1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 44 #include <asm/tlbflush.h> 45 #include <asm/div64.h> 46 47 #include <linux/swapops.h> 48 49 #include "internal.h" 50 51 struct scan_control { 52 /* Incremented by the number of inactive pages that were scanned */ 53 unsigned long nr_scanned; 54 55 /* Number of pages freed so far during a call to shrink_zones() */ 56 unsigned long nr_reclaimed; 57 58 /* How many pages shrink_list() should reclaim */ 59 unsigned long nr_to_reclaim; 60 61 unsigned long hibernation_mode; 62 63 /* This context's GFP mask */ 64 gfp_t gfp_mask; 65 66 int may_writepage; 67 68 /* Can mapped pages be reclaimed? */ 69 int may_unmap; 70 71 /* Can pages be swapped as part of reclaim? */ 72 int may_swap; 73 74 int swappiness; 75 76 int order; 77 78 /* 79 * Intend to reclaim enough contenious memory rather than to reclaim 80 * enough amount memory. I.e, it's the mode for high order allocation. 81 */ 82 bool lumpy_reclaim_mode; 83 84 /* Which cgroup do we reclaim from */ 85 struct mem_cgroup *mem_cgroup; 86 87 /* 88 * Nodemask of nodes allowed by the caller. If NULL, all nodes 89 * are scanned. 90 */ 91 nodemask_t *nodemask; 92 }; 93 94 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 95 96 #ifdef ARCH_HAS_PREFETCH 97 #define prefetch_prev_lru_page(_page, _base, _field) \ 98 do { \ 99 if ((_page)->lru.prev != _base) { \ 100 struct page *prev; \ 101 \ 102 prev = lru_to_page(&(_page->lru)); \ 103 prefetch(&prev->_field); \ 104 } \ 105 } while (0) 106 #else 107 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 108 #endif 109 110 #ifdef ARCH_HAS_PREFETCHW 111 #define prefetchw_prev_lru_page(_page, _base, _field) \ 112 do { \ 113 if ((_page)->lru.prev != _base) { \ 114 struct page *prev; \ 115 \ 116 prev = lru_to_page(&(_page->lru)); \ 117 prefetchw(&prev->_field); \ 118 } \ 119 } while (0) 120 #else 121 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 122 #endif 123 124 /* 125 * From 0 .. 100. Higher means more swappy. 126 */ 127 int vm_swappiness = 60; 128 long vm_total_pages; /* The total number of pages which the VM controls */ 129 130 static LIST_HEAD(shrinker_list); 131 static DECLARE_RWSEM(shrinker_rwsem); 132 133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 134 #define scanning_global_lru(sc) (!(sc)->mem_cgroup) 135 #else 136 #define scanning_global_lru(sc) (1) 137 #endif 138 139 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone, 140 struct scan_control *sc) 141 { 142 if (!scanning_global_lru(sc)) 143 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone); 144 145 return &zone->reclaim_stat; 146 } 147 148 static unsigned long zone_nr_lru_pages(struct zone *zone, 149 struct scan_control *sc, enum lru_list lru) 150 { 151 if (!scanning_global_lru(sc)) 152 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru); 153 154 return zone_page_state(zone, NR_LRU_BASE + lru); 155 } 156 157 158 /* 159 * Add a shrinker callback to be called from the vm 160 */ 161 void register_shrinker(struct shrinker *shrinker) 162 { 163 shrinker->nr = 0; 164 down_write(&shrinker_rwsem); 165 list_add_tail(&shrinker->list, &shrinker_list); 166 up_write(&shrinker_rwsem); 167 } 168 EXPORT_SYMBOL(register_shrinker); 169 170 /* 171 * Remove one 172 */ 173 void unregister_shrinker(struct shrinker *shrinker) 174 { 175 down_write(&shrinker_rwsem); 176 list_del(&shrinker->list); 177 up_write(&shrinker_rwsem); 178 } 179 EXPORT_SYMBOL(unregister_shrinker); 180 181 #define SHRINK_BATCH 128 182 /* 183 * Call the shrink functions to age shrinkable caches 184 * 185 * Here we assume it costs one seek to replace a lru page and that it also 186 * takes a seek to recreate a cache object. With this in mind we age equal 187 * percentages of the lru and ageable caches. This should balance the seeks 188 * generated by these structures. 189 * 190 * If the vm encountered mapped pages on the LRU it increase the pressure on 191 * slab to avoid swapping. 192 * 193 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 194 * 195 * `lru_pages' represents the number of on-LRU pages in all the zones which 196 * are eligible for the caller's allocation attempt. It is used for balancing 197 * slab reclaim versus page reclaim. 198 * 199 * Returns the number of slab objects which we shrunk. 200 */ 201 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 202 unsigned long lru_pages) 203 { 204 struct shrinker *shrinker; 205 unsigned long ret = 0; 206 207 if (scanned == 0) 208 scanned = SWAP_CLUSTER_MAX; 209 210 if (!down_read_trylock(&shrinker_rwsem)) 211 return 1; /* Assume we'll be able to shrink next time */ 212 213 list_for_each_entry(shrinker, &shrinker_list, list) { 214 unsigned long long delta; 215 unsigned long total_scan; 216 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 217 218 delta = (4 * scanned) / shrinker->seeks; 219 delta *= max_pass; 220 do_div(delta, lru_pages + 1); 221 shrinker->nr += delta; 222 if (shrinker->nr < 0) { 223 printk(KERN_ERR "shrink_slab: %pF negative objects to " 224 "delete nr=%ld\n", 225 shrinker->shrink, shrinker->nr); 226 shrinker->nr = max_pass; 227 } 228 229 /* 230 * Avoid risking looping forever due to too large nr value: 231 * never try to free more than twice the estimate number of 232 * freeable entries. 233 */ 234 if (shrinker->nr > max_pass * 2) 235 shrinker->nr = max_pass * 2; 236 237 total_scan = shrinker->nr; 238 shrinker->nr = 0; 239 240 while (total_scan >= SHRINK_BATCH) { 241 long this_scan = SHRINK_BATCH; 242 int shrink_ret; 243 int nr_before; 244 245 nr_before = (*shrinker->shrink)(0, gfp_mask); 246 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 247 if (shrink_ret == -1) 248 break; 249 if (shrink_ret < nr_before) 250 ret += nr_before - shrink_ret; 251 count_vm_events(SLABS_SCANNED, this_scan); 252 total_scan -= this_scan; 253 254 cond_resched(); 255 } 256 257 shrinker->nr += total_scan; 258 } 259 up_read(&shrinker_rwsem); 260 return ret; 261 } 262 263 static inline int is_page_cache_freeable(struct page *page) 264 { 265 /* 266 * A freeable page cache page is referenced only by the caller 267 * that isolated the page, the page cache radix tree and 268 * optional buffer heads at page->private. 269 */ 270 return page_count(page) - page_has_private(page) == 2; 271 } 272 273 static int may_write_to_queue(struct backing_dev_info *bdi) 274 { 275 if (current->flags & PF_SWAPWRITE) 276 return 1; 277 if (!bdi_write_congested(bdi)) 278 return 1; 279 if (bdi == current->backing_dev_info) 280 return 1; 281 return 0; 282 } 283 284 /* 285 * We detected a synchronous write error writing a page out. Probably 286 * -ENOSPC. We need to propagate that into the address_space for a subsequent 287 * fsync(), msync() or close(). 288 * 289 * The tricky part is that after writepage we cannot touch the mapping: nothing 290 * prevents it from being freed up. But we have a ref on the page and once 291 * that page is locked, the mapping is pinned. 292 * 293 * We're allowed to run sleeping lock_page() here because we know the caller has 294 * __GFP_FS. 295 */ 296 static void handle_write_error(struct address_space *mapping, 297 struct page *page, int error) 298 { 299 lock_page(page); 300 if (page_mapping(page) == mapping) 301 mapping_set_error(mapping, error); 302 unlock_page(page); 303 } 304 305 /* Request for sync pageout. */ 306 enum pageout_io { 307 PAGEOUT_IO_ASYNC, 308 PAGEOUT_IO_SYNC, 309 }; 310 311 /* possible outcome of pageout() */ 312 typedef enum { 313 /* failed to write page out, page is locked */ 314 PAGE_KEEP, 315 /* move page to the active list, page is locked */ 316 PAGE_ACTIVATE, 317 /* page has been sent to the disk successfully, page is unlocked */ 318 PAGE_SUCCESS, 319 /* page is clean and locked */ 320 PAGE_CLEAN, 321 } pageout_t; 322 323 /* 324 * pageout is called by shrink_page_list() for each dirty page. 325 * Calls ->writepage(). 326 */ 327 static pageout_t pageout(struct page *page, struct address_space *mapping, 328 enum pageout_io sync_writeback) 329 { 330 /* 331 * If the page is dirty, only perform writeback if that write 332 * will be non-blocking. To prevent this allocation from being 333 * stalled by pagecache activity. But note that there may be 334 * stalls if we need to run get_block(). We could test 335 * PagePrivate for that. 336 * 337 * If this process is currently in __generic_file_aio_write() against 338 * this page's queue, we can perform writeback even if that 339 * will block. 340 * 341 * If the page is swapcache, write it back even if that would 342 * block, for some throttling. This happens by accident, because 343 * swap_backing_dev_info is bust: it doesn't reflect the 344 * congestion state of the swapdevs. Easy to fix, if needed. 345 */ 346 if (!is_page_cache_freeable(page)) 347 return PAGE_KEEP; 348 if (!mapping) { 349 /* 350 * Some data journaling orphaned pages can have 351 * page->mapping == NULL while being dirty with clean buffers. 352 */ 353 if (page_has_private(page)) { 354 if (try_to_free_buffers(page)) { 355 ClearPageDirty(page); 356 printk("%s: orphaned page\n", __func__); 357 return PAGE_CLEAN; 358 } 359 } 360 return PAGE_KEEP; 361 } 362 if (mapping->a_ops->writepage == NULL) 363 return PAGE_ACTIVATE; 364 if (!may_write_to_queue(mapping->backing_dev_info)) 365 return PAGE_KEEP; 366 367 if (clear_page_dirty_for_io(page)) { 368 int res; 369 struct writeback_control wbc = { 370 .sync_mode = WB_SYNC_NONE, 371 .nr_to_write = SWAP_CLUSTER_MAX, 372 .range_start = 0, 373 .range_end = LLONG_MAX, 374 .nonblocking = 1, 375 .for_reclaim = 1, 376 }; 377 378 SetPageReclaim(page); 379 res = mapping->a_ops->writepage(page, &wbc); 380 if (res < 0) 381 handle_write_error(mapping, page, res); 382 if (res == AOP_WRITEPAGE_ACTIVATE) { 383 ClearPageReclaim(page); 384 return PAGE_ACTIVATE; 385 } 386 387 /* 388 * Wait on writeback if requested to. This happens when 389 * direct reclaiming a large contiguous area and the 390 * first attempt to free a range of pages fails. 391 */ 392 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 393 wait_on_page_writeback(page); 394 395 if (!PageWriteback(page)) { 396 /* synchronous write or broken a_ops? */ 397 ClearPageReclaim(page); 398 } 399 inc_zone_page_state(page, NR_VMSCAN_WRITE); 400 return PAGE_SUCCESS; 401 } 402 403 return PAGE_CLEAN; 404 } 405 406 /* 407 * Same as remove_mapping, but if the page is removed from the mapping, it 408 * gets returned with a refcount of 0. 409 */ 410 static int __remove_mapping(struct address_space *mapping, struct page *page) 411 { 412 BUG_ON(!PageLocked(page)); 413 BUG_ON(mapping != page_mapping(page)); 414 415 spin_lock_irq(&mapping->tree_lock); 416 /* 417 * The non racy check for a busy page. 418 * 419 * Must be careful with the order of the tests. When someone has 420 * a ref to the page, it may be possible that they dirty it then 421 * drop the reference. So if PageDirty is tested before page_count 422 * here, then the following race may occur: 423 * 424 * get_user_pages(&page); 425 * [user mapping goes away] 426 * write_to(page); 427 * !PageDirty(page) [good] 428 * SetPageDirty(page); 429 * put_page(page); 430 * !page_count(page) [good, discard it] 431 * 432 * [oops, our write_to data is lost] 433 * 434 * Reversing the order of the tests ensures such a situation cannot 435 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 436 * load is not satisfied before that of page->_count. 437 * 438 * Note that if SetPageDirty is always performed via set_page_dirty, 439 * and thus under tree_lock, then this ordering is not required. 440 */ 441 if (!page_freeze_refs(page, 2)) 442 goto cannot_free; 443 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 444 if (unlikely(PageDirty(page))) { 445 page_unfreeze_refs(page, 2); 446 goto cannot_free; 447 } 448 449 if (PageSwapCache(page)) { 450 swp_entry_t swap = { .val = page_private(page) }; 451 __delete_from_swap_cache(page); 452 spin_unlock_irq(&mapping->tree_lock); 453 swapcache_free(swap, page); 454 } else { 455 __remove_from_page_cache(page); 456 spin_unlock_irq(&mapping->tree_lock); 457 mem_cgroup_uncharge_cache_page(page); 458 } 459 460 return 1; 461 462 cannot_free: 463 spin_unlock_irq(&mapping->tree_lock); 464 return 0; 465 } 466 467 /* 468 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 469 * someone else has a ref on the page, abort and return 0. If it was 470 * successfully detached, return 1. Assumes the caller has a single ref on 471 * this page. 472 */ 473 int remove_mapping(struct address_space *mapping, struct page *page) 474 { 475 if (__remove_mapping(mapping, page)) { 476 /* 477 * Unfreezing the refcount with 1 rather than 2 effectively 478 * drops the pagecache ref for us without requiring another 479 * atomic operation. 480 */ 481 page_unfreeze_refs(page, 1); 482 return 1; 483 } 484 return 0; 485 } 486 487 /** 488 * putback_lru_page - put previously isolated page onto appropriate LRU list 489 * @page: page to be put back to appropriate lru list 490 * 491 * Add previously isolated @page to appropriate LRU list. 492 * Page may still be unevictable for other reasons. 493 * 494 * lru_lock must not be held, interrupts must be enabled. 495 */ 496 void putback_lru_page(struct page *page) 497 { 498 int lru; 499 int active = !!TestClearPageActive(page); 500 int was_unevictable = PageUnevictable(page); 501 502 VM_BUG_ON(PageLRU(page)); 503 504 redo: 505 ClearPageUnevictable(page); 506 507 if (page_evictable(page, NULL)) { 508 /* 509 * For evictable pages, we can use the cache. 510 * In event of a race, worst case is we end up with an 511 * unevictable page on [in]active list. 512 * We know how to handle that. 513 */ 514 lru = active + page_lru_base_type(page); 515 lru_cache_add_lru(page, lru); 516 } else { 517 /* 518 * Put unevictable pages directly on zone's unevictable 519 * list. 520 */ 521 lru = LRU_UNEVICTABLE; 522 add_page_to_unevictable_list(page); 523 /* 524 * When racing with an mlock clearing (page is 525 * unlocked), make sure that if the other thread does 526 * not observe our setting of PG_lru and fails 527 * isolation, we see PG_mlocked cleared below and move 528 * the page back to the evictable list. 529 * 530 * The other side is TestClearPageMlocked(). 531 */ 532 smp_mb(); 533 } 534 535 /* 536 * page's status can change while we move it among lru. If an evictable 537 * page is on unevictable list, it never be freed. To avoid that, 538 * check after we added it to the list, again. 539 */ 540 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { 541 if (!isolate_lru_page(page)) { 542 put_page(page); 543 goto redo; 544 } 545 /* This means someone else dropped this page from LRU 546 * So, it will be freed or putback to LRU again. There is 547 * nothing to do here. 548 */ 549 } 550 551 if (was_unevictable && lru != LRU_UNEVICTABLE) 552 count_vm_event(UNEVICTABLE_PGRESCUED); 553 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 554 count_vm_event(UNEVICTABLE_PGCULLED); 555 556 put_page(page); /* drop ref from isolate */ 557 } 558 559 enum page_references { 560 PAGEREF_RECLAIM, 561 PAGEREF_RECLAIM_CLEAN, 562 PAGEREF_KEEP, 563 PAGEREF_ACTIVATE, 564 }; 565 566 static enum page_references page_check_references(struct page *page, 567 struct scan_control *sc) 568 { 569 int referenced_ptes, referenced_page; 570 unsigned long vm_flags; 571 572 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags); 573 referenced_page = TestClearPageReferenced(page); 574 575 /* Lumpy reclaim - ignore references */ 576 if (sc->lumpy_reclaim_mode) 577 return PAGEREF_RECLAIM; 578 579 /* 580 * Mlock lost the isolation race with us. Let try_to_unmap() 581 * move the page to the unevictable list. 582 */ 583 if (vm_flags & VM_LOCKED) 584 return PAGEREF_RECLAIM; 585 586 if (referenced_ptes) { 587 if (PageAnon(page)) 588 return PAGEREF_ACTIVATE; 589 /* 590 * All mapped pages start out with page table 591 * references from the instantiating fault, so we need 592 * to look twice if a mapped file page is used more 593 * than once. 594 * 595 * Mark it and spare it for another trip around the 596 * inactive list. Another page table reference will 597 * lead to its activation. 598 * 599 * Note: the mark is set for activated pages as well 600 * so that recently deactivated but used pages are 601 * quickly recovered. 602 */ 603 SetPageReferenced(page); 604 605 if (referenced_page) 606 return PAGEREF_ACTIVATE; 607 608 return PAGEREF_KEEP; 609 } 610 611 /* Reclaim if clean, defer dirty pages to writeback */ 612 if (referenced_page) 613 return PAGEREF_RECLAIM_CLEAN; 614 615 return PAGEREF_RECLAIM; 616 } 617 618 /* 619 * shrink_page_list() returns the number of reclaimed pages 620 */ 621 static unsigned long shrink_page_list(struct list_head *page_list, 622 struct scan_control *sc, 623 enum pageout_io sync_writeback) 624 { 625 LIST_HEAD(ret_pages); 626 struct pagevec freed_pvec; 627 int pgactivate = 0; 628 unsigned long nr_reclaimed = 0; 629 630 cond_resched(); 631 632 pagevec_init(&freed_pvec, 1); 633 while (!list_empty(page_list)) { 634 enum page_references references; 635 struct address_space *mapping; 636 struct page *page; 637 int may_enter_fs; 638 639 cond_resched(); 640 641 page = lru_to_page(page_list); 642 list_del(&page->lru); 643 644 if (!trylock_page(page)) 645 goto keep; 646 647 VM_BUG_ON(PageActive(page)); 648 649 sc->nr_scanned++; 650 651 if (unlikely(!page_evictable(page, NULL))) 652 goto cull_mlocked; 653 654 if (!sc->may_unmap && page_mapped(page)) 655 goto keep_locked; 656 657 /* Double the slab pressure for mapped and swapcache pages */ 658 if (page_mapped(page) || PageSwapCache(page)) 659 sc->nr_scanned++; 660 661 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 662 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 663 664 if (PageWriteback(page)) { 665 /* 666 * Synchronous reclaim is performed in two passes, 667 * first an asynchronous pass over the list to 668 * start parallel writeback, and a second synchronous 669 * pass to wait for the IO to complete. Wait here 670 * for any page for which writeback has already 671 * started. 672 */ 673 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 674 wait_on_page_writeback(page); 675 else 676 goto keep_locked; 677 } 678 679 references = page_check_references(page, sc); 680 switch (references) { 681 case PAGEREF_ACTIVATE: 682 goto activate_locked; 683 case PAGEREF_KEEP: 684 goto keep_locked; 685 case PAGEREF_RECLAIM: 686 case PAGEREF_RECLAIM_CLEAN: 687 ; /* try to reclaim the page below */ 688 } 689 690 /* 691 * Anonymous process memory has backing store? 692 * Try to allocate it some swap space here. 693 */ 694 if (PageAnon(page) && !PageSwapCache(page)) { 695 if (!(sc->gfp_mask & __GFP_IO)) 696 goto keep_locked; 697 if (!add_to_swap(page)) 698 goto activate_locked; 699 may_enter_fs = 1; 700 } 701 702 mapping = page_mapping(page); 703 704 /* 705 * The page is mapped into the page tables of one or more 706 * processes. Try to unmap it here. 707 */ 708 if (page_mapped(page) && mapping) { 709 switch (try_to_unmap(page, TTU_UNMAP)) { 710 case SWAP_FAIL: 711 goto activate_locked; 712 case SWAP_AGAIN: 713 goto keep_locked; 714 case SWAP_MLOCK: 715 goto cull_mlocked; 716 case SWAP_SUCCESS: 717 ; /* try to free the page below */ 718 } 719 } 720 721 if (PageDirty(page)) { 722 if (references == PAGEREF_RECLAIM_CLEAN) 723 goto keep_locked; 724 if (!may_enter_fs) 725 goto keep_locked; 726 if (!sc->may_writepage) 727 goto keep_locked; 728 729 /* Page is dirty, try to write it out here */ 730 switch (pageout(page, mapping, sync_writeback)) { 731 case PAGE_KEEP: 732 goto keep_locked; 733 case PAGE_ACTIVATE: 734 goto activate_locked; 735 case PAGE_SUCCESS: 736 if (PageWriteback(page) || PageDirty(page)) 737 goto keep; 738 /* 739 * A synchronous write - probably a ramdisk. Go 740 * ahead and try to reclaim the page. 741 */ 742 if (!trylock_page(page)) 743 goto keep; 744 if (PageDirty(page) || PageWriteback(page)) 745 goto keep_locked; 746 mapping = page_mapping(page); 747 case PAGE_CLEAN: 748 ; /* try to free the page below */ 749 } 750 } 751 752 /* 753 * If the page has buffers, try to free the buffer mappings 754 * associated with this page. If we succeed we try to free 755 * the page as well. 756 * 757 * We do this even if the page is PageDirty(). 758 * try_to_release_page() does not perform I/O, but it is 759 * possible for a page to have PageDirty set, but it is actually 760 * clean (all its buffers are clean). This happens if the 761 * buffers were written out directly, with submit_bh(). ext3 762 * will do this, as well as the blockdev mapping. 763 * try_to_release_page() will discover that cleanness and will 764 * drop the buffers and mark the page clean - it can be freed. 765 * 766 * Rarely, pages can have buffers and no ->mapping. These are 767 * the pages which were not successfully invalidated in 768 * truncate_complete_page(). We try to drop those buffers here 769 * and if that worked, and the page is no longer mapped into 770 * process address space (page_count == 1) it can be freed. 771 * Otherwise, leave the page on the LRU so it is swappable. 772 */ 773 if (page_has_private(page)) { 774 if (!try_to_release_page(page, sc->gfp_mask)) 775 goto activate_locked; 776 if (!mapping && page_count(page) == 1) { 777 unlock_page(page); 778 if (put_page_testzero(page)) 779 goto free_it; 780 else { 781 /* 782 * rare race with speculative reference. 783 * the speculative reference will free 784 * this page shortly, so we may 785 * increment nr_reclaimed here (and 786 * leave it off the LRU). 787 */ 788 nr_reclaimed++; 789 continue; 790 } 791 } 792 } 793 794 if (!mapping || !__remove_mapping(mapping, page)) 795 goto keep_locked; 796 797 /* 798 * At this point, we have no other references and there is 799 * no way to pick any more up (removed from LRU, removed 800 * from pagecache). Can use non-atomic bitops now (and 801 * we obviously don't have to worry about waking up a process 802 * waiting on the page lock, because there are no references. 803 */ 804 __clear_page_locked(page); 805 free_it: 806 nr_reclaimed++; 807 if (!pagevec_add(&freed_pvec, page)) { 808 __pagevec_free(&freed_pvec); 809 pagevec_reinit(&freed_pvec); 810 } 811 continue; 812 813 cull_mlocked: 814 if (PageSwapCache(page)) 815 try_to_free_swap(page); 816 unlock_page(page); 817 putback_lru_page(page); 818 continue; 819 820 activate_locked: 821 /* Not a candidate for swapping, so reclaim swap space. */ 822 if (PageSwapCache(page) && vm_swap_full()) 823 try_to_free_swap(page); 824 VM_BUG_ON(PageActive(page)); 825 SetPageActive(page); 826 pgactivate++; 827 keep_locked: 828 unlock_page(page); 829 keep: 830 list_add(&page->lru, &ret_pages); 831 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 832 } 833 list_splice(&ret_pages, page_list); 834 if (pagevec_count(&freed_pvec)) 835 __pagevec_free(&freed_pvec); 836 count_vm_events(PGACTIVATE, pgactivate); 837 return nr_reclaimed; 838 } 839 840 /* 841 * Attempt to remove the specified page from its LRU. Only take this page 842 * if it is of the appropriate PageActive status. Pages which are being 843 * freed elsewhere are also ignored. 844 * 845 * page: page to consider 846 * mode: one of the LRU isolation modes defined above 847 * 848 * returns 0 on success, -ve errno on failure. 849 */ 850 int __isolate_lru_page(struct page *page, int mode, int file) 851 { 852 int ret = -EINVAL; 853 854 /* Only take pages on the LRU. */ 855 if (!PageLRU(page)) 856 return ret; 857 858 /* 859 * When checking the active state, we need to be sure we are 860 * dealing with comparible boolean values. Take the logical not 861 * of each. 862 */ 863 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 864 return ret; 865 866 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) 867 return ret; 868 869 /* 870 * When this function is being called for lumpy reclaim, we 871 * initially look into all LRU pages, active, inactive and 872 * unevictable; only give shrink_page_list evictable pages. 873 */ 874 if (PageUnevictable(page)) 875 return ret; 876 877 ret = -EBUSY; 878 879 if (likely(get_page_unless_zero(page))) { 880 /* 881 * Be careful not to clear PageLRU until after we're 882 * sure the page is not being freed elsewhere -- the 883 * page release code relies on it. 884 */ 885 ClearPageLRU(page); 886 ret = 0; 887 } 888 889 return ret; 890 } 891 892 /* 893 * zone->lru_lock is heavily contended. Some of the functions that 894 * shrink the lists perform better by taking out a batch of pages 895 * and working on them outside the LRU lock. 896 * 897 * For pagecache intensive workloads, this function is the hottest 898 * spot in the kernel (apart from copy_*_user functions). 899 * 900 * Appropriate locks must be held before calling this function. 901 * 902 * @nr_to_scan: The number of pages to look through on the list. 903 * @src: The LRU list to pull pages off. 904 * @dst: The temp list to put pages on to. 905 * @scanned: The number of pages that were scanned. 906 * @order: The caller's attempted allocation order 907 * @mode: One of the LRU isolation modes 908 * @file: True [1] if isolating file [!anon] pages 909 * 910 * returns how many pages were moved onto *@dst. 911 */ 912 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 913 struct list_head *src, struct list_head *dst, 914 unsigned long *scanned, int order, int mode, int file) 915 { 916 unsigned long nr_taken = 0; 917 unsigned long scan; 918 919 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 920 struct page *page; 921 unsigned long pfn; 922 unsigned long end_pfn; 923 unsigned long page_pfn; 924 int zone_id; 925 926 page = lru_to_page(src); 927 prefetchw_prev_lru_page(page, src, flags); 928 929 VM_BUG_ON(!PageLRU(page)); 930 931 switch (__isolate_lru_page(page, mode, file)) { 932 case 0: 933 list_move(&page->lru, dst); 934 mem_cgroup_del_lru(page); 935 nr_taken++; 936 break; 937 938 case -EBUSY: 939 /* else it is being freed elsewhere */ 940 list_move(&page->lru, src); 941 mem_cgroup_rotate_lru_list(page, page_lru(page)); 942 continue; 943 944 default: 945 BUG(); 946 } 947 948 if (!order) 949 continue; 950 951 /* 952 * Attempt to take all pages in the order aligned region 953 * surrounding the tag page. Only take those pages of 954 * the same active state as that tag page. We may safely 955 * round the target page pfn down to the requested order 956 * as the mem_map is guarenteed valid out to MAX_ORDER, 957 * where that page is in a different zone we will detect 958 * it from its zone id and abort this block scan. 959 */ 960 zone_id = page_zone_id(page); 961 page_pfn = page_to_pfn(page); 962 pfn = page_pfn & ~((1 << order) - 1); 963 end_pfn = pfn + (1 << order); 964 for (; pfn < end_pfn; pfn++) { 965 struct page *cursor_page; 966 967 /* The target page is in the block, ignore it. */ 968 if (unlikely(pfn == page_pfn)) 969 continue; 970 971 /* Avoid holes within the zone. */ 972 if (unlikely(!pfn_valid_within(pfn))) 973 break; 974 975 cursor_page = pfn_to_page(pfn); 976 977 /* Check that we have not crossed a zone boundary. */ 978 if (unlikely(page_zone_id(cursor_page) != zone_id)) 979 continue; 980 981 /* 982 * If we don't have enough swap space, reclaiming of 983 * anon page which don't already have a swap slot is 984 * pointless. 985 */ 986 if (nr_swap_pages <= 0 && PageAnon(cursor_page) && 987 !PageSwapCache(cursor_page)) 988 continue; 989 990 if (__isolate_lru_page(cursor_page, mode, file) == 0) { 991 list_move(&cursor_page->lru, dst); 992 mem_cgroup_del_lru(cursor_page); 993 nr_taken++; 994 scan++; 995 } 996 } 997 } 998 999 *scanned = scan; 1000 return nr_taken; 1001 } 1002 1003 static unsigned long isolate_pages_global(unsigned long nr, 1004 struct list_head *dst, 1005 unsigned long *scanned, int order, 1006 int mode, struct zone *z, 1007 int active, int file) 1008 { 1009 int lru = LRU_BASE; 1010 if (active) 1011 lru += LRU_ACTIVE; 1012 if (file) 1013 lru += LRU_FILE; 1014 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 1015 mode, file); 1016 } 1017 1018 /* 1019 * clear_active_flags() is a helper for shrink_active_list(), clearing 1020 * any active bits from the pages in the list. 1021 */ 1022 static unsigned long clear_active_flags(struct list_head *page_list, 1023 unsigned int *count) 1024 { 1025 int nr_active = 0; 1026 int lru; 1027 struct page *page; 1028 1029 list_for_each_entry(page, page_list, lru) { 1030 lru = page_lru_base_type(page); 1031 if (PageActive(page)) { 1032 lru += LRU_ACTIVE; 1033 ClearPageActive(page); 1034 nr_active++; 1035 } 1036 count[lru]++; 1037 } 1038 1039 return nr_active; 1040 } 1041 1042 /** 1043 * isolate_lru_page - tries to isolate a page from its LRU list 1044 * @page: page to isolate from its LRU list 1045 * 1046 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1047 * vmstat statistic corresponding to whatever LRU list the page was on. 1048 * 1049 * Returns 0 if the page was removed from an LRU list. 1050 * Returns -EBUSY if the page was not on an LRU list. 1051 * 1052 * The returned page will have PageLRU() cleared. If it was found on 1053 * the active list, it will have PageActive set. If it was found on 1054 * the unevictable list, it will have the PageUnevictable bit set. That flag 1055 * may need to be cleared by the caller before letting the page go. 1056 * 1057 * The vmstat statistic corresponding to the list on which the page was 1058 * found will be decremented. 1059 * 1060 * Restrictions: 1061 * (1) Must be called with an elevated refcount on the page. This is a 1062 * fundamentnal difference from isolate_lru_pages (which is called 1063 * without a stable reference). 1064 * (2) the lru_lock must not be held. 1065 * (3) interrupts must be enabled. 1066 */ 1067 int isolate_lru_page(struct page *page) 1068 { 1069 int ret = -EBUSY; 1070 1071 if (PageLRU(page)) { 1072 struct zone *zone = page_zone(page); 1073 1074 spin_lock_irq(&zone->lru_lock); 1075 if (PageLRU(page) && get_page_unless_zero(page)) { 1076 int lru = page_lru(page); 1077 ret = 0; 1078 ClearPageLRU(page); 1079 1080 del_page_from_lru_list(zone, page, lru); 1081 } 1082 spin_unlock_irq(&zone->lru_lock); 1083 } 1084 return ret; 1085 } 1086 1087 /* 1088 * Are there way too many processes in the direct reclaim path already? 1089 */ 1090 static int too_many_isolated(struct zone *zone, int file, 1091 struct scan_control *sc) 1092 { 1093 unsigned long inactive, isolated; 1094 1095 if (current_is_kswapd()) 1096 return 0; 1097 1098 if (!scanning_global_lru(sc)) 1099 return 0; 1100 1101 if (file) { 1102 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1103 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1104 } else { 1105 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1106 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1107 } 1108 1109 return isolated > inactive; 1110 } 1111 1112 /* 1113 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1114 * of reclaimed pages 1115 */ 1116 static unsigned long shrink_inactive_list(unsigned long max_scan, 1117 struct zone *zone, struct scan_control *sc, 1118 int priority, int file) 1119 { 1120 LIST_HEAD(page_list); 1121 struct pagevec pvec; 1122 unsigned long nr_scanned = 0; 1123 unsigned long nr_reclaimed = 0; 1124 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1125 1126 while (unlikely(too_many_isolated(zone, file, sc))) { 1127 congestion_wait(BLK_RW_ASYNC, HZ/10); 1128 1129 /* We are about to die and free our memory. Return now. */ 1130 if (fatal_signal_pending(current)) 1131 return SWAP_CLUSTER_MAX; 1132 } 1133 1134 1135 pagevec_init(&pvec, 1); 1136 1137 lru_add_drain(); 1138 spin_lock_irq(&zone->lru_lock); 1139 do { 1140 struct page *page; 1141 unsigned long nr_taken; 1142 unsigned long nr_scan; 1143 unsigned long nr_freed; 1144 unsigned long nr_active; 1145 unsigned int count[NR_LRU_LISTS] = { 0, }; 1146 int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE; 1147 unsigned long nr_anon; 1148 unsigned long nr_file; 1149 1150 if (scanning_global_lru(sc)) { 1151 nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX, 1152 &page_list, &nr_scan, 1153 sc->order, mode, 1154 zone, 0, file); 1155 zone->pages_scanned += nr_scan; 1156 if (current_is_kswapd()) 1157 __count_zone_vm_events(PGSCAN_KSWAPD, zone, 1158 nr_scan); 1159 else 1160 __count_zone_vm_events(PGSCAN_DIRECT, zone, 1161 nr_scan); 1162 } else { 1163 nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX, 1164 &page_list, &nr_scan, 1165 sc->order, mode, 1166 zone, sc->mem_cgroup, 1167 0, file); 1168 /* 1169 * mem_cgroup_isolate_pages() keeps track of 1170 * scanned pages on its own. 1171 */ 1172 } 1173 1174 if (nr_taken == 0) 1175 goto done; 1176 1177 nr_active = clear_active_flags(&page_list, count); 1178 __count_vm_events(PGDEACTIVATE, nr_active); 1179 1180 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 1181 -count[LRU_ACTIVE_FILE]); 1182 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 1183 -count[LRU_INACTIVE_FILE]); 1184 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 1185 -count[LRU_ACTIVE_ANON]); 1186 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 1187 -count[LRU_INACTIVE_ANON]); 1188 1189 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 1190 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 1191 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon); 1192 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file); 1193 1194 reclaim_stat->recent_scanned[0] += nr_anon; 1195 reclaim_stat->recent_scanned[1] += nr_file; 1196 1197 spin_unlock_irq(&zone->lru_lock); 1198 1199 nr_scanned += nr_scan; 1200 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 1201 1202 /* 1203 * If we are direct reclaiming for contiguous pages and we do 1204 * not reclaim everything in the list, try again and wait 1205 * for IO to complete. This will stall high-order allocations 1206 * but that should be acceptable to the caller 1207 */ 1208 if (nr_freed < nr_taken && !current_is_kswapd() && 1209 sc->lumpy_reclaim_mode) { 1210 congestion_wait(BLK_RW_ASYNC, HZ/10); 1211 1212 /* 1213 * The attempt at page out may have made some 1214 * of the pages active, mark them inactive again. 1215 */ 1216 nr_active = clear_active_flags(&page_list, count); 1217 count_vm_events(PGDEACTIVATE, nr_active); 1218 1219 nr_freed += shrink_page_list(&page_list, sc, 1220 PAGEOUT_IO_SYNC); 1221 } 1222 1223 nr_reclaimed += nr_freed; 1224 1225 local_irq_disable(); 1226 if (current_is_kswapd()) 1227 __count_vm_events(KSWAPD_STEAL, nr_freed); 1228 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 1229 1230 spin_lock(&zone->lru_lock); 1231 /* 1232 * Put back any unfreeable pages. 1233 */ 1234 while (!list_empty(&page_list)) { 1235 int lru; 1236 page = lru_to_page(&page_list); 1237 VM_BUG_ON(PageLRU(page)); 1238 list_del(&page->lru); 1239 if (unlikely(!page_evictable(page, NULL))) { 1240 spin_unlock_irq(&zone->lru_lock); 1241 putback_lru_page(page); 1242 spin_lock_irq(&zone->lru_lock); 1243 continue; 1244 } 1245 SetPageLRU(page); 1246 lru = page_lru(page); 1247 add_page_to_lru_list(zone, page, lru); 1248 if (is_active_lru(lru)) { 1249 int file = is_file_lru(lru); 1250 reclaim_stat->recent_rotated[file]++; 1251 } 1252 if (!pagevec_add(&pvec, page)) { 1253 spin_unlock_irq(&zone->lru_lock); 1254 __pagevec_release(&pvec); 1255 spin_lock_irq(&zone->lru_lock); 1256 } 1257 } 1258 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); 1259 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); 1260 1261 } while (nr_scanned < max_scan); 1262 1263 done: 1264 spin_unlock_irq(&zone->lru_lock); 1265 pagevec_release(&pvec); 1266 return nr_reclaimed; 1267 } 1268 1269 /* 1270 * We are about to scan this zone at a certain priority level. If that priority 1271 * level is smaller (ie: more urgent) than the previous priority, then note 1272 * that priority level within the zone. This is done so that when the next 1273 * process comes in to scan this zone, it will immediately start out at this 1274 * priority level rather than having to build up its own scanning priority. 1275 * Here, this priority affects only the reclaim-mapped threshold. 1276 */ 1277 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1278 { 1279 if (priority < zone->prev_priority) 1280 zone->prev_priority = priority; 1281 } 1282 1283 /* 1284 * This moves pages from the active list to the inactive list. 1285 * 1286 * We move them the other way if the page is referenced by one or more 1287 * processes, from rmap. 1288 * 1289 * If the pages are mostly unmapped, the processing is fast and it is 1290 * appropriate to hold zone->lru_lock across the whole operation. But if 1291 * the pages are mapped, the processing is slow (page_referenced()) so we 1292 * should drop zone->lru_lock around each page. It's impossible to balance 1293 * this, so instead we remove the pages from the LRU while processing them. 1294 * It is safe to rely on PG_active against the non-LRU pages in here because 1295 * nobody will play with that bit on a non-LRU page. 1296 * 1297 * The downside is that we have to touch page->_count against each page. 1298 * But we had to alter page->flags anyway. 1299 */ 1300 1301 static void move_active_pages_to_lru(struct zone *zone, 1302 struct list_head *list, 1303 enum lru_list lru) 1304 { 1305 unsigned long pgmoved = 0; 1306 struct pagevec pvec; 1307 struct page *page; 1308 1309 pagevec_init(&pvec, 1); 1310 1311 while (!list_empty(list)) { 1312 page = lru_to_page(list); 1313 1314 VM_BUG_ON(PageLRU(page)); 1315 SetPageLRU(page); 1316 1317 list_move(&page->lru, &zone->lru[lru].list); 1318 mem_cgroup_add_lru_list(page, lru); 1319 pgmoved++; 1320 1321 if (!pagevec_add(&pvec, page) || list_empty(list)) { 1322 spin_unlock_irq(&zone->lru_lock); 1323 if (buffer_heads_over_limit) 1324 pagevec_strip(&pvec); 1325 __pagevec_release(&pvec); 1326 spin_lock_irq(&zone->lru_lock); 1327 } 1328 } 1329 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1330 if (!is_active_lru(lru)) 1331 __count_vm_events(PGDEACTIVATE, pgmoved); 1332 } 1333 1334 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1335 struct scan_control *sc, int priority, int file) 1336 { 1337 unsigned long nr_taken; 1338 unsigned long pgscanned; 1339 unsigned long vm_flags; 1340 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1341 LIST_HEAD(l_active); 1342 LIST_HEAD(l_inactive); 1343 struct page *page; 1344 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1345 unsigned long nr_rotated = 0; 1346 1347 lru_add_drain(); 1348 spin_lock_irq(&zone->lru_lock); 1349 if (scanning_global_lru(sc)) { 1350 nr_taken = isolate_pages_global(nr_pages, &l_hold, 1351 &pgscanned, sc->order, 1352 ISOLATE_ACTIVE, zone, 1353 1, file); 1354 zone->pages_scanned += pgscanned; 1355 } else { 1356 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold, 1357 &pgscanned, sc->order, 1358 ISOLATE_ACTIVE, zone, 1359 sc->mem_cgroup, 1, file); 1360 /* 1361 * mem_cgroup_isolate_pages() keeps track of 1362 * scanned pages on its own. 1363 */ 1364 } 1365 1366 reclaim_stat->recent_scanned[file] += nr_taken; 1367 1368 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1369 if (file) 1370 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken); 1371 else 1372 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken); 1373 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1374 spin_unlock_irq(&zone->lru_lock); 1375 1376 while (!list_empty(&l_hold)) { 1377 cond_resched(); 1378 page = lru_to_page(&l_hold); 1379 list_del(&page->lru); 1380 1381 if (unlikely(!page_evictable(page, NULL))) { 1382 putback_lru_page(page); 1383 continue; 1384 } 1385 1386 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) { 1387 nr_rotated++; 1388 /* 1389 * Identify referenced, file-backed active pages and 1390 * give them one more trip around the active list. So 1391 * that executable code get better chances to stay in 1392 * memory under moderate memory pressure. Anon pages 1393 * are not likely to be evicted by use-once streaming 1394 * IO, plus JVM can create lots of anon VM_EXEC pages, 1395 * so we ignore them here. 1396 */ 1397 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1398 list_add(&page->lru, &l_active); 1399 continue; 1400 } 1401 } 1402 1403 ClearPageActive(page); /* we are de-activating */ 1404 list_add(&page->lru, &l_inactive); 1405 } 1406 1407 /* 1408 * Move pages back to the lru list. 1409 */ 1410 spin_lock_irq(&zone->lru_lock); 1411 /* 1412 * Count referenced pages from currently used mappings as rotated, 1413 * even though only some of them are actually re-activated. This 1414 * helps balance scan pressure between file and anonymous pages in 1415 * get_scan_ratio. 1416 */ 1417 reclaim_stat->recent_rotated[file] += nr_rotated; 1418 1419 move_active_pages_to_lru(zone, &l_active, 1420 LRU_ACTIVE + file * LRU_FILE); 1421 move_active_pages_to_lru(zone, &l_inactive, 1422 LRU_BASE + file * LRU_FILE); 1423 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1424 spin_unlock_irq(&zone->lru_lock); 1425 } 1426 1427 static int inactive_anon_is_low_global(struct zone *zone) 1428 { 1429 unsigned long active, inactive; 1430 1431 active = zone_page_state(zone, NR_ACTIVE_ANON); 1432 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1433 1434 if (inactive * zone->inactive_ratio < active) 1435 return 1; 1436 1437 return 0; 1438 } 1439 1440 /** 1441 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1442 * @zone: zone to check 1443 * @sc: scan control of this context 1444 * 1445 * Returns true if the zone does not have enough inactive anon pages, 1446 * meaning some active anon pages need to be deactivated. 1447 */ 1448 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) 1449 { 1450 int low; 1451 1452 if (scanning_global_lru(sc)) 1453 low = inactive_anon_is_low_global(zone); 1454 else 1455 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); 1456 return low; 1457 } 1458 1459 static int inactive_file_is_low_global(struct zone *zone) 1460 { 1461 unsigned long active, inactive; 1462 1463 active = zone_page_state(zone, NR_ACTIVE_FILE); 1464 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1465 1466 return (active > inactive); 1467 } 1468 1469 /** 1470 * inactive_file_is_low - check if file pages need to be deactivated 1471 * @zone: zone to check 1472 * @sc: scan control of this context 1473 * 1474 * When the system is doing streaming IO, memory pressure here 1475 * ensures that active file pages get deactivated, until more 1476 * than half of the file pages are on the inactive list. 1477 * 1478 * Once we get to that situation, protect the system's working 1479 * set from being evicted by disabling active file page aging. 1480 * 1481 * This uses a different ratio than the anonymous pages, because 1482 * the page cache uses a use-once replacement algorithm. 1483 */ 1484 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc) 1485 { 1486 int low; 1487 1488 if (scanning_global_lru(sc)) 1489 low = inactive_file_is_low_global(zone); 1490 else 1491 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup); 1492 return low; 1493 } 1494 1495 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc, 1496 int file) 1497 { 1498 if (file) 1499 return inactive_file_is_low(zone, sc); 1500 else 1501 return inactive_anon_is_low(zone, sc); 1502 } 1503 1504 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1505 struct zone *zone, struct scan_control *sc, int priority) 1506 { 1507 int file = is_file_lru(lru); 1508 1509 if (is_active_lru(lru)) { 1510 if (inactive_list_is_low(zone, sc, file)) 1511 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1512 return 0; 1513 } 1514 1515 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); 1516 } 1517 1518 /* 1519 * Smallish @nr_to_scan's are deposited in @nr_saved_scan, 1520 * until we collected @swap_cluster_max pages to scan. 1521 */ 1522 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan, 1523 unsigned long *nr_saved_scan) 1524 { 1525 unsigned long nr; 1526 1527 *nr_saved_scan += nr_to_scan; 1528 nr = *nr_saved_scan; 1529 1530 if (nr >= SWAP_CLUSTER_MAX) 1531 *nr_saved_scan = 0; 1532 else 1533 nr = 0; 1534 1535 return nr; 1536 } 1537 1538 /* 1539 * Determine how aggressively the anon and file LRU lists should be 1540 * scanned. The relative value of each set of LRU lists is determined 1541 * by looking at the fraction of the pages scanned we did rotate back 1542 * onto the active list instead of evict. 1543 * 1544 * nr[0] = anon pages to scan; nr[1] = file pages to scan 1545 */ 1546 static void get_scan_count(struct zone *zone, struct scan_control *sc, 1547 unsigned long *nr, int priority) 1548 { 1549 unsigned long anon, file, free; 1550 unsigned long anon_prio, file_prio; 1551 unsigned long ap, fp; 1552 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); 1553 u64 fraction[2], denominator; 1554 enum lru_list l; 1555 int noswap = 0; 1556 1557 /* If we have no swap space, do not bother scanning anon pages. */ 1558 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1559 noswap = 1; 1560 fraction[0] = 0; 1561 fraction[1] = 1; 1562 denominator = 1; 1563 goto out; 1564 } 1565 1566 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + 1567 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); 1568 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + 1569 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); 1570 1571 if (scanning_global_lru(sc)) { 1572 free = zone_page_state(zone, NR_FREE_PAGES); 1573 /* If we have very few page cache pages, 1574 force-scan anon pages. */ 1575 if (unlikely(file + free <= high_wmark_pages(zone))) { 1576 fraction[0] = 1; 1577 fraction[1] = 0; 1578 denominator = 1; 1579 goto out; 1580 } 1581 } 1582 1583 /* 1584 * OK, so we have swap space and a fair amount of page cache 1585 * pages. We use the recently rotated / recently scanned 1586 * ratios to determine how valuable each cache is. 1587 * 1588 * Because workloads change over time (and to avoid overflow) 1589 * we keep these statistics as a floating average, which ends 1590 * up weighing recent references more than old ones. 1591 * 1592 * anon in [0], file in [1] 1593 */ 1594 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1595 spin_lock_irq(&zone->lru_lock); 1596 reclaim_stat->recent_scanned[0] /= 2; 1597 reclaim_stat->recent_rotated[0] /= 2; 1598 spin_unlock_irq(&zone->lru_lock); 1599 } 1600 1601 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1602 spin_lock_irq(&zone->lru_lock); 1603 reclaim_stat->recent_scanned[1] /= 2; 1604 reclaim_stat->recent_rotated[1] /= 2; 1605 spin_unlock_irq(&zone->lru_lock); 1606 } 1607 1608 /* 1609 * With swappiness at 100, anonymous and file have the same priority. 1610 * This scanning priority is essentially the inverse of IO cost. 1611 */ 1612 anon_prio = sc->swappiness; 1613 file_prio = 200 - sc->swappiness; 1614 1615 /* 1616 * The amount of pressure on anon vs file pages is inversely 1617 * proportional to the fraction of recently scanned pages on 1618 * each list that were recently referenced and in active use. 1619 */ 1620 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1); 1621 ap /= reclaim_stat->recent_rotated[0] + 1; 1622 1623 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); 1624 fp /= reclaim_stat->recent_rotated[1] + 1; 1625 1626 fraction[0] = ap; 1627 fraction[1] = fp; 1628 denominator = ap + fp + 1; 1629 out: 1630 for_each_evictable_lru(l) { 1631 int file = is_file_lru(l); 1632 unsigned long scan; 1633 1634 scan = zone_nr_lru_pages(zone, sc, l); 1635 if (priority || noswap) { 1636 scan >>= priority; 1637 scan = div64_u64(scan * fraction[file], denominator); 1638 } 1639 nr[l] = nr_scan_try_batch(scan, 1640 &reclaim_stat->nr_saved_scan[l]); 1641 } 1642 } 1643 1644 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc) 1645 { 1646 /* 1647 * If we need a large contiguous chunk of memory, or have 1648 * trouble getting a small set of contiguous pages, we 1649 * will reclaim both active and inactive pages. 1650 */ 1651 if (sc->order > PAGE_ALLOC_COSTLY_ORDER) 1652 sc->lumpy_reclaim_mode = 1; 1653 else if (sc->order && priority < DEF_PRIORITY - 2) 1654 sc->lumpy_reclaim_mode = 1; 1655 else 1656 sc->lumpy_reclaim_mode = 0; 1657 } 1658 1659 /* 1660 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1661 */ 1662 static void shrink_zone(int priority, struct zone *zone, 1663 struct scan_control *sc) 1664 { 1665 unsigned long nr[NR_LRU_LISTS]; 1666 unsigned long nr_to_scan; 1667 enum lru_list l; 1668 unsigned long nr_reclaimed = sc->nr_reclaimed; 1669 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1670 1671 get_scan_count(zone, sc, nr, priority); 1672 1673 set_lumpy_reclaim_mode(priority, sc); 1674 1675 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1676 nr[LRU_INACTIVE_FILE]) { 1677 for_each_evictable_lru(l) { 1678 if (nr[l]) { 1679 nr_to_scan = min_t(unsigned long, 1680 nr[l], SWAP_CLUSTER_MAX); 1681 nr[l] -= nr_to_scan; 1682 1683 nr_reclaimed += shrink_list(l, nr_to_scan, 1684 zone, sc, priority); 1685 } 1686 } 1687 /* 1688 * On large memory systems, scan >> priority can become 1689 * really large. This is fine for the starting priority; 1690 * we want to put equal scanning pressure on each zone. 1691 * However, if the VM has a harder time of freeing pages, 1692 * with multiple processes reclaiming pages, the total 1693 * freeing target can get unreasonably large. 1694 */ 1695 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY) 1696 break; 1697 } 1698 1699 sc->nr_reclaimed = nr_reclaimed; 1700 1701 /* 1702 * Even if we did not try to evict anon pages at all, we want to 1703 * rebalance the anon lru active/inactive ratio. 1704 */ 1705 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) 1706 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); 1707 1708 throttle_vm_writeout(sc->gfp_mask); 1709 } 1710 1711 /* 1712 * This is the direct reclaim path, for page-allocating processes. We only 1713 * try to reclaim pages from zones which will satisfy the caller's allocation 1714 * request. 1715 * 1716 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1717 * Because: 1718 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1719 * allocation or 1720 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1721 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1722 * zone defense algorithm. 1723 * 1724 * If a zone is deemed to be full of pinned pages then just give it a light 1725 * scan then give up on it. 1726 */ 1727 static bool shrink_zones(int priority, struct zonelist *zonelist, 1728 struct scan_control *sc) 1729 { 1730 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1731 struct zoneref *z; 1732 struct zone *zone; 1733 bool all_unreclaimable = true; 1734 1735 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1736 sc->nodemask) { 1737 if (!populated_zone(zone)) 1738 continue; 1739 /* 1740 * Take care memory controller reclaiming has small influence 1741 * to global LRU. 1742 */ 1743 if (scanning_global_lru(sc)) { 1744 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1745 continue; 1746 note_zone_scanning_priority(zone, priority); 1747 1748 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1749 continue; /* Let kswapd poll it */ 1750 } else { 1751 /* 1752 * Ignore cpuset limitation here. We just want to reduce 1753 * # of used pages by us regardless of memory shortage. 1754 */ 1755 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1756 priority); 1757 } 1758 1759 shrink_zone(priority, zone, sc); 1760 all_unreclaimable = false; 1761 } 1762 return all_unreclaimable; 1763 } 1764 1765 /* 1766 * This is the main entry point to direct page reclaim. 1767 * 1768 * If a full scan of the inactive list fails to free enough memory then we 1769 * are "out of memory" and something needs to be killed. 1770 * 1771 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1772 * high - the zone may be full of dirty or under-writeback pages, which this 1773 * caller can't do much about. We kick the writeback threads and take explicit 1774 * naps in the hope that some of these pages can be written. But if the 1775 * allocating task holds filesystem locks which prevent writeout this might not 1776 * work, and the allocation attempt will fail. 1777 * 1778 * returns: 0, if no pages reclaimed 1779 * else, the number of pages reclaimed 1780 */ 1781 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1782 struct scan_control *sc) 1783 { 1784 int priority; 1785 bool all_unreclaimable; 1786 unsigned long total_scanned = 0; 1787 struct reclaim_state *reclaim_state = current->reclaim_state; 1788 unsigned long lru_pages = 0; 1789 struct zoneref *z; 1790 struct zone *zone; 1791 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1792 unsigned long writeback_threshold; 1793 1794 get_mems_allowed(); 1795 delayacct_freepages_start(); 1796 1797 if (scanning_global_lru(sc)) 1798 count_vm_event(ALLOCSTALL); 1799 /* 1800 * mem_cgroup will not do shrink_slab. 1801 */ 1802 if (scanning_global_lru(sc)) { 1803 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1804 1805 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1806 continue; 1807 1808 lru_pages += zone_reclaimable_pages(zone); 1809 } 1810 } 1811 1812 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1813 sc->nr_scanned = 0; 1814 if (!priority) 1815 disable_swap_token(); 1816 all_unreclaimable = shrink_zones(priority, zonelist, sc); 1817 /* 1818 * Don't shrink slabs when reclaiming memory from 1819 * over limit cgroups 1820 */ 1821 if (scanning_global_lru(sc)) { 1822 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1823 if (reclaim_state) { 1824 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 1825 reclaim_state->reclaimed_slab = 0; 1826 } 1827 } 1828 total_scanned += sc->nr_scanned; 1829 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 1830 goto out; 1831 1832 /* 1833 * Try to write back as many pages as we just scanned. This 1834 * tends to cause slow streaming writers to write data to the 1835 * disk smoothly, at the dirtying rate, which is nice. But 1836 * that's undesirable in laptop mode, where we *want* lumpy 1837 * writeout. So in laptop mode, write out the whole world. 1838 */ 1839 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 1840 if (total_scanned > writeback_threshold) { 1841 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); 1842 sc->may_writepage = 1; 1843 } 1844 1845 /* Take a nap, wait for some writeback to complete */ 1846 if (!sc->hibernation_mode && sc->nr_scanned && 1847 priority < DEF_PRIORITY - 2) 1848 congestion_wait(BLK_RW_ASYNC, HZ/10); 1849 } 1850 1851 out: 1852 /* 1853 * Now that we've scanned all the zones at this priority level, note 1854 * that level within the zone so that the next thread which performs 1855 * scanning of this zone will immediately start out at this priority 1856 * level. This affects only the decision whether or not to bring 1857 * mapped pages onto the inactive list. 1858 */ 1859 if (priority < 0) 1860 priority = 0; 1861 1862 if (scanning_global_lru(sc)) { 1863 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1864 1865 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1866 continue; 1867 1868 zone->prev_priority = priority; 1869 } 1870 } else 1871 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1872 1873 delayacct_freepages_end(); 1874 put_mems_allowed(); 1875 1876 if (sc->nr_reclaimed) 1877 return sc->nr_reclaimed; 1878 1879 /* top priority shrink_zones still had more to do? don't OOM, then */ 1880 if (scanning_global_lru(sc) && !all_unreclaimable) 1881 return 1; 1882 1883 return 0; 1884 } 1885 1886 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1887 gfp_t gfp_mask, nodemask_t *nodemask) 1888 { 1889 struct scan_control sc = { 1890 .gfp_mask = gfp_mask, 1891 .may_writepage = !laptop_mode, 1892 .nr_to_reclaim = SWAP_CLUSTER_MAX, 1893 .may_unmap = 1, 1894 .may_swap = 1, 1895 .swappiness = vm_swappiness, 1896 .order = order, 1897 .mem_cgroup = NULL, 1898 .nodemask = nodemask, 1899 }; 1900 1901 return do_try_to_free_pages(zonelist, &sc); 1902 } 1903 1904 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1905 1906 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, 1907 gfp_t gfp_mask, bool noswap, 1908 unsigned int swappiness, 1909 struct zone *zone, int nid) 1910 { 1911 struct scan_control sc = { 1912 .may_writepage = !laptop_mode, 1913 .may_unmap = 1, 1914 .may_swap = !noswap, 1915 .swappiness = swappiness, 1916 .order = 0, 1917 .mem_cgroup = mem, 1918 }; 1919 nodemask_t nm = nodemask_of_node(nid); 1920 1921 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1922 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1923 sc.nodemask = &nm; 1924 sc.nr_reclaimed = 0; 1925 sc.nr_scanned = 0; 1926 /* 1927 * NOTE: Although we can get the priority field, using it 1928 * here is not a good idea, since it limits the pages we can scan. 1929 * if we don't reclaim here, the shrink_zone from balance_pgdat 1930 * will pick up pages from other mem cgroup's as well. We hack 1931 * the priority and make it zero. 1932 */ 1933 shrink_zone(0, zone, &sc); 1934 return sc.nr_reclaimed; 1935 } 1936 1937 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1938 gfp_t gfp_mask, 1939 bool noswap, 1940 unsigned int swappiness) 1941 { 1942 struct zonelist *zonelist; 1943 struct scan_control sc = { 1944 .may_writepage = !laptop_mode, 1945 .may_unmap = 1, 1946 .may_swap = !noswap, 1947 .nr_to_reclaim = SWAP_CLUSTER_MAX, 1948 .swappiness = swappiness, 1949 .order = 0, 1950 .mem_cgroup = mem_cont, 1951 .nodemask = NULL, /* we don't care the placement */ 1952 }; 1953 1954 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1955 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1956 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1957 return do_try_to_free_pages(zonelist, &sc); 1958 } 1959 #endif 1960 1961 /* is kswapd sleeping prematurely? */ 1962 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining) 1963 { 1964 int i; 1965 1966 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 1967 if (remaining) 1968 return 1; 1969 1970 /* If after HZ/10, a zone is below the high mark, it's premature */ 1971 for (i = 0; i < pgdat->nr_zones; i++) { 1972 struct zone *zone = pgdat->node_zones + i; 1973 1974 if (!populated_zone(zone)) 1975 continue; 1976 1977 if (zone->all_unreclaimable) 1978 continue; 1979 1980 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone), 1981 0, 0)) 1982 return 1; 1983 } 1984 1985 return 0; 1986 } 1987 1988 /* 1989 * For kswapd, balance_pgdat() will work across all this node's zones until 1990 * they are all at high_wmark_pages(zone). 1991 * 1992 * Returns the number of pages which were actually freed. 1993 * 1994 * There is special handling here for zones which are full of pinned pages. 1995 * This can happen if the pages are all mlocked, or if they are all used by 1996 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1997 * What we do is to detect the case where all pages in the zone have been 1998 * scanned twice and there has been zero successful reclaim. Mark the zone as 1999 * dead and from now on, only perform a short scan. Basically we're polling 2000 * the zone for when the problem goes away. 2001 * 2002 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2003 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2004 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2005 * lower zones regardless of the number of free pages in the lower zones. This 2006 * interoperates with the page allocator fallback scheme to ensure that aging 2007 * of pages is balanced across the zones. 2008 */ 2009 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 2010 { 2011 int all_zones_ok; 2012 int priority; 2013 int i; 2014 unsigned long total_scanned; 2015 struct reclaim_state *reclaim_state = current->reclaim_state; 2016 struct scan_control sc = { 2017 .gfp_mask = GFP_KERNEL, 2018 .may_unmap = 1, 2019 .may_swap = 1, 2020 /* 2021 * kswapd doesn't want to be bailed out while reclaim. because 2022 * we want to put equal scanning pressure on each zone. 2023 */ 2024 .nr_to_reclaim = ULONG_MAX, 2025 .swappiness = vm_swappiness, 2026 .order = order, 2027 .mem_cgroup = NULL, 2028 }; 2029 /* 2030 * temp_priority is used to remember the scanning priority at which 2031 * this zone was successfully refilled to 2032 * free_pages == high_wmark_pages(zone). 2033 */ 2034 int temp_priority[MAX_NR_ZONES]; 2035 2036 loop_again: 2037 total_scanned = 0; 2038 sc.nr_reclaimed = 0; 2039 sc.may_writepage = !laptop_mode; 2040 count_vm_event(PAGEOUTRUN); 2041 2042 for (i = 0; i < pgdat->nr_zones; i++) 2043 temp_priority[i] = DEF_PRIORITY; 2044 2045 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 2046 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2047 unsigned long lru_pages = 0; 2048 int has_under_min_watermark_zone = 0; 2049 2050 /* The swap token gets in the way of swapout... */ 2051 if (!priority) 2052 disable_swap_token(); 2053 2054 all_zones_ok = 1; 2055 2056 /* 2057 * Scan in the highmem->dma direction for the highest 2058 * zone which needs scanning 2059 */ 2060 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2061 struct zone *zone = pgdat->node_zones + i; 2062 2063 if (!populated_zone(zone)) 2064 continue; 2065 2066 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2067 continue; 2068 2069 /* 2070 * Do some background aging of the anon list, to give 2071 * pages a chance to be referenced before reclaiming. 2072 */ 2073 if (inactive_anon_is_low(zone, &sc)) 2074 shrink_active_list(SWAP_CLUSTER_MAX, zone, 2075 &sc, priority, 0); 2076 2077 if (!zone_watermark_ok(zone, order, 2078 high_wmark_pages(zone), 0, 0)) { 2079 end_zone = i; 2080 break; 2081 } 2082 } 2083 if (i < 0) 2084 goto out; 2085 2086 for (i = 0; i <= end_zone; i++) { 2087 struct zone *zone = pgdat->node_zones + i; 2088 2089 lru_pages += zone_reclaimable_pages(zone); 2090 } 2091 2092 /* 2093 * Now scan the zone in the dma->highmem direction, stopping 2094 * at the last zone which needs scanning. 2095 * 2096 * We do this because the page allocator works in the opposite 2097 * direction. This prevents the page allocator from allocating 2098 * pages behind kswapd's direction of progress, which would 2099 * cause too much scanning of the lower zones. 2100 */ 2101 for (i = 0; i <= end_zone; i++) { 2102 struct zone *zone = pgdat->node_zones + i; 2103 int nr_slab; 2104 int nid, zid; 2105 2106 if (!populated_zone(zone)) 2107 continue; 2108 2109 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 2110 continue; 2111 2112 temp_priority[i] = priority; 2113 sc.nr_scanned = 0; 2114 note_zone_scanning_priority(zone, priority); 2115 2116 nid = pgdat->node_id; 2117 zid = zone_idx(zone); 2118 /* 2119 * Call soft limit reclaim before calling shrink_zone. 2120 * For now we ignore the return value 2121 */ 2122 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask, 2123 nid, zid); 2124 /* 2125 * We put equal pressure on every zone, unless one 2126 * zone has way too many pages free already. 2127 */ 2128 if (!zone_watermark_ok(zone, order, 2129 8*high_wmark_pages(zone), end_zone, 0)) 2130 shrink_zone(priority, zone, &sc); 2131 reclaim_state->reclaimed_slab = 0; 2132 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 2133 lru_pages); 2134 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2135 total_scanned += sc.nr_scanned; 2136 if (zone->all_unreclaimable) 2137 continue; 2138 if (nr_slab == 0 && 2139 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6)) 2140 zone->all_unreclaimable = 1; 2141 /* 2142 * If we've done a decent amount of scanning and 2143 * the reclaim ratio is low, start doing writepage 2144 * even in laptop mode 2145 */ 2146 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2147 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2148 sc.may_writepage = 1; 2149 2150 if (!zone_watermark_ok(zone, order, 2151 high_wmark_pages(zone), end_zone, 0)) { 2152 all_zones_ok = 0; 2153 /* 2154 * We are still under min water mark. This 2155 * means that we have a GFP_ATOMIC allocation 2156 * failure risk. Hurry up! 2157 */ 2158 if (!zone_watermark_ok(zone, order, 2159 min_wmark_pages(zone), end_zone, 0)) 2160 has_under_min_watermark_zone = 1; 2161 } 2162 2163 } 2164 if (all_zones_ok) 2165 break; /* kswapd: all done */ 2166 /* 2167 * OK, kswapd is getting into trouble. Take a nap, then take 2168 * another pass across the zones. 2169 */ 2170 if (total_scanned && (priority < DEF_PRIORITY - 2)) { 2171 if (has_under_min_watermark_zone) 2172 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2173 else 2174 congestion_wait(BLK_RW_ASYNC, HZ/10); 2175 } 2176 2177 /* 2178 * We do this so kswapd doesn't build up large priorities for 2179 * example when it is freeing in parallel with allocators. It 2180 * matches the direct reclaim path behaviour in terms of impact 2181 * on zone->*_priority. 2182 */ 2183 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2184 break; 2185 } 2186 out: 2187 /* 2188 * Note within each zone the priority level at which this zone was 2189 * brought into a happy state. So that the next thread which scans this 2190 * zone will start out at that priority level. 2191 */ 2192 for (i = 0; i < pgdat->nr_zones; i++) { 2193 struct zone *zone = pgdat->node_zones + i; 2194 2195 zone->prev_priority = temp_priority[i]; 2196 } 2197 if (!all_zones_ok) { 2198 cond_resched(); 2199 2200 try_to_freeze(); 2201 2202 /* 2203 * Fragmentation may mean that the system cannot be 2204 * rebalanced for high-order allocations in all zones. 2205 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2206 * it means the zones have been fully scanned and are still 2207 * not balanced. For high-order allocations, there is 2208 * little point trying all over again as kswapd may 2209 * infinite loop. 2210 * 2211 * Instead, recheck all watermarks at order-0 as they 2212 * are the most important. If watermarks are ok, kswapd will go 2213 * back to sleep. High-order users can still perform direct 2214 * reclaim if they wish. 2215 */ 2216 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2217 order = sc.order = 0; 2218 2219 goto loop_again; 2220 } 2221 2222 return sc.nr_reclaimed; 2223 } 2224 2225 /* 2226 * The background pageout daemon, started as a kernel thread 2227 * from the init process. 2228 * 2229 * This basically trickles out pages so that we have _some_ 2230 * free memory available even if there is no other activity 2231 * that frees anything up. This is needed for things like routing 2232 * etc, where we otherwise might have all activity going on in 2233 * asynchronous contexts that cannot page things out. 2234 * 2235 * If there are applications that are active memory-allocators 2236 * (most normal use), this basically shouldn't matter. 2237 */ 2238 static int kswapd(void *p) 2239 { 2240 unsigned long order; 2241 pg_data_t *pgdat = (pg_data_t*)p; 2242 struct task_struct *tsk = current; 2243 DEFINE_WAIT(wait); 2244 struct reclaim_state reclaim_state = { 2245 .reclaimed_slab = 0, 2246 }; 2247 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2248 2249 lockdep_set_current_reclaim_state(GFP_KERNEL); 2250 2251 if (!cpumask_empty(cpumask)) 2252 set_cpus_allowed_ptr(tsk, cpumask); 2253 current->reclaim_state = &reclaim_state; 2254 2255 /* 2256 * Tell the memory management that we're a "memory allocator", 2257 * and that if we need more memory we should get access to it 2258 * regardless (see "__alloc_pages()"). "kswapd" should 2259 * never get caught in the normal page freeing logic. 2260 * 2261 * (Kswapd normally doesn't need memory anyway, but sometimes 2262 * you need a small amount of memory in order to be able to 2263 * page out something else, and this flag essentially protects 2264 * us from recursively trying to free more memory as we're 2265 * trying to free the first piece of memory in the first place). 2266 */ 2267 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2268 set_freezable(); 2269 2270 order = 0; 2271 for ( ; ; ) { 2272 unsigned long new_order; 2273 int ret; 2274 2275 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2276 new_order = pgdat->kswapd_max_order; 2277 pgdat->kswapd_max_order = 0; 2278 if (order < new_order) { 2279 /* 2280 * Don't sleep if someone wants a larger 'order' 2281 * allocation 2282 */ 2283 order = new_order; 2284 } else { 2285 if (!freezing(current) && !kthread_should_stop()) { 2286 long remaining = 0; 2287 2288 /* Try to sleep for a short interval */ 2289 if (!sleeping_prematurely(pgdat, order, remaining)) { 2290 remaining = schedule_timeout(HZ/10); 2291 finish_wait(&pgdat->kswapd_wait, &wait); 2292 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2293 } 2294 2295 /* 2296 * After a short sleep, check if it was a 2297 * premature sleep. If not, then go fully 2298 * to sleep until explicitly woken up 2299 */ 2300 if (!sleeping_prematurely(pgdat, order, remaining)) 2301 schedule(); 2302 else { 2303 if (remaining) 2304 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2305 else 2306 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2307 } 2308 } 2309 2310 order = pgdat->kswapd_max_order; 2311 } 2312 finish_wait(&pgdat->kswapd_wait, &wait); 2313 2314 ret = try_to_freeze(); 2315 if (kthread_should_stop()) 2316 break; 2317 2318 /* 2319 * We can speed up thawing tasks if we don't call balance_pgdat 2320 * after returning from the refrigerator 2321 */ 2322 if (!ret) 2323 balance_pgdat(pgdat, order); 2324 } 2325 return 0; 2326 } 2327 2328 /* 2329 * A zone is low on free memory, so wake its kswapd task to service it. 2330 */ 2331 void wakeup_kswapd(struct zone *zone, int order) 2332 { 2333 pg_data_t *pgdat; 2334 2335 if (!populated_zone(zone)) 2336 return; 2337 2338 pgdat = zone->zone_pgdat; 2339 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 2340 return; 2341 if (pgdat->kswapd_max_order < order) 2342 pgdat->kswapd_max_order = order; 2343 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2344 return; 2345 if (!waitqueue_active(&pgdat->kswapd_wait)) 2346 return; 2347 wake_up_interruptible(&pgdat->kswapd_wait); 2348 } 2349 2350 /* 2351 * The reclaimable count would be mostly accurate. 2352 * The less reclaimable pages may be 2353 * - mlocked pages, which will be moved to unevictable list when encountered 2354 * - mapped pages, which may require several travels to be reclaimed 2355 * - dirty pages, which is not "instantly" reclaimable 2356 */ 2357 unsigned long global_reclaimable_pages(void) 2358 { 2359 int nr; 2360 2361 nr = global_page_state(NR_ACTIVE_FILE) + 2362 global_page_state(NR_INACTIVE_FILE); 2363 2364 if (nr_swap_pages > 0) 2365 nr += global_page_state(NR_ACTIVE_ANON) + 2366 global_page_state(NR_INACTIVE_ANON); 2367 2368 return nr; 2369 } 2370 2371 unsigned long zone_reclaimable_pages(struct zone *zone) 2372 { 2373 int nr; 2374 2375 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 2376 zone_page_state(zone, NR_INACTIVE_FILE); 2377 2378 if (nr_swap_pages > 0) 2379 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 2380 zone_page_state(zone, NR_INACTIVE_ANON); 2381 2382 return nr; 2383 } 2384 2385 #ifdef CONFIG_HIBERNATION 2386 /* 2387 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 2388 * freed pages. 2389 * 2390 * Rather than trying to age LRUs the aim is to preserve the overall 2391 * LRU order by reclaiming preferentially 2392 * inactive > active > active referenced > active mapped 2393 */ 2394 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 2395 { 2396 struct reclaim_state reclaim_state; 2397 struct scan_control sc = { 2398 .gfp_mask = GFP_HIGHUSER_MOVABLE, 2399 .may_swap = 1, 2400 .may_unmap = 1, 2401 .may_writepage = 1, 2402 .nr_to_reclaim = nr_to_reclaim, 2403 .hibernation_mode = 1, 2404 .swappiness = vm_swappiness, 2405 .order = 0, 2406 }; 2407 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 2408 struct task_struct *p = current; 2409 unsigned long nr_reclaimed; 2410 2411 p->flags |= PF_MEMALLOC; 2412 lockdep_set_current_reclaim_state(sc.gfp_mask); 2413 reclaim_state.reclaimed_slab = 0; 2414 p->reclaim_state = &reclaim_state; 2415 2416 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2417 2418 p->reclaim_state = NULL; 2419 lockdep_clear_current_reclaim_state(); 2420 p->flags &= ~PF_MEMALLOC; 2421 2422 return nr_reclaimed; 2423 } 2424 #endif /* CONFIG_HIBERNATION */ 2425 2426 /* It's optimal to keep kswapds on the same CPUs as their memory, but 2427 not required for correctness. So if the last cpu in a node goes 2428 away, we get changed to run anywhere: as the first one comes back, 2429 restore their cpu bindings. */ 2430 static int __devinit cpu_callback(struct notifier_block *nfb, 2431 unsigned long action, void *hcpu) 2432 { 2433 int nid; 2434 2435 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2436 for_each_node_state(nid, N_HIGH_MEMORY) { 2437 pg_data_t *pgdat = NODE_DATA(nid); 2438 const struct cpumask *mask; 2439 2440 mask = cpumask_of_node(pgdat->node_id); 2441 2442 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2443 /* One of our CPUs online: restore mask */ 2444 set_cpus_allowed_ptr(pgdat->kswapd, mask); 2445 } 2446 } 2447 return NOTIFY_OK; 2448 } 2449 2450 /* 2451 * This kswapd start function will be called by init and node-hot-add. 2452 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2453 */ 2454 int kswapd_run(int nid) 2455 { 2456 pg_data_t *pgdat = NODE_DATA(nid); 2457 int ret = 0; 2458 2459 if (pgdat->kswapd) 2460 return 0; 2461 2462 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2463 if (IS_ERR(pgdat->kswapd)) { 2464 /* failure at boot is fatal */ 2465 BUG_ON(system_state == SYSTEM_BOOTING); 2466 printk("Failed to start kswapd on node %d\n",nid); 2467 ret = -1; 2468 } 2469 return ret; 2470 } 2471 2472 /* 2473 * Called by memory hotplug when all memory in a node is offlined. 2474 */ 2475 void kswapd_stop(int nid) 2476 { 2477 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 2478 2479 if (kswapd) 2480 kthread_stop(kswapd); 2481 } 2482 2483 static int __init kswapd_init(void) 2484 { 2485 int nid; 2486 2487 swap_setup(); 2488 for_each_node_state(nid, N_HIGH_MEMORY) 2489 kswapd_run(nid); 2490 hotcpu_notifier(cpu_callback, 0); 2491 return 0; 2492 } 2493 2494 module_init(kswapd_init) 2495 2496 #ifdef CONFIG_NUMA 2497 /* 2498 * Zone reclaim mode 2499 * 2500 * If non-zero call zone_reclaim when the number of free pages falls below 2501 * the watermarks. 2502 */ 2503 int zone_reclaim_mode __read_mostly; 2504 2505 #define RECLAIM_OFF 0 2506 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2507 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2508 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2509 2510 /* 2511 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2512 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2513 * a zone. 2514 */ 2515 #define ZONE_RECLAIM_PRIORITY 4 2516 2517 /* 2518 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2519 * occur. 2520 */ 2521 int sysctl_min_unmapped_ratio = 1; 2522 2523 /* 2524 * If the number of slab pages in a zone grows beyond this percentage then 2525 * slab reclaim needs to occur. 2526 */ 2527 int sysctl_min_slab_ratio = 5; 2528 2529 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 2530 { 2531 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 2532 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 2533 zone_page_state(zone, NR_ACTIVE_FILE); 2534 2535 /* 2536 * It's possible for there to be more file mapped pages than 2537 * accounted for by the pages on the file LRU lists because 2538 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 2539 */ 2540 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 2541 } 2542 2543 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 2544 static long zone_pagecache_reclaimable(struct zone *zone) 2545 { 2546 long nr_pagecache_reclaimable; 2547 long delta = 0; 2548 2549 /* 2550 * If RECLAIM_SWAP is set, then all file pages are considered 2551 * potentially reclaimable. Otherwise, we have to worry about 2552 * pages like swapcache and zone_unmapped_file_pages() provides 2553 * a better estimate 2554 */ 2555 if (zone_reclaim_mode & RECLAIM_SWAP) 2556 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 2557 else 2558 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 2559 2560 /* If we can't clean pages, remove dirty pages from consideration */ 2561 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 2562 delta += zone_page_state(zone, NR_FILE_DIRTY); 2563 2564 /* Watch for any possible underflows due to delta */ 2565 if (unlikely(delta > nr_pagecache_reclaimable)) 2566 delta = nr_pagecache_reclaimable; 2567 2568 return nr_pagecache_reclaimable - delta; 2569 } 2570 2571 /* 2572 * Try to free up some pages from this zone through reclaim. 2573 */ 2574 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2575 { 2576 /* Minimum pages needed in order to stay on node */ 2577 const unsigned long nr_pages = 1 << order; 2578 struct task_struct *p = current; 2579 struct reclaim_state reclaim_state; 2580 int priority; 2581 struct scan_control sc = { 2582 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2583 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2584 .may_swap = 1, 2585 .nr_to_reclaim = max_t(unsigned long, nr_pages, 2586 SWAP_CLUSTER_MAX), 2587 .gfp_mask = gfp_mask, 2588 .swappiness = vm_swappiness, 2589 .order = order, 2590 }; 2591 unsigned long slab_reclaimable; 2592 2593 disable_swap_token(); 2594 cond_resched(); 2595 /* 2596 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2597 * and we also need to be able to write out pages for RECLAIM_WRITE 2598 * and RECLAIM_SWAP. 2599 */ 2600 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2601 lockdep_set_current_reclaim_state(gfp_mask); 2602 reclaim_state.reclaimed_slab = 0; 2603 p->reclaim_state = &reclaim_state; 2604 2605 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 2606 /* 2607 * Free memory by calling shrink zone with increasing 2608 * priorities until we have enough memory freed. 2609 */ 2610 priority = ZONE_RECLAIM_PRIORITY; 2611 do { 2612 note_zone_scanning_priority(zone, priority); 2613 shrink_zone(priority, zone, &sc); 2614 priority--; 2615 } while (priority >= 0 && sc.nr_reclaimed < nr_pages); 2616 } 2617 2618 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2619 if (slab_reclaimable > zone->min_slab_pages) { 2620 /* 2621 * shrink_slab() does not currently allow us to determine how 2622 * many pages were freed in this zone. So we take the current 2623 * number of slab pages and shake the slab until it is reduced 2624 * by the same nr_pages that we used for reclaiming unmapped 2625 * pages. 2626 * 2627 * Note that shrink_slab will free memory on all zones and may 2628 * take a long time. 2629 */ 2630 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2631 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2632 slab_reclaimable - nr_pages) 2633 ; 2634 2635 /* 2636 * Update nr_reclaimed by the number of slab pages we 2637 * reclaimed from this zone. 2638 */ 2639 sc.nr_reclaimed += slab_reclaimable - 2640 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2641 } 2642 2643 p->reclaim_state = NULL; 2644 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2645 lockdep_clear_current_reclaim_state(); 2646 return sc.nr_reclaimed >= nr_pages; 2647 } 2648 2649 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2650 { 2651 int node_id; 2652 int ret; 2653 2654 /* 2655 * Zone reclaim reclaims unmapped file backed pages and 2656 * slab pages if we are over the defined limits. 2657 * 2658 * A small portion of unmapped file backed pages is needed for 2659 * file I/O otherwise pages read by file I/O will be immediately 2660 * thrown out if the zone is overallocated. So we do not reclaim 2661 * if less than a specified percentage of the zone is used by 2662 * unmapped file backed pages. 2663 */ 2664 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 2665 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 2666 return ZONE_RECLAIM_FULL; 2667 2668 if (zone->all_unreclaimable) 2669 return ZONE_RECLAIM_FULL; 2670 2671 /* 2672 * Do not scan if the allocation should not be delayed. 2673 */ 2674 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2675 return ZONE_RECLAIM_NOSCAN; 2676 2677 /* 2678 * Only run zone reclaim on the local zone or on zones that do not 2679 * have associated processors. This will favor the local processor 2680 * over remote processors and spread off node memory allocations 2681 * as wide as possible. 2682 */ 2683 node_id = zone_to_nid(zone); 2684 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2685 return ZONE_RECLAIM_NOSCAN; 2686 2687 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2688 return ZONE_RECLAIM_NOSCAN; 2689 2690 ret = __zone_reclaim(zone, gfp_mask, order); 2691 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2692 2693 if (!ret) 2694 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 2695 2696 return ret; 2697 } 2698 #endif 2699 2700 /* 2701 * page_evictable - test whether a page is evictable 2702 * @page: the page to test 2703 * @vma: the VMA in which the page is or will be mapped, may be NULL 2704 * 2705 * Test whether page is evictable--i.e., should be placed on active/inactive 2706 * lists vs unevictable list. The vma argument is !NULL when called from the 2707 * fault path to determine how to instantate a new page. 2708 * 2709 * Reasons page might not be evictable: 2710 * (1) page's mapping marked unevictable 2711 * (2) page is part of an mlocked VMA 2712 * 2713 */ 2714 int page_evictable(struct page *page, struct vm_area_struct *vma) 2715 { 2716 2717 if (mapping_unevictable(page_mapping(page))) 2718 return 0; 2719 2720 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) 2721 return 0; 2722 2723 return 1; 2724 } 2725 2726 /** 2727 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list 2728 * @page: page to check evictability and move to appropriate lru list 2729 * @zone: zone page is in 2730 * 2731 * Checks a page for evictability and moves the page to the appropriate 2732 * zone lru list. 2733 * 2734 * Restrictions: zone->lru_lock must be held, page must be on LRU and must 2735 * have PageUnevictable set. 2736 */ 2737 static void check_move_unevictable_page(struct page *page, struct zone *zone) 2738 { 2739 VM_BUG_ON(PageActive(page)); 2740 2741 retry: 2742 ClearPageUnevictable(page); 2743 if (page_evictable(page, NULL)) { 2744 enum lru_list l = page_lru_base_type(page); 2745 2746 __dec_zone_state(zone, NR_UNEVICTABLE); 2747 list_move(&page->lru, &zone->lru[l].list); 2748 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l); 2749 __inc_zone_state(zone, NR_INACTIVE_ANON + l); 2750 __count_vm_event(UNEVICTABLE_PGRESCUED); 2751 } else { 2752 /* 2753 * rotate unevictable list 2754 */ 2755 SetPageUnevictable(page); 2756 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); 2757 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE); 2758 if (page_evictable(page, NULL)) 2759 goto retry; 2760 } 2761 } 2762 2763 /** 2764 * scan_mapping_unevictable_pages - scan an address space for evictable pages 2765 * @mapping: struct address_space to scan for evictable pages 2766 * 2767 * Scan all pages in mapping. Check unevictable pages for 2768 * evictability and move them to the appropriate zone lru list. 2769 */ 2770 void scan_mapping_unevictable_pages(struct address_space *mapping) 2771 { 2772 pgoff_t next = 0; 2773 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> 2774 PAGE_CACHE_SHIFT; 2775 struct zone *zone; 2776 struct pagevec pvec; 2777 2778 if (mapping->nrpages == 0) 2779 return; 2780 2781 pagevec_init(&pvec, 0); 2782 while (next < end && 2783 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 2784 int i; 2785 int pg_scanned = 0; 2786 2787 zone = NULL; 2788 2789 for (i = 0; i < pagevec_count(&pvec); i++) { 2790 struct page *page = pvec.pages[i]; 2791 pgoff_t page_index = page->index; 2792 struct zone *pagezone = page_zone(page); 2793 2794 pg_scanned++; 2795 if (page_index > next) 2796 next = page_index; 2797 next++; 2798 2799 if (pagezone != zone) { 2800 if (zone) 2801 spin_unlock_irq(&zone->lru_lock); 2802 zone = pagezone; 2803 spin_lock_irq(&zone->lru_lock); 2804 } 2805 2806 if (PageLRU(page) && PageUnevictable(page)) 2807 check_move_unevictable_page(page, zone); 2808 } 2809 if (zone) 2810 spin_unlock_irq(&zone->lru_lock); 2811 pagevec_release(&pvec); 2812 2813 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); 2814 } 2815 2816 } 2817 2818 /** 2819 * scan_zone_unevictable_pages - check unevictable list for evictable pages 2820 * @zone - zone of which to scan the unevictable list 2821 * 2822 * Scan @zone's unevictable LRU lists to check for pages that have become 2823 * evictable. Move those that have to @zone's inactive list where they 2824 * become candidates for reclaim, unless shrink_inactive_zone() decides 2825 * to reactivate them. Pages that are still unevictable are rotated 2826 * back onto @zone's unevictable list. 2827 */ 2828 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ 2829 static void scan_zone_unevictable_pages(struct zone *zone) 2830 { 2831 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; 2832 unsigned long scan; 2833 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); 2834 2835 while (nr_to_scan > 0) { 2836 unsigned long batch_size = min(nr_to_scan, 2837 SCAN_UNEVICTABLE_BATCH_SIZE); 2838 2839 spin_lock_irq(&zone->lru_lock); 2840 for (scan = 0; scan < batch_size; scan++) { 2841 struct page *page = lru_to_page(l_unevictable); 2842 2843 if (!trylock_page(page)) 2844 continue; 2845 2846 prefetchw_prev_lru_page(page, l_unevictable, flags); 2847 2848 if (likely(PageLRU(page) && PageUnevictable(page))) 2849 check_move_unevictable_page(page, zone); 2850 2851 unlock_page(page); 2852 } 2853 spin_unlock_irq(&zone->lru_lock); 2854 2855 nr_to_scan -= batch_size; 2856 } 2857 } 2858 2859 2860 /** 2861 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages 2862 * 2863 * A really big hammer: scan all zones' unevictable LRU lists to check for 2864 * pages that have become evictable. Move those back to the zones' 2865 * inactive list where they become candidates for reclaim. 2866 * This occurs when, e.g., we have unswappable pages on the unevictable lists, 2867 * and we add swap to the system. As such, it runs in the context of a task 2868 * that has possibly/probably made some previously unevictable pages 2869 * evictable. 2870 */ 2871 static void scan_all_zones_unevictable_pages(void) 2872 { 2873 struct zone *zone; 2874 2875 for_each_zone(zone) { 2876 scan_zone_unevictable_pages(zone); 2877 } 2878 } 2879 2880 /* 2881 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 2882 * all nodes' unevictable lists for evictable pages 2883 */ 2884 unsigned long scan_unevictable_pages; 2885 2886 int scan_unevictable_handler(struct ctl_table *table, int write, 2887 void __user *buffer, 2888 size_t *length, loff_t *ppos) 2889 { 2890 proc_doulongvec_minmax(table, write, buffer, length, ppos); 2891 2892 if (write && *(unsigned long *)table->data) 2893 scan_all_zones_unevictable_pages(); 2894 2895 scan_unevictable_pages = 0; 2896 return 0; 2897 } 2898 2899 /* 2900 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 2901 * a specified node's per zone unevictable lists for evictable pages. 2902 */ 2903 2904 static ssize_t read_scan_unevictable_node(struct sys_device *dev, 2905 struct sysdev_attribute *attr, 2906 char *buf) 2907 { 2908 return sprintf(buf, "0\n"); /* always zero; should fit... */ 2909 } 2910 2911 static ssize_t write_scan_unevictable_node(struct sys_device *dev, 2912 struct sysdev_attribute *attr, 2913 const char *buf, size_t count) 2914 { 2915 struct zone *node_zones = NODE_DATA(dev->id)->node_zones; 2916 struct zone *zone; 2917 unsigned long res; 2918 unsigned long req = strict_strtoul(buf, 10, &res); 2919 2920 if (!req) 2921 return 1; /* zero is no-op */ 2922 2923 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2924 if (!populated_zone(zone)) 2925 continue; 2926 scan_zone_unevictable_pages(zone); 2927 } 2928 return 1; 2929 } 2930 2931 2932 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 2933 read_scan_unevictable_node, 2934 write_scan_unevictable_node); 2935 2936 int scan_unevictable_register_node(struct node *node) 2937 { 2938 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); 2939 } 2940 2941 void scan_unevictable_unregister_node(struct node *node) 2942 { 2943 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); 2944 } 2945 2946