xref: /linux/mm/vmscan.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 
47 #include <linux/swapops.h>
48 
49 #include "internal.h"
50 
51 struct scan_control {
52 	/* Incremented by the number of inactive pages that were scanned */
53 	unsigned long nr_scanned;
54 
55 	/* Number of pages freed so far during a call to shrink_zones() */
56 	unsigned long nr_reclaimed;
57 
58 	/* How many pages shrink_list() should reclaim */
59 	unsigned long nr_to_reclaim;
60 
61 	unsigned long hibernation_mode;
62 
63 	/* This context's GFP mask */
64 	gfp_t gfp_mask;
65 
66 	int may_writepage;
67 
68 	/* Can mapped pages be reclaimed? */
69 	int may_unmap;
70 
71 	/* Can pages be swapped as part of reclaim? */
72 	int may_swap;
73 
74 	int swappiness;
75 
76 	int order;
77 
78 	/*
79 	 * Intend to reclaim enough contenious memory rather than to reclaim
80 	 * enough amount memory. I.e, it's the mode for high order allocation.
81 	 */
82 	bool lumpy_reclaim_mode;
83 
84 	/* Which cgroup do we reclaim from */
85 	struct mem_cgroup *mem_cgroup;
86 
87 	/*
88 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
89 	 * are scanned.
90 	 */
91 	nodemask_t	*nodemask;
92 };
93 
94 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
95 
96 #ifdef ARCH_HAS_PREFETCH
97 #define prefetch_prev_lru_page(_page, _base, _field)			\
98 	do {								\
99 		if ((_page)->lru.prev != _base) {			\
100 			struct page *prev;				\
101 									\
102 			prev = lru_to_page(&(_page->lru));		\
103 			prefetch(&prev->_field);			\
104 		}							\
105 	} while (0)
106 #else
107 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
108 #endif
109 
110 #ifdef ARCH_HAS_PREFETCHW
111 #define prefetchw_prev_lru_page(_page, _base, _field)			\
112 	do {								\
113 		if ((_page)->lru.prev != _base) {			\
114 			struct page *prev;				\
115 									\
116 			prev = lru_to_page(&(_page->lru));		\
117 			prefetchw(&prev->_field);			\
118 		}							\
119 	} while (0)
120 #else
121 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123 
124 /*
125  * From 0 .. 100.  Higher means more swappy.
126  */
127 int vm_swappiness = 60;
128 long vm_total_pages;	/* The total number of pages which the VM controls */
129 
130 static LIST_HEAD(shrinker_list);
131 static DECLARE_RWSEM(shrinker_rwsem);
132 
133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
134 #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
135 #else
136 #define scanning_global_lru(sc)	(1)
137 #endif
138 
139 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
140 						  struct scan_control *sc)
141 {
142 	if (!scanning_global_lru(sc))
143 		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
144 
145 	return &zone->reclaim_stat;
146 }
147 
148 static unsigned long zone_nr_lru_pages(struct zone *zone,
149 				struct scan_control *sc, enum lru_list lru)
150 {
151 	if (!scanning_global_lru(sc))
152 		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
153 
154 	return zone_page_state(zone, NR_LRU_BASE + lru);
155 }
156 
157 
158 /*
159  * Add a shrinker callback to be called from the vm
160  */
161 void register_shrinker(struct shrinker *shrinker)
162 {
163 	shrinker->nr = 0;
164 	down_write(&shrinker_rwsem);
165 	list_add_tail(&shrinker->list, &shrinker_list);
166 	up_write(&shrinker_rwsem);
167 }
168 EXPORT_SYMBOL(register_shrinker);
169 
170 /*
171  * Remove one
172  */
173 void unregister_shrinker(struct shrinker *shrinker)
174 {
175 	down_write(&shrinker_rwsem);
176 	list_del(&shrinker->list);
177 	up_write(&shrinker_rwsem);
178 }
179 EXPORT_SYMBOL(unregister_shrinker);
180 
181 #define SHRINK_BATCH 128
182 /*
183  * Call the shrink functions to age shrinkable caches
184  *
185  * Here we assume it costs one seek to replace a lru page and that it also
186  * takes a seek to recreate a cache object.  With this in mind we age equal
187  * percentages of the lru and ageable caches.  This should balance the seeks
188  * generated by these structures.
189  *
190  * If the vm encountered mapped pages on the LRU it increase the pressure on
191  * slab to avoid swapping.
192  *
193  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
194  *
195  * `lru_pages' represents the number of on-LRU pages in all the zones which
196  * are eligible for the caller's allocation attempt.  It is used for balancing
197  * slab reclaim versus page reclaim.
198  *
199  * Returns the number of slab objects which we shrunk.
200  */
201 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
202 			unsigned long lru_pages)
203 {
204 	struct shrinker *shrinker;
205 	unsigned long ret = 0;
206 
207 	if (scanned == 0)
208 		scanned = SWAP_CLUSTER_MAX;
209 
210 	if (!down_read_trylock(&shrinker_rwsem))
211 		return 1;	/* Assume we'll be able to shrink next time */
212 
213 	list_for_each_entry(shrinker, &shrinker_list, list) {
214 		unsigned long long delta;
215 		unsigned long total_scan;
216 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
217 
218 		delta = (4 * scanned) / shrinker->seeks;
219 		delta *= max_pass;
220 		do_div(delta, lru_pages + 1);
221 		shrinker->nr += delta;
222 		if (shrinker->nr < 0) {
223 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
224 			       "delete nr=%ld\n",
225 			       shrinker->shrink, shrinker->nr);
226 			shrinker->nr = max_pass;
227 		}
228 
229 		/*
230 		 * Avoid risking looping forever due to too large nr value:
231 		 * never try to free more than twice the estimate number of
232 		 * freeable entries.
233 		 */
234 		if (shrinker->nr > max_pass * 2)
235 			shrinker->nr = max_pass * 2;
236 
237 		total_scan = shrinker->nr;
238 		shrinker->nr = 0;
239 
240 		while (total_scan >= SHRINK_BATCH) {
241 			long this_scan = SHRINK_BATCH;
242 			int shrink_ret;
243 			int nr_before;
244 
245 			nr_before = (*shrinker->shrink)(0, gfp_mask);
246 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
247 			if (shrink_ret == -1)
248 				break;
249 			if (shrink_ret < nr_before)
250 				ret += nr_before - shrink_ret;
251 			count_vm_events(SLABS_SCANNED, this_scan);
252 			total_scan -= this_scan;
253 
254 			cond_resched();
255 		}
256 
257 		shrinker->nr += total_scan;
258 	}
259 	up_read(&shrinker_rwsem);
260 	return ret;
261 }
262 
263 static inline int is_page_cache_freeable(struct page *page)
264 {
265 	/*
266 	 * A freeable page cache page is referenced only by the caller
267 	 * that isolated the page, the page cache radix tree and
268 	 * optional buffer heads at page->private.
269 	 */
270 	return page_count(page) - page_has_private(page) == 2;
271 }
272 
273 static int may_write_to_queue(struct backing_dev_info *bdi)
274 {
275 	if (current->flags & PF_SWAPWRITE)
276 		return 1;
277 	if (!bdi_write_congested(bdi))
278 		return 1;
279 	if (bdi == current->backing_dev_info)
280 		return 1;
281 	return 0;
282 }
283 
284 /*
285  * We detected a synchronous write error writing a page out.  Probably
286  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
287  * fsync(), msync() or close().
288  *
289  * The tricky part is that after writepage we cannot touch the mapping: nothing
290  * prevents it from being freed up.  But we have a ref on the page and once
291  * that page is locked, the mapping is pinned.
292  *
293  * We're allowed to run sleeping lock_page() here because we know the caller has
294  * __GFP_FS.
295  */
296 static void handle_write_error(struct address_space *mapping,
297 				struct page *page, int error)
298 {
299 	lock_page(page);
300 	if (page_mapping(page) == mapping)
301 		mapping_set_error(mapping, error);
302 	unlock_page(page);
303 }
304 
305 /* Request for sync pageout. */
306 enum pageout_io {
307 	PAGEOUT_IO_ASYNC,
308 	PAGEOUT_IO_SYNC,
309 };
310 
311 /* possible outcome of pageout() */
312 typedef enum {
313 	/* failed to write page out, page is locked */
314 	PAGE_KEEP,
315 	/* move page to the active list, page is locked */
316 	PAGE_ACTIVATE,
317 	/* page has been sent to the disk successfully, page is unlocked */
318 	PAGE_SUCCESS,
319 	/* page is clean and locked */
320 	PAGE_CLEAN,
321 } pageout_t;
322 
323 /*
324  * pageout is called by shrink_page_list() for each dirty page.
325  * Calls ->writepage().
326  */
327 static pageout_t pageout(struct page *page, struct address_space *mapping,
328 						enum pageout_io sync_writeback)
329 {
330 	/*
331 	 * If the page is dirty, only perform writeback if that write
332 	 * will be non-blocking.  To prevent this allocation from being
333 	 * stalled by pagecache activity.  But note that there may be
334 	 * stalls if we need to run get_block().  We could test
335 	 * PagePrivate for that.
336 	 *
337 	 * If this process is currently in __generic_file_aio_write() against
338 	 * this page's queue, we can perform writeback even if that
339 	 * will block.
340 	 *
341 	 * If the page is swapcache, write it back even if that would
342 	 * block, for some throttling. This happens by accident, because
343 	 * swap_backing_dev_info is bust: it doesn't reflect the
344 	 * congestion state of the swapdevs.  Easy to fix, if needed.
345 	 */
346 	if (!is_page_cache_freeable(page))
347 		return PAGE_KEEP;
348 	if (!mapping) {
349 		/*
350 		 * Some data journaling orphaned pages can have
351 		 * page->mapping == NULL while being dirty with clean buffers.
352 		 */
353 		if (page_has_private(page)) {
354 			if (try_to_free_buffers(page)) {
355 				ClearPageDirty(page);
356 				printk("%s: orphaned page\n", __func__);
357 				return PAGE_CLEAN;
358 			}
359 		}
360 		return PAGE_KEEP;
361 	}
362 	if (mapping->a_ops->writepage == NULL)
363 		return PAGE_ACTIVATE;
364 	if (!may_write_to_queue(mapping->backing_dev_info))
365 		return PAGE_KEEP;
366 
367 	if (clear_page_dirty_for_io(page)) {
368 		int res;
369 		struct writeback_control wbc = {
370 			.sync_mode = WB_SYNC_NONE,
371 			.nr_to_write = SWAP_CLUSTER_MAX,
372 			.range_start = 0,
373 			.range_end = LLONG_MAX,
374 			.nonblocking = 1,
375 			.for_reclaim = 1,
376 		};
377 
378 		SetPageReclaim(page);
379 		res = mapping->a_ops->writepage(page, &wbc);
380 		if (res < 0)
381 			handle_write_error(mapping, page, res);
382 		if (res == AOP_WRITEPAGE_ACTIVATE) {
383 			ClearPageReclaim(page);
384 			return PAGE_ACTIVATE;
385 		}
386 
387 		/*
388 		 * Wait on writeback if requested to. This happens when
389 		 * direct reclaiming a large contiguous area and the
390 		 * first attempt to free a range of pages fails.
391 		 */
392 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
393 			wait_on_page_writeback(page);
394 
395 		if (!PageWriteback(page)) {
396 			/* synchronous write or broken a_ops? */
397 			ClearPageReclaim(page);
398 		}
399 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
400 		return PAGE_SUCCESS;
401 	}
402 
403 	return PAGE_CLEAN;
404 }
405 
406 /*
407  * Same as remove_mapping, but if the page is removed from the mapping, it
408  * gets returned with a refcount of 0.
409  */
410 static int __remove_mapping(struct address_space *mapping, struct page *page)
411 {
412 	BUG_ON(!PageLocked(page));
413 	BUG_ON(mapping != page_mapping(page));
414 
415 	spin_lock_irq(&mapping->tree_lock);
416 	/*
417 	 * The non racy check for a busy page.
418 	 *
419 	 * Must be careful with the order of the tests. When someone has
420 	 * a ref to the page, it may be possible that they dirty it then
421 	 * drop the reference. So if PageDirty is tested before page_count
422 	 * here, then the following race may occur:
423 	 *
424 	 * get_user_pages(&page);
425 	 * [user mapping goes away]
426 	 * write_to(page);
427 	 *				!PageDirty(page)    [good]
428 	 * SetPageDirty(page);
429 	 * put_page(page);
430 	 *				!page_count(page)   [good, discard it]
431 	 *
432 	 * [oops, our write_to data is lost]
433 	 *
434 	 * Reversing the order of the tests ensures such a situation cannot
435 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
436 	 * load is not satisfied before that of page->_count.
437 	 *
438 	 * Note that if SetPageDirty is always performed via set_page_dirty,
439 	 * and thus under tree_lock, then this ordering is not required.
440 	 */
441 	if (!page_freeze_refs(page, 2))
442 		goto cannot_free;
443 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
444 	if (unlikely(PageDirty(page))) {
445 		page_unfreeze_refs(page, 2);
446 		goto cannot_free;
447 	}
448 
449 	if (PageSwapCache(page)) {
450 		swp_entry_t swap = { .val = page_private(page) };
451 		__delete_from_swap_cache(page);
452 		spin_unlock_irq(&mapping->tree_lock);
453 		swapcache_free(swap, page);
454 	} else {
455 		__remove_from_page_cache(page);
456 		spin_unlock_irq(&mapping->tree_lock);
457 		mem_cgroup_uncharge_cache_page(page);
458 	}
459 
460 	return 1;
461 
462 cannot_free:
463 	spin_unlock_irq(&mapping->tree_lock);
464 	return 0;
465 }
466 
467 /*
468  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
469  * someone else has a ref on the page, abort and return 0.  If it was
470  * successfully detached, return 1.  Assumes the caller has a single ref on
471  * this page.
472  */
473 int remove_mapping(struct address_space *mapping, struct page *page)
474 {
475 	if (__remove_mapping(mapping, page)) {
476 		/*
477 		 * Unfreezing the refcount with 1 rather than 2 effectively
478 		 * drops the pagecache ref for us without requiring another
479 		 * atomic operation.
480 		 */
481 		page_unfreeze_refs(page, 1);
482 		return 1;
483 	}
484 	return 0;
485 }
486 
487 /**
488  * putback_lru_page - put previously isolated page onto appropriate LRU list
489  * @page: page to be put back to appropriate lru list
490  *
491  * Add previously isolated @page to appropriate LRU list.
492  * Page may still be unevictable for other reasons.
493  *
494  * lru_lock must not be held, interrupts must be enabled.
495  */
496 void putback_lru_page(struct page *page)
497 {
498 	int lru;
499 	int active = !!TestClearPageActive(page);
500 	int was_unevictable = PageUnevictable(page);
501 
502 	VM_BUG_ON(PageLRU(page));
503 
504 redo:
505 	ClearPageUnevictable(page);
506 
507 	if (page_evictable(page, NULL)) {
508 		/*
509 		 * For evictable pages, we can use the cache.
510 		 * In event of a race, worst case is we end up with an
511 		 * unevictable page on [in]active list.
512 		 * We know how to handle that.
513 		 */
514 		lru = active + page_lru_base_type(page);
515 		lru_cache_add_lru(page, lru);
516 	} else {
517 		/*
518 		 * Put unevictable pages directly on zone's unevictable
519 		 * list.
520 		 */
521 		lru = LRU_UNEVICTABLE;
522 		add_page_to_unevictable_list(page);
523 		/*
524 		 * When racing with an mlock clearing (page is
525 		 * unlocked), make sure that if the other thread does
526 		 * not observe our setting of PG_lru and fails
527 		 * isolation, we see PG_mlocked cleared below and move
528 		 * the page back to the evictable list.
529 		 *
530 		 * The other side is TestClearPageMlocked().
531 		 */
532 		smp_mb();
533 	}
534 
535 	/*
536 	 * page's status can change while we move it among lru. If an evictable
537 	 * page is on unevictable list, it never be freed. To avoid that,
538 	 * check after we added it to the list, again.
539 	 */
540 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
541 		if (!isolate_lru_page(page)) {
542 			put_page(page);
543 			goto redo;
544 		}
545 		/* This means someone else dropped this page from LRU
546 		 * So, it will be freed or putback to LRU again. There is
547 		 * nothing to do here.
548 		 */
549 	}
550 
551 	if (was_unevictable && lru != LRU_UNEVICTABLE)
552 		count_vm_event(UNEVICTABLE_PGRESCUED);
553 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
554 		count_vm_event(UNEVICTABLE_PGCULLED);
555 
556 	put_page(page);		/* drop ref from isolate */
557 }
558 
559 enum page_references {
560 	PAGEREF_RECLAIM,
561 	PAGEREF_RECLAIM_CLEAN,
562 	PAGEREF_KEEP,
563 	PAGEREF_ACTIVATE,
564 };
565 
566 static enum page_references page_check_references(struct page *page,
567 						  struct scan_control *sc)
568 {
569 	int referenced_ptes, referenced_page;
570 	unsigned long vm_flags;
571 
572 	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
573 	referenced_page = TestClearPageReferenced(page);
574 
575 	/* Lumpy reclaim - ignore references */
576 	if (sc->lumpy_reclaim_mode)
577 		return PAGEREF_RECLAIM;
578 
579 	/*
580 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
581 	 * move the page to the unevictable list.
582 	 */
583 	if (vm_flags & VM_LOCKED)
584 		return PAGEREF_RECLAIM;
585 
586 	if (referenced_ptes) {
587 		if (PageAnon(page))
588 			return PAGEREF_ACTIVATE;
589 		/*
590 		 * All mapped pages start out with page table
591 		 * references from the instantiating fault, so we need
592 		 * to look twice if a mapped file page is used more
593 		 * than once.
594 		 *
595 		 * Mark it and spare it for another trip around the
596 		 * inactive list.  Another page table reference will
597 		 * lead to its activation.
598 		 *
599 		 * Note: the mark is set for activated pages as well
600 		 * so that recently deactivated but used pages are
601 		 * quickly recovered.
602 		 */
603 		SetPageReferenced(page);
604 
605 		if (referenced_page)
606 			return PAGEREF_ACTIVATE;
607 
608 		return PAGEREF_KEEP;
609 	}
610 
611 	/* Reclaim if clean, defer dirty pages to writeback */
612 	if (referenced_page)
613 		return PAGEREF_RECLAIM_CLEAN;
614 
615 	return PAGEREF_RECLAIM;
616 }
617 
618 /*
619  * shrink_page_list() returns the number of reclaimed pages
620  */
621 static unsigned long shrink_page_list(struct list_head *page_list,
622 					struct scan_control *sc,
623 					enum pageout_io sync_writeback)
624 {
625 	LIST_HEAD(ret_pages);
626 	struct pagevec freed_pvec;
627 	int pgactivate = 0;
628 	unsigned long nr_reclaimed = 0;
629 
630 	cond_resched();
631 
632 	pagevec_init(&freed_pvec, 1);
633 	while (!list_empty(page_list)) {
634 		enum page_references references;
635 		struct address_space *mapping;
636 		struct page *page;
637 		int may_enter_fs;
638 
639 		cond_resched();
640 
641 		page = lru_to_page(page_list);
642 		list_del(&page->lru);
643 
644 		if (!trylock_page(page))
645 			goto keep;
646 
647 		VM_BUG_ON(PageActive(page));
648 
649 		sc->nr_scanned++;
650 
651 		if (unlikely(!page_evictable(page, NULL)))
652 			goto cull_mlocked;
653 
654 		if (!sc->may_unmap && page_mapped(page))
655 			goto keep_locked;
656 
657 		/* Double the slab pressure for mapped and swapcache pages */
658 		if (page_mapped(page) || PageSwapCache(page))
659 			sc->nr_scanned++;
660 
661 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
662 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
663 
664 		if (PageWriteback(page)) {
665 			/*
666 			 * Synchronous reclaim is performed in two passes,
667 			 * first an asynchronous pass over the list to
668 			 * start parallel writeback, and a second synchronous
669 			 * pass to wait for the IO to complete.  Wait here
670 			 * for any page for which writeback has already
671 			 * started.
672 			 */
673 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
674 				wait_on_page_writeback(page);
675 			else
676 				goto keep_locked;
677 		}
678 
679 		references = page_check_references(page, sc);
680 		switch (references) {
681 		case PAGEREF_ACTIVATE:
682 			goto activate_locked;
683 		case PAGEREF_KEEP:
684 			goto keep_locked;
685 		case PAGEREF_RECLAIM:
686 		case PAGEREF_RECLAIM_CLEAN:
687 			; /* try to reclaim the page below */
688 		}
689 
690 		/*
691 		 * Anonymous process memory has backing store?
692 		 * Try to allocate it some swap space here.
693 		 */
694 		if (PageAnon(page) && !PageSwapCache(page)) {
695 			if (!(sc->gfp_mask & __GFP_IO))
696 				goto keep_locked;
697 			if (!add_to_swap(page))
698 				goto activate_locked;
699 			may_enter_fs = 1;
700 		}
701 
702 		mapping = page_mapping(page);
703 
704 		/*
705 		 * The page is mapped into the page tables of one or more
706 		 * processes. Try to unmap it here.
707 		 */
708 		if (page_mapped(page) && mapping) {
709 			switch (try_to_unmap(page, TTU_UNMAP)) {
710 			case SWAP_FAIL:
711 				goto activate_locked;
712 			case SWAP_AGAIN:
713 				goto keep_locked;
714 			case SWAP_MLOCK:
715 				goto cull_mlocked;
716 			case SWAP_SUCCESS:
717 				; /* try to free the page below */
718 			}
719 		}
720 
721 		if (PageDirty(page)) {
722 			if (references == PAGEREF_RECLAIM_CLEAN)
723 				goto keep_locked;
724 			if (!may_enter_fs)
725 				goto keep_locked;
726 			if (!sc->may_writepage)
727 				goto keep_locked;
728 
729 			/* Page is dirty, try to write it out here */
730 			switch (pageout(page, mapping, sync_writeback)) {
731 			case PAGE_KEEP:
732 				goto keep_locked;
733 			case PAGE_ACTIVATE:
734 				goto activate_locked;
735 			case PAGE_SUCCESS:
736 				if (PageWriteback(page) || PageDirty(page))
737 					goto keep;
738 				/*
739 				 * A synchronous write - probably a ramdisk.  Go
740 				 * ahead and try to reclaim the page.
741 				 */
742 				if (!trylock_page(page))
743 					goto keep;
744 				if (PageDirty(page) || PageWriteback(page))
745 					goto keep_locked;
746 				mapping = page_mapping(page);
747 			case PAGE_CLEAN:
748 				; /* try to free the page below */
749 			}
750 		}
751 
752 		/*
753 		 * If the page has buffers, try to free the buffer mappings
754 		 * associated with this page. If we succeed we try to free
755 		 * the page as well.
756 		 *
757 		 * We do this even if the page is PageDirty().
758 		 * try_to_release_page() does not perform I/O, but it is
759 		 * possible for a page to have PageDirty set, but it is actually
760 		 * clean (all its buffers are clean).  This happens if the
761 		 * buffers were written out directly, with submit_bh(). ext3
762 		 * will do this, as well as the blockdev mapping.
763 		 * try_to_release_page() will discover that cleanness and will
764 		 * drop the buffers and mark the page clean - it can be freed.
765 		 *
766 		 * Rarely, pages can have buffers and no ->mapping.  These are
767 		 * the pages which were not successfully invalidated in
768 		 * truncate_complete_page().  We try to drop those buffers here
769 		 * and if that worked, and the page is no longer mapped into
770 		 * process address space (page_count == 1) it can be freed.
771 		 * Otherwise, leave the page on the LRU so it is swappable.
772 		 */
773 		if (page_has_private(page)) {
774 			if (!try_to_release_page(page, sc->gfp_mask))
775 				goto activate_locked;
776 			if (!mapping && page_count(page) == 1) {
777 				unlock_page(page);
778 				if (put_page_testzero(page))
779 					goto free_it;
780 				else {
781 					/*
782 					 * rare race with speculative reference.
783 					 * the speculative reference will free
784 					 * this page shortly, so we may
785 					 * increment nr_reclaimed here (and
786 					 * leave it off the LRU).
787 					 */
788 					nr_reclaimed++;
789 					continue;
790 				}
791 			}
792 		}
793 
794 		if (!mapping || !__remove_mapping(mapping, page))
795 			goto keep_locked;
796 
797 		/*
798 		 * At this point, we have no other references and there is
799 		 * no way to pick any more up (removed from LRU, removed
800 		 * from pagecache). Can use non-atomic bitops now (and
801 		 * we obviously don't have to worry about waking up a process
802 		 * waiting on the page lock, because there are no references.
803 		 */
804 		__clear_page_locked(page);
805 free_it:
806 		nr_reclaimed++;
807 		if (!pagevec_add(&freed_pvec, page)) {
808 			__pagevec_free(&freed_pvec);
809 			pagevec_reinit(&freed_pvec);
810 		}
811 		continue;
812 
813 cull_mlocked:
814 		if (PageSwapCache(page))
815 			try_to_free_swap(page);
816 		unlock_page(page);
817 		putback_lru_page(page);
818 		continue;
819 
820 activate_locked:
821 		/* Not a candidate for swapping, so reclaim swap space. */
822 		if (PageSwapCache(page) && vm_swap_full())
823 			try_to_free_swap(page);
824 		VM_BUG_ON(PageActive(page));
825 		SetPageActive(page);
826 		pgactivate++;
827 keep_locked:
828 		unlock_page(page);
829 keep:
830 		list_add(&page->lru, &ret_pages);
831 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
832 	}
833 	list_splice(&ret_pages, page_list);
834 	if (pagevec_count(&freed_pvec))
835 		__pagevec_free(&freed_pvec);
836 	count_vm_events(PGACTIVATE, pgactivate);
837 	return nr_reclaimed;
838 }
839 
840 /*
841  * Attempt to remove the specified page from its LRU.  Only take this page
842  * if it is of the appropriate PageActive status.  Pages which are being
843  * freed elsewhere are also ignored.
844  *
845  * page:	page to consider
846  * mode:	one of the LRU isolation modes defined above
847  *
848  * returns 0 on success, -ve errno on failure.
849  */
850 int __isolate_lru_page(struct page *page, int mode, int file)
851 {
852 	int ret = -EINVAL;
853 
854 	/* Only take pages on the LRU. */
855 	if (!PageLRU(page))
856 		return ret;
857 
858 	/*
859 	 * When checking the active state, we need to be sure we are
860 	 * dealing with comparible boolean values.  Take the logical not
861 	 * of each.
862 	 */
863 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
864 		return ret;
865 
866 	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
867 		return ret;
868 
869 	/*
870 	 * When this function is being called for lumpy reclaim, we
871 	 * initially look into all LRU pages, active, inactive and
872 	 * unevictable; only give shrink_page_list evictable pages.
873 	 */
874 	if (PageUnevictable(page))
875 		return ret;
876 
877 	ret = -EBUSY;
878 
879 	if (likely(get_page_unless_zero(page))) {
880 		/*
881 		 * Be careful not to clear PageLRU until after we're
882 		 * sure the page is not being freed elsewhere -- the
883 		 * page release code relies on it.
884 		 */
885 		ClearPageLRU(page);
886 		ret = 0;
887 	}
888 
889 	return ret;
890 }
891 
892 /*
893  * zone->lru_lock is heavily contended.  Some of the functions that
894  * shrink the lists perform better by taking out a batch of pages
895  * and working on them outside the LRU lock.
896  *
897  * For pagecache intensive workloads, this function is the hottest
898  * spot in the kernel (apart from copy_*_user functions).
899  *
900  * Appropriate locks must be held before calling this function.
901  *
902  * @nr_to_scan:	The number of pages to look through on the list.
903  * @src:	The LRU list to pull pages off.
904  * @dst:	The temp list to put pages on to.
905  * @scanned:	The number of pages that were scanned.
906  * @order:	The caller's attempted allocation order
907  * @mode:	One of the LRU isolation modes
908  * @file:	True [1] if isolating file [!anon] pages
909  *
910  * returns how many pages were moved onto *@dst.
911  */
912 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
913 		struct list_head *src, struct list_head *dst,
914 		unsigned long *scanned, int order, int mode, int file)
915 {
916 	unsigned long nr_taken = 0;
917 	unsigned long scan;
918 
919 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
920 		struct page *page;
921 		unsigned long pfn;
922 		unsigned long end_pfn;
923 		unsigned long page_pfn;
924 		int zone_id;
925 
926 		page = lru_to_page(src);
927 		prefetchw_prev_lru_page(page, src, flags);
928 
929 		VM_BUG_ON(!PageLRU(page));
930 
931 		switch (__isolate_lru_page(page, mode, file)) {
932 		case 0:
933 			list_move(&page->lru, dst);
934 			mem_cgroup_del_lru(page);
935 			nr_taken++;
936 			break;
937 
938 		case -EBUSY:
939 			/* else it is being freed elsewhere */
940 			list_move(&page->lru, src);
941 			mem_cgroup_rotate_lru_list(page, page_lru(page));
942 			continue;
943 
944 		default:
945 			BUG();
946 		}
947 
948 		if (!order)
949 			continue;
950 
951 		/*
952 		 * Attempt to take all pages in the order aligned region
953 		 * surrounding the tag page.  Only take those pages of
954 		 * the same active state as that tag page.  We may safely
955 		 * round the target page pfn down to the requested order
956 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
957 		 * where that page is in a different zone we will detect
958 		 * it from its zone id and abort this block scan.
959 		 */
960 		zone_id = page_zone_id(page);
961 		page_pfn = page_to_pfn(page);
962 		pfn = page_pfn & ~((1 << order) - 1);
963 		end_pfn = pfn + (1 << order);
964 		for (; pfn < end_pfn; pfn++) {
965 			struct page *cursor_page;
966 
967 			/* The target page is in the block, ignore it. */
968 			if (unlikely(pfn == page_pfn))
969 				continue;
970 
971 			/* Avoid holes within the zone. */
972 			if (unlikely(!pfn_valid_within(pfn)))
973 				break;
974 
975 			cursor_page = pfn_to_page(pfn);
976 
977 			/* Check that we have not crossed a zone boundary. */
978 			if (unlikely(page_zone_id(cursor_page) != zone_id))
979 				continue;
980 
981 			/*
982 			 * If we don't have enough swap space, reclaiming of
983 			 * anon page which don't already have a swap slot is
984 			 * pointless.
985 			 */
986 			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
987 					!PageSwapCache(cursor_page))
988 				continue;
989 
990 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
991 				list_move(&cursor_page->lru, dst);
992 				mem_cgroup_del_lru(cursor_page);
993 				nr_taken++;
994 				scan++;
995 			}
996 		}
997 	}
998 
999 	*scanned = scan;
1000 	return nr_taken;
1001 }
1002 
1003 static unsigned long isolate_pages_global(unsigned long nr,
1004 					struct list_head *dst,
1005 					unsigned long *scanned, int order,
1006 					int mode, struct zone *z,
1007 					int active, int file)
1008 {
1009 	int lru = LRU_BASE;
1010 	if (active)
1011 		lru += LRU_ACTIVE;
1012 	if (file)
1013 		lru += LRU_FILE;
1014 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1015 								mode, file);
1016 }
1017 
1018 /*
1019  * clear_active_flags() is a helper for shrink_active_list(), clearing
1020  * any active bits from the pages in the list.
1021  */
1022 static unsigned long clear_active_flags(struct list_head *page_list,
1023 					unsigned int *count)
1024 {
1025 	int nr_active = 0;
1026 	int lru;
1027 	struct page *page;
1028 
1029 	list_for_each_entry(page, page_list, lru) {
1030 		lru = page_lru_base_type(page);
1031 		if (PageActive(page)) {
1032 			lru += LRU_ACTIVE;
1033 			ClearPageActive(page);
1034 			nr_active++;
1035 		}
1036 		count[lru]++;
1037 	}
1038 
1039 	return nr_active;
1040 }
1041 
1042 /**
1043  * isolate_lru_page - tries to isolate a page from its LRU list
1044  * @page: page to isolate from its LRU list
1045  *
1046  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1047  * vmstat statistic corresponding to whatever LRU list the page was on.
1048  *
1049  * Returns 0 if the page was removed from an LRU list.
1050  * Returns -EBUSY if the page was not on an LRU list.
1051  *
1052  * The returned page will have PageLRU() cleared.  If it was found on
1053  * the active list, it will have PageActive set.  If it was found on
1054  * the unevictable list, it will have the PageUnevictable bit set. That flag
1055  * may need to be cleared by the caller before letting the page go.
1056  *
1057  * The vmstat statistic corresponding to the list on which the page was
1058  * found will be decremented.
1059  *
1060  * Restrictions:
1061  * (1) Must be called with an elevated refcount on the page. This is a
1062  *     fundamentnal difference from isolate_lru_pages (which is called
1063  *     without a stable reference).
1064  * (2) the lru_lock must not be held.
1065  * (3) interrupts must be enabled.
1066  */
1067 int isolate_lru_page(struct page *page)
1068 {
1069 	int ret = -EBUSY;
1070 
1071 	if (PageLRU(page)) {
1072 		struct zone *zone = page_zone(page);
1073 
1074 		spin_lock_irq(&zone->lru_lock);
1075 		if (PageLRU(page) && get_page_unless_zero(page)) {
1076 			int lru = page_lru(page);
1077 			ret = 0;
1078 			ClearPageLRU(page);
1079 
1080 			del_page_from_lru_list(zone, page, lru);
1081 		}
1082 		spin_unlock_irq(&zone->lru_lock);
1083 	}
1084 	return ret;
1085 }
1086 
1087 /*
1088  * Are there way too many processes in the direct reclaim path already?
1089  */
1090 static int too_many_isolated(struct zone *zone, int file,
1091 		struct scan_control *sc)
1092 {
1093 	unsigned long inactive, isolated;
1094 
1095 	if (current_is_kswapd())
1096 		return 0;
1097 
1098 	if (!scanning_global_lru(sc))
1099 		return 0;
1100 
1101 	if (file) {
1102 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1103 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1104 	} else {
1105 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1106 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1107 	}
1108 
1109 	return isolated > inactive;
1110 }
1111 
1112 /*
1113  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1114  * of reclaimed pages
1115  */
1116 static unsigned long shrink_inactive_list(unsigned long max_scan,
1117 			struct zone *zone, struct scan_control *sc,
1118 			int priority, int file)
1119 {
1120 	LIST_HEAD(page_list);
1121 	struct pagevec pvec;
1122 	unsigned long nr_scanned = 0;
1123 	unsigned long nr_reclaimed = 0;
1124 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1125 
1126 	while (unlikely(too_many_isolated(zone, file, sc))) {
1127 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1128 
1129 		/* We are about to die and free our memory. Return now. */
1130 		if (fatal_signal_pending(current))
1131 			return SWAP_CLUSTER_MAX;
1132 	}
1133 
1134 
1135 	pagevec_init(&pvec, 1);
1136 
1137 	lru_add_drain();
1138 	spin_lock_irq(&zone->lru_lock);
1139 	do {
1140 		struct page *page;
1141 		unsigned long nr_taken;
1142 		unsigned long nr_scan;
1143 		unsigned long nr_freed;
1144 		unsigned long nr_active;
1145 		unsigned int count[NR_LRU_LISTS] = { 0, };
1146 		int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1147 		unsigned long nr_anon;
1148 		unsigned long nr_file;
1149 
1150 		if (scanning_global_lru(sc)) {
1151 			nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX,
1152 							&page_list, &nr_scan,
1153 							sc->order, mode,
1154 							zone, 0, file);
1155 			zone->pages_scanned += nr_scan;
1156 			if (current_is_kswapd())
1157 				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1158 						       nr_scan);
1159 			else
1160 				__count_zone_vm_events(PGSCAN_DIRECT, zone,
1161 						       nr_scan);
1162 		} else {
1163 			nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX,
1164 							&page_list, &nr_scan,
1165 							sc->order, mode,
1166 							zone, sc->mem_cgroup,
1167 							0, file);
1168 			/*
1169 			 * mem_cgroup_isolate_pages() keeps track of
1170 			 * scanned pages on its own.
1171 			 */
1172 		}
1173 
1174 		if (nr_taken == 0)
1175 			goto done;
1176 
1177 		nr_active = clear_active_flags(&page_list, count);
1178 		__count_vm_events(PGDEACTIVATE, nr_active);
1179 
1180 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1181 						-count[LRU_ACTIVE_FILE]);
1182 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1183 						-count[LRU_INACTIVE_FILE]);
1184 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1185 						-count[LRU_ACTIVE_ANON]);
1186 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1187 						-count[LRU_INACTIVE_ANON]);
1188 
1189 		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1190 		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1191 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1192 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1193 
1194 		reclaim_stat->recent_scanned[0] += nr_anon;
1195 		reclaim_stat->recent_scanned[1] += nr_file;
1196 
1197 		spin_unlock_irq(&zone->lru_lock);
1198 
1199 		nr_scanned += nr_scan;
1200 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1201 
1202 		/*
1203 		 * If we are direct reclaiming for contiguous pages and we do
1204 		 * not reclaim everything in the list, try again and wait
1205 		 * for IO to complete. This will stall high-order allocations
1206 		 * but that should be acceptable to the caller
1207 		 */
1208 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1209 		    sc->lumpy_reclaim_mode) {
1210 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1211 
1212 			/*
1213 			 * The attempt at page out may have made some
1214 			 * of the pages active, mark them inactive again.
1215 			 */
1216 			nr_active = clear_active_flags(&page_list, count);
1217 			count_vm_events(PGDEACTIVATE, nr_active);
1218 
1219 			nr_freed += shrink_page_list(&page_list, sc,
1220 							PAGEOUT_IO_SYNC);
1221 		}
1222 
1223 		nr_reclaimed += nr_freed;
1224 
1225 		local_irq_disable();
1226 		if (current_is_kswapd())
1227 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1228 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1229 
1230 		spin_lock(&zone->lru_lock);
1231 		/*
1232 		 * Put back any unfreeable pages.
1233 		 */
1234 		while (!list_empty(&page_list)) {
1235 			int lru;
1236 			page = lru_to_page(&page_list);
1237 			VM_BUG_ON(PageLRU(page));
1238 			list_del(&page->lru);
1239 			if (unlikely(!page_evictable(page, NULL))) {
1240 				spin_unlock_irq(&zone->lru_lock);
1241 				putback_lru_page(page);
1242 				spin_lock_irq(&zone->lru_lock);
1243 				continue;
1244 			}
1245 			SetPageLRU(page);
1246 			lru = page_lru(page);
1247 			add_page_to_lru_list(zone, page, lru);
1248 			if (is_active_lru(lru)) {
1249 				int file = is_file_lru(lru);
1250 				reclaim_stat->recent_rotated[file]++;
1251 			}
1252 			if (!pagevec_add(&pvec, page)) {
1253 				spin_unlock_irq(&zone->lru_lock);
1254 				__pagevec_release(&pvec);
1255 				spin_lock_irq(&zone->lru_lock);
1256 			}
1257 		}
1258 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1259 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1260 
1261   	} while (nr_scanned < max_scan);
1262 
1263 done:
1264 	spin_unlock_irq(&zone->lru_lock);
1265 	pagevec_release(&pvec);
1266 	return nr_reclaimed;
1267 }
1268 
1269 /*
1270  * We are about to scan this zone at a certain priority level.  If that priority
1271  * level is smaller (ie: more urgent) than the previous priority, then note
1272  * that priority level within the zone.  This is done so that when the next
1273  * process comes in to scan this zone, it will immediately start out at this
1274  * priority level rather than having to build up its own scanning priority.
1275  * Here, this priority affects only the reclaim-mapped threshold.
1276  */
1277 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1278 {
1279 	if (priority < zone->prev_priority)
1280 		zone->prev_priority = priority;
1281 }
1282 
1283 /*
1284  * This moves pages from the active list to the inactive list.
1285  *
1286  * We move them the other way if the page is referenced by one or more
1287  * processes, from rmap.
1288  *
1289  * If the pages are mostly unmapped, the processing is fast and it is
1290  * appropriate to hold zone->lru_lock across the whole operation.  But if
1291  * the pages are mapped, the processing is slow (page_referenced()) so we
1292  * should drop zone->lru_lock around each page.  It's impossible to balance
1293  * this, so instead we remove the pages from the LRU while processing them.
1294  * It is safe to rely on PG_active against the non-LRU pages in here because
1295  * nobody will play with that bit on a non-LRU page.
1296  *
1297  * The downside is that we have to touch page->_count against each page.
1298  * But we had to alter page->flags anyway.
1299  */
1300 
1301 static void move_active_pages_to_lru(struct zone *zone,
1302 				     struct list_head *list,
1303 				     enum lru_list lru)
1304 {
1305 	unsigned long pgmoved = 0;
1306 	struct pagevec pvec;
1307 	struct page *page;
1308 
1309 	pagevec_init(&pvec, 1);
1310 
1311 	while (!list_empty(list)) {
1312 		page = lru_to_page(list);
1313 
1314 		VM_BUG_ON(PageLRU(page));
1315 		SetPageLRU(page);
1316 
1317 		list_move(&page->lru, &zone->lru[lru].list);
1318 		mem_cgroup_add_lru_list(page, lru);
1319 		pgmoved++;
1320 
1321 		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1322 			spin_unlock_irq(&zone->lru_lock);
1323 			if (buffer_heads_over_limit)
1324 				pagevec_strip(&pvec);
1325 			__pagevec_release(&pvec);
1326 			spin_lock_irq(&zone->lru_lock);
1327 		}
1328 	}
1329 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1330 	if (!is_active_lru(lru))
1331 		__count_vm_events(PGDEACTIVATE, pgmoved);
1332 }
1333 
1334 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1335 			struct scan_control *sc, int priority, int file)
1336 {
1337 	unsigned long nr_taken;
1338 	unsigned long pgscanned;
1339 	unsigned long vm_flags;
1340 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1341 	LIST_HEAD(l_active);
1342 	LIST_HEAD(l_inactive);
1343 	struct page *page;
1344 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1345 	unsigned long nr_rotated = 0;
1346 
1347 	lru_add_drain();
1348 	spin_lock_irq(&zone->lru_lock);
1349 	if (scanning_global_lru(sc)) {
1350 		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1351 						&pgscanned, sc->order,
1352 						ISOLATE_ACTIVE, zone,
1353 						1, file);
1354 		zone->pages_scanned += pgscanned;
1355 	} else {
1356 		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1357 						&pgscanned, sc->order,
1358 						ISOLATE_ACTIVE, zone,
1359 						sc->mem_cgroup, 1, file);
1360 		/*
1361 		 * mem_cgroup_isolate_pages() keeps track of
1362 		 * scanned pages on its own.
1363 		 */
1364 	}
1365 
1366 	reclaim_stat->recent_scanned[file] += nr_taken;
1367 
1368 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1369 	if (file)
1370 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1371 	else
1372 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1373 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1374 	spin_unlock_irq(&zone->lru_lock);
1375 
1376 	while (!list_empty(&l_hold)) {
1377 		cond_resched();
1378 		page = lru_to_page(&l_hold);
1379 		list_del(&page->lru);
1380 
1381 		if (unlikely(!page_evictable(page, NULL))) {
1382 			putback_lru_page(page);
1383 			continue;
1384 		}
1385 
1386 		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1387 			nr_rotated++;
1388 			/*
1389 			 * Identify referenced, file-backed active pages and
1390 			 * give them one more trip around the active list. So
1391 			 * that executable code get better chances to stay in
1392 			 * memory under moderate memory pressure.  Anon pages
1393 			 * are not likely to be evicted by use-once streaming
1394 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1395 			 * so we ignore them here.
1396 			 */
1397 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1398 				list_add(&page->lru, &l_active);
1399 				continue;
1400 			}
1401 		}
1402 
1403 		ClearPageActive(page);	/* we are de-activating */
1404 		list_add(&page->lru, &l_inactive);
1405 	}
1406 
1407 	/*
1408 	 * Move pages back to the lru list.
1409 	 */
1410 	spin_lock_irq(&zone->lru_lock);
1411 	/*
1412 	 * Count referenced pages from currently used mappings as rotated,
1413 	 * even though only some of them are actually re-activated.  This
1414 	 * helps balance scan pressure between file and anonymous pages in
1415 	 * get_scan_ratio.
1416 	 */
1417 	reclaim_stat->recent_rotated[file] += nr_rotated;
1418 
1419 	move_active_pages_to_lru(zone, &l_active,
1420 						LRU_ACTIVE + file * LRU_FILE);
1421 	move_active_pages_to_lru(zone, &l_inactive,
1422 						LRU_BASE   + file * LRU_FILE);
1423 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1424 	spin_unlock_irq(&zone->lru_lock);
1425 }
1426 
1427 static int inactive_anon_is_low_global(struct zone *zone)
1428 {
1429 	unsigned long active, inactive;
1430 
1431 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1432 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1433 
1434 	if (inactive * zone->inactive_ratio < active)
1435 		return 1;
1436 
1437 	return 0;
1438 }
1439 
1440 /**
1441  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1442  * @zone: zone to check
1443  * @sc:   scan control of this context
1444  *
1445  * Returns true if the zone does not have enough inactive anon pages,
1446  * meaning some active anon pages need to be deactivated.
1447  */
1448 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1449 {
1450 	int low;
1451 
1452 	if (scanning_global_lru(sc))
1453 		low = inactive_anon_is_low_global(zone);
1454 	else
1455 		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1456 	return low;
1457 }
1458 
1459 static int inactive_file_is_low_global(struct zone *zone)
1460 {
1461 	unsigned long active, inactive;
1462 
1463 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1464 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1465 
1466 	return (active > inactive);
1467 }
1468 
1469 /**
1470  * inactive_file_is_low - check if file pages need to be deactivated
1471  * @zone: zone to check
1472  * @sc:   scan control of this context
1473  *
1474  * When the system is doing streaming IO, memory pressure here
1475  * ensures that active file pages get deactivated, until more
1476  * than half of the file pages are on the inactive list.
1477  *
1478  * Once we get to that situation, protect the system's working
1479  * set from being evicted by disabling active file page aging.
1480  *
1481  * This uses a different ratio than the anonymous pages, because
1482  * the page cache uses a use-once replacement algorithm.
1483  */
1484 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1485 {
1486 	int low;
1487 
1488 	if (scanning_global_lru(sc))
1489 		low = inactive_file_is_low_global(zone);
1490 	else
1491 		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1492 	return low;
1493 }
1494 
1495 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1496 				int file)
1497 {
1498 	if (file)
1499 		return inactive_file_is_low(zone, sc);
1500 	else
1501 		return inactive_anon_is_low(zone, sc);
1502 }
1503 
1504 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1505 	struct zone *zone, struct scan_control *sc, int priority)
1506 {
1507 	int file = is_file_lru(lru);
1508 
1509 	if (is_active_lru(lru)) {
1510 		if (inactive_list_is_low(zone, sc, file))
1511 		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1512 		return 0;
1513 	}
1514 
1515 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1516 }
1517 
1518 /*
1519  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1520  * until we collected @swap_cluster_max pages to scan.
1521  */
1522 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1523 				       unsigned long *nr_saved_scan)
1524 {
1525 	unsigned long nr;
1526 
1527 	*nr_saved_scan += nr_to_scan;
1528 	nr = *nr_saved_scan;
1529 
1530 	if (nr >= SWAP_CLUSTER_MAX)
1531 		*nr_saved_scan = 0;
1532 	else
1533 		nr = 0;
1534 
1535 	return nr;
1536 }
1537 
1538 /*
1539  * Determine how aggressively the anon and file LRU lists should be
1540  * scanned.  The relative value of each set of LRU lists is determined
1541  * by looking at the fraction of the pages scanned we did rotate back
1542  * onto the active list instead of evict.
1543  *
1544  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1545  */
1546 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1547 					unsigned long *nr, int priority)
1548 {
1549 	unsigned long anon, file, free;
1550 	unsigned long anon_prio, file_prio;
1551 	unsigned long ap, fp;
1552 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1553 	u64 fraction[2], denominator;
1554 	enum lru_list l;
1555 	int noswap = 0;
1556 
1557 	/* If we have no swap space, do not bother scanning anon pages. */
1558 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1559 		noswap = 1;
1560 		fraction[0] = 0;
1561 		fraction[1] = 1;
1562 		denominator = 1;
1563 		goto out;
1564 	}
1565 
1566 	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1567 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1568 	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1569 		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1570 
1571 	if (scanning_global_lru(sc)) {
1572 		free  = zone_page_state(zone, NR_FREE_PAGES);
1573 		/* If we have very few page cache pages,
1574 		   force-scan anon pages. */
1575 		if (unlikely(file + free <= high_wmark_pages(zone))) {
1576 			fraction[0] = 1;
1577 			fraction[1] = 0;
1578 			denominator = 1;
1579 			goto out;
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * OK, so we have swap space and a fair amount of page cache
1585 	 * pages.  We use the recently rotated / recently scanned
1586 	 * ratios to determine how valuable each cache is.
1587 	 *
1588 	 * Because workloads change over time (and to avoid overflow)
1589 	 * we keep these statistics as a floating average, which ends
1590 	 * up weighing recent references more than old ones.
1591 	 *
1592 	 * anon in [0], file in [1]
1593 	 */
1594 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1595 		spin_lock_irq(&zone->lru_lock);
1596 		reclaim_stat->recent_scanned[0] /= 2;
1597 		reclaim_stat->recent_rotated[0] /= 2;
1598 		spin_unlock_irq(&zone->lru_lock);
1599 	}
1600 
1601 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1602 		spin_lock_irq(&zone->lru_lock);
1603 		reclaim_stat->recent_scanned[1] /= 2;
1604 		reclaim_stat->recent_rotated[1] /= 2;
1605 		spin_unlock_irq(&zone->lru_lock);
1606 	}
1607 
1608 	/*
1609 	 * With swappiness at 100, anonymous and file have the same priority.
1610 	 * This scanning priority is essentially the inverse of IO cost.
1611 	 */
1612 	anon_prio = sc->swappiness;
1613 	file_prio = 200 - sc->swappiness;
1614 
1615 	/*
1616 	 * The amount of pressure on anon vs file pages is inversely
1617 	 * proportional to the fraction of recently scanned pages on
1618 	 * each list that were recently referenced and in active use.
1619 	 */
1620 	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1621 	ap /= reclaim_stat->recent_rotated[0] + 1;
1622 
1623 	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1624 	fp /= reclaim_stat->recent_rotated[1] + 1;
1625 
1626 	fraction[0] = ap;
1627 	fraction[1] = fp;
1628 	denominator = ap + fp + 1;
1629 out:
1630 	for_each_evictable_lru(l) {
1631 		int file = is_file_lru(l);
1632 		unsigned long scan;
1633 
1634 		scan = zone_nr_lru_pages(zone, sc, l);
1635 		if (priority || noswap) {
1636 			scan >>= priority;
1637 			scan = div64_u64(scan * fraction[file], denominator);
1638 		}
1639 		nr[l] = nr_scan_try_batch(scan,
1640 					  &reclaim_stat->nr_saved_scan[l]);
1641 	}
1642 }
1643 
1644 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1645 {
1646 	/*
1647 	 * If we need a large contiguous chunk of memory, or have
1648 	 * trouble getting a small set of contiguous pages, we
1649 	 * will reclaim both active and inactive pages.
1650 	 */
1651 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1652 		sc->lumpy_reclaim_mode = 1;
1653 	else if (sc->order && priority < DEF_PRIORITY - 2)
1654 		sc->lumpy_reclaim_mode = 1;
1655 	else
1656 		sc->lumpy_reclaim_mode = 0;
1657 }
1658 
1659 /*
1660  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1661  */
1662 static void shrink_zone(int priority, struct zone *zone,
1663 				struct scan_control *sc)
1664 {
1665 	unsigned long nr[NR_LRU_LISTS];
1666 	unsigned long nr_to_scan;
1667 	enum lru_list l;
1668 	unsigned long nr_reclaimed = sc->nr_reclaimed;
1669 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1670 
1671 	get_scan_count(zone, sc, nr, priority);
1672 
1673 	set_lumpy_reclaim_mode(priority, sc);
1674 
1675 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1676 					nr[LRU_INACTIVE_FILE]) {
1677 		for_each_evictable_lru(l) {
1678 			if (nr[l]) {
1679 				nr_to_scan = min_t(unsigned long,
1680 						   nr[l], SWAP_CLUSTER_MAX);
1681 				nr[l] -= nr_to_scan;
1682 
1683 				nr_reclaimed += shrink_list(l, nr_to_scan,
1684 							    zone, sc, priority);
1685 			}
1686 		}
1687 		/*
1688 		 * On large memory systems, scan >> priority can become
1689 		 * really large. This is fine for the starting priority;
1690 		 * we want to put equal scanning pressure on each zone.
1691 		 * However, if the VM has a harder time of freeing pages,
1692 		 * with multiple processes reclaiming pages, the total
1693 		 * freeing target can get unreasonably large.
1694 		 */
1695 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1696 			break;
1697 	}
1698 
1699 	sc->nr_reclaimed = nr_reclaimed;
1700 
1701 	/*
1702 	 * Even if we did not try to evict anon pages at all, we want to
1703 	 * rebalance the anon lru active/inactive ratio.
1704 	 */
1705 	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1706 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1707 
1708 	throttle_vm_writeout(sc->gfp_mask);
1709 }
1710 
1711 /*
1712  * This is the direct reclaim path, for page-allocating processes.  We only
1713  * try to reclaim pages from zones which will satisfy the caller's allocation
1714  * request.
1715  *
1716  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1717  * Because:
1718  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1719  *    allocation or
1720  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1721  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1722  *    zone defense algorithm.
1723  *
1724  * If a zone is deemed to be full of pinned pages then just give it a light
1725  * scan then give up on it.
1726  */
1727 static bool shrink_zones(int priority, struct zonelist *zonelist,
1728 					struct scan_control *sc)
1729 {
1730 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1731 	struct zoneref *z;
1732 	struct zone *zone;
1733 	bool all_unreclaimable = true;
1734 
1735 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1736 					sc->nodemask) {
1737 		if (!populated_zone(zone))
1738 			continue;
1739 		/*
1740 		 * Take care memory controller reclaiming has small influence
1741 		 * to global LRU.
1742 		 */
1743 		if (scanning_global_lru(sc)) {
1744 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1745 				continue;
1746 			note_zone_scanning_priority(zone, priority);
1747 
1748 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1749 				continue;	/* Let kswapd poll it */
1750 		} else {
1751 			/*
1752 			 * Ignore cpuset limitation here. We just want to reduce
1753 			 * # of used pages by us regardless of memory shortage.
1754 			 */
1755 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1756 							priority);
1757 		}
1758 
1759 		shrink_zone(priority, zone, sc);
1760 		all_unreclaimable = false;
1761 	}
1762 	return all_unreclaimable;
1763 }
1764 
1765 /*
1766  * This is the main entry point to direct page reclaim.
1767  *
1768  * If a full scan of the inactive list fails to free enough memory then we
1769  * are "out of memory" and something needs to be killed.
1770  *
1771  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1772  * high - the zone may be full of dirty or under-writeback pages, which this
1773  * caller can't do much about.  We kick the writeback threads and take explicit
1774  * naps in the hope that some of these pages can be written.  But if the
1775  * allocating task holds filesystem locks which prevent writeout this might not
1776  * work, and the allocation attempt will fail.
1777  *
1778  * returns:	0, if no pages reclaimed
1779  * 		else, the number of pages reclaimed
1780  */
1781 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1782 					struct scan_control *sc)
1783 {
1784 	int priority;
1785 	bool all_unreclaimable;
1786 	unsigned long total_scanned = 0;
1787 	struct reclaim_state *reclaim_state = current->reclaim_state;
1788 	unsigned long lru_pages = 0;
1789 	struct zoneref *z;
1790 	struct zone *zone;
1791 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1792 	unsigned long writeback_threshold;
1793 
1794 	get_mems_allowed();
1795 	delayacct_freepages_start();
1796 
1797 	if (scanning_global_lru(sc))
1798 		count_vm_event(ALLOCSTALL);
1799 	/*
1800 	 * mem_cgroup will not do shrink_slab.
1801 	 */
1802 	if (scanning_global_lru(sc)) {
1803 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1804 
1805 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1806 				continue;
1807 
1808 			lru_pages += zone_reclaimable_pages(zone);
1809 		}
1810 	}
1811 
1812 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1813 		sc->nr_scanned = 0;
1814 		if (!priority)
1815 			disable_swap_token();
1816 		all_unreclaimable = shrink_zones(priority, zonelist, sc);
1817 		/*
1818 		 * Don't shrink slabs when reclaiming memory from
1819 		 * over limit cgroups
1820 		 */
1821 		if (scanning_global_lru(sc)) {
1822 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1823 			if (reclaim_state) {
1824 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1825 				reclaim_state->reclaimed_slab = 0;
1826 			}
1827 		}
1828 		total_scanned += sc->nr_scanned;
1829 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1830 			goto out;
1831 
1832 		/*
1833 		 * Try to write back as many pages as we just scanned.  This
1834 		 * tends to cause slow streaming writers to write data to the
1835 		 * disk smoothly, at the dirtying rate, which is nice.   But
1836 		 * that's undesirable in laptop mode, where we *want* lumpy
1837 		 * writeout.  So in laptop mode, write out the whole world.
1838 		 */
1839 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1840 		if (total_scanned > writeback_threshold) {
1841 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1842 			sc->may_writepage = 1;
1843 		}
1844 
1845 		/* Take a nap, wait for some writeback to complete */
1846 		if (!sc->hibernation_mode && sc->nr_scanned &&
1847 		    priority < DEF_PRIORITY - 2)
1848 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1849 	}
1850 
1851 out:
1852 	/*
1853 	 * Now that we've scanned all the zones at this priority level, note
1854 	 * that level within the zone so that the next thread which performs
1855 	 * scanning of this zone will immediately start out at this priority
1856 	 * level.  This affects only the decision whether or not to bring
1857 	 * mapped pages onto the inactive list.
1858 	 */
1859 	if (priority < 0)
1860 		priority = 0;
1861 
1862 	if (scanning_global_lru(sc)) {
1863 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1864 
1865 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1866 				continue;
1867 
1868 			zone->prev_priority = priority;
1869 		}
1870 	} else
1871 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1872 
1873 	delayacct_freepages_end();
1874 	put_mems_allowed();
1875 
1876 	if (sc->nr_reclaimed)
1877 		return sc->nr_reclaimed;
1878 
1879 	/* top priority shrink_zones still had more to do? don't OOM, then */
1880 	if (scanning_global_lru(sc) && !all_unreclaimable)
1881 		return 1;
1882 
1883 	return 0;
1884 }
1885 
1886 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1887 				gfp_t gfp_mask, nodemask_t *nodemask)
1888 {
1889 	struct scan_control sc = {
1890 		.gfp_mask = gfp_mask,
1891 		.may_writepage = !laptop_mode,
1892 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1893 		.may_unmap = 1,
1894 		.may_swap = 1,
1895 		.swappiness = vm_swappiness,
1896 		.order = order,
1897 		.mem_cgroup = NULL,
1898 		.nodemask = nodemask,
1899 	};
1900 
1901 	return do_try_to_free_pages(zonelist, &sc);
1902 }
1903 
1904 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1905 
1906 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1907 						gfp_t gfp_mask, bool noswap,
1908 						unsigned int swappiness,
1909 						struct zone *zone, int nid)
1910 {
1911 	struct scan_control sc = {
1912 		.may_writepage = !laptop_mode,
1913 		.may_unmap = 1,
1914 		.may_swap = !noswap,
1915 		.swappiness = swappiness,
1916 		.order = 0,
1917 		.mem_cgroup = mem,
1918 	};
1919 	nodemask_t nm  = nodemask_of_node(nid);
1920 
1921 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1922 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1923 	sc.nodemask = &nm;
1924 	sc.nr_reclaimed = 0;
1925 	sc.nr_scanned = 0;
1926 	/*
1927 	 * NOTE: Although we can get the priority field, using it
1928 	 * here is not a good idea, since it limits the pages we can scan.
1929 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
1930 	 * will pick up pages from other mem cgroup's as well. We hack
1931 	 * the priority and make it zero.
1932 	 */
1933 	shrink_zone(0, zone, &sc);
1934 	return sc.nr_reclaimed;
1935 }
1936 
1937 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1938 					   gfp_t gfp_mask,
1939 					   bool noswap,
1940 					   unsigned int swappiness)
1941 {
1942 	struct zonelist *zonelist;
1943 	struct scan_control sc = {
1944 		.may_writepage = !laptop_mode,
1945 		.may_unmap = 1,
1946 		.may_swap = !noswap,
1947 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1948 		.swappiness = swappiness,
1949 		.order = 0,
1950 		.mem_cgroup = mem_cont,
1951 		.nodemask = NULL, /* we don't care the placement */
1952 	};
1953 
1954 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1955 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1956 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1957 	return do_try_to_free_pages(zonelist, &sc);
1958 }
1959 #endif
1960 
1961 /* is kswapd sleeping prematurely? */
1962 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1963 {
1964 	int i;
1965 
1966 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1967 	if (remaining)
1968 		return 1;
1969 
1970 	/* If after HZ/10, a zone is below the high mark, it's premature */
1971 	for (i = 0; i < pgdat->nr_zones; i++) {
1972 		struct zone *zone = pgdat->node_zones + i;
1973 
1974 		if (!populated_zone(zone))
1975 			continue;
1976 
1977 		if (zone->all_unreclaimable)
1978 			continue;
1979 
1980 		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1981 								0, 0))
1982 			return 1;
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 /*
1989  * For kswapd, balance_pgdat() will work across all this node's zones until
1990  * they are all at high_wmark_pages(zone).
1991  *
1992  * Returns the number of pages which were actually freed.
1993  *
1994  * There is special handling here for zones which are full of pinned pages.
1995  * This can happen if the pages are all mlocked, or if they are all used by
1996  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1997  * What we do is to detect the case where all pages in the zone have been
1998  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1999  * dead and from now on, only perform a short scan.  Basically we're polling
2000  * the zone for when the problem goes away.
2001  *
2002  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2003  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2004  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2005  * lower zones regardless of the number of free pages in the lower zones. This
2006  * interoperates with the page allocator fallback scheme to ensure that aging
2007  * of pages is balanced across the zones.
2008  */
2009 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2010 {
2011 	int all_zones_ok;
2012 	int priority;
2013 	int i;
2014 	unsigned long total_scanned;
2015 	struct reclaim_state *reclaim_state = current->reclaim_state;
2016 	struct scan_control sc = {
2017 		.gfp_mask = GFP_KERNEL,
2018 		.may_unmap = 1,
2019 		.may_swap = 1,
2020 		/*
2021 		 * kswapd doesn't want to be bailed out while reclaim. because
2022 		 * we want to put equal scanning pressure on each zone.
2023 		 */
2024 		.nr_to_reclaim = ULONG_MAX,
2025 		.swappiness = vm_swappiness,
2026 		.order = order,
2027 		.mem_cgroup = NULL,
2028 	};
2029 	/*
2030 	 * temp_priority is used to remember the scanning priority at which
2031 	 * this zone was successfully refilled to
2032 	 * free_pages == high_wmark_pages(zone).
2033 	 */
2034 	int temp_priority[MAX_NR_ZONES];
2035 
2036 loop_again:
2037 	total_scanned = 0;
2038 	sc.nr_reclaimed = 0;
2039 	sc.may_writepage = !laptop_mode;
2040 	count_vm_event(PAGEOUTRUN);
2041 
2042 	for (i = 0; i < pgdat->nr_zones; i++)
2043 		temp_priority[i] = DEF_PRIORITY;
2044 
2045 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2046 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2047 		unsigned long lru_pages = 0;
2048 		int has_under_min_watermark_zone = 0;
2049 
2050 		/* The swap token gets in the way of swapout... */
2051 		if (!priority)
2052 			disable_swap_token();
2053 
2054 		all_zones_ok = 1;
2055 
2056 		/*
2057 		 * Scan in the highmem->dma direction for the highest
2058 		 * zone which needs scanning
2059 		 */
2060 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2061 			struct zone *zone = pgdat->node_zones + i;
2062 
2063 			if (!populated_zone(zone))
2064 				continue;
2065 
2066 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2067 				continue;
2068 
2069 			/*
2070 			 * Do some background aging of the anon list, to give
2071 			 * pages a chance to be referenced before reclaiming.
2072 			 */
2073 			if (inactive_anon_is_low(zone, &sc))
2074 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2075 							&sc, priority, 0);
2076 
2077 			if (!zone_watermark_ok(zone, order,
2078 					high_wmark_pages(zone), 0, 0)) {
2079 				end_zone = i;
2080 				break;
2081 			}
2082 		}
2083 		if (i < 0)
2084 			goto out;
2085 
2086 		for (i = 0; i <= end_zone; i++) {
2087 			struct zone *zone = pgdat->node_zones + i;
2088 
2089 			lru_pages += zone_reclaimable_pages(zone);
2090 		}
2091 
2092 		/*
2093 		 * Now scan the zone in the dma->highmem direction, stopping
2094 		 * at the last zone which needs scanning.
2095 		 *
2096 		 * We do this because the page allocator works in the opposite
2097 		 * direction.  This prevents the page allocator from allocating
2098 		 * pages behind kswapd's direction of progress, which would
2099 		 * cause too much scanning of the lower zones.
2100 		 */
2101 		for (i = 0; i <= end_zone; i++) {
2102 			struct zone *zone = pgdat->node_zones + i;
2103 			int nr_slab;
2104 			int nid, zid;
2105 
2106 			if (!populated_zone(zone))
2107 				continue;
2108 
2109 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2110 				continue;
2111 
2112 			temp_priority[i] = priority;
2113 			sc.nr_scanned = 0;
2114 			note_zone_scanning_priority(zone, priority);
2115 
2116 			nid = pgdat->node_id;
2117 			zid = zone_idx(zone);
2118 			/*
2119 			 * Call soft limit reclaim before calling shrink_zone.
2120 			 * For now we ignore the return value
2121 			 */
2122 			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2123 							nid, zid);
2124 			/*
2125 			 * We put equal pressure on every zone, unless one
2126 			 * zone has way too many pages free already.
2127 			 */
2128 			if (!zone_watermark_ok(zone, order,
2129 					8*high_wmark_pages(zone), end_zone, 0))
2130 				shrink_zone(priority, zone, &sc);
2131 			reclaim_state->reclaimed_slab = 0;
2132 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2133 						lru_pages);
2134 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2135 			total_scanned += sc.nr_scanned;
2136 			if (zone->all_unreclaimable)
2137 				continue;
2138 			if (nr_slab == 0 &&
2139 			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2140 				zone->all_unreclaimable = 1;
2141 			/*
2142 			 * If we've done a decent amount of scanning and
2143 			 * the reclaim ratio is low, start doing writepage
2144 			 * even in laptop mode
2145 			 */
2146 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2147 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2148 				sc.may_writepage = 1;
2149 
2150 			if (!zone_watermark_ok(zone, order,
2151 					high_wmark_pages(zone), end_zone, 0)) {
2152 				all_zones_ok = 0;
2153 				/*
2154 				 * We are still under min water mark.  This
2155 				 * means that we have a GFP_ATOMIC allocation
2156 				 * failure risk. Hurry up!
2157 				 */
2158 				if (!zone_watermark_ok(zone, order,
2159 					    min_wmark_pages(zone), end_zone, 0))
2160 					has_under_min_watermark_zone = 1;
2161 			}
2162 
2163 		}
2164 		if (all_zones_ok)
2165 			break;		/* kswapd: all done */
2166 		/*
2167 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2168 		 * another pass across the zones.
2169 		 */
2170 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2171 			if (has_under_min_watermark_zone)
2172 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2173 			else
2174 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2175 		}
2176 
2177 		/*
2178 		 * We do this so kswapd doesn't build up large priorities for
2179 		 * example when it is freeing in parallel with allocators. It
2180 		 * matches the direct reclaim path behaviour in terms of impact
2181 		 * on zone->*_priority.
2182 		 */
2183 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2184 			break;
2185 	}
2186 out:
2187 	/*
2188 	 * Note within each zone the priority level at which this zone was
2189 	 * brought into a happy state.  So that the next thread which scans this
2190 	 * zone will start out at that priority level.
2191 	 */
2192 	for (i = 0; i < pgdat->nr_zones; i++) {
2193 		struct zone *zone = pgdat->node_zones + i;
2194 
2195 		zone->prev_priority = temp_priority[i];
2196 	}
2197 	if (!all_zones_ok) {
2198 		cond_resched();
2199 
2200 		try_to_freeze();
2201 
2202 		/*
2203 		 * Fragmentation may mean that the system cannot be
2204 		 * rebalanced for high-order allocations in all zones.
2205 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2206 		 * it means the zones have been fully scanned and are still
2207 		 * not balanced. For high-order allocations, there is
2208 		 * little point trying all over again as kswapd may
2209 		 * infinite loop.
2210 		 *
2211 		 * Instead, recheck all watermarks at order-0 as they
2212 		 * are the most important. If watermarks are ok, kswapd will go
2213 		 * back to sleep. High-order users can still perform direct
2214 		 * reclaim if they wish.
2215 		 */
2216 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2217 			order = sc.order = 0;
2218 
2219 		goto loop_again;
2220 	}
2221 
2222 	return sc.nr_reclaimed;
2223 }
2224 
2225 /*
2226  * The background pageout daemon, started as a kernel thread
2227  * from the init process.
2228  *
2229  * This basically trickles out pages so that we have _some_
2230  * free memory available even if there is no other activity
2231  * that frees anything up. This is needed for things like routing
2232  * etc, where we otherwise might have all activity going on in
2233  * asynchronous contexts that cannot page things out.
2234  *
2235  * If there are applications that are active memory-allocators
2236  * (most normal use), this basically shouldn't matter.
2237  */
2238 static int kswapd(void *p)
2239 {
2240 	unsigned long order;
2241 	pg_data_t *pgdat = (pg_data_t*)p;
2242 	struct task_struct *tsk = current;
2243 	DEFINE_WAIT(wait);
2244 	struct reclaim_state reclaim_state = {
2245 		.reclaimed_slab = 0,
2246 	};
2247 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2248 
2249 	lockdep_set_current_reclaim_state(GFP_KERNEL);
2250 
2251 	if (!cpumask_empty(cpumask))
2252 		set_cpus_allowed_ptr(tsk, cpumask);
2253 	current->reclaim_state = &reclaim_state;
2254 
2255 	/*
2256 	 * Tell the memory management that we're a "memory allocator",
2257 	 * and that if we need more memory we should get access to it
2258 	 * regardless (see "__alloc_pages()"). "kswapd" should
2259 	 * never get caught in the normal page freeing logic.
2260 	 *
2261 	 * (Kswapd normally doesn't need memory anyway, but sometimes
2262 	 * you need a small amount of memory in order to be able to
2263 	 * page out something else, and this flag essentially protects
2264 	 * us from recursively trying to free more memory as we're
2265 	 * trying to free the first piece of memory in the first place).
2266 	 */
2267 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2268 	set_freezable();
2269 
2270 	order = 0;
2271 	for ( ; ; ) {
2272 		unsigned long new_order;
2273 		int ret;
2274 
2275 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2276 		new_order = pgdat->kswapd_max_order;
2277 		pgdat->kswapd_max_order = 0;
2278 		if (order < new_order) {
2279 			/*
2280 			 * Don't sleep if someone wants a larger 'order'
2281 			 * allocation
2282 			 */
2283 			order = new_order;
2284 		} else {
2285 			if (!freezing(current) && !kthread_should_stop()) {
2286 				long remaining = 0;
2287 
2288 				/* Try to sleep for a short interval */
2289 				if (!sleeping_prematurely(pgdat, order, remaining)) {
2290 					remaining = schedule_timeout(HZ/10);
2291 					finish_wait(&pgdat->kswapd_wait, &wait);
2292 					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2293 				}
2294 
2295 				/*
2296 				 * After a short sleep, check if it was a
2297 				 * premature sleep. If not, then go fully
2298 				 * to sleep until explicitly woken up
2299 				 */
2300 				if (!sleeping_prematurely(pgdat, order, remaining))
2301 					schedule();
2302 				else {
2303 					if (remaining)
2304 						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2305 					else
2306 						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2307 				}
2308 			}
2309 
2310 			order = pgdat->kswapd_max_order;
2311 		}
2312 		finish_wait(&pgdat->kswapd_wait, &wait);
2313 
2314 		ret = try_to_freeze();
2315 		if (kthread_should_stop())
2316 			break;
2317 
2318 		/*
2319 		 * We can speed up thawing tasks if we don't call balance_pgdat
2320 		 * after returning from the refrigerator
2321 		 */
2322 		if (!ret)
2323 			balance_pgdat(pgdat, order);
2324 	}
2325 	return 0;
2326 }
2327 
2328 /*
2329  * A zone is low on free memory, so wake its kswapd task to service it.
2330  */
2331 void wakeup_kswapd(struct zone *zone, int order)
2332 {
2333 	pg_data_t *pgdat;
2334 
2335 	if (!populated_zone(zone))
2336 		return;
2337 
2338 	pgdat = zone->zone_pgdat;
2339 	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2340 		return;
2341 	if (pgdat->kswapd_max_order < order)
2342 		pgdat->kswapd_max_order = order;
2343 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2344 		return;
2345 	if (!waitqueue_active(&pgdat->kswapd_wait))
2346 		return;
2347 	wake_up_interruptible(&pgdat->kswapd_wait);
2348 }
2349 
2350 /*
2351  * The reclaimable count would be mostly accurate.
2352  * The less reclaimable pages may be
2353  * - mlocked pages, which will be moved to unevictable list when encountered
2354  * - mapped pages, which may require several travels to be reclaimed
2355  * - dirty pages, which is not "instantly" reclaimable
2356  */
2357 unsigned long global_reclaimable_pages(void)
2358 {
2359 	int nr;
2360 
2361 	nr = global_page_state(NR_ACTIVE_FILE) +
2362 	     global_page_state(NR_INACTIVE_FILE);
2363 
2364 	if (nr_swap_pages > 0)
2365 		nr += global_page_state(NR_ACTIVE_ANON) +
2366 		      global_page_state(NR_INACTIVE_ANON);
2367 
2368 	return nr;
2369 }
2370 
2371 unsigned long zone_reclaimable_pages(struct zone *zone)
2372 {
2373 	int nr;
2374 
2375 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2376 	     zone_page_state(zone, NR_INACTIVE_FILE);
2377 
2378 	if (nr_swap_pages > 0)
2379 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2380 		      zone_page_state(zone, NR_INACTIVE_ANON);
2381 
2382 	return nr;
2383 }
2384 
2385 #ifdef CONFIG_HIBERNATION
2386 /*
2387  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2388  * freed pages.
2389  *
2390  * Rather than trying to age LRUs the aim is to preserve the overall
2391  * LRU order by reclaiming preferentially
2392  * inactive > active > active referenced > active mapped
2393  */
2394 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2395 {
2396 	struct reclaim_state reclaim_state;
2397 	struct scan_control sc = {
2398 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2399 		.may_swap = 1,
2400 		.may_unmap = 1,
2401 		.may_writepage = 1,
2402 		.nr_to_reclaim = nr_to_reclaim,
2403 		.hibernation_mode = 1,
2404 		.swappiness = vm_swappiness,
2405 		.order = 0,
2406 	};
2407 	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2408 	struct task_struct *p = current;
2409 	unsigned long nr_reclaimed;
2410 
2411 	p->flags |= PF_MEMALLOC;
2412 	lockdep_set_current_reclaim_state(sc.gfp_mask);
2413 	reclaim_state.reclaimed_slab = 0;
2414 	p->reclaim_state = &reclaim_state;
2415 
2416 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2417 
2418 	p->reclaim_state = NULL;
2419 	lockdep_clear_current_reclaim_state();
2420 	p->flags &= ~PF_MEMALLOC;
2421 
2422 	return nr_reclaimed;
2423 }
2424 #endif /* CONFIG_HIBERNATION */
2425 
2426 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2427    not required for correctness.  So if the last cpu in a node goes
2428    away, we get changed to run anywhere: as the first one comes back,
2429    restore their cpu bindings. */
2430 static int __devinit cpu_callback(struct notifier_block *nfb,
2431 				  unsigned long action, void *hcpu)
2432 {
2433 	int nid;
2434 
2435 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2436 		for_each_node_state(nid, N_HIGH_MEMORY) {
2437 			pg_data_t *pgdat = NODE_DATA(nid);
2438 			const struct cpumask *mask;
2439 
2440 			mask = cpumask_of_node(pgdat->node_id);
2441 
2442 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2443 				/* One of our CPUs online: restore mask */
2444 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2445 		}
2446 	}
2447 	return NOTIFY_OK;
2448 }
2449 
2450 /*
2451  * This kswapd start function will be called by init and node-hot-add.
2452  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2453  */
2454 int kswapd_run(int nid)
2455 {
2456 	pg_data_t *pgdat = NODE_DATA(nid);
2457 	int ret = 0;
2458 
2459 	if (pgdat->kswapd)
2460 		return 0;
2461 
2462 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2463 	if (IS_ERR(pgdat->kswapd)) {
2464 		/* failure at boot is fatal */
2465 		BUG_ON(system_state == SYSTEM_BOOTING);
2466 		printk("Failed to start kswapd on node %d\n",nid);
2467 		ret = -1;
2468 	}
2469 	return ret;
2470 }
2471 
2472 /*
2473  * Called by memory hotplug when all memory in a node is offlined.
2474  */
2475 void kswapd_stop(int nid)
2476 {
2477 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2478 
2479 	if (kswapd)
2480 		kthread_stop(kswapd);
2481 }
2482 
2483 static int __init kswapd_init(void)
2484 {
2485 	int nid;
2486 
2487 	swap_setup();
2488 	for_each_node_state(nid, N_HIGH_MEMORY)
2489  		kswapd_run(nid);
2490 	hotcpu_notifier(cpu_callback, 0);
2491 	return 0;
2492 }
2493 
2494 module_init(kswapd_init)
2495 
2496 #ifdef CONFIG_NUMA
2497 /*
2498  * Zone reclaim mode
2499  *
2500  * If non-zero call zone_reclaim when the number of free pages falls below
2501  * the watermarks.
2502  */
2503 int zone_reclaim_mode __read_mostly;
2504 
2505 #define RECLAIM_OFF 0
2506 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2507 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2508 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2509 
2510 /*
2511  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2512  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2513  * a zone.
2514  */
2515 #define ZONE_RECLAIM_PRIORITY 4
2516 
2517 /*
2518  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2519  * occur.
2520  */
2521 int sysctl_min_unmapped_ratio = 1;
2522 
2523 /*
2524  * If the number of slab pages in a zone grows beyond this percentage then
2525  * slab reclaim needs to occur.
2526  */
2527 int sysctl_min_slab_ratio = 5;
2528 
2529 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2530 {
2531 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2532 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2533 		zone_page_state(zone, NR_ACTIVE_FILE);
2534 
2535 	/*
2536 	 * It's possible for there to be more file mapped pages than
2537 	 * accounted for by the pages on the file LRU lists because
2538 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2539 	 */
2540 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2541 }
2542 
2543 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2544 static long zone_pagecache_reclaimable(struct zone *zone)
2545 {
2546 	long nr_pagecache_reclaimable;
2547 	long delta = 0;
2548 
2549 	/*
2550 	 * If RECLAIM_SWAP is set, then all file pages are considered
2551 	 * potentially reclaimable. Otherwise, we have to worry about
2552 	 * pages like swapcache and zone_unmapped_file_pages() provides
2553 	 * a better estimate
2554 	 */
2555 	if (zone_reclaim_mode & RECLAIM_SWAP)
2556 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2557 	else
2558 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2559 
2560 	/* If we can't clean pages, remove dirty pages from consideration */
2561 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
2562 		delta += zone_page_state(zone, NR_FILE_DIRTY);
2563 
2564 	/* Watch for any possible underflows due to delta */
2565 	if (unlikely(delta > nr_pagecache_reclaimable))
2566 		delta = nr_pagecache_reclaimable;
2567 
2568 	return nr_pagecache_reclaimable - delta;
2569 }
2570 
2571 /*
2572  * Try to free up some pages from this zone through reclaim.
2573  */
2574 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2575 {
2576 	/* Minimum pages needed in order to stay on node */
2577 	const unsigned long nr_pages = 1 << order;
2578 	struct task_struct *p = current;
2579 	struct reclaim_state reclaim_state;
2580 	int priority;
2581 	struct scan_control sc = {
2582 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2583 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2584 		.may_swap = 1,
2585 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
2586 				       SWAP_CLUSTER_MAX),
2587 		.gfp_mask = gfp_mask,
2588 		.swappiness = vm_swappiness,
2589 		.order = order,
2590 	};
2591 	unsigned long slab_reclaimable;
2592 
2593 	disable_swap_token();
2594 	cond_resched();
2595 	/*
2596 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2597 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2598 	 * and RECLAIM_SWAP.
2599 	 */
2600 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2601 	lockdep_set_current_reclaim_state(gfp_mask);
2602 	reclaim_state.reclaimed_slab = 0;
2603 	p->reclaim_state = &reclaim_state;
2604 
2605 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2606 		/*
2607 		 * Free memory by calling shrink zone with increasing
2608 		 * priorities until we have enough memory freed.
2609 		 */
2610 		priority = ZONE_RECLAIM_PRIORITY;
2611 		do {
2612 			note_zone_scanning_priority(zone, priority);
2613 			shrink_zone(priority, zone, &sc);
2614 			priority--;
2615 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2616 	}
2617 
2618 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2619 	if (slab_reclaimable > zone->min_slab_pages) {
2620 		/*
2621 		 * shrink_slab() does not currently allow us to determine how
2622 		 * many pages were freed in this zone. So we take the current
2623 		 * number of slab pages and shake the slab until it is reduced
2624 		 * by the same nr_pages that we used for reclaiming unmapped
2625 		 * pages.
2626 		 *
2627 		 * Note that shrink_slab will free memory on all zones and may
2628 		 * take a long time.
2629 		 */
2630 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2631 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2632 				slab_reclaimable - nr_pages)
2633 			;
2634 
2635 		/*
2636 		 * Update nr_reclaimed by the number of slab pages we
2637 		 * reclaimed from this zone.
2638 		 */
2639 		sc.nr_reclaimed += slab_reclaimable -
2640 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2641 	}
2642 
2643 	p->reclaim_state = NULL;
2644 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2645 	lockdep_clear_current_reclaim_state();
2646 	return sc.nr_reclaimed >= nr_pages;
2647 }
2648 
2649 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2650 {
2651 	int node_id;
2652 	int ret;
2653 
2654 	/*
2655 	 * Zone reclaim reclaims unmapped file backed pages and
2656 	 * slab pages if we are over the defined limits.
2657 	 *
2658 	 * A small portion of unmapped file backed pages is needed for
2659 	 * file I/O otherwise pages read by file I/O will be immediately
2660 	 * thrown out if the zone is overallocated. So we do not reclaim
2661 	 * if less than a specified percentage of the zone is used by
2662 	 * unmapped file backed pages.
2663 	 */
2664 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2665 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2666 		return ZONE_RECLAIM_FULL;
2667 
2668 	if (zone->all_unreclaimable)
2669 		return ZONE_RECLAIM_FULL;
2670 
2671 	/*
2672 	 * Do not scan if the allocation should not be delayed.
2673 	 */
2674 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2675 		return ZONE_RECLAIM_NOSCAN;
2676 
2677 	/*
2678 	 * Only run zone reclaim on the local zone or on zones that do not
2679 	 * have associated processors. This will favor the local processor
2680 	 * over remote processors and spread off node memory allocations
2681 	 * as wide as possible.
2682 	 */
2683 	node_id = zone_to_nid(zone);
2684 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2685 		return ZONE_RECLAIM_NOSCAN;
2686 
2687 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2688 		return ZONE_RECLAIM_NOSCAN;
2689 
2690 	ret = __zone_reclaim(zone, gfp_mask, order);
2691 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2692 
2693 	if (!ret)
2694 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2695 
2696 	return ret;
2697 }
2698 #endif
2699 
2700 /*
2701  * page_evictable - test whether a page is evictable
2702  * @page: the page to test
2703  * @vma: the VMA in which the page is or will be mapped, may be NULL
2704  *
2705  * Test whether page is evictable--i.e., should be placed on active/inactive
2706  * lists vs unevictable list.  The vma argument is !NULL when called from the
2707  * fault path to determine how to instantate a new page.
2708  *
2709  * Reasons page might not be evictable:
2710  * (1) page's mapping marked unevictable
2711  * (2) page is part of an mlocked VMA
2712  *
2713  */
2714 int page_evictable(struct page *page, struct vm_area_struct *vma)
2715 {
2716 
2717 	if (mapping_unevictable(page_mapping(page)))
2718 		return 0;
2719 
2720 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2721 		return 0;
2722 
2723 	return 1;
2724 }
2725 
2726 /**
2727  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2728  * @page: page to check evictability and move to appropriate lru list
2729  * @zone: zone page is in
2730  *
2731  * Checks a page for evictability and moves the page to the appropriate
2732  * zone lru list.
2733  *
2734  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2735  * have PageUnevictable set.
2736  */
2737 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2738 {
2739 	VM_BUG_ON(PageActive(page));
2740 
2741 retry:
2742 	ClearPageUnevictable(page);
2743 	if (page_evictable(page, NULL)) {
2744 		enum lru_list l = page_lru_base_type(page);
2745 
2746 		__dec_zone_state(zone, NR_UNEVICTABLE);
2747 		list_move(&page->lru, &zone->lru[l].list);
2748 		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2749 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2750 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2751 	} else {
2752 		/*
2753 		 * rotate unevictable list
2754 		 */
2755 		SetPageUnevictable(page);
2756 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2757 		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2758 		if (page_evictable(page, NULL))
2759 			goto retry;
2760 	}
2761 }
2762 
2763 /**
2764  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2765  * @mapping: struct address_space to scan for evictable pages
2766  *
2767  * Scan all pages in mapping.  Check unevictable pages for
2768  * evictability and move them to the appropriate zone lru list.
2769  */
2770 void scan_mapping_unevictable_pages(struct address_space *mapping)
2771 {
2772 	pgoff_t next = 0;
2773 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2774 			 PAGE_CACHE_SHIFT;
2775 	struct zone *zone;
2776 	struct pagevec pvec;
2777 
2778 	if (mapping->nrpages == 0)
2779 		return;
2780 
2781 	pagevec_init(&pvec, 0);
2782 	while (next < end &&
2783 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2784 		int i;
2785 		int pg_scanned = 0;
2786 
2787 		zone = NULL;
2788 
2789 		for (i = 0; i < pagevec_count(&pvec); i++) {
2790 			struct page *page = pvec.pages[i];
2791 			pgoff_t page_index = page->index;
2792 			struct zone *pagezone = page_zone(page);
2793 
2794 			pg_scanned++;
2795 			if (page_index > next)
2796 				next = page_index;
2797 			next++;
2798 
2799 			if (pagezone != zone) {
2800 				if (zone)
2801 					spin_unlock_irq(&zone->lru_lock);
2802 				zone = pagezone;
2803 				spin_lock_irq(&zone->lru_lock);
2804 			}
2805 
2806 			if (PageLRU(page) && PageUnevictable(page))
2807 				check_move_unevictable_page(page, zone);
2808 		}
2809 		if (zone)
2810 			spin_unlock_irq(&zone->lru_lock);
2811 		pagevec_release(&pvec);
2812 
2813 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2814 	}
2815 
2816 }
2817 
2818 /**
2819  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2820  * @zone - zone of which to scan the unevictable list
2821  *
2822  * Scan @zone's unevictable LRU lists to check for pages that have become
2823  * evictable.  Move those that have to @zone's inactive list where they
2824  * become candidates for reclaim, unless shrink_inactive_zone() decides
2825  * to reactivate them.  Pages that are still unevictable are rotated
2826  * back onto @zone's unevictable list.
2827  */
2828 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2829 static void scan_zone_unevictable_pages(struct zone *zone)
2830 {
2831 	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2832 	unsigned long scan;
2833 	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2834 
2835 	while (nr_to_scan > 0) {
2836 		unsigned long batch_size = min(nr_to_scan,
2837 						SCAN_UNEVICTABLE_BATCH_SIZE);
2838 
2839 		spin_lock_irq(&zone->lru_lock);
2840 		for (scan = 0;  scan < batch_size; scan++) {
2841 			struct page *page = lru_to_page(l_unevictable);
2842 
2843 			if (!trylock_page(page))
2844 				continue;
2845 
2846 			prefetchw_prev_lru_page(page, l_unevictable, flags);
2847 
2848 			if (likely(PageLRU(page) && PageUnevictable(page)))
2849 				check_move_unevictable_page(page, zone);
2850 
2851 			unlock_page(page);
2852 		}
2853 		spin_unlock_irq(&zone->lru_lock);
2854 
2855 		nr_to_scan -= batch_size;
2856 	}
2857 }
2858 
2859 
2860 /**
2861  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2862  *
2863  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2864  * pages that have become evictable.  Move those back to the zones'
2865  * inactive list where they become candidates for reclaim.
2866  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2867  * and we add swap to the system.  As such, it runs in the context of a task
2868  * that has possibly/probably made some previously unevictable pages
2869  * evictable.
2870  */
2871 static void scan_all_zones_unevictable_pages(void)
2872 {
2873 	struct zone *zone;
2874 
2875 	for_each_zone(zone) {
2876 		scan_zone_unevictable_pages(zone);
2877 	}
2878 }
2879 
2880 /*
2881  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2882  * all nodes' unevictable lists for evictable pages
2883  */
2884 unsigned long scan_unevictable_pages;
2885 
2886 int scan_unevictable_handler(struct ctl_table *table, int write,
2887 			   void __user *buffer,
2888 			   size_t *length, loff_t *ppos)
2889 {
2890 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2891 
2892 	if (write && *(unsigned long *)table->data)
2893 		scan_all_zones_unevictable_pages();
2894 
2895 	scan_unevictable_pages = 0;
2896 	return 0;
2897 }
2898 
2899 /*
2900  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2901  * a specified node's per zone unevictable lists for evictable pages.
2902  */
2903 
2904 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2905 					  struct sysdev_attribute *attr,
2906 					  char *buf)
2907 {
2908 	return sprintf(buf, "0\n");	/* always zero; should fit... */
2909 }
2910 
2911 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2912 					   struct sysdev_attribute *attr,
2913 					const char *buf, size_t count)
2914 {
2915 	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2916 	struct zone *zone;
2917 	unsigned long res;
2918 	unsigned long req = strict_strtoul(buf, 10, &res);
2919 
2920 	if (!req)
2921 		return 1;	/* zero is no-op */
2922 
2923 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2924 		if (!populated_zone(zone))
2925 			continue;
2926 		scan_zone_unevictable_pages(zone);
2927 	}
2928 	return 1;
2929 }
2930 
2931 
2932 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2933 			read_scan_unevictable_node,
2934 			write_scan_unevictable_node);
2935 
2936 int scan_unevictable_register_node(struct node *node)
2937 {
2938 	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2939 }
2940 
2941 void scan_unevictable_unregister_node(struct node *node)
2942 {
2943 	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2944 }
2945 
2946