794 * It will give up earlier than that if there is difficulty reclaiming pages. 5795 */ 5796 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5797 unsigned long nr_reclaimed, 5798 struct scan_control *sc) 5799 { 5800 unsigned long pages_for_compaction; 5801 unsigned long inactive_lru_pages; 5802 int z; 5803 5804 /* If not in reclaim/compaction mode, stop */ 5805 if (!in_reclaim_compaction(sc)) 5806 return false; 5807 5808 /* 5809 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5810 * number of pages that were scanned. This will return to the caller 5811 * with the risk reclaim/compaction and the resulting allocation attempt 5812 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5813 * allocations through requiring that the full LRU list has been scanned 5814 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5815 * scan, but that approximation was wrong, and there were corner cases 5816 * where always a non-zero amount of pages were scanned. 5817 */ 5818 if (!nr_reclaimed) 5819 return false; 5820 5821 /* If compaction would go ahead or the allocation would succeed, stop */ 5822 for (z = 0; z <= sc->reclaim_idx; z++) { 5823 struct zone *zone = &pgdat->node_zones[z]; 5824 if (!managed_zone(zone)) 5825 continue; 5826 5827 /* Allocation can already succeed, nothing to do */ 5828 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5829 sc->reclaim_idx, 0)) 5830 return false; 5831 5832 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5833 return false; 5834 } 5835 5836 /* 5837 * If we have not reclaimed enough pages for compaction and the 5838 * inactive lists are large enough, continue reclaiming 5839 */ 5840 pages_for_compaction = compact_gap(sc->order); 5841 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5842 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5843 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5844 5845 return inactive_lru_pages > pages_for_compaction; 5846 } 5847 5848 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5849 { 5850 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5851 struct mem_cgroup_reclaim_cookie reclaim = { 5852 .pgdat = pgdat, 5853 }; 5854 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5855 struct mem_cgroup *memcg; 5856 5857 /* 5858 * In most cases, direct reclaimers can do partial walks 5859 * through the cgroup tree, using an iterator state that 5860 * persists across invocations. This strikes a balance between 5861 * fairness and allocation latency. 5862 * 5863 * For kswapd, reliable forward progress is more important 5864 * than a quick return to idle. Always do full walks. 5865 */ 5866 if (current_is_kswapd() || sc->memcg_full_walk) 5867 partial = NULL; 5868 5869 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5870 do { 5871 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5872 unsigned long reclaimed; 5873 unsigned long scanned; 5874 5875 /* 5876 * This loop can become CPU-bound when target memcgs 5877 * aren't eligible for reclaim - either because they 5878 * don't have any reclaimable pages, or because their 5879 * memory is explicitly protected. Avoid soft lockups. 5880 */ 5881 cond_resched(); 5882 5883 mem_cgroup_calculate_protection(target_memcg, memcg); 5884 5885 if (mem_cgroup_below_min(target_memcg, memcg)) { 5886 /* 5887 * Hard protection. 5888 * If there is no reclaimable memory, OOM. 5889 */ 5890 continue; 5891 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5892 /* 5893 * Soft protection. 5894 * Respect the protection only as long as 5895 * there is an unprotected supply 5896 * of reclaimable memory from other cgroups. 5897 */ 5898 if (!sc->memcg_low_reclaim) { 5899 sc->memcg_low_skipped = 1; 5900 continue; 5901 } 5902 memcg_memory_event(memcg, MEMCG_LOW); 5903 } 5904 5905 reclaimed = sc->nr_reclaimed; 5906 scanned = sc->nr_scanned; 5907 5908 shrink_lruvec(lruvec, sc); 5909 5910 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5911 sc->priority); 5912 5913 /* Record the group's reclaim efficiency */ 5914 if (!sc->proactive) 5915 vmpressure(sc->gfp_mask, memcg, false, 5916 sc->nr_scanned - scanned, 5917 sc->nr_reclaimed - reclaimed); 5918 5919 /* If partial walks are allowed, bail once goal is reached */ 5920 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5921 mem_cgroup_iter_break(target_memcg, memcg); 5922 break; 5923 } 5924 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5925 } 5926 5927 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5928 { 5929 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5930 struct lruvec *target_lruvec; 5931 bool reclaimable = false; 5932 5933 if (lru_gen_enabled() && root_reclaim(sc)) { 5934 lru_gen_shrink_node(pgdat, sc); 5935 return; 5936 } 5937 5938 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5939 5940 again: 5941 memset(&sc->nr, 0, sizeof(sc->nr)); 5942 5943 nr_reclaimed = sc->nr_reclaimed; 5944 nr_scanned = sc->nr_scanned; 5945 5946 prepare_scan_control(pgdat, sc); 5947 5948 shrink_node_memcgs(pgdat, sc); 5949 5950 flush_reclaim_state(sc); 5951 5952 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5953 5954 /* Record the subtree's reclaim efficiency */ 5955 if (!sc->proactive) 5956 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5957 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5958 5959 if (nr_node_reclaimed) 5960 reclaimable = true; 5961 5962 if (current_is_kswapd()) { 5963 /* 5964 * If reclaim is isolating dirty pages under writeback, 5965 * it implies that the long-lived page allocation rate 5966 * is exceeding the page laundering rate. Either the 5967 * global limits are not being effective at throttling 5968 * processes due to the page distribution throughout 5969 * zones or there is heavy usage of a slow backing 5970 * device. The only option is to throttle from reclaim 5971 * context which is not ideal as there is no guarantee 5972 * the dirtying process is throttled in the same way 5973 * balance_dirty_pages() manages. 5974 * 5975 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5976 * count the number of pages under pages flagged for 5977 * immediate reclaim and stall if any are encountered 5978 * in the nr_immediate check below. 5979 */ 5980 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5981 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5982 5983 /* Allow kswapd to start writing pages during reclaim.*/ 5984 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5985 set_bit(PGDAT_DIRTY, &pgdat->flags); 5986 5987 /* 5988 * If kswapd scans pages marked for immediate 5989 * reclaim and under writeback (nr_immediate), it 5990 * implies that pages are cycling through the LRU 5991 * faster than they are written so forcibly stall 5992 * until some pages complete writeback. 5993 */ 5994 if (sc->nr.immediate) 5995 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 5996 } 5997 5998 /* 5999 * Tag a node/memcg as congested if all the dirty pages were marked 6000 * for writeback and immediate reclaim (counted in nr.congested). 6001 * 6002 * Legacy memcg will stall in page writeback so avoid forcibly 6003 * stalling in reclaim_throttle(). 6004 */ 6005 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 6006 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 6007 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 6008 6009 if (current_is_kswapd()) 6010 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 6011 } 6012 6013 /* 6014 * Stall direct reclaim for IO completions if the lruvec is 6015 * node is congested. Allow kswapd to continue until it 6016 * starts encountering unqueued dirty pages or cycling through 6017 * the LRU too quickly. 6018 */ 6019 if (!current_is_kswapd() && current_may_throttle() && 6020 !sc->hibernation_mode && 6021 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6022 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6023 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6024 6025 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6026 goto again; 6027 6028 /* 6029 * Kswapd gives up on balancing particular nodes after too 6030 * many failures to reclaim anything from them and goes to 6031 * sleep. On reclaim progress, reset the failure counter. A 6032 * successful direct reclaim run will revive a dormant kswapd. 6033 */ 6034 if (reclaimable) 6035 pgdat->kswapd_failures = 0; 6036 else if (sc->cache_trim_mode) 6037 sc->cache_trim_mode_failed = 1; 6038 } 6039 6040 /* 6041 * Returns true if compaction should go ahead for a costly-order request, or 6042 * the allocation would already succeed without compaction. Return false if we 6043 * should reclaim first. 6044 */ 6045 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6046 { 6047 unsigned long watermark; 6048 6049 if (!gfp_compaction_allowed(sc->gfp_mask)) 6050 return false; 6051 6052 /* Allocation can already succeed, nothing to do */ 6053 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6054 sc->reclaim_idx, 0)) 6055 return true; 6056 6057 /* Compaction cannot yet proceed. Do reclaim. */ 6058 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6059 return false; 6060 6061 /* 6062 * Compaction is already possible, but it takes time to run and there 6063 * are potentially other callers using the pages just freed. So proceed 6064 * with reclaim to make a buffer of free pages available to give 6065 * compaction a reasonable chance of completing and allocating the page. 6066 * Note that we won't actually reclaim the whole buffer in one attempt 6067 * as the target watermark in should_continue_reclaim() is lower. But if 6068 * we are already above the high+gap watermark, don't reclaim at all. 6069 */ 6070 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6071 6072 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6073 } 6074 6075 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6076 { 6077 /* 6078 * If reclaim is making progress greater than 12% efficiency then 6079 * wake all the NOPROGRESS throttled tasks. 6080 */ 6081 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6082 wait_queue_head_t *wqh; 6083 6084 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6085 if (waitqueue_active(wqh)) 6086 wake_up(wqh); 6087 6088 return; 6089 } 6090 6091 /* 6092 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6093 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6094 * under writeback and marked for immediate reclaim at the tail of the 6095 * LRU. 6096 */ 6097 if (current_is_kswapd() || cgroup_reclaim(sc)) 6098 return; 6099 6100 /* Throttle if making no progress at high prioities. */ 6101 if (sc->priority == 1 && !sc->nr_reclaimed) 6102 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6103 } 6104 6105 /* 6106 * This is the direct reclaim path, for page-allocating processes. We only 6107 * try to reclaim pages from zones which will satisfy the caller's allocation 6108 * request. 6109 * 6110 * If a zone is deemed to be full of pinned pages then just give it a light 6111 * scan then give up on it. 6112 */ 6113 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6114 { 6115 struct zoneref *z; 6116 struct zone *zone; 6117 unsigned long nr_soft_reclaimed; 6118 unsigned long nr_soft_scanned; 6119 gfp_t orig_mask; 6120 pg_data_t *last_pgdat = NULL; 6121 pg_data_t *first_pgdat = NULL; 6122 6123 /* 6124 * If the number of buffer_heads in the machine exceeds the maximum 6125 * allowed level, force direct reclaim to scan the highmem zone as 6126 * highmem pages could be pinning lowmem pages storing buffer_heads 6127 */ 6128 orig_mask = sc->gfp_mask; 6129 if (buffer_heads_over_limit) { 6130 sc->gfp_mask |= __GFP_HIGHMEM; 6131 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6132 } 6133 6134 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6135 sc->reclaim_idx, sc->nodemask) { 6136 /* 6137 * Take care memory controller reclaiming has small influence 6138 * to global LRU. 6139 */ 6140 if (!cgroup_reclaim(sc)) { 6141 if (!cpuset_zone_allowed(zone, 6142 GFP_KERNEL | __GFP_HARDWALL)) 6143 continue; 6144 6145 /* 6146 * If we already have plenty of memory free for 6147 * compaction in this zone, don't free any more. 6148 * Even though compaction is invoked for any 6149 * non-zero order, only frequent costly order 6150 * reclamation is disruptive enough to become a 6151 * noticeable problem, like transparent huge 6152 * page allocations. 6153 */ 6154 if (IS_ENABLED(CONFIG_COMPACTION) && 6155 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6156 compaction_ready(zone, sc)) { 6157 sc->compaction_ready = true; 6158 continue; 6159 } 6160 6161 /* 6162 * Shrink each node in the zonelist once. If the 6163 * zonelist is ordered by zone (not the default) then a 6164 * node may be shrunk multiple times but in that case 6165 * the user prefers lower zones being preserved. 6166 */ 6167 if (zone->zone_pgdat == last_pgdat) 6168 continue; 6169 6170 /* 6171 * This steals pages from memory cgroups over softlimit 6172 * and returns the number of reclaimed pages and 6173 * scanned pages. This works for global memory pressure 6174 * and balancing, not for a memcg's limit. 6175 */ 6176 nr_soft_scanned = 0; 6177 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6178 sc->order, sc->gfp_mask, 6179 &nr_soft_scanned); 6180 sc->nr_reclaimed += nr_soft_reclaimed; 6181 sc->nr_scanned += nr_soft_scanned; 6182 /* need some check for avoid more shrink_zone() */ 6183 } 6184 6185 if (!first_pgdat) 6186 first_pgdat = zone->zone_pgdat; 6187 6188 /* See comment about same check for global reclaim above */ 6189 if (zone->zone_pgdat == last_pgdat) 6190 continue; 6191 last_pgdat = zone->zone_pgdat; 6192 shrink_node(zone->zone_pgdat, sc); 6193 } 6194 6195 if (first_pgdat) 6196 consider_reclaim_throttle(first_pgdat, sc); 6197 6198 /* 6199 * Restore to original mask to avoid the impact on the caller if we 6200 * promoted it to __GFP_HIGHMEM. 6201 */ 6202 sc->gfp_mask = orig_mask; 6203 } 6204 6205 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6206 { 6207 struct lruvec *target_lruvec; 6208 unsigned long refaults; 6209 6210 if (lru_gen_enabled()) 6211 return; 6212 6213 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6214 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6215 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6216 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6217 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6218 } 6219 6220 /* 6221 * This is the main entry point to direct page reclaim. 6222 * 6223 * If a full scan of the inactive list fails to free enough memory then we 6224 * are "out of memory" and something needs to be killed. 6225 * 6226 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6227 * high - the zone may be full of dirty or under-writeback pages, which this 6228 * caller can't do much about. We kick the writeback threads and take explicit 6229 * naps in the hope that some of these pages can be written. But if the 6230 * allocating task holds filesystem locks which prevent writeout this might not 6231 * work, and the allocation attempt will fail. 6232 * 6233 * returns: 0, if no pages reclaimed 6234 * else, the number of pages reclaimed 6235 */ 6236 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6237 struct scan_control *sc) 6238 { 6239 int initial_priority = sc->priority; 6240 pg_data_t *last_pgdat; 6241 struct zoneref *z; 6242 struct zone *zone; 6243 retry: 6244 delayacct_freepages_start(); 6245 6246 if (!cgroup_reclaim(sc)) 6247 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6248 6249 do { 6250 if (!sc->proactive) 6251 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6252 sc->priority); 6253 sc->nr_scanned = 0; 6254 shrink_zones(zonelist, sc); 6255 6256 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6257 break; 6258 6259 if (sc->compaction_ready) 6260 break; 6261 6262 /* 6263 * If we're getting trouble reclaiming, start doing 6264 * writepage even in laptop mode. 6265 */ 6266 if (sc->priority < DEF_PRIORITY - 2) 6267 sc->may_writepage = 1; 6268 } while (--sc->priority >= 0); 6269 6270 last_pgdat = NULL; 6271 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6272 sc->nodemask) { 6273 if (zone->zone_pgdat == last_pgdat) 6274 continue; 6275 last_pgdat = zone->zone_pgdat; 6276 6277 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6278 6279 if (cgroup_reclaim(sc)) { 6280 struct lruvec *lruvec; 6281 6282 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6283 zone->zone_pgdat); 6284 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6285 } 6286 } 6287 6288 delayacct_freepages_end(); 6289 6290 if (sc->nr_reclaimed) 6291 return sc->nr_reclaimed; 6292 6293 /* Aborted reclaim to try compaction? don't OOM, then */ 6294 if (sc->compaction_ready) 6295 return 1; 6296 6297 /* 6298 * In most cases, direct reclaimers can do partial walks 6299 * through the cgroup tree to meet the reclaim goal while 6300 * keeping latency low. Since the iterator state is shared 6301 * among all direct reclaim invocations (to retain fairness 6302 * among cgroups), though, high concurrency can result in 6303 * individual threads not seeing enough cgroups to make 6304 * meaningful forward progress. Avoid false OOMs in this case. 6305 */ 6306 if (!sc->memcg_full_walk) { 6307 sc->priority = initial_priority; 6308 sc->memcg_full_walk = 1; 6309 goto retry; 6310 } 6311 6312 /* 6313 * We make inactive:active ratio decisions based on the node's 6314 * composition of memory, but a restrictive reclaim_idx or a 6315 * memory.low cgroup setting can exempt large amounts of 6316 * memory from reclaim. Neither of which are very common, so 6317 * instead of doing costly eligibility calculations of the 6318 * entire cgroup subtree up front, we assume the estimates are 6319 * good, and retry with forcible deactivation if that fails. 6320 */ 6321 if (sc->skipped_deactivate) { 6322 sc->priority = initial_priority; 6323 sc->force_deactivate = 1; 6324 sc->skipped_deactivate = 0; 6325 goto retry; 6326 } 6327 6328 /* Untapped cgroup reserves? Don't OOM, retry. */ 6329 if (sc->memcg_low_skipped) { 6330 sc->priority = initial_priority; 6331 sc->force_deactivate = 0; 6332 sc->memcg_low_reclaim = 1; 6333 sc->memcg_low_skipped = 0; 6334 goto retry; 6335 } 6336 6337 return 0; 6338 } 6339 6340 static bool allow_direct_reclaim(pg_data_t *pgdat) 6341 { 6342 struct zone *zone; 6343 unsigned long pfmemalloc_reserve = 0; 6344 unsigned long free_pages = 0; 6345 int i; 6346 bool wmark_ok; 6347 6348 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6349 return true; 6350 6351 for (i = 0; i <= ZONE_NORMAL; i++) { 6352 zone = &pgdat->node_zones[i]; 6353 if (!managed_zone(zone)) 6354 continue; 6355 6356 if (!zone_reclaimable_pages(zone)) 6357 continue; 6358 6359 pfmemalloc_reserve += min_wmark_pages(zone); 6360 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6361 } 6362 6363 /* If there are no reserves (unexpected config) then do not throttle */ 6364 if (!pfmemalloc_reserve) 6365 return true; 6366 6367 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6368 6369 /* kswapd must be awake if processes are being throttled */ 6370 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6371 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6372 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6373 6374 wake_up_interruptible(&pgdat->kswapd_wait); 6375 } 6376 6377 return wmark_ok; 6378 } 6379 6380 /* 6381 * Throttle direct reclaimers if backing storage is backed by the network 6382 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6383 * depleted. kswapd will continue to make progress and wake the processes 6384 * when the low watermark is reached. 6385 * 6386 * Returns true if a fatal signal was delivered during throttling. If this 6387 * happens, the page allocator should not consider triggering the OOM killer. 6388 */ 6389 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6390 nodemask_t *nodemask) 6391 { 6392 struct zoneref *z; 6393 struct zone *zone; 6394 pg_data_t *pgdat = NULL; 6395 6396 /* 6397 * Kernel threads should not be throttled as they may be indirectly 6398 * responsible for cleaning pages necessary for reclaim to make forward 6399 * progress. kjournald for example may enter direct reclaim while 6400 * committing a transaction where throttling it could forcing other 6401 * processes to block on log_wait_commit(). 6402 */ 6403 if (current->flags & PF_KTHREAD) 6404 goto out; 6405 6406 /* 6407 * If a fatal signal is pending, this process should not throttle. 6408 * It should return quickly so it can exit and free its memory 6409 */ 6410 if (fatal_signal_pending(current)) 6411 goto out; 6412 6413 /* 6414 * Check if the pfmemalloc reserves are ok by finding the first node 6415 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6416 * GFP_KERNEL will be required for allocating network buffers when 6417 * swapping over the network so ZONE_HIGHMEM is unusable. 6418 * 6419 * Throttling is based on the first usable node and throttled processes 6420 * wait on a queue until kswapd makes progress and wakes them. There 6421 * is an affinity then between processes waking up and where reclaim 6422 * progress has been made assuming the process wakes on the same node. 6423 * More importantly, processes running on remote nodes will not compete 6424 * for remote pfmemalloc reserves and processes on different nodes 6425 * should make reasonable progress. 6426 */ 6427 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6428 gfp_zone(gfp_mask), nodemask) { 6429 if (zone_idx(zone) > ZONE_NORMAL) 6430 continue; 6431 6432 /* Throttle based on the first usable node */ 6433 pgdat = zone->zone_pgdat; 6434 if (allow_direct_reclaim(pgdat)) 6435 goto out; 6436 break; 6437 } 6438 6439 /* If no zone was usable by the allocation flags then do not throttle */ 6440 if (!pgdat) 6441 goto out; 6442 6443 /* Account for the throttling */ 6444 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6445 6446 /* 6447 * If the caller cannot enter the filesystem, it's possible that it 6448 * is due to the caller holding an FS lock or performing a journal 6449 * transaction in the case of a filesystem like ext[3|4]. In this case, 6450 * it is not safe to block on pfmemalloc_wait as kswapd could be 6451 * blocked waiting on the same lock. Instead, throttle for up to a 6452 * second before continuing. 6453 */ 6454 if (!(gfp_mask & __GFP_FS)) 6455 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6456 allow_direct_reclaim(pgdat), HZ); 6457 else 6458 /* Throttle until kswapd wakes the process */ 6459 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6460 allow_direct_reclaim(pgdat)); 6461 6462 if (fatal_signal_pending(current)) 6463 return true; 6464 6465 out: 6466 return false; 6467 } 6468 6469 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6470 gfp_t gfp_mask, nodemask_t *nodemask) 6471 { 6472 unsigned long nr_reclaimed; 6473 struct scan_control sc = { 6474 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6475 .gfp_mask = current_gfp_context(gfp_mask), 6476 .reclaim_idx = gfp_zone(gfp_mask), 6477 .order = order, 6478 .nodemask = nodemask, 6479 .priority = DEF_PRIORITY, 6480 .may_writepage = !laptop_mode, 6481 .may_unmap = 1, 6482 .may_swap = 1, 6483 }; 6484 6485 /* 6486 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6487 * Confirm they are large enough for max values. 6488 */ 6489 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6490 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6491 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6492 6493 /* 6494 * Do not enter reclaim if fatal signal was delivered while throttled. 6495 * 1 is returned so that the page allocator does not OOM kill at this 6496 * point. 6497 */ 6498 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6499 return 1; 6500 6501 set_task_reclaim_state(current, &sc.reclaim_state); 6502 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6503 6504 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6505 6506 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6507 set_task_reclaim_state(current, NULL); 6508 6509 return nr_reclaimed; 6510 } 6511 6512 #ifdef CONFIG_MEMCG 6513 6514 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6515 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6516 gfp_t gfp_mask, bool noswap, 6517 pg_data_t *pgdat, 6518 unsigned long *nr_scanned) 6519 { 6520 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6521 struct scan_control sc = { 6522 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6523 .target_mem_cgroup = memcg, 6524 .may_writepage = !laptop_mode, 6525 .may_unmap = 1, 6526 .reclaim_idx = MAX_NR_ZONES - 1, 6527 .may_swap = !noswap, 6528 }; 6529 6530 WARN_ON_ONCE(!current->reclaim_state); 6531 6532 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6533 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6534 6535 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6536 sc.gfp_mask); 6537 6538 /* 6539 * NOTE: Although we can get the priority field, using it 6540 * here is not a good idea, since it limits the pages we can scan. 6541 * if we don't reclaim here, the shrink_node from balance_pgdat 6542 * will pick up pages from other mem cgroup's as well. We hack 6543 * the priority and make it zero. 6544 */ 6545 shrink_lruvec(lruvec, &sc); 6546 6547 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6548 6549 *nr_scanned = sc.nr_scanned; 6550 6551 return sc.nr_reclaimed; 6552 } 6553 6554 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6555 unsigned long nr_pages, 6556 gfp_t gfp_mask, 6557 unsigned int reclaim_options, 6558 int *swappiness) 6559 { 6560 unsigned long nr_reclaimed; 6561 unsigned int noreclaim_flag; 6562 struct scan_control sc = { 6563 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6564 .proactive_swappiness = swappiness, 6565 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6566 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6567 .reclaim_idx = MAX_NR_ZONES - 1, 6568 .target_mem_cgroup = memcg, 6569 .priority = DEF_PRIORITY, 6570 .may_writepage = !laptop_mode, 6571 .may_unmap = 1, 6572 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6573 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6574 }; 6575 /* 6576 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6577 * equal pressure on all the nodes. This is based on the assumption that 6578 * the reclaim does not bail out early. 6579 */ 6580 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6581 6582 set_task_reclaim_state(current, &sc.reclaim_state); 6583 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6584 noreclaim_flag = memalloc_noreclaim_save(); 6585 6586 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6587 6588 memalloc_noreclaim_restore(noreclaim_flag); 6589 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6590 set_task_reclaim_state(current, NULL); 6591 6592 return nr_reclaimed; 6593 } 6594 #endif 6595 6596 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6597 { 6598 struct mem_cgroup *memcg; 6599 struct lruvec *lruvec; 6600 6601 if (lru_gen_enabled()) { 6602 lru_gen_age_node(pgdat, sc); 6603 return; 6604 } 6605 6606 if (!can_age_anon_pages(pgdat, sc)) 6607 return; 6608 6609 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6610 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6611 return; 6612 6613 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6614 do { 6615 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6616 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6617 sc, LRU_ACTIVE_ANON); 6618 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6619 } while (memcg); 6620 } 6621 6622 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6623 { 6624 int i; 6625 struct zone *zone; 6626 6627 /* 6628 * Check for watermark boosts top-down as the higher zones 6629 * are more likely to be boosted. Both watermarks and boosts 6630 * should not be checked at the same time as reclaim would 6631 * start prematurely when there is no boosting and a lower 6632 * zone is balanced. 6633 */ 6634 for (i = highest_zoneidx; i >= 0; i--) { 6635 zone = pgdat->node_zones + i; 6636 if (!managed_zone(zone)) 6637 continue; 6638 6639 if (zone->watermark_boost) 6640 return true; 6641 } 6642 6643 return false; 6644 } 6645 6646 /* 6647 * Returns true if there is an eligible zone balanced for the request order 6648 * and highest_zoneidx 6649 */ 6650 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6651 { 6652 int i; 6653 unsigned long mark = -1; 6654 struct zone *zone; 6655 6656 /* 6657 * Check watermarks bottom-up as lower zones are more likely to 6658 * meet watermarks. 6659 */ 6660 for (i = 0; i <= highest_zoneidx; i++) { 6661 zone = pgdat->node_zones + i; 6662 6663 if (!managed_zone(zone)) 6664 continue; 6665 6666 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6667 mark = wmark_pages(zone, WMARK_PROMO); 6668 else 6669 mark = high_wmark_pages(zone); 6670 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6671 return true; 6672 } 6673 6674 /* 6675 * If a node has no managed zone within highest_zoneidx, it does not 6676 * need balancing by definition. This can happen if a zone-restricted 6677 * allocation tries to wake a remote kswapd. 6678 */ 6679 if (mark == -1) 6680 return true; 6681 6682 return false; 6683 } 6684 6685 /* Clear pgdat state for congested, dirty or under writeback. */ 6686 static void clear_pgdat_congested(pg_data_t *pgdat) 6687 { 6688 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6689 6690 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6691 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6692 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6693 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6694 } 6695 6696 /* 6697 * Prepare kswapd for sleeping. This verifies that there are no processes 6698 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6699 * 6700 * Returns true if kswapd is ready to sleep 6701 */ 6702 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6703 int highest_zoneidx) 6704 { 6705 /* 6706 * The throttled processes are normally woken up in balance_pgdat() as 6707 * soon as allow_direct_reclaim() is true. But there is a potential 6708 * race between when kswapd checks the watermarks and a process gets 6709 * throttled. There is also a potential race if processes get 6710 * throttled, kswapd wakes, a large process exits thereby balancing the 6711 * zones, which causes kswapd to exit balance_pgdat() before reaching 6712 * the wake up checks. If kswapd is going to sleep, no process should 6713 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6714 * the wake up is premature, processes will wake kswapd and get 6715 * throttled again. The difference from wake ups in balance_pgdat() is 6716 * that here we are under prepare_to_wait(). 6717 */ 6718 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6719 wake_up_all(&pgdat->pfmemalloc_wait); 6720 6721 /* Hopeless node, leave it to direct reclaim */ 6722 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6723 return true; 6724 6725 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6726 clear_pgdat_congested(pgdat); 6727 return true; 6728 } 6729 6730 return false; 6731 } 6732 6733 /* 6734 * kswapd shrinks a node of pages that are at or below the highest usable 6735 * zone that is currently unbalanced. 6736 * 6737 * Returns true if kswapd scanned at least the requested number of pages to 6738 * reclaim or if the lack of progress was due to pages under writeback. 6739 * This is used to determine if the scanning priority needs to be raised. 6740 */ 6741 static bool kswapd_shrink_node(pg_data_t *pgdat, 6742 struct scan_control *sc) 6743 { 6744 struct zone *zone; 6745 int z; 6746 unsigned long nr_reclaimed = sc->nr_reclaimed; 6747 6748 /* Reclaim a number of pages proportional to the number of zones */ 6749 sc->nr_to_reclaim = 0; 6750 for (z = 0; z <= sc->reclaim_idx; z++) { 6751 zone = pgdat->node_zones + z; 6752 if (!managed_zone(zone)) 6753 continue; 6754 6755 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6756 } 6757 6758 /* 6759 * Historically care was taken to put equal pressure on all zones but 6760 * now pressure is applied based on node LRU order. 6761 */ 6762 shrink_node(pgdat, sc); 6763 6764 /* 6765 * Fragmentation may mean that the system cannot be rebalanced for 6766 * high-order allocations. If twice the allocation size has been 6767 * reclaimed then recheck watermarks only at order-0 to prevent 6768 * excessive reclaim. Assume that a process requested a high-order 6769 * can direct reclaim/compact. 6770 */ 6771 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6772 sc->order = 0; 6773 6774 /* account for progress from mm_account_reclaimed_pages() */ 6775 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6776 } 6777 6778 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6779 static inline void 6780 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6781 { 6782 int i; 6783 struct zone *zone; 6784 6785 for (i = 0; i <= highest_zoneidx; i++) { 6786 zone = pgdat->node_zones + i; 6787 6788 if (!managed_zone(zone)) 6789 continue; 6790 6791 if (active) 6792 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6793 else 6794 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6795 } 6796 } 6797 6798 static inline void 6799 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6800 { 6801 update_reclaim_active(pgdat, highest_zoneidx, true); 6802 } 6803 6804 static inline void 6805 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6806 { 6807 update_reclaim_active(pgdat, highest_zoneidx, false); 6808 } 6809 6810 /* 6811 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6812 * that are eligible for use by the caller until at least one zone is 6813 * balanced. 6814 * 6815 * Returns the order kswapd finished reclaiming at. 6816 * 6817 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6818 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6819 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6820 * or lower is eligible for reclaim until at least one usable zone is 6821 * balanced. 6822 */ 6823 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6824 { 6825 int i; 6826 unsigned long nr_soft_reclaimed; 6827 unsigned long nr_soft_scanned; 6828 unsigned long pflags; 6829 unsigned long nr_boost_reclaim; 6830 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6831 bool boosted; 6832 struct zone *zone; 6833 struct scan_control sc = { 6834 .gfp_mask = GFP_KERNEL, 6835 .order = order, 6836 .may_unmap = 1, 6837 }; 6838 6839 set_task_reclaim_state(current, &sc.reclaim_state); 6840 psi_memstall_enter(&pflags); 6841 __fs_reclaim_acquire(_THIS_IP_); 6842 6843 count_vm_event(PAGEOUTRUN); 6844 6845 /* 6846 * Account for the reclaim boost. Note that the zone boost is left in 6847 * place so that parallel allocations that are near the watermark will 6848 * stall or direct reclaim until kswapd is finished. 6849 */ 6850 nr_boost_reclaim = 0; 6851 for (i = 0; i <= highest_zoneidx; i++) { 6852 zone = pgdat->node_zones + i; 6853 if (!managed_zone(zone)) 6854 continue; 6855 6856 nr_boost_reclaim += zone->watermark_boost; 6857 zone_boosts[i] = zone->watermark_boost; 6858 } 6859 boosted = nr_boost_reclaim; 6860 6861 restart: 6862 set_reclaim_active(pgdat, highest_zoneidx); 6863 sc.priority = DEF_PRIORITY; 6864 do { 6865 unsigned long nr_reclaimed = sc.nr_reclaimed; 6866 bool raise_priority = true; 6867 bool balanced; 6868 bool ret; 6869 bool was_frozen; 6870 6871 sc.reclaim_idx = highest_zoneidx; 6872 6873 /* 6874 * If the number of buffer_heads exceeds the maximum allowed 6875 * then consider reclaiming from all zones. This has a dual 6876 * purpose -- on 64-bit systems it is expected that 6877 * buffer_heads are stripped during active rotation. On 32-bit 6878 * systems, highmem pages can pin lowmem memory and shrinking 6879 * buffers can relieve lowmem pressure. Reclaim may still not 6880 * go ahead if all eligible zones for the original allocation 6881 * request are balanced to avoid excessive reclaim from kswapd. 6882 */ 6883 if (buffer_heads_over_limit) { 6884 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6885 zone = pgdat->node_zones + i; 6886 if (!managed_zone(zone)) 6887 continue; 6888 6889 sc.reclaim_idx = i; 6890 break; 6891 } 6892 } 6893 6894 /* 6895 * If the pgdat is imbalanced then ignore boosting and preserve 6896 * the watermarks for a later time and restart. Note that the 6897 * zone watermarks will be still reset at the end of balancing 6898 * on the grounds that the normal reclaim should be enough to 6899 * re-evaluate if boosting is required when kswapd next wakes. 6900 */ 6901 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6902 if (!balanced && nr_boost_reclaim) { 6903 nr_boost_reclaim = 0; 6904 goto restart; 6905 } 6906 6907 /* 6908 * If boosting is not active then only reclaim if there are no 6909 * eligible zones. Note that sc.reclaim_idx is not used as 6910 * buffer_heads_over_limit may have adjusted it. 6911 */ 6912 if (!nr_boost_reclaim && balanced) 6913 goto out; 6914 6915 /* Limit the priority of boosting to avoid reclaim writeback */ 6916 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6917 raise_priority = false; 6918 6919 /* 6920 * Do not writeback or swap pages for boosted reclaim. The 6921 * intent is to relieve pressure not issue sub-optimal IO 6922 * from reclaim context. If no pages are reclaimed, the 6923 * reclaim will be aborted. 6924 */ 6925 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6926 sc.may_swap = !nr_boost_reclaim; 6927 6928 /* 6929 * Do some background aging, to give pages a chance to be 6930 * referenced before reclaiming. All pages are rotated 6931 * regardless of classzone as this is about consistent aging. 6932 */ 6933 kswapd_age_node(pgdat, &sc); 6934 6935 /* 6936 * If we're getting trouble reclaiming, start doing writepage 6937 * even in laptop mode. 6938 */ 6939 if (sc.priority < DEF_PRIORITY - 2) 6940 sc.may_writepage = 1; 6941 6942 /* Call soft limit reclaim before calling shrink_node. */ 6943 sc.nr_scanned = 0; 6944 nr_soft_scanned = 0; 6945 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6946 sc.gfp_mask, &nr_soft_scanned); 6947 sc.nr_reclaimed += nr_soft_reclaimed; 6948 6949 /* 6950 * There should be no need to raise the scanning priority if 6951 * enough pages are already being scanned that that high 6952 * watermark would be met at 100% efficiency. 6953 */ 6954 if (kswapd_shrink_node(pgdat, &sc)) 6955 raise_priority = false; 6956 6957 /* 6958 * If the low watermark is met there is no need for processes 6959 * to be throttled on pfmemalloc_wait as they should not be 6960 * able to safely make forward progress. Wake them 6961 */ 6962 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6963 allow_direct_reclaim(pgdat)) 6964 wake_up_all(&pgdat->pfmemalloc_wait); 6965 6966 /* Check if kswapd should be suspending */ 6967 __fs_reclaim_release(_THIS_IP_); 6968 ret = kthread_freezable_should_stop(&was_frozen); 6969 __fs_reclaim_acquire(_THIS_IP_); 6970 if (was_frozen || ret) 6971 break; 6972 6973 /* 6974 * Raise priority if scanning rate is too low or there was no 6975 * progress in reclaiming pages 6976 */ 6977 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6978 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6979 6980 /* 6981 * If reclaim made no progress for a boost, stop reclaim as 6982 * IO cannot be queued and it could be an infinite loop in 6983 * extreme circumstances. 6984 */ 6985 if (nr_boost_reclaim && !nr_reclaimed) 6986 break; 6987 6988 if (raise_priority || !nr_reclaimed) 6989 sc.priority--; 6990 } while (sc.priority >= 1); 6991 6992 /* 6993 * Restart only if it went through the priority loop all the way, 6994 * but cache_trim_mode didn't work. 6995 */ 6996 if (!sc.nr_reclaimed && sc.priority < 1 && 6997 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 6998 sc.no_cache_trim_mode = 1; 6999 goto restart; 7000 } 7001 7002 if (!sc.nr_reclaimed) 7003 pgdat->kswapd_failures++; 7004 7005 out: 7006 clear_reclaim_active(pgdat, highest_zoneidx); 7007 7008 /* If reclaim was boosted, account for the reclaim done in this pass */ 7009 if (boosted) { 7010 unsigned long flags; 7011 7012 for (i = 0; i <= highest_zoneidx; i++) { 7013 if (!zone_boosts[i]) 7014 continue; 7015 7016 /* Increments are under the zone lock */ 7017 zone = pgdat->node_zones + i; 7018 spin_lock_irqsave(&zone->lock, flags); 7019 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7020 spin_unlock_irqrestore(&zone->lock, flags); 7021 } 7022 7023 /* 7024 * As there is now likely space, wakeup kcompact to defragment 7025 * pageblocks. 7026 */ 7027 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7028 } 7029 7030 snapshot_refaults(NULL, pgdat); 7031 __fs_reclaim_release(_THIS_IP_); 7032 psi_memstall_leave(&pflags); 7033 set_task_reclaim_state(current, NULL); 7034 7035 /* 7036 * Return the order kswapd stopped reclaiming at as 7037 * prepare_kswapd_sleep() takes it into account. If another caller 7038 * entered the allocator slow path while kswapd was awake, order will 7039 * remain at the higher level. 7040 */ 7041 return sc.order; 7042 } 7043 7044 /* 7045 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7046 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7047 * not a valid index then either kswapd runs for first time or kswapd couldn't 7048 * sleep after previous reclaim attempt (node is still unbalanced). In that 7049 * case return the zone index of the previous kswapd reclaim cycle. 7050 */ 7051 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7052 enum zone_type prev_highest_zoneidx) 7053 { 7054 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7055 7056 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7057 } 7058 7059 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7060 unsigned int highest_zoneidx) 7061 { 7062 long remaining = 0; 7063 DEFINE_WAIT(wait); 7064 7065 if (freezing(current) || kthread_should_stop()) 7066 return; 7067 7068 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7069 7070 /* 7071 * Try to sleep for a short interval. Note that kcompactd will only be 7072 * woken if it is possible to sleep for a short interval. This is 7073 * deliberate on the assumption that if reclaim cannot keep an 7074 * eligible zone balanced that it's also unlikely that compaction will 7075 * succeed. 7076 */ 7077 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7078 /* 7079 * Compaction records what page blocks it recently failed to 7080 * isolate pages from and skips them in the future scanning. 7081 * When kswapd is going to sleep, it is reasonable to assume 7082 * that pages and compaction may succeed so reset the cache. 7083 */ 7084 reset_isolation_suitable(pgdat); 7085 7086 /* 7087 * We have freed the memory, now we should compact it to make 7088 * allocation of the requested order possible. 7089 */ 7090 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7091 7092 remaining = schedule_timeout(HZ/10); 7093 7094 /* 7095 * If woken prematurely then reset kswapd_highest_zoneidx and 7096 * order. The values will either be from a wakeup request or 7097 * the previous request that slept prematurely. 7098 */ 7099 if (remaining) { 7100 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7101 kswapd_highest_zoneidx(pgdat, 7102 highest_zoneidx)); 7103 7104 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7105 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7106 } 7107 7108 finish_wait(&pgdat->kswapd_wait, &wait); 7109 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7110 } 7111 7112 /* 7113 * After a short sleep, check if it was a premature sleep. If not, then 7114 * go fully to sleep until explicitly woken up. 7115 */ 7116 if (!remaining && 7117 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7118 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7119 7120 /* 7121 * vmstat counters are not perfectly accurate and the estimated 7122 * value for counters such as NR_FREE_PAGES can deviate from the 7123 * true value by nr_online_cpus * threshold. To avoid the zone 7124 * watermarks being breached while under pressure, we reduce the 7125 * per-cpu vmstat threshold while kswapd is awake and restore 7126 * them before going back to sleep. 7127 */ 7128 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7129 7130 if (!kthread_should_stop()) 7131 schedule(); 7132 7133 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7134 } else { 7135 if (remaining) 7136 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7137 else 7138 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7139 } 7140 finish_wait(&pgdat->kswapd_wait, &wait); 7141 } 7142 7143 /* 7144 * The background pageout daemon, started as a kernel thread 7145 * from the init process. 7146 * 7147 * This basically trickles out pages so that we have _some_ 7148 * free memory available even if there is no other activity 7149 * that frees anything up. This is needed for things like routing 7150 * etc, where we otherwise might have all activity going on in 7151 * asynchronous contexts that cannot page things out. 7152 * 7153 * If there are applications that are active memory-allocators 7154 * (most normal use), this basically shouldn't matter. 7155 */ 7156 static int kswapd(void *p) 7157 { 7158 unsigned int alloc_order, reclaim_order; 7159 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7160 pg_data_t *pgdat = (pg_data_t *)p; 7161 struct task_struct *tsk = current; 7162 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7163 7164 if (!cpumask_empty(cpumask)) 7165 set_cpus_allowed_ptr(tsk, cpumask); 7166 7167 /* 7168 * Tell the memory management that we're a "memory allocator", 7169 * and that if we need more memory we should get access to it 7170 * regardless (see "__alloc_pages()"). "kswapd" should 7171 * never get caught in the normal page freeing logic. 7172 * 7173 * (Kswapd normally doesn't need memory anyway, but sometimes 7174 * you need a small amount of memory in order to be able to 7175 * page out something else, and this flag essentially protects 7176 * us from recursively trying to free more memory as we're 7177 * trying to free the first piece of memory in the first place). 7178 */ 7179 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7180 set_freezable(); 7181 7182 WRITE_ONCE(pgdat->kswapd_order, 0); 7183 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7184 atomic_set(&pgdat->nr_writeback_throttled, 0); 7185 for ( ; ; ) { 7186 bool was_frozen; 7187 7188 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7189 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7190 highest_zoneidx); 7191 7192 kswapd_try_sleep: 7193 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7194 highest_zoneidx); 7195 7196 /* Read the new order and highest_zoneidx */ 7197 alloc_order = READ_ONCE(pgdat->kswapd_order); 7198 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7199 highest_zoneidx); 7200 WRITE_ONCE(pgdat->kswapd_order, 0); 7201 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7202 7203 if (kthread_freezable_should_stop(&was_frozen)) 7204 break; 7205 7206 /* 7207 * We can speed up thawing tasks if we don't call balance_pgdat 7208 * after returning from the refrigerator 7209 */ 7210 if (was_frozen) 7211 continue; 7212 7213 /* 7214 * Reclaim begins at the requested order but if a high-order 7215 * reclaim fails then kswapd falls back to reclaiming for 7216 * order-0. If that happens, kswapd will consider sleeping 7217 * for the order it finished reclaiming at (reclaim_order) 7218 * but kcompactd is woken to compact for the original 7219 * request (alloc_order). 7220 */ 7221 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7222 alloc_order); 7223 reclaim_order = balance_pgdat(pgdat, alloc_order, 7224 highest_zoneidx); 7225 if (reclaim_order < alloc_order) 7226 goto kswapd_try_sleep; 7227 } 7228 7229 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7230 7231 return 0; 7232 } 7233 7234 /* 7235 * A zone is low on free memory or too fragmented for high-order memory. If 7236 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7237 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7238 * has failed or is not needed, still wake up kcompactd if only compaction is 7239 * needed. 7240 */ 7241 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7242 enum zone_type highest_zoneidx) 7243 { 7244 pg_data_t *pgdat; 7245 enum zone_type curr_idx; 7246 7247 if (!managed_zone(zone)) 7248 return; 7249 7250 if (!cpuset_zone_allowed(zone, gfp_flags)) 7251 return; 7252 7253 pgdat = zone->zone_pgdat; 7254 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7255 7256 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7257 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7258 7259 if (READ_ONCE(pgdat->kswapd_order) < order) 7260 WRITE_ONCE(pgdat->kswapd_order, order); 7261 7262 if (!waitqueue_active(&pgdat->kswapd_wait)) 7263 return; 7264 7265 /* Hopeless node, leave it to direct reclaim if possible */ 7266 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7267 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7268 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7269 /* 7270 * There may be plenty of free memory available, but it's too 7271 * fragmented for high-order allocations. Wake up kcompactd 7272 * and rely on compaction_suitable() to determine if it's 7273 * needed. If it fails, it will defer subsequent attempts to 7274 * ratelimit its work. 7275 */ 7276 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7277 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7278 return; 7279 } 7280 7281 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7282 gfp_flags); 7283 wake_up_interruptible(&pgdat->kswapd_wait); 7284 } 7285 7286 #ifdef CONFIG_HIBERNATION 7287 /* 7288 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7289 * freed pages. 7290 * 7291 * Rather than trying to age LRUs the aim is to preserve the overall 7292 * LRU order by reclaiming preferentially 7293 * inactive > active > active referenced > active mapped 7294 */ 7295 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7296 { 7297 struct scan_control sc = { 7298 .nr_to_reclaim = nr_to_reclaim, 7299 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7300 .reclaim_idx = MAX_NR_ZONES - 1, 7301 .priority = DEF_PRIORITY, 7302 .may_writepage = 1, 7303 .may_unmap = 1, 7304 .may_swap = 1, 7305 .hibernation_mode = 1, 7306 }; 7307 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7308 unsigned long nr_reclaimed; 7309 unsigned int noreclaim_flag; 7310 7311 fs_reclaim_acquire(sc.gfp_mask); 7312 noreclaim_flag = memalloc_noreclaim_save(); 7313 set_task_reclaim_state(current, &sc.reclaim_state); 7314 7315 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7316 7317 set_task_reclaim_state(current, NULL); 7318 memalloc_noreclaim_restore(noreclaim_flag); 7319 fs_reclaim_release(sc.gfp_mask); 7320 7321 return nr_reclaimed; 7322 } 7323 #endif /* CONFIG_HIBERNATION */ 7324 7325 /* 7326 * This kswapd start function will be called by init and node-hot-add. 7327 */ 7328 void __meminit kswapd_run(int nid) 7329 { 7330 pg_data_t *pgdat = NODE_DATA(nid); 7331 7332 pgdat_kswapd_lock(pgdat); 7333 if (!pgdat->kswapd) { 7334 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7335 if (IS_ERR(pgdat->kswapd)) { 7336 /* failure at boot is fatal */ 7337 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7338 nid, PTR_ERR(pgdat->kswapd)); 7339 BUG_ON(system_state < SYSTEM_RUNNING); 7340 pgdat->kswapd = NULL; 7341 } 7342 } 7343 pgdat_kswapd_unlock(pgdat); 7344 } 7345 7346 /* 7347 * Called by memory hotplug when all memory in a node is offlined. Caller must 7348 * be holding mem_hotplug_begin/done(). 7349 */ 7350 void __meminit kswapd_stop(int nid) 7351 { 7352 pg_data_t *pgdat = NODE_DATA(nid); 7353 struct task_struct *kswapd; 7354 7355 pgdat_kswapd_lock(pgdat); 7356 kswapd = pgdat->kswapd; 7357 if (kswapd) { 7358 kthread_stop(kswapd); 7359 pgdat->kswapd = NULL; 7360 } 7361 pgdat_kswapd_unlock(pgdat); 7362 } 7363 7364 static int __init kswapd_init(void) 7365 { 7366 int nid; 7367 7368 swap_setup(); 7369 for_each_node_state(nid, N_MEMORY) 7370 kswapd_run(nid); 7371 return 0; 7372 } 7373 7374 module_init(kswapd_init) 7375 7376 #ifdef CONFIG_NUMA 7377 /* 7378 * Node reclaim mode 7379 * 7380 * If non-zero call node_reclaim when the number of free pages falls below 7381 * the watermarks. 7382 */ 7383 int node_reclaim_mode __read_mostly; 7384 7385 /* 7386 * Priority for NODE_RECLAIM. This determines the fraction of pages 7387 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7388 * a zone. 7389 */ 7390 #define NODE_RECLAIM_PRIORITY 4 7391 7392 /* 7393 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7394 * occur. 7395 */ 7396 int sysctl_min_unmapped_ratio = 1; 7397 7398 /* 7399 * If the number of slab pages in a zone grows beyond this percentage then 7400 * slab reclaim needs to occur. 7401 */ 7402 int sysctl_min_slab_ratio = 5; 7403 7404 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7405 { 7406 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7407 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7408 node_page_state(pgdat, NR_ACTIVE_FILE); 7409 7410 /* 7411 * It's possible for there to be more file mapped pages than 7412 * accounted for by the pages on the file LRU lists because 7413 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7414 */ 7415 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7416 } 7417 7418 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7419 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7420 { 7421 unsigned long nr_pagecache_reclaimable; 7422 unsigned long delta = 0; 7423 7424 /* 7425 * If RECLAIM_UNMAP is set, then all file pages are considered 7426 * potentially reclaimable. Otherwise, we have to worry about 7427 * pages like swapcache and node_unmapped_file_pages() provides 7428 * a better estimate 7429 */ 7430 if (node_reclaim_mode & RECLAIM_UNMAP) 7431 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7432 else 7433 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7434 7435 /* If we can't clean pages, remove dirty pages from consideration */ 7436 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7437 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7438 7439 /* Watch for any possible underflows due to delta */ 7440 if (unlikely(delta > nr_pagecache_reclaimable)) 7441 delta = nr_pagecache_reclaimable; 7442 7443 return nr_pagecache_reclaimable - delta; 7444 } 7445 7446 /* 7447 * Try to free up some pages from this node through reclaim. 7448 */ 7449 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7450 { 7451 /* Minimum pages needed in order to stay on node */ 7452 const unsigned long nr_pages = 1 << order; 7453 struct task_struct *p = current; 7454 unsigned int noreclaim_flag; 7455 struct scan_control sc = { 7456 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7457 .gfp_mask = current_gfp_context(gfp_mask), 7458 .order = order, 7459 .priority = NODE_RECLAIM_PRIORITY, 7460 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7461 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7462 .may_swap = 1, 7463 .reclaim_idx = gfp_zone(gfp_mask), 7464 }; 7465 unsigned long pflags; 7466 7467 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7468 sc.gfp_mask); 7469 7470 cond_resched(); 7471 psi_memstall_enter(&pflags); 7472 delayacct_freepages_start(); 7473 fs_reclaim_acquire(sc.gfp_mask); 7474 /* 7475 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7476 */ 7477 noreclaim_flag = memalloc_noreclaim_save(); 7478 set_task_reclaim_state(p, &sc.reclaim_state); 7479 7480 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7481 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7482 /* 7483 * Free memory by calling shrink node with increasing 7484 * priorities until we have enough memory freed. 7485 */ 7486 do { 7487 shrink_node(pgdat, &sc); 7488 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7489 } 7490 7491 set_task_reclaim_state(p, NULL); 7492 memalloc_noreclaim_restore(noreclaim_flag); 7493 fs_reclaim_release(sc.gfp_mask); 7494 psi_memstall_leave(&pflags); 7495 delayacct_freepages_end(); 7496 7497 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7498 7499 return sc.nr_reclaimed >= nr_pages; 7500 } 7501 7502 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7503 { 7504 int ret; 7505 7506 /* 7507 * Node reclaim reclaims unmapped file backed pages and 7508 * slab pages if we are over the defined limits. 7509 * 7510 * A small portion of unmapped file backed pages is needed for 7511 * file I/O otherwise pages read by file I/O will be immediately 7512 * thrown out if the node is overallocated. So we do not reclaim 7513 * if less than a specified percentage of the node is used by 7514 * unmapped file backed pages. 7515 */ 7516 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7517 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7518 pgdat->min_slab_pages) 7519 return NODE_RECLAIM_FULL; 7520 7521 /* 7522 * Do not scan if the allocation should not be delayed. 7523 */ 7524 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7525 return NODE_RECLAIM_NOSCAN; 7526 7527 /* 7528 * Only run node reclaim on the local node or on nodes that do not 7529 * have associated processors. This will favor the local processor 7530 * over remote processors and spread off node memory allocations 7531 * as wide as possible. 7532 */ 7533 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7534 return NODE_RECLAIM_NOSCAN; 7535 7536 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7537 return NODE_RECLAIM_NOSCAN; 7538 7539 ret = __node_reclaim(pgdat, gfp_mask, order); 7540 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7541 7542 if (!ret) 7543 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7544 7545 return ret; 7546 } 7547 #endif 7548 7549 /** 7550 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7551 * lru list 7552 * @fbatch: Batch of lru folios to check. 7553 * 7554 * Checks folios for evictability, if an evictable folio is in the unevictable 7555 * lru list, moves it to the appropriate evictable lru list. This function 7556 * should be only used for lru folios. 7557 */ 7558 void check_move_unevictable_folios(struct folio_batch *fbatch) 7559 { 7560 struct lruvec *lruvec = NULL; 7561 int pgscanned = 0; 7562 int pgrescued = 0; 7563 int i; 7564 7565 for (i = 0; i < fbatch->nr; i++) { 7566 struct folio *folio = fbatch->folios[i]; 7567 int nr_pages = folio_nr_pages(folio); 7568 7569 pgscanned += nr_pages; 7570 7571 /* block memcg migration while the folio moves between lrus */ 7572 if (!folio_test_clear_lru(folio)) 7573 continue; 7574 7575 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7576 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7577 lruvec_del_folio(lruvec, folio); 7578 folio_clear_unevictable(folio); 7579 lruvec_add_folio(lruvec, folio); 7580 pgrescued += nr_pages; 7581 } 7582 folio_set_lru(folio); 7583 } 7584 7585 if (lruvec) { 7586 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7587 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7588 unlock_page_lruvec_irq(lruvec); 7589 } else if (pgscanned) { 7590 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7591 } 7592 } 7593 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7594