1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* This context's GFP mask */ 69 gfp_t gfp_mask; 70 71 /* Allocation order */ 72 int order; 73 74 /* 75 * Nodemask of nodes allowed by the caller. If NULL, all nodes 76 * are scanned. 77 */ 78 nodemask_t *nodemask; 79 80 /* 81 * The memory cgroup that hit its limit and as a result is the 82 * primary target of this reclaim invocation. 83 */ 84 struct mem_cgroup *target_mem_cgroup; 85 86 /* Scan (total_size >> priority) pages at once */ 87 int priority; 88 89 /* The highest zone to isolate pages for reclaim from */ 90 enum zone_type reclaim_idx; 91 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 93 unsigned int may_writepage:1; 94 95 /* Can mapped pages be reclaimed? */ 96 unsigned int may_unmap:1; 97 98 /* Can pages be swapped as part of reclaim? */ 99 unsigned int may_swap:1; 100 101 /* 102 * Cgroups are not reclaimed below their configured memory.low, 103 * unless we threaten to OOM. If any cgroups are skipped due to 104 * memory.low and nothing was reclaimed, go back for memory.low. 105 */ 106 unsigned int memcg_low_reclaim:1; 107 unsigned int memcg_low_skipped:1; 108 109 unsigned int hibernation_mode:1; 110 111 /* One of the zones is ready for compaction */ 112 unsigned int compaction_ready:1; 113 114 /* Incremented by the number of inactive pages that were scanned */ 115 unsigned long nr_scanned; 116 117 /* Number of pages freed so far during a call to shrink_zones() */ 118 unsigned long nr_reclaimed; 119 120 struct { 121 unsigned int dirty; 122 unsigned int unqueued_dirty; 123 unsigned int congested; 124 unsigned int writeback; 125 unsigned int immediate; 126 unsigned int file_taken; 127 unsigned int taken; 128 } nr; 129 }; 130 131 #ifdef ARCH_HAS_PREFETCH 132 #define prefetch_prev_lru_page(_page, _base, _field) \ 133 do { \ 134 if ((_page)->lru.prev != _base) { \ 135 struct page *prev; \ 136 \ 137 prev = lru_to_page(&(_page->lru)); \ 138 prefetch(&prev->_field); \ 139 } \ 140 } while (0) 141 #else 142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 143 #endif 144 145 #ifdef ARCH_HAS_PREFETCHW 146 #define prefetchw_prev_lru_page(_page, _base, _field) \ 147 do { \ 148 if ((_page)->lru.prev != _base) { \ 149 struct page *prev; \ 150 \ 151 prev = lru_to_page(&(_page->lru)); \ 152 prefetchw(&prev->_field); \ 153 } \ 154 } while (0) 155 #else 156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 157 #endif 158 159 /* 160 * From 0 .. 100. Higher means more swappy. 161 */ 162 int vm_swappiness = 60; 163 /* 164 * The total number of pages which are beyond the high watermark within all 165 * zones. 166 */ 167 unsigned long vm_total_pages; 168 169 static LIST_HEAD(shrinker_list); 170 static DECLARE_RWSEM(shrinker_rwsem); 171 172 #ifdef CONFIG_MEMCG 173 static bool global_reclaim(struct scan_control *sc) 174 { 175 return !sc->target_mem_cgroup; 176 } 177 178 /** 179 * sane_reclaim - is the usual dirty throttling mechanism operational? 180 * @sc: scan_control in question 181 * 182 * The normal page dirty throttling mechanism in balance_dirty_pages() is 183 * completely broken with the legacy memcg and direct stalling in 184 * shrink_page_list() is used for throttling instead, which lacks all the 185 * niceties such as fairness, adaptive pausing, bandwidth proportional 186 * allocation and configurability. 187 * 188 * This function tests whether the vmscan currently in progress can assume 189 * that the normal dirty throttling mechanism is operational. 190 */ 191 static bool sane_reclaim(struct scan_control *sc) 192 { 193 struct mem_cgroup *memcg = sc->target_mem_cgroup; 194 195 if (!memcg) 196 return true; 197 #ifdef CONFIG_CGROUP_WRITEBACK 198 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 199 return true; 200 #endif 201 return false; 202 } 203 204 static void set_memcg_congestion(pg_data_t *pgdat, 205 struct mem_cgroup *memcg, 206 bool congested) 207 { 208 struct mem_cgroup_per_node *mn; 209 210 if (!memcg) 211 return; 212 213 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 214 WRITE_ONCE(mn->congested, congested); 215 } 216 217 static bool memcg_congested(pg_data_t *pgdat, 218 struct mem_cgroup *memcg) 219 { 220 struct mem_cgroup_per_node *mn; 221 222 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 223 return READ_ONCE(mn->congested); 224 225 } 226 #else 227 static bool global_reclaim(struct scan_control *sc) 228 { 229 return true; 230 } 231 232 static bool sane_reclaim(struct scan_control *sc) 233 { 234 return true; 235 } 236 237 static inline void set_memcg_congestion(struct pglist_data *pgdat, 238 struct mem_cgroup *memcg, bool congested) 239 { 240 } 241 242 static inline bool memcg_congested(struct pglist_data *pgdat, 243 struct mem_cgroup *memcg) 244 { 245 return false; 246 247 } 248 #endif 249 250 /* 251 * This misses isolated pages which are not accounted for to save counters. 252 * As the data only determines if reclaim or compaction continues, it is 253 * not expected that isolated pages will be a dominating factor. 254 */ 255 unsigned long zone_reclaimable_pages(struct zone *zone) 256 { 257 unsigned long nr; 258 259 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 260 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 261 if (get_nr_swap_pages() > 0) 262 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 263 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 264 265 return nr; 266 } 267 268 /** 269 * lruvec_lru_size - Returns the number of pages on the given LRU list. 270 * @lruvec: lru vector 271 * @lru: lru to use 272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 273 */ 274 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 275 { 276 unsigned long lru_size; 277 int zid; 278 279 if (!mem_cgroup_disabled()) 280 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 281 else 282 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 283 284 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 285 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 286 unsigned long size; 287 288 if (!managed_zone(zone)) 289 continue; 290 291 if (!mem_cgroup_disabled()) 292 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 293 else 294 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 295 NR_ZONE_LRU_BASE + lru); 296 lru_size -= min(size, lru_size); 297 } 298 299 return lru_size; 300 301 } 302 303 /* 304 * Add a shrinker callback to be called from the vm. 305 */ 306 int prealloc_shrinker(struct shrinker *shrinker) 307 { 308 size_t size = sizeof(*shrinker->nr_deferred); 309 310 if (shrinker->flags & SHRINKER_NUMA_AWARE) 311 size *= nr_node_ids; 312 313 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 314 if (!shrinker->nr_deferred) 315 return -ENOMEM; 316 return 0; 317 } 318 319 void free_prealloced_shrinker(struct shrinker *shrinker) 320 { 321 kfree(shrinker->nr_deferred); 322 shrinker->nr_deferred = NULL; 323 } 324 325 void register_shrinker_prepared(struct shrinker *shrinker) 326 { 327 down_write(&shrinker_rwsem); 328 list_add_tail(&shrinker->list, &shrinker_list); 329 up_write(&shrinker_rwsem); 330 } 331 332 int register_shrinker(struct shrinker *shrinker) 333 { 334 int err = prealloc_shrinker(shrinker); 335 336 if (err) 337 return err; 338 register_shrinker_prepared(shrinker); 339 return 0; 340 } 341 EXPORT_SYMBOL(register_shrinker); 342 343 /* 344 * Remove one 345 */ 346 void unregister_shrinker(struct shrinker *shrinker) 347 { 348 if (!shrinker->nr_deferred) 349 return; 350 down_write(&shrinker_rwsem); 351 list_del(&shrinker->list); 352 up_write(&shrinker_rwsem); 353 kfree(shrinker->nr_deferred); 354 shrinker->nr_deferred = NULL; 355 } 356 EXPORT_SYMBOL(unregister_shrinker); 357 358 #define SHRINK_BATCH 128 359 360 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 361 struct shrinker *shrinker, int priority) 362 { 363 unsigned long freed = 0; 364 unsigned long long delta; 365 long total_scan; 366 long freeable; 367 long nr; 368 long new_nr; 369 int nid = shrinkctl->nid; 370 long batch_size = shrinker->batch ? shrinker->batch 371 : SHRINK_BATCH; 372 long scanned = 0, next_deferred; 373 374 freeable = shrinker->count_objects(shrinker, shrinkctl); 375 if (freeable == 0) 376 return 0; 377 378 /* 379 * copy the current shrinker scan count into a local variable 380 * and zero it so that other concurrent shrinker invocations 381 * don't also do this scanning work. 382 */ 383 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 384 385 total_scan = nr; 386 delta = freeable >> priority; 387 delta *= 4; 388 do_div(delta, shrinker->seeks); 389 total_scan += delta; 390 if (total_scan < 0) { 391 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 392 shrinker->scan_objects, total_scan); 393 total_scan = freeable; 394 next_deferred = nr; 395 } else 396 next_deferred = total_scan; 397 398 /* 399 * We need to avoid excessive windup on filesystem shrinkers 400 * due to large numbers of GFP_NOFS allocations causing the 401 * shrinkers to return -1 all the time. This results in a large 402 * nr being built up so when a shrink that can do some work 403 * comes along it empties the entire cache due to nr >>> 404 * freeable. This is bad for sustaining a working set in 405 * memory. 406 * 407 * Hence only allow the shrinker to scan the entire cache when 408 * a large delta change is calculated directly. 409 */ 410 if (delta < freeable / 4) 411 total_scan = min(total_scan, freeable / 2); 412 413 /* 414 * Avoid risking looping forever due to too large nr value: 415 * never try to free more than twice the estimate number of 416 * freeable entries. 417 */ 418 if (total_scan > freeable * 2) 419 total_scan = freeable * 2; 420 421 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 422 freeable, delta, total_scan, priority); 423 424 /* 425 * Normally, we should not scan less than batch_size objects in one 426 * pass to avoid too frequent shrinker calls, but if the slab has less 427 * than batch_size objects in total and we are really tight on memory, 428 * we will try to reclaim all available objects, otherwise we can end 429 * up failing allocations although there are plenty of reclaimable 430 * objects spread over several slabs with usage less than the 431 * batch_size. 432 * 433 * We detect the "tight on memory" situations by looking at the total 434 * number of objects we want to scan (total_scan). If it is greater 435 * than the total number of objects on slab (freeable), we must be 436 * scanning at high prio and therefore should try to reclaim as much as 437 * possible. 438 */ 439 while (total_scan >= batch_size || 440 total_scan >= freeable) { 441 unsigned long ret; 442 unsigned long nr_to_scan = min(batch_size, total_scan); 443 444 shrinkctl->nr_to_scan = nr_to_scan; 445 shrinkctl->nr_scanned = nr_to_scan; 446 ret = shrinker->scan_objects(shrinker, shrinkctl); 447 if (ret == SHRINK_STOP) 448 break; 449 freed += ret; 450 451 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 452 total_scan -= shrinkctl->nr_scanned; 453 scanned += shrinkctl->nr_scanned; 454 455 cond_resched(); 456 } 457 458 if (next_deferred >= scanned) 459 next_deferred -= scanned; 460 else 461 next_deferred = 0; 462 /* 463 * move the unused scan count back into the shrinker in a 464 * manner that handles concurrent updates. If we exhausted the 465 * scan, there is no need to do an update. 466 */ 467 if (next_deferred > 0) 468 new_nr = atomic_long_add_return(next_deferred, 469 &shrinker->nr_deferred[nid]); 470 else 471 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 472 473 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 474 return freed; 475 } 476 477 /** 478 * shrink_slab - shrink slab caches 479 * @gfp_mask: allocation context 480 * @nid: node whose slab caches to target 481 * @memcg: memory cgroup whose slab caches to target 482 * @priority: the reclaim priority 483 * 484 * Call the shrink functions to age shrinkable caches. 485 * 486 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 487 * unaware shrinkers will receive a node id of 0 instead. 488 * 489 * @memcg specifies the memory cgroup to target. If it is not NULL, 490 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 491 * objects from the memory cgroup specified. Otherwise, only unaware 492 * shrinkers are called. 493 * 494 * @priority is sc->priority, we take the number of objects and >> by priority 495 * in order to get the scan target. 496 * 497 * Returns the number of reclaimed slab objects. 498 */ 499 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 500 struct mem_cgroup *memcg, 501 int priority) 502 { 503 struct shrinker *shrinker; 504 unsigned long freed = 0; 505 506 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 507 return 0; 508 509 if (!down_read_trylock(&shrinker_rwsem)) 510 goto out; 511 512 list_for_each_entry(shrinker, &shrinker_list, list) { 513 struct shrink_control sc = { 514 .gfp_mask = gfp_mask, 515 .nid = nid, 516 .memcg = memcg, 517 }; 518 519 /* 520 * If kernel memory accounting is disabled, we ignore 521 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 522 * passing NULL for memcg. 523 */ 524 if (memcg_kmem_enabled() && 525 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 526 continue; 527 528 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 529 sc.nid = 0; 530 531 freed += do_shrink_slab(&sc, shrinker, priority); 532 /* 533 * Bail out if someone want to register a new shrinker to 534 * prevent the regsitration from being stalled for long periods 535 * by parallel ongoing shrinking. 536 */ 537 if (rwsem_is_contended(&shrinker_rwsem)) { 538 freed = freed ? : 1; 539 break; 540 } 541 } 542 543 up_read(&shrinker_rwsem); 544 out: 545 cond_resched(); 546 return freed; 547 } 548 549 void drop_slab_node(int nid) 550 { 551 unsigned long freed; 552 553 do { 554 struct mem_cgroup *memcg = NULL; 555 556 freed = 0; 557 do { 558 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 559 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 560 } while (freed > 10); 561 } 562 563 void drop_slab(void) 564 { 565 int nid; 566 567 for_each_online_node(nid) 568 drop_slab_node(nid); 569 } 570 571 static inline int is_page_cache_freeable(struct page *page) 572 { 573 /* 574 * A freeable page cache page is referenced only by the caller 575 * that isolated the page, the page cache radix tree and 576 * optional buffer heads at page->private. 577 */ 578 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? 579 HPAGE_PMD_NR : 1; 580 return page_count(page) - page_has_private(page) == 1 + radix_pins; 581 } 582 583 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 584 { 585 if (current->flags & PF_SWAPWRITE) 586 return 1; 587 if (!inode_write_congested(inode)) 588 return 1; 589 if (inode_to_bdi(inode) == current->backing_dev_info) 590 return 1; 591 return 0; 592 } 593 594 /* 595 * We detected a synchronous write error writing a page out. Probably 596 * -ENOSPC. We need to propagate that into the address_space for a subsequent 597 * fsync(), msync() or close(). 598 * 599 * The tricky part is that after writepage we cannot touch the mapping: nothing 600 * prevents it from being freed up. But we have a ref on the page and once 601 * that page is locked, the mapping is pinned. 602 * 603 * We're allowed to run sleeping lock_page() here because we know the caller has 604 * __GFP_FS. 605 */ 606 static void handle_write_error(struct address_space *mapping, 607 struct page *page, int error) 608 { 609 lock_page(page); 610 if (page_mapping(page) == mapping) 611 mapping_set_error(mapping, error); 612 unlock_page(page); 613 } 614 615 /* possible outcome of pageout() */ 616 typedef enum { 617 /* failed to write page out, page is locked */ 618 PAGE_KEEP, 619 /* move page to the active list, page is locked */ 620 PAGE_ACTIVATE, 621 /* page has been sent to the disk successfully, page is unlocked */ 622 PAGE_SUCCESS, 623 /* page is clean and locked */ 624 PAGE_CLEAN, 625 } pageout_t; 626 627 /* 628 * pageout is called by shrink_page_list() for each dirty page. 629 * Calls ->writepage(). 630 */ 631 static pageout_t pageout(struct page *page, struct address_space *mapping, 632 struct scan_control *sc) 633 { 634 /* 635 * If the page is dirty, only perform writeback if that write 636 * will be non-blocking. To prevent this allocation from being 637 * stalled by pagecache activity. But note that there may be 638 * stalls if we need to run get_block(). We could test 639 * PagePrivate for that. 640 * 641 * If this process is currently in __generic_file_write_iter() against 642 * this page's queue, we can perform writeback even if that 643 * will block. 644 * 645 * If the page is swapcache, write it back even if that would 646 * block, for some throttling. This happens by accident, because 647 * swap_backing_dev_info is bust: it doesn't reflect the 648 * congestion state of the swapdevs. Easy to fix, if needed. 649 */ 650 if (!is_page_cache_freeable(page)) 651 return PAGE_KEEP; 652 if (!mapping) { 653 /* 654 * Some data journaling orphaned pages can have 655 * page->mapping == NULL while being dirty with clean buffers. 656 */ 657 if (page_has_private(page)) { 658 if (try_to_free_buffers(page)) { 659 ClearPageDirty(page); 660 pr_info("%s: orphaned page\n", __func__); 661 return PAGE_CLEAN; 662 } 663 } 664 return PAGE_KEEP; 665 } 666 if (mapping->a_ops->writepage == NULL) 667 return PAGE_ACTIVATE; 668 if (!may_write_to_inode(mapping->host, sc)) 669 return PAGE_KEEP; 670 671 if (clear_page_dirty_for_io(page)) { 672 int res; 673 struct writeback_control wbc = { 674 .sync_mode = WB_SYNC_NONE, 675 .nr_to_write = SWAP_CLUSTER_MAX, 676 .range_start = 0, 677 .range_end = LLONG_MAX, 678 .for_reclaim = 1, 679 }; 680 681 SetPageReclaim(page); 682 res = mapping->a_ops->writepage(page, &wbc); 683 if (res < 0) 684 handle_write_error(mapping, page, res); 685 if (res == AOP_WRITEPAGE_ACTIVATE) { 686 ClearPageReclaim(page); 687 return PAGE_ACTIVATE; 688 } 689 690 if (!PageWriteback(page)) { 691 /* synchronous write or broken a_ops? */ 692 ClearPageReclaim(page); 693 } 694 trace_mm_vmscan_writepage(page); 695 inc_node_page_state(page, NR_VMSCAN_WRITE); 696 return PAGE_SUCCESS; 697 } 698 699 return PAGE_CLEAN; 700 } 701 702 /* 703 * Same as remove_mapping, but if the page is removed from the mapping, it 704 * gets returned with a refcount of 0. 705 */ 706 static int __remove_mapping(struct address_space *mapping, struct page *page, 707 bool reclaimed) 708 { 709 unsigned long flags; 710 int refcount; 711 712 BUG_ON(!PageLocked(page)); 713 BUG_ON(mapping != page_mapping(page)); 714 715 xa_lock_irqsave(&mapping->i_pages, flags); 716 /* 717 * The non racy check for a busy page. 718 * 719 * Must be careful with the order of the tests. When someone has 720 * a ref to the page, it may be possible that they dirty it then 721 * drop the reference. So if PageDirty is tested before page_count 722 * here, then the following race may occur: 723 * 724 * get_user_pages(&page); 725 * [user mapping goes away] 726 * write_to(page); 727 * !PageDirty(page) [good] 728 * SetPageDirty(page); 729 * put_page(page); 730 * !page_count(page) [good, discard it] 731 * 732 * [oops, our write_to data is lost] 733 * 734 * Reversing the order of the tests ensures such a situation cannot 735 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 736 * load is not satisfied before that of page->_refcount. 737 * 738 * Note that if SetPageDirty is always performed via set_page_dirty, 739 * and thus under the i_pages lock, then this ordering is not required. 740 */ 741 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 742 refcount = 1 + HPAGE_PMD_NR; 743 else 744 refcount = 2; 745 if (!page_ref_freeze(page, refcount)) 746 goto cannot_free; 747 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 748 if (unlikely(PageDirty(page))) { 749 page_ref_unfreeze(page, refcount); 750 goto cannot_free; 751 } 752 753 if (PageSwapCache(page)) { 754 swp_entry_t swap = { .val = page_private(page) }; 755 mem_cgroup_swapout(page, swap); 756 __delete_from_swap_cache(page); 757 xa_unlock_irqrestore(&mapping->i_pages, flags); 758 put_swap_page(page, swap); 759 } else { 760 void (*freepage)(struct page *); 761 void *shadow = NULL; 762 763 freepage = mapping->a_ops->freepage; 764 /* 765 * Remember a shadow entry for reclaimed file cache in 766 * order to detect refaults, thus thrashing, later on. 767 * 768 * But don't store shadows in an address space that is 769 * already exiting. This is not just an optizimation, 770 * inode reclaim needs to empty out the radix tree or 771 * the nodes are lost. Don't plant shadows behind its 772 * back. 773 * 774 * We also don't store shadows for DAX mappings because the 775 * only page cache pages found in these are zero pages 776 * covering holes, and because we don't want to mix DAX 777 * exceptional entries and shadow exceptional entries in the 778 * same address_space. 779 */ 780 if (reclaimed && page_is_file_cache(page) && 781 !mapping_exiting(mapping) && !dax_mapping(mapping)) 782 shadow = workingset_eviction(mapping, page); 783 __delete_from_page_cache(page, shadow); 784 xa_unlock_irqrestore(&mapping->i_pages, flags); 785 786 if (freepage != NULL) 787 freepage(page); 788 } 789 790 return 1; 791 792 cannot_free: 793 xa_unlock_irqrestore(&mapping->i_pages, flags); 794 return 0; 795 } 796 797 /* 798 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 799 * someone else has a ref on the page, abort and return 0. If it was 800 * successfully detached, return 1. Assumes the caller has a single ref on 801 * this page. 802 */ 803 int remove_mapping(struct address_space *mapping, struct page *page) 804 { 805 if (__remove_mapping(mapping, page, false)) { 806 /* 807 * Unfreezing the refcount with 1 rather than 2 effectively 808 * drops the pagecache ref for us without requiring another 809 * atomic operation. 810 */ 811 page_ref_unfreeze(page, 1); 812 return 1; 813 } 814 return 0; 815 } 816 817 /** 818 * putback_lru_page - put previously isolated page onto appropriate LRU list 819 * @page: page to be put back to appropriate lru list 820 * 821 * Add previously isolated @page to appropriate LRU list. 822 * Page may still be unevictable for other reasons. 823 * 824 * lru_lock must not be held, interrupts must be enabled. 825 */ 826 void putback_lru_page(struct page *page) 827 { 828 lru_cache_add(page); 829 put_page(page); /* drop ref from isolate */ 830 } 831 832 enum page_references { 833 PAGEREF_RECLAIM, 834 PAGEREF_RECLAIM_CLEAN, 835 PAGEREF_KEEP, 836 PAGEREF_ACTIVATE, 837 }; 838 839 static enum page_references page_check_references(struct page *page, 840 struct scan_control *sc) 841 { 842 int referenced_ptes, referenced_page; 843 unsigned long vm_flags; 844 845 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 846 &vm_flags); 847 referenced_page = TestClearPageReferenced(page); 848 849 /* 850 * Mlock lost the isolation race with us. Let try_to_unmap() 851 * move the page to the unevictable list. 852 */ 853 if (vm_flags & VM_LOCKED) 854 return PAGEREF_RECLAIM; 855 856 if (referenced_ptes) { 857 if (PageSwapBacked(page)) 858 return PAGEREF_ACTIVATE; 859 /* 860 * All mapped pages start out with page table 861 * references from the instantiating fault, so we need 862 * to look twice if a mapped file page is used more 863 * than once. 864 * 865 * Mark it and spare it for another trip around the 866 * inactive list. Another page table reference will 867 * lead to its activation. 868 * 869 * Note: the mark is set for activated pages as well 870 * so that recently deactivated but used pages are 871 * quickly recovered. 872 */ 873 SetPageReferenced(page); 874 875 if (referenced_page || referenced_ptes > 1) 876 return PAGEREF_ACTIVATE; 877 878 /* 879 * Activate file-backed executable pages after first usage. 880 */ 881 if (vm_flags & VM_EXEC) 882 return PAGEREF_ACTIVATE; 883 884 return PAGEREF_KEEP; 885 } 886 887 /* Reclaim if clean, defer dirty pages to writeback */ 888 if (referenced_page && !PageSwapBacked(page)) 889 return PAGEREF_RECLAIM_CLEAN; 890 891 return PAGEREF_RECLAIM; 892 } 893 894 /* Check if a page is dirty or under writeback */ 895 static void page_check_dirty_writeback(struct page *page, 896 bool *dirty, bool *writeback) 897 { 898 struct address_space *mapping; 899 900 /* 901 * Anonymous pages are not handled by flushers and must be written 902 * from reclaim context. Do not stall reclaim based on them 903 */ 904 if (!page_is_file_cache(page) || 905 (PageAnon(page) && !PageSwapBacked(page))) { 906 *dirty = false; 907 *writeback = false; 908 return; 909 } 910 911 /* By default assume that the page flags are accurate */ 912 *dirty = PageDirty(page); 913 *writeback = PageWriteback(page); 914 915 /* Verify dirty/writeback state if the filesystem supports it */ 916 if (!page_has_private(page)) 917 return; 918 919 mapping = page_mapping(page); 920 if (mapping && mapping->a_ops->is_dirty_writeback) 921 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 922 } 923 924 /* 925 * shrink_page_list() returns the number of reclaimed pages 926 */ 927 static unsigned long shrink_page_list(struct list_head *page_list, 928 struct pglist_data *pgdat, 929 struct scan_control *sc, 930 enum ttu_flags ttu_flags, 931 struct reclaim_stat *stat, 932 bool force_reclaim) 933 { 934 LIST_HEAD(ret_pages); 935 LIST_HEAD(free_pages); 936 int pgactivate = 0; 937 unsigned nr_unqueued_dirty = 0; 938 unsigned nr_dirty = 0; 939 unsigned nr_congested = 0; 940 unsigned nr_reclaimed = 0; 941 unsigned nr_writeback = 0; 942 unsigned nr_immediate = 0; 943 unsigned nr_ref_keep = 0; 944 unsigned nr_unmap_fail = 0; 945 946 cond_resched(); 947 948 while (!list_empty(page_list)) { 949 struct address_space *mapping; 950 struct page *page; 951 int may_enter_fs; 952 enum page_references references = PAGEREF_RECLAIM_CLEAN; 953 bool dirty, writeback; 954 955 cond_resched(); 956 957 page = lru_to_page(page_list); 958 list_del(&page->lru); 959 960 if (!trylock_page(page)) 961 goto keep; 962 963 VM_BUG_ON_PAGE(PageActive(page), page); 964 965 sc->nr_scanned++; 966 967 if (unlikely(!page_evictable(page))) 968 goto activate_locked; 969 970 if (!sc->may_unmap && page_mapped(page)) 971 goto keep_locked; 972 973 /* Double the slab pressure for mapped and swapcache pages */ 974 if ((page_mapped(page) || PageSwapCache(page)) && 975 !(PageAnon(page) && !PageSwapBacked(page))) 976 sc->nr_scanned++; 977 978 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 979 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 980 981 /* 982 * The number of dirty pages determines if a node is marked 983 * reclaim_congested which affects wait_iff_congested. kswapd 984 * will stall and start writing pages if the tail of the LRU 985 * is all dirty unqueued pages. 986 */ 987 page_check_dirty_writeback(page, &dirty, &writeback); 988 if (dirty || writeback) 989 nr_dirty++; 990 991 if (dirty && !writeback) 992 nr_unqueued_dirty++; 993 994 /* 995 * Treat this page as congested if the underlying BDI is or if 996 * pages are cycling through the LRU so quickly that the 997 * pages marked for immediate reclaim are making it to the 998 * end of the LRU a second time. 999 */ 1000 mapping = page_mapping(page); 1001 if (((dirty || writeback) && mapping && 1002 inode_write_congested(mapping->host)) || 1003 (writeback && PageReclaim(page))) 1004 nr_congested++; 1005 1006 /* 1007 * If a page at the tail of the LRU is under writeback, there 1008 * are three cases to consider. 1009 * 1010 * 1) If reclaim is encountering an excessive number of pages 1011 * under writeback and this page is both under writeback and 1012 * PageReclaim then it indicates that pages are being queued 1013 * for IO but are being recycled through the LRU before the 1014 * IO can complete. Waiting on the page itself risks an 1015 * indefinite stall if it is impossible to writeback the 1016 * page due to IO error or disconnected storage so instead 1017 * note that the LRU is being scanned too quickly and the 1018 * caller can stall after page list has been processed. 1019 * 1020 * 2) Global or new memcg reclaim encounters a page that is 1021 * not marked for immediate reclaim, or the caller does not 1022 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1023 * not to fs). In this case mark the page for immediate 1024 * reclaim and continue scanning. 1025 * 1026 * Require may_enter_fs because we would wait on fs, which 1027 * may not have submitted IO yet. And the loop driver might 1028 * enter reclaim, and deadlock if it waits on a page for 1029 * which it is needed to do the write (loop masks off 1030 * __GFP_IO|__GFP_FS for this reason); but more thought 1031 * would probably show more reasons. 1032 * 1033 * 3) Legacy memcg encounters a page that is already marked 1034 * PageReclaim. memcg does not have any dirty pages 1035 * throttling so we could easily OOM just because too many 1036 * pages are in writeback and there is nothing else to 1037 * reclaim. Wait for the writeback to complete. 1038 * 1039 * In cases 1) and 2) we activate the pages to get them out of 1040 * the way while we continue scanning for clean pages on the 1041 * inactive list and refilling from the active list. The 1042 * observation here is that waiting for disk writes is more 1043 * expensive than potentially causing reloads down the line. 1044 * Since they're marked for immediate reclaim, they won't put 1045 * memory pressure on the cache working set any longer than it 1046 * takes to write them to disk. 1047 */ 1048 if (PageWriteback(page)) { 1049 /* Case 1 above */ 1050 if (current_is_kswapd() && 1051 PageReclaim(page) && 1052 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1053 nr_immediate++; 1054 goto activate_locked; 1055 1056 /* Case 2 above */ 1057 } else if (sane_reclaim(sc) || 1058 !PageReclaim(page) || !may_enter_fs) { 1059 /* 1060 * This is slightly racy - end_page_writeback() 1061 * might have just cleared PageReclaim, then 1062 * setting PageReclaim here end up interpreted 1063 * as PageReadahead - but that does not matter 1064 * enough to care. What we do want is for this 1065 * page to have PageReclaim set next time memcg 1066 * reclaim reaches the tests above, so it will 1067 * then wait_on_page_writeback() to avoid OOM; 1068 * and it's also appropriate in global reclaim. 1069 */ 1070 SetPageReclaim(page); 1071 nr_writeback++; 1072 goto activate_locked; 1073 1074 /* Case 3 above */ 1075 } else { 1076 unlock_page(page); 1077 wait_on_page_writeback(page); 1078 /* then go back and try same page again */ 1079 list_add_tail(&page->lru, page_list); 1080 continue; 1081 } 1082 } 1083 1084 if (!force_reclaim) 1085 references = page_check_references(page, sc); 1086 1087 switch (references) { 1088 case PAGEREF_ACTIVATE: 1089 goto activate_locked; 1090 case PAGEREF_KEEP: 1091 nr_ref_keep++; 1092 goto keep_locked; 1093 case PAGEREF_RECLAIM: 1094 case PAGEREF_RECLAIM_CLEAN: 1095 ; /* try to reclaim the page below */ 1096 } 1097 1098 /* 1099 * Anonymous process memory has backing store? 1100 * Try to allocate it some swap space here. 1101 * Lazyfree page could be freed directly 1102 */ 1103 if (PageAnon(page) && PageSwapBacked(page)) { 1104 if (!PageSwapCache(page)) { 1105 if (!(sc->gfp_mask & __GFP_IO)) 1106 goto keep_locked; 1107 if (PageTransHuge(page)) { 1108 /* cannot split THP, skip it */ 1109 if (!can_split_huge_page(page, NULL)) 1110 goto activate_locked; 1111 /* 1112 * Split pages without a PMD map right 1113 * away. Chances are some or all of the 1114 * tail pages can be freed without IO. 1115 */ 1116 if (!compound_mapcount(page) && 1117 split_huge_page_to_list(page, 1118 page_list)) 1119 goto activate_locked; 1120 } 1121 if (!add_to_swap(page)) { 1122 if (!PageTransHuge(page)) 1123 goto activate_locked; 1124 /* Fallback to swap normal pages */ 1125 if (split_huge_page_to_list(page, 1126 page_list)) 1127 goto activate_locked; 1128 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1129 count_vm_event(THP_SWPOUT_FALLBACK); 1130 #endif 1131 if (!add_to_swap(page)) 1132 goto activate_locked; 1133 } 1134 1135 may_enter_fs = 1; 1136 1137 /* Adding to swap updated mapping */ 1138 mapping = page_mapping(page); 1139 } 1140 } else if (unlikely(PageTransHuge(page))) { 1141 /* Split file THP */ 1142 if (split_huge_page_to_list(page, page_list)) 1143 goto keep_locked; 1144 } 1145 1146 /* 1147 * The page is mapped into the page tables of one or more 1148 * processes. Try to unmap it here. 1149 */ 1150 if (page_mapped(page)) { 1151 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1152 1153 if (unlikely(PageTransHuge(page))) 1154 flags |= TTU_SPLIT_HUGE_PMD; 1155 if (!try_to_unmap(page, flags)) { 1156 nr_unmap_fail++; 1157 goto activate_locked; 1158 } 1159 } 1160 1161 if (PageDirty(page)) { 1162 /* 1163 * Only kswapd can writeback filesystem pages 1164 * to avoid risk of stack overflow. But avoid 1165 * injecting inefficient single-page IO into 1166 * flusher writeback as much as possible: only 1167 * write pages when we've encountered many 1168 * dirty pages, and when we've already scanned 1169 * the rest of the LRU for clean pages and see 1170 * the same dirty pages again (PageReclaim). 1171 */ 1172 if (page_is_file_cache(page) && 1173 (!current_is_kswapd() || !PageReclaim(page) || 1174 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1175 /* 1176 * Immediately reclaim when written back. 1177 * Similar in principal to deactivate_page() 1178 * except we already have the page isolated 1179 * and know it's dirty 1180 */ 1181 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1182 SetPageReclaim(page); 1183 1184 goto activate_locked; 1185 } 1186 1187 if (references == PAGEREF_RECLAIM_CLEAN) 1188 goto keep_locked; 1189 if (!may_enter_fs) 1190 goto keep_locked; 1191 if (!sc->may_writepage) 1192 goto keep_locked; 1193 1194 /* 1195 * Page is dirty. Flush the TLB if a writable entry 1196 * potentially exists to avoid CPU writes after IO 1197 * starts and then write it out here. 1198 */ 1199 try_to_unmap_flush_dirty(); 1200 switch (pageout(page, mapping, sc)) { 1201 case PAGE_KEEP: 1202 goto keep_locked; 1203 case PAGE_ACTIVATE: 1204 goto activate_locked; 1205 case PAGE_SUCCESS: 1206 if (PageWriteback(page)) 1207 goto keep; 1208 if (PageDirty(page)) 1209 goto keep; 1210 1211 /* 1212 * A synchronous write - probably a ramdisk. Go 1213 * ahead and try to reclaim the page. 1214 */ 1215 if (!trylock_page(page)) 1216 goto keep; 1217 if (PageDirty(page) || PageWriteback(page)) 1218 goto keep_locked; 1219 mapping = page_mapping(page); 1220 case PAGE_CLEAN: 1221 ; /* try to free the page below */ 1222 } 1223 } 1224 1225 /* 1226 * If the page has buffers, try to free the buffer mappings 1227 * associated with this page. If we succeed we try to free 1228 * the page as well. 1229 * 1230 * We do this even if the page is PageDirty(). 1231 * try_to_release_page() does not perform I/O, but it is 1232 * possible for a page to have PageDirty set, but it is actually 1233 * clean (all its buffers are clean). This happens if the 1234 * buffers were written out directly, with submit_bh(). ext3 1235 * will do this, as well as the blockdev mapping. 1236 * try_to_release_page() will discover that cleanness and will 1237 * drop the buffers and mark the page clean - it can be freed. 1238 * 1239 * Rarely, pages can have buffers and no ->mapping. These are 1240 * the pages which were not successfully invalidated in 1241 * truncate_complete_page(). We try to drop those buffers here 1242 * and if that worked, and the page is no longer mapped into 1243 * process address space (page_count == 1) it can be freed. 1244 * Otherwise, leave the page on the LRU so it is swappable. 1245 */ 1246 if (page_has_private(page)) { 1247 if (!try_to_release_page(page, sc->gfp_mask)) 1248 goto activate_locked; 1249 if (!mapping && page_count(page) == 1) { 1250 unlock_page(page); 1251 if (put_page_testzero(page)) 1252 goto free_it; 1253 else { 1254 /* 1255 * rare race with speculative reference. 1256 * the speculative reference will free 1257 * this page shortly, so we may 1258 * increment nr_reclaimed here (and 1259 * leave it off the LRU). 1260 */ 1261 nr_reclaimed++; 1262 continue; 1263 } 1264 } 1265 } 1266 1267 if (PageAnon(page) && !PageSwapBacked(page)) { 1268 /* follow __remove_mapping for reference */ 1269 if (!page_ref_freeze(page, 1)) 1270 goto keep_locked; 1271 if (PageDirty(page)) { 1272 page_ref_unfreeze(page, 1); 1273 goto keep_locked; 1274 } 1275 1276 count_vm_event(PGLAZYFREED); 1277 count_memcg_page_event(page, PGLAZYFREED); 1278 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1279 goto keep_locked; 1280 /* 1281 * At this point, we have no other references and there is 1282 * no way to pick any more up (removed from LRU, removed 1283 * from pagecache). Can use non-atomic bitops now (and 1284 * we obviously don't have to worry about waking up a process 1285 * waiting on the page lock, because there are no references. 1286 */ 1287 __ClearPageLocked(page); 1288 free_it: 1289 nr_reclaimed++; 1290 1291 /* 1292 * Is there need to periodically free_page_list? It would 1293 * appear not as the counts should be low 1294 */ 1295 if (unlikely(PageTransHuge(page))) { 1296 mem_cgroup_uncharge(page); 1297 (*get_compound_page_dtor(page))(page); 1298 } else 1299 list_add(&page->lru, &free_pages); 1300 continue; 1301 1302 activate_locked: 1303 /* Not a candidate for swapping, so reclaim swap space. */ 1304 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1305 PageMlocked(page))) 1306 try_to_free_swap(page); 1307 VM_BUG_ON_PAGE(PageActive(page), page); 1308 if (!PageMlocked(page)) { 1309 SetPageActive(page); 1310 pgactivate++; 1311 count_memcg_page_event(page, PGACTIVATE); 1312 } 1313 keep_locked: 1314 unlock_page(page); 1315 keep: 1316 list_add(&page->lru, &ret_pages); 1317 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1318 } 1319 1320 mem_cgroup_uncharge_list(&free_pages); 1321 try_to_unmap_flush(); 1322 free_unref_page_list(&free_pages); 1323 1324 list_splice(&ret_pages, page_list); 1325 count_vm_events(PGACTIVATE, pgactivate); 1326 1327 if (stat) { 1328 stat->nr_dirty = nr_dirty; 1329 stat->nr_congested = nr_congested; 1330 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1331 stat->nr_writeback = nr_writeback; 1332 stat->nr_immediate = nr_immediate; 1333 stat->nr_activate = pgactivate; 1334 stat->nr_ref_keep = nr_ref_keep; 1335 stat->nr_unmap_fail = nr_unmap_fail; 1336 } 1337 return nr_reclaimed; 1338 } 1339 1340 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1341 struct list_head *page_list) 1342 { 1343 struct scan_control sc = { 1344 .gfp_mask = GFP_KERNEL, 1345 .priority = DEF_PRIORITY, 1346 .may_unmap = 1, 1347 }; 1348 unsigned long ret; 1349 struct page *page, *next; 1350 LIST_HEAD(clean_pages); 1351 1352 list_for_each_entry_safe(page, next, page_list, lru) { 1353 if (page_is_file_cache(page) && !PageDirty(page) && 1354 !__PageMovable(page)) { 1355 ClearPageActive(page); 1356 list_move(&page->lru, &clean_pages); 1357 } 1358 } 1359 1360 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1361 TTU_IGNORE_ACCESS, NULL, true); 1362 list_splice(&clean_pages, page_list); 1363 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1364 return ret; 1365 } 1366 1367 /* 1368 * Attempt to remove the specified page from its LRU. Only take this page 1369 * if it is of the appropriate PageActive status. Pages which are being 1370 * freed elsewhere are also ignored. 1371 * 1372 * page: page to consider 1373 * mode: one of the LRU isolation modes defined above 1374 * 1375 * returns 0 on success, -ve errno on failure. 1376 */ 1377 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1378 { 1379 int ret = -EINVAL; 1380 1381 /* Only take pages on the LRU. */ 1382 if (!PageLRU(page)) 1383 return ret; 1384 1385 /* Compaction should not handle unevictable pages but CMA can do so */ 1386 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1387 return ret; 1388 1389 ret = -EBUSY; 1390 1391 /* 1392 * To minimise LRU disruption, the caller can indicate that it only 1393 * wants to isolate pages it will be able to operate on without 1394 * blocking - clean pages for the most part. 1395 * 1396 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1397 * that it is possible to migrate without blocking 1398 */ 1399 if (mode & ISOLATE_ASYNC_MIGRATE) { 1400 /* All the caller can do on PageWriteback is block */ 1401 if (PageWriteback(page)) 1402 return ret; 1403 1404 if (PageDirty(page)) { 1405 struct address_space *mapping; 1406 bool migrate_dirty; 1407 1408 /* 1409 * Only pages without mappings or that have a 1410 * ->migratepage callback are possible to migrate 1411 * without blocking. However, we can be racing with 1412 * truncation so it's necessary to lock the page 1413 * to stabilise the mapping as truncation holds 1414 * the page lock until after the page is removed 1415 * from the page cache. 1416 */ 1417 if (!trylock_page(page)) 1418 return ret; 1419 1420 mapping = page_mapping(page); 1421 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1422 unlock_page(page); 1423 if (!migrate_dirty) 1424 return ret; 1425 } 1426 } 1427 1428 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1429 return ret; 1430 1431 if (likely(get_page_unless_zero(page))) { 1432 /* 1433 * Be careful not to clear PageLRU until after we're 1434 * sure the page is not being freed elsewhere -- the 1435 * page release code relies on it. 1436 */ 1437 ClearPageLRU(page); 1438 ret = 0; 1439 } 1440 1441 return ret; 1442 } 1443 1444 1445 /* 1446 * Update LRU sizes after isolating pages. The LRU size updates must 1447 * be complete before mem_cgroup_update_lru_size due to a santity check. 1448 */ 1449 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1450 enum lru_list lru, unsigned long *nr_zone_taken) 1451 { 1452 int zid; 1453 1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1455 if (!nr_zone_taken[zid]) 1456 continue; 1457 1458 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1459 #ifdef CONFIG_MEMCG 1460 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1461 #endif 1462 } 1463 1464 } 1465 1466 /* 1467 * zone_lru_lock is heavily contended. Some of the functions that 1468 * shrink the lists perform better by taking out a batch of pages 1469 * and working on them outside the LRU lock. 1470 * 1471 * For pagecache intensive workloads, this function is the hottest 1472 * spot in the kernel (apart from copy_*_user functions). 1473 * 1474 * Appropriate locks must be held before calling this function. 1475 * 1476 * @nr_to_scan: The number of eligible pages to look through on the list. 1477 * @lruvec: The LRU vector to pull pages from. 1478 * @dst: The temp list to put pages on to. 1479 * @nr_scanned: The number of pages that were scanned. 1480 * @sc: The scan_control struct for this reclaim session 1481 * @mode: One of the LRU isolation modes 1482 * @lru: LRU list id for isolating 1483 * 1484 * returns how many pages were moved onto *@dst. 1485 */ 1486 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1487 struct lruvec *lruvec, struct list_head *dst, 1488 unsigned long *nr_scanned, struct scan_control *sc, 1489 isolate_mode_t mode, enum lru_list lru) 1490 { 1491 struct list_head *src = &lruvec->lists[lru]; 1492 unsigned long nr_taken = 0; 1493 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1494 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1495 unsigned long skipped = 0; 1496 unsigned long scan, total_scan, nr_pages; 1497 LIST_HEAD(pages_skipped); 1498 1499 scan = 0; 1500 for (total_scan = 0; 1501 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1502 total_scan++) { 1503 struct page *page; 1504 1505 page = lru_to_page(src); 1506 prefetchw_prev_lru_page(page, src, flags); 1507 1508 VM_BUG_ON_PAGE(!PageLRU(page), page); 1509 1510 if (page_zonenum(page) > sc->reclaim_idx) { 1511 list_move(&page->lru, &pages_skipped); 1512 nr_skipped[page_zonenum(page)]++; 1513 continue; 1514 } 1515 1516 /* 1517 * Do not count skipped pages because that makes the function 1518 * return with no isolated pages if the LRU mostly contains 1519 * ineligible pages. This causes the VM to not reclaim any 1520 * pages, triggering a premature OOM. 1521 */ 1522 scan++; 1523 switch (__isolate_lru_page(page, mode)) { 1524 case 0: 1525 nr_pages = hpage_nr_pages(page); 1526 nr_taken += nr_pages; 1527 nr_zone_taken[page_zonenum(page)] += nr_pages; 1528 list_move(&page->lru, dst); 1529 break; 1530 1531 case -EBUSY: 1532 /* else it is being freed elsewhere */ 1533 list_move(&page->lru, src); 1534 continue; 1535 1536 default: 1537 BUG(); 1538 } 1539 } 1540 1541 /* 1542 * Splice any skipped pages to the start of the LRU list. Note that 1543 * this disrupts the LRU order when reclaiming for lower zones but 1544 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1545 * scanning would soon rescan the same pages to skip and put the 1546 * system at risk of premature OOM. 1547 */ 1548 if (!list_empty(&pages_skipped)) { 1549 int zid; 1550 1551 list_splice(&pages_skipped, src); 1552 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1553 if (!nr_skipped[zid]) 1554 continue; 1555 1556 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1557 skipped += nr_skipped[zid]; 1558 } 1559 } 1560 *nr_scanned = total_scan; 1561 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1562 total_scan, skipped, nr_taken, mode, lru); 1563 update_lru_sizes(lruvec, lru, nr_zone_taken); 1564 return nr_taken; 1565 } 1566 1567 /** 1568 * isolate_lru_page - tries to isolate a page from its LRU list 1569 * @page: page to isolate from its LRU list 1570 * 1571 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1572 * vmstat statistic corresponding to whatever LRU list the page was on. 1573 * 1574 * Returns 0 if the page was removed from an LRU list. 1575 * Returns -EBUSY if the page was not on an LRU list. 1576 * 1577 * The returned page will have PageLRU() cleared. If it was found on 1578 * the active list, it will have PageActive set. If it was found on 1579 * the unevictable list, it will have the PageUnevictable bit set. That flag 1580 * may need to be cleared by the caller before letting the page go. 1581 * 1582 * The vmstat statistic corresponding to the list on which the page was 1583 * found will be decremented. 1584 * 1585 * Restrictions: 1586 * 1587 * (1) Must be called with an elevated refcount on the page. This is a 1588 * fundamentnal difference from isolate_lru_pages (which is called 1589 * without a stable reference). 1590 * (2) the lru_lock must not be held. 1591 * (3) interrupts must be enabled. 1592 */ 1593 int isolate_lru_page(struct page *page) 1594 { 1595 int ret = -EBUSY; 1596 1597 VM_BUG_ON_PAGE(!page_count(page), page); 1598 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1599 1600 if (PageLRU(page)) { 1601 struct zone *zone = page_zone(page); 1602 struct lruvec *lruvec; 1603 1604 spin_lock_irq(zone_lru_lock(zone)); 1605 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1606 if (PageLRU(page)) { 1607 int lru = page_lru(page); 1608 get_page(page); 1609 ClearPageLRU(page); 1610 del_page_from_lru_list(page, lruvec, lru); 1611 ret = 0; 1612 } 1613 spin_unlock_irq(zone_lru_lock(zone)); 1614 } 1615 return ret; 1616 } 1617 1618 /* 1619 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1620 * then get resheduled. When there are massive number of tasks doing page 1621 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1622 * the LRU list will go small and be scanned faster than necessary, leading to 1623 * unnecessary swapping, thrashing and OOM. 1624 */ 1625 static int too_many_isolated(struct pglist_data *pgdat, int file, 1626 struct scan_control *sc) 1627 { 1628 unsigned long inactive, isolated; 1629 1630 if (current_is_kswapd()) 1631 return 0; 1632 1633 if (!sane_reclaim(sc)) 1634 return 0; 1635 1636 if (file) { 1637 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1638 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1639 } else { 1640 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1641 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1642 } 1643 1644 /* 1645 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1646 * won't get blocked by normal direct-reclaimers, forming a circular 1647 * deadlock. 1648 */ 1649 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1650 inactive >>= 3; 1651 1652 return isolated > inactive; 1653 } 1654 1655 static noinline_for_stack void 1656 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1657 { 1658 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1659 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1660 LIST_HEAD(pages_to_free); 1661 1662 /* 1663 * Put back any unfreeable pages. 1664 */ 1665 while (!list_empty(page_list)) { 1666 struct page *page = lru_to_page(page_list); 1667 int lru; 1668 1669 VM_BUG_ON_PAGE(PageLRU(page), page); 1670 list_del(&page->lru); 1671 if (unlikely(!page_evictable(page))) { 1672 spin_unlock_irq(&pgdat->lru_lock); 1673 putback_lru_page(page); 1674 spin_lock_irq(&pgdat->lru_lock); 1675 continue; 1676 } 1677 1678 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1679 1680 SetPageLRU(page); 1681 lru = page_lru(page); 1682 add_page_to_lru_list(page, lruvec, lru); 1683 1684 if (is_active_lru(lru)) { 1685 int file = is_file_lru(lru); 1686 int numpages = hpage_nr_pages(page); 1687 reclaim_stat->recent_rotated[file] += numpages; 1688 } 1689 if (put_page_testzero(page)) { 1690 __ClearPageLRU(page); 1691 __ClearPageActive(page); 1692 del_page_from_lru_list(page, lruvec, lru); 1693 1694 if (unlikely(PageCompound(page))) { 1695 spin_unlock_irq(&pgdat->lru_lock); 1696 mem_cgroup_uncharge(page); 1697 (*get_compound_page_dtor(page))(page); 1698 spin_lock_irq(&pgdat->lru_lock); 1699 } else 1700 list_add(&page->lru, &pages_to_free); 1701 } 1702 } 1703 1704 /* 1705 * To save our caller's stack, now use input list for pages to free. 1706 */ 1707 list_splice(&pages_to_free, page_list); 1708 } 1709 1710 /* 1711 * If a kernel thread (such as nfsd for loop-back mounts) services 1712 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1713 * In that case we should only throttle if the backing device it is 1714 * writing to is congested. In other cases it is safe to throttle. 1715 */ 1716 static int current_may_throttle(void) 1717 { 1718 return !(current->flags & PF_LESS_THROTTLE) || 1719 current->backing_dev_info == NULL || 1720 bdi_write_congested(current->backing_dev_info); 1721 } 1722 1723 /* 1724 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1725 * of reclaimed pages 1726 */ 1727 static noinline_for_stack unsigned long 1728 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1729 struct scan_control *sc, enum lru_list lru) 1730 { 1731 LIST_HEAD(page_list); 1732 unsigned long nr_scanned; 1733 unsigned long nr_reclaimed = 0; 1734 unsigned long nr_taken; 1735 struct reclaim_stat stat = {}; 1736 isolate_mode_t isolate_mode = 0; 1737 int file = is_file_lru(lru); 1738 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1739 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1740 bool stalled = false; 1741 1742 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1743 if (stalled) 1744 return 0; 1745 1746 /* wait a bit for the reclaimer. */ 1747 msleep(100); 1748 stalled = true; 1749 1750 /* We are about to die and free our memory. Return now. */ 1751 if (fatal_signal_pending(current)) 1752 return SWAP_CLUSTER_MAX; 1753 } 1754 1755 lru_add_drain(); 1756 1757 if (!sc->may_unmap) 1758 isolate_mode |= ISOLATE_UNMAPPED; 1759 1760 spin_lock_irq(&pgdat->lru_lock); 1761 1762 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1763 &nr_scanned, sc, isolate_mode, lru); 1764 1765 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1766 reclaim_stat->recent_scanned[file] += nr_taken; 1767 1768 if (current_is_kswapd()) { 1769 if (global_reclaim(sc)) 1770 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1771 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, 1772 nr_scanned); 1773 } else { 1774 if (global_reclaim(sc)) 1775 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1776 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, 1777 nr_scanned); 1778 } 1779 spin_unlock_irq(&pgdat->lru_lock); 1780 1781 if (nr_taken == 0) 1782 return 0; 1783 1784 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1785 &stat, false); 1786 1787 spin_lock_irq(&pgdat->lru_lock); 1788 1789 if (current_is_kswapd()) { 1790 if (global_reclaim(sc)) 1791 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1792 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, 1793 nr_reclaimed); 1794 } else { 1795 if (global_reclaim(sc)) 1796 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1797 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, 1798 nr_reclaimed); 1799 } 1800 1801 putback_inactive_pages(lruvec, &page_list); 1802 1803 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1804 1805 spin_unlock_irq(&pgdat->lru_lock); 1806 1807 mem_cgroup_uncharge_list(&page_list); 1808 free_unref_page_list(&page_list); 1809 1810 /* 1811 * If dirty pages are scanned that are not queued for IO, it 1812 * implies that flushers are not doing their job. This can 1813 * happen when memory pressure pushes dirty pages to the end of 1814 * the LRU before the dirty limits are breached and the dirty 1815 * data has expired. It can also happen when the proportion of 1816 * dirty pages grows not through writes but through memory 1817 * pressure reclaiming all the clean cache. And in some cases, 1818 * the flushers simply cannot keep up with the allocation 1819 * rate. Nudge the flusher threads in case they are asleep. 1820 */ 1821 if (stat.nr_unqueued_dirty == nr_taken) 1822 wakeup_flusher_threads(WB_REASON_VMSCAN); 1823 1824 sc->nr.dirty += stat.nr_dirty; 1825 sc->nr.congested += stat.nr_congested; 1826 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1827 sc->nr.writeback += stat.nr_writeback; 1828 sc->nr.immediate += stat.nr_immediate; 1829 sc->nr.taken += nr_taken; 1830 if (file) 1831 sc->nr.file_taken += nr_taken; 1832 1833 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1834 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1835 return nr_reclaimed; 1836 } 1837 1838 /* 1839 * This moves pages from the active list to the inactive list. 1840 * 1841 * We move them the other way if the page is referenced by one or more 1842 * processes, from rmap. 1843 * 1844 * If the pages are mostly unmapped, the processing is fast and it is 1845 * appropriate to hold zone_lru_lock across the whole operation. But if 1846 * the pages are mapped, the processing is slow (page_referenced()) so we 1847 * should drop zone_lru_lock around each page. It's impossible to balance 1848 * this, so instead we remove the pages from the LRU while processing them. 1849 * It is safe to rely on PG_active against the non-LRU pages in here because 1850 * nobody will play with that bit on a non-LRU page. 1851 * 1852 * The downside is that we have to touch page->_refcount against each page. 1853 * But we had to alter page->flags anyway. 1854 * 1855 * Returns the number of pages moved to the given lru. 1856 */ 1857 1858 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1859 struct list_head *list, 1860 struct list_head *pages_to_free, 1861 enum lru_list lru) 1862 { 1863 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1864 struct page *page; 1865 int nr_pages; 1866 int nr_moved = 0; 1867 1868 while (!list_empty(list)) { 1869 page = lru_to_page(list); 1870 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1871 1872 VM_BUG_ON_PAGE(PageLRU(page), page); 1873 SetPageLRU(page); 1874 1875 nr_pages = hpage_nr_pages(page); 1876 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1877 list_move(&page->lru, &lruvec->lists[lru]); 1878 1879 if (put_page_testzero(page)) { 1880 __ClearPageLRU(page); 1881 __ClearPageActive(page); 1882 del_page_from_lru_list(page, lruvec, lru); 1883 1884 if (unlikely(PageCompound(page))) { 1885 spin_unlock_irq(&pgdat->lru_lock); 1886 mem_cgroup_uncharge(page); 1887 (*get_compound_page_dtor(page))(page); 1888 spin_lock_irq(&pgdat->lru_lock); 1889 } else 1890 list_add(&page->lru, pages_to_free); 1891 } else { 1892 nr_moved += nr_pages; 1893 } 1894 } 1895 1896 if (!is_active_lru(lru)) { 1897 __count_vm_events(PGDEACTIVATE, nr_moved); 1898 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 1899 nr_moved); 1900 } 1901 1902 return nr_moved; 1903 } 1904 1905 static void shrink_active_list(unsigned long nr_to_scan, 1906 struct lruvec *lruvec, 1907 struct scan_control *sc, 1908 enum lru_list lru) 1909 { 1910 unsigned long nr_taken; 1911 unsigned long nr_scanned; 1912 unsigned long vm_flags; 1913 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1914 LIST_HEAD(l_active); 1915 LIST_HEAD(l_inactive); 1916 struct page *page; 1917 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1918 unsigned nr_deactivate, nr_activate; 1919 unsigned nr_rotated = 0; 1920 isolate_mode_t isolate_mode = 0; 1921 int file = is_file_lru(lru); 1922 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1923 1924 lru_add_drain(); 1925 1926 if (!sc->may_unmap) 1927 isolate_mode |= ISOLATE_UNMAPPED; 1928 1929 spin_lock_irq(&pgdat->lru_lock); 1930 1931 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1932 &nr_scanned, sc, isolate_mode, lru); 1933 1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1935 reclaim_stat->recent_scanned[file] += nr_taken; 1936 1937 __count_vm_events(PGREFILL, nr_scanned); 1938 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 1939 1940 spin_unlock_irq(&pgdat->lru_lock); 1941 1942 while (!list_empty(&l_hold)) { 1943 cond_resched(); 1944 page = lru_to_page(&l_hold); 1945 list_del(&page->lru); 1946 1947 if (unlikely(!page_evictable(page))) { 1948 putback_lru_page(page); 1949 continue; 1950 } 1951 1952 if (unlikely(buffer_heads_over_limit)) { 1953 if (page_has_private(page) && trylock_page(page)) { 1954 if (page_has_private(page)) 1955 try_to_release_page(page, 0); 1956 unlock_page(page); 1957 } 1958 } 1959 1960 if (page_referenced(page, 0, sc->target_mem_cgroup, 1961 &vm_flags)) { 1962 nr_rotated += hpage_nr_pages(page); 1963 /* 1964 * Identify referenced, file-backed active pages and 1965 * give them one more trip around the active list. So 1966 * that executable code get better chances to stay in 1967 * memory under moderate memory pressure. Anon pages 1968 * are not likely to be evicted by use-once streaming 1969 * IO, plus JVM can create lots of anon VM_EXEC pages, 1970 * so we ignore them here. 1971 */ 1972 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1973 list_add(&page->lru, &l_active); 1974 continue; 1975 } 1976 } 1977 1978 ClearPageActive(page); /* we are de-activating */ 1979 list_add(&page->lru, &l_inactive); 1980 } 1981 1982 /* 1983 * Move pages back to the lru list. 1984 */ 1985 spin_lock_irq(&pgdat->lru_lock); 1986 /* 1987 * Count referenced pages from currently used mappings as rotated, 1988 * even though only some of them are actually re-activated. This 1989 * helps balance scan pressure between file and anonymous pages in 1990 * get_scan_count. 1991 */ 1992 reclaim_stat->recent_rotated[file] += nr_rotated; 1993 1994 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1995 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1996 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1997 spin_unlock_irq(&pgdat->lru_lock); 1998 1999 mem_cgroup_uncharge_list(&l_hold); 2000 free_unref_page_list(&l_hold); 2001 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2002 nr_deactivate, nr_rotated, sc->priority, file); 2003 } 2004 2005 /* 2006 * The inactive anon list should be small enough that the VM never has 2007 * to do too much work. 2008 * 2009 * The inactive file list should be small enough to leave most memory 2010 * to the established workingset on the scan-resistant active list, 2011 * but large enough to avoid thrashing the aggregate readahead window. 2012 * 2013 * Both inactive lists should also be large enough that each inactive 2014 * page has a chance to be referenced again before it is reclaimed. 2015 * 2016 * If that fails and refaulting is observed, the inactive list grows. 2017 * 2018 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2019 * on this LRU, maintained by the pageout code. An inactive_ratio 2020 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2021 * 2022 * total target max 2023 * memory ratio inactive 2024 * ------------------------------------- 2025 * 10MB 1 5MB 2026 * 100MB 1 50MB 2027 * 1GB 3 250MB 2028 * 10GB 10 0.9GB 2029 * 100GB 31 3GB 2030 * 1TB 101 10GB 2031 * 10TB 320 32GB 2032 */ 2033 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2034 struct mem_cgroup *memcg, 2035 struct scan_control *sc, bool actual_reclaim) 2036 { 2037 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2038 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2039 enum lru_list inactive_lru = file * LRU_FILE; 2040 unsigned long inactive, active; 2041 unsigned long inactive_ratio; 2042 unsigned long refaults; 2043 unsigned long gb; 2044 2045 /* 2046 * If we don't have swap space, anonymous page deactivation 2047 * is pointless. 2048 */ 2049 if (!file && !total_swap_pages) 2050 return false; 2051 2052 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2053 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2054 2055 if (memcg) 2056 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2057 else 2058 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2059 2060 /* 2061 * When refaults are being observed, it means a new workingset 2062 * is being established. Disable active list protection to get 2063 * rid of the stale workingset quickly. 2064 */ 2065 if (file && actual_reclaim && lruvec->refaults != refaults) { 2066 inactive_ratio = 0; 2067 } else { 2068 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2069 if (gb) 2070 inactive_ratio = int_sqrt(10 * gb); 2071 else 2072 inactive_ratio = 1; 2073 } 2074 2075 if (actual_reclaim) 2076 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2077 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2078 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2079 inactive_ratio, file); 2080 2081 return inactive * inactive_ratio < active; 2082 } 2083 2084 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2085 struct lruvec *lruvec, struct mem_cgroup *memcg, 2086 struct scan_control *sc) 2087 { 2088 if (is_active_lru(lru)) { 2089 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2090 memcg, sc, true)) 2091 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2092 return 0; 2093 } 2094 2095 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2096 } 2097 2098 enum scan_balance { 2099 SCAN_EQUAL, 2100 SCAN_FRACT, 2101 SCAN_ANON, 2102 SCAN_FILE, 2103 }; 2104 2105 /* 2106 * Determine how aggressively the anon and file LRU lists should be 2107 * scanned. The relative value of each set of LRU lists is determined 2108 * by looking at the fraction of the pages scanned we did rotate back 2109 * onto the active list instead of evict. 2110 * 2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2113 */ 2114 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2115 struct scan_control *sc, unsigned long *nr, 2116 unsigned long *lru_pages) 2117 { 2118 int swappiness = mem_cgroup_swappiness(memcg); 2119 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2120 u64 fraction[2]; 2121 u64 denominator = 0; /* gcc */ 2122 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2123 unsigned long anon_prio, file_prio; 2124 enum scan_balance scan_balance; 2125 unsigned long anon, file; 2126 unsigned long ap, fp; 2127 enum lru_list lru; 2128 2129 /* If we have no swap space, do not bother scanning anon pages. */ 2130 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2131 scan_balance = SCAN_FILE; 2132 goto out; 2133 } 2134 2135 /* 2136 * Global reclaim will swap to prevent OOM even with no 2137 * swappiness, but memcg users want to use this knob to 2138 * disable swapping for individual groups completely when 2139 * using the memory controller's swap limit feature would be 2140 * too expensive. 2141 */ 2142 if (!global_reclaim(sc) && !swappiness) { 2143 scan_balance = SCAN_FILE; 2144 goto out; 2145 } 2146 2147 /* 2148 * Do not apply any pressure balancing cleverness when the 2149 * system is close to OOM, scan both anon and file equally 2150 * (unless the swappiness setting disagrees with swapping). 2151 */ 2152 if (!sc->priority && swappiness) { 2153 scan_balance = SCAN_EQUAL; 2154 goto out; 2155 } 2156 2157 /* 2158 * Prevent the reclaimer from falling into the cache trap: as 2159 * cache pages start out inactive, every cache fault will tip 2160 * the scan balance towards the file LRU. And as the file LRU 2161 * shrinks, so does the window for rotation from references. 2162 * This means we have a runaway feedback loop where a tiny 2163 * thrashing file LRU becomes infinitely more attractive than 2164 * anon pages. Try to detect this based on file LRU size. 2165 */ 2166 if (global_reclaim(sc)) { 2167 unsigned long pgdatfile; 2168 unsigned long pgdatfree; 2169 int z; 2170 unsigned long total_high_wmark = 0; 2171 2172 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2173 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2174 node_page_state(pgdat, NR_INACTIVE_FILE); 2175 2176 for (z = 0; z < MAX_NR_ZONES; z++) { 2177 struct zone *zone = &pgdat->node_zones[z]; 2178 if (!managed_zone(zone)) 2179 continue; 2180 2181 total_high_wmark += high_wmark_pages(zone); 2182 } 2183 2184 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2185 /* 2186 * Force SCAN_ANON if there are enough inactive 2187 * anonymous pages on the LRU in eligible zones. 2188 * Otherwise, the small LRU gets thrashed. 2189 */ 2190 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && 2191 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2192 >> sc->priority) { 2193 scan_balance = SCAN_ANON; 2194 goto out; 2195 } 2196 } 2197 } 2198 2199 /* 2200 * If there is enough inactive page cache, i.e. if the size of the 2201 * inactive list is greater than that of the active list *and* the 2202 * inactive list actually has some pages to scan on this priority, we 2203 * do not reclaim anything from the anonymous working set right now. 2204 * Without the second condition we could end up never scanning an 2205 * lruvec even if it has plenty of old anonymous pages unless the 2206 * system is under heavy pressure. 2207 */ 2208 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2209 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2210 scan_balance = SCAN_FILE; 2211 goto out; 2212 } 2213 2214 scan_balance = SCAN_FRACT; 2215 2216 /* 2217 * With swappiness at 100, anonymous and file have the same priority. 2218 * This scanning priority is essentially the inverse of IO cost. 2219 */ 2220 anon_prio = swappiness; 2221 file_prio = 200 - anon_prio; 2222 2223 /* 2224 * OK, so we have swap space and a fair amount of page cache 2225 * pages. We use the recently rotated / recently scanned 2226 * ratios to determine how valuable each cache is. 2227 * 2228 * Because workloads change over time (and to avoid overflow) 2229 * we keep these statistics as a floating average, which ends 2230 * up weighing recent references more than old ones. 2231 * 2232 * anon in [0], file in [1] 2233 */ 2234 2235 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2236 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2237 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2238 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2239 2240 spin_lock_irq(&pgdat->lru_lock); 2241 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2242 reclaim_stat->recent_scanned[0] /= 2; 2243 reclaim_stat->recent_rotated[0] /= 2; 2244 } 2245 2246 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2247 reclaim_stat->recent_scanned[1] /= 2; 2248 reclaim_stat->recent_rotated[1] /= 2; 2249 } 2250 2251 /* 2252 * The amount of pressure on anon vs file pages is inversely 2253 * proportional to the fraction of recently scanned pages on 2254 * each list that were recently referenced and in active use. 2255 */ 2256 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2257 ap /= reclaim_stat->recent_rotated[0] + 1; 2258 2259 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2260 fp /= reclaim_stat->recent_rotated[1] + 1; 2261 spin_unlock_irq(&pgdat->lru_lock); 2262 2263 fraction[0] = ap; 2264 fraction[1] = fp; 2265 denominator = ap + fp + 1; 2266 out: 2267 *lru_pages = 0; 2268 for_each_evictable_lru(lru) { 2269 int file = is_file_lru(lru); 2270 unsigned long size; 2271 unsigned long scan; 2272 2273 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2274 scan = size >> sc->priority; 2275 /* 2276 * If the cgroup's already been deleted, make sure to 2277 * scrape out the remaining cache. 2278 */ 2279 if (!scan && !mem_cgroup_online(memcg)) 2280 scan = min(size, SWAP_CLUSTER_MAX); 2281 2282 switch (scan_balance) { 2283 case SCAN_EQUAL: 2284 /* Scan lists relative to size */ 2285 break; 2286 case SCAN_FRACT: 2287 /* 2288 * Scan types proportional to swappiness and 2289 * their relative recent reclaim efficiency. 2290 */ 2291 scan = div64_u64(scan * fraction[file], 2292 denominator); 2293 break; 2294 case SCAN_FILE: 2295 case SCAN_ANON: 2296 /* Scan one type exclusively */ 2297 if ((scan_balance == SCAN_FILE) != file) { 2298 size = 0; 2299 scan = 0; 2300 } 2301 break; 2302 default: 2303 /* Look ma, no brain */ 2304 BUG(); 2305 } 2306 2307 *lru_pages += size; 2308 nr[lru] = scan; 2309 } 2310 } 2311 2312 /* 2313 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2314 */ 2315 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2316 struct scan_control *sc, unsigned long *lru_pages) 2317 { 2318 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2319 unsigned long nr[NR_LRU_LISTS]; 2320 unsigned long targets[NR_LRU_LISTS]; 2321 unsigned long nr_to_scan; 2322 enum lru_list lru; 2323 unsigned long nr_reclaimed = 0; 2324 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2325 struct blk_plug plug; 2326 bool scan_adjusted; 2327 2328 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2329 2330 /* Record the original scan target for proportional adjustments later */ 2331 memcpy(targets, nr, sizeof(nr)); 2332 2333 /* 2334 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2335 * event that can occur when there is little memory pressure e.g. 2336 * multiple streaming readers/writers. Hence, we do not abort scanning 2337 * when the requested number of pages are reclaimed when scanning at 2338 * DEF_PRIORITY on the assumption that the fact we are direct 2339 * reclaiming implies that kswapd is not keeping up and it is best to 2340 * do a batch of work at once. For memcg reclaim one check is made to 2341 * abort proportional reclaim if either the file or anon lru has already 2342 * dropped to zero at the first pass. 2343 */ 2344 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2345 sc->priority == DEF_PRIORITY); 2346 2347 blk_start_plug(&plug); 2348 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2349 nr[LRU_INACTIVE_FILE]) { 2350 unsigned long nr_anon, nr_file, percentage; 2351 unsigned long nr_scanned; 2352 2353 for_each_evictable_lru(lru) { 2354 if (nr[lru]) { 2355 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2356 nr[lru] -= nr_to_scan; 2357 2358 nr_reclaimed += shrink_list(lru, nr_to_scan, 2359 lruvec, memcg, sc); 2360 } 2361 } 2362 2363 cond_resched(); 2364 2365 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2366 continue; 2367 2368 /* 2369 * For kswapd and memcg, reclaim at least the number of pages 2370 * requested. Ensure that the anon and file LRUs are scanned 2371 * proportionally what was requested by get_scan_count(). We 2372 * stop reclaiming one LRU and reduce the amount scanning 2373 * proportional to the original scan target. 2374 */ 2375 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2376 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2377 2378 /* 2379 * It's just vindictive to attack the larger once the smaller 2380 * has gone to zero. And given the way we stop scanning the 2381 * smaller below, this makes sure that we only make one nudge 2382 * towards proportionality once we've got nr_to_reclaim. 2383 */ 2384 if (!nr_file || !nr_anon) 2385 break; 2386 2387 if (nr_file > nr_anon) { 2388 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2389 targets[LRU_ACTIVE_ANON] + 1; 2390 lru = LRU_BASE; 2391 percentage = nr_anon * 100 / scan_target; 2392 } else { 2393 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2394 targets[LRU_ACTIVE_FILE] + 1; 2395 lru = LRU_FILE; 2396 percentage = nr_file * 100 / scan_target; 2397 } 2398 2399 /* Stop scanning the smaller of the LRU */ 2400 nr[lru] = 0; 2401 nr[lru + LRU_ACTIVE] = 0; 2402 2403 /* 2404 * Recalculate the other LRU scan count based on its original 2405 * scan target and the percentage scanning already complete 2406 */ 2407 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2408 nr_scanned = targets[lru] - nr[lru]; 2409 nr[lru] = targets[lru] * (100 - percentage) / 100; 2410 nr[lru] -= min(nr[lru], nr_scanned); 2411 2412 lru += LRU_ACTIVE; 2413 nr_scanned = targets[lru] - nr[lru]; 2414 nr[lru] = targets[lru] * (100 - percentage) / 100; 2415 nr[lru] -= min(nr[lru], nr_scanned); 2416 2417 scan_adjusted = true; 2418 } 2419 blk_finish_plug(&plug); 2420 sc->nr_reclaimed += nr_reclaimed; 2421 2422 /* 2423 * Even if we did not try to evict anon pages at all, we want to 2424 * rebalance the anon lru active/inactive ratio. 2425 */ 2426 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2427 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2428 sc, LRU_ACTIVE_ANON); 2429 } 2430 2431 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2432 static bool in_reclaim_compaction(struct scan_control *sc) 2433 { 2434 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2435 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2436 sc->priority < DEF_PRIORITY - 2)) 2437 return true; 2438 2439 return false; 2440 } 2441 2442 /* 2443 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2444 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2445 * true if more pages should be reclaimed such that when the page allocator 2446 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2447 * It will give up earlier than that if there is difficulty reclaiming pages. 2448 */ 2449 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2450 unsigned long nr_reclaimed, 2451 unsigned long nr_scanned, 2452 struct scan_control *sc) 2453 { 2454 unsigned long pages_for_compaction; 2455 unsigned long inactive_lru_pages; 2456 int z; 2457 2458 /* If not in reclaim/compaction mode, stop */ 2459 if (!in_reclaim_compaction(sc)) 2460 return false; 2461 2462 /* Consider stopping depending on scan and reclaim activity */ 2463 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2464 /* 2465 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2466 * full LRU list has been scanned and we are still failing 2467 * to reclaim pages. This full LRU scan is potentially 2468 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2469 */ 2470 if (!nr_reclaimed && !nr_scanned) 2471 return false; 2472 } else { 2473 /* 2474 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2475 * fail without consequence, stop if we failed to reclaim 2476 * any pages from the last SWAP_CLUSTER_MAX number of 2477 * pages that were scanned. This will return to the 2478 * caller faster at the risk reclaim/compaction and 2479 * the resulting allocation attempt fails 2480 */ 2481 if (!nr_reclaimed) 2482 return false; 2483 } 2484 2485 /* 2486 * If we have not reclaimed enough pages for compaction and the 2487 * inactive lists are large enough, continue reclaiming 2488 */ 2489 pages_for_compaction = compact_gap(sc->order); 2490 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2491 if (get_nr_swap_pages() > 0) 2492 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2493 if (sc->nr_reclaimed < pages_for_compaction && 2494 inactive_lru_pages > pages_for_compaction) 2495 return true; 2496 2497 /* If compaction would go ahead or the allocation would succeed, stop */ 2498 for (z = 0; z <= sc->reclaim_idx; z++) { 2499 struct zone *zone = &pgdat->node_zones[z]; 2500 if (!managed_zone(zone)) 2501 continue; 2502 2503 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2504 case COMPACT_SUCCESS: 2505 case COMPACT_CONTINUE: 2506 return false; 2507 default: 2508 /* check next zone */ 2509 ; 2510 } 2511 } 2512 return true; 2513 } 2514 2515 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2516 { 2517 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2518 (memcg && memcg_congested(pgdat, memcg)); 2519 } 2520 2521 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2522 { 2523 struct reclaim_state *reclaim_state = current->reclaim_state; 2524 unsigned long nr_reclaimed, nr_scanned; 2525 bool reclaimable = false; 2526 2527 do { 2528 struct mem_cgroup *root = sc->target_mem_cgroup; 2529 struct mem_cgroup_reclaim_cookie reclaim = { 2530 .pgdat = pgdat, 2531 .priority = sc->priority, 2532 }; 2533 unsigned long node_lru_pages = 0; 2534 struct mem_cgroup *memcg; 2535 2536 memset(&sc->nr, 0, sizeof(sc->nr)); 2537 2538 nr_reclaimed = sc->nr_reclaimed; 2539 nr_scanned = sc->nr_scanned; 2540 2541 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2542 do { 2543 unsigned long lru_pages; 2544 unsigned long reclaimed; 2545 unsigned long scanned; 2546 2547 switch (mem_cgroup_protected(root, memcg)) { 2548 case MEMCG_PROT_MIN: 2549 /* 2550 * Hard protection. 2551 * If there is no reclaimable memory, OOM. 2552 */ 2553 continue; 2554 case MEMCG_PROT_LOW: 2555 /* 2556 * Soft protection. 2557 * Respect the protection only as long as 2558 * there is an unprotected supply 2559 * of reclaimable memory from other cgroups. 2560 */ 2561 if (!sc->memcg_low_reclaim) { 2562 sc->memcg_low_skipped = 1; 2563 continue; 2564 } 2565 memcg_memory_event(memcg, MEMCG_LOW); 2566 break; 2567 case MEMCG_PROT_NONE: 2568 break; 2569 } 2570 2571 reclaimed = sc->nr_reclaimed; 2572 scanned = sc->nr_scanned; 2573 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2574 node_lru_pages += lru_pages; 2575 2576 if (memcg) 2577 shrink_slab(sc->gfp_mask, pgdat->node_id, 2578 memcg, sc->priority); 2579 2580 /* Record the group's reclaim efficiency */ 2581 vmpressure(sc->gfp_mask, memcg, false, 2582 sc->nr_scanned - scanned, 2583 sc->nr_reclaimed - reclaimed); 2584 2585 /* 2586 * Direct reclaim and kswapd have to scan all memory 2587 * cgroups to fulfill the overall scan target for the 2588 * node. 2589 * 2590 * Limit reclaim, on the other hand, only cares about 2591 * nr_to_reclaim pages to be reclaimed and it will 2592 * retry with decreasing priority if one round over the 2593 * whole hierarchy is not sufficient. 2594 */ 2595 if (!global_reclaim(sc) && 2596 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2597 mem_cgroup_iter_break(root, memcg); 2598 break; 2599 } 2600 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2601 2602 if (global_reclaim(sc)) 2603 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2604 sc->priority); 2605 2606 if (reclaim_state) { 2607 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2608 reclaim_state->reclaimed_slab = 0; 2609 } 2610 2611 /* Record the subtree's reclaim efficiency */ 2612 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2613 sc->nr_scanned - nr_scanned, 2614 sc->nr_reclaimed - nr_reclaimed); 2615 2616 if (sc->nr_reclaimed - nr_reclaimed) 2617 reclaimable = true; 2618 2619 if (current_is_kswapd()) { 2620 /* 2621 * If reclaim is isolating dirty pages under writeback, 2622 * it implies that the long-lived page allocation rate 2623 * is exceeding the page laundering rate. Either the 2624 * global limits are not being effective at throttling 2625 * processes due to the page distribution throughout 2626 * zones or there is heavy usage of a slow backing 2627 * device. The only option is to throttle from reclaim 2628 * context which is not ideal as there is no guarantee 2629 * the dirtying process is throttled in the same way 2630 * balance_dirty_pages() manages. 2631 * 2632 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2633 * count the number of pages under pages flagged for 2634 * immediate reclaim and stall if any are encountered 2635 * in the nr_immediate check below. 2636 */ 2637 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2638 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2639 2640 /* 2641 * Tag a node as congested if all the dirty pages 2642 * scanned were backed by a congested BDI and 2643 * wait_iff_congested will stall. 2644 */ 2645 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2646 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2647 2648 /* Allow kswapd to start writing pages during reclaim.*/ 2649 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2650 set_bit(PGDAT_DIRTY, &pgdat->flags); 2651 2652 /* 2653 * If kswapd scans pages marked marked for immediate 2654 * reclaim and under writeback (nr_immediate), it 2655 * implies that pages are cycling through the LRU 2656 * faster than they are written so also forcibly stall. 2657 */ 2658 if (sc->nr.immediate) 2659 congestion_wait(BLK_RW_ASYNC, HZ/10); 2660 } 2661 2662 /* 2663 * Legacy memcg will stall in page writeback so avoid forcibly 2664 * stalling in wait_iff_congested(). 2665 */ 2666 if (!global_reclaim(sc) && sane_reclaim(sc) && 2667 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2668 set_memcg_congestion(pgdat, root, true); 2669 2670 /* 2671 * Stall direct reclaim for IO completions if underlying BDIs 2672 * and node is congested. Allow kswapd to continue until it 2673 * starts encountering unqueued dirty pages or cycling through 2674 * the LRU too quickly. 2675 */ 2676 if (!sc->hibernation_mode && !current_is_kswapd() && 2677 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2678 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2679 2680 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2681 sc->nr_scanned - nr_scanned, sc)); 2682 2683 /* 2684 * Kswapd gives up on balancing particular nodes after too 2685 * many failures to reclaim anything from them and goes to 2686 * sleep. On reclaim progress, reset the failure counter. A 2687 * successful direct reclaim run will revive a dormant kswapd. 2688 */ 2689 if (reclaimable) 2690 pgdat->kswapd_failures = 0; 2691 2692 return reclaimable; 2693 } 2694 2695 /* 2696 * Returns true if compaction should go ahead for a costly-order request, or 2697 * the allocation would already succeed without compaction. Return false if we 2698 * should reclaim first. 2699 */ 2700 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2701 { 2702 unsigned long watermark; 2703 enum compact_result suitable; 2704 2705 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2706 if (suitable == COMPACT_SUCCESS) 2707 /* Allocation should succeed already. Don't reclaim. */ 2708 return true; 2709 if (suitable == COMPACT_SKIPPED) 2710 /* Compaction cannot yet proceed. Do reclaim. */ 2711 return false; 2712 2713 /* 2714 * Compaction is already possible, but it takes time to run and there 2715 * are potentially other callers using the pages just freed. So proceed 2716 * with reclaim to make a buffer of free pages available to give 2717 * compaction a reasonable chance of completing and allocating the page. 2718 * Note that we won't actually reclaim the whole buffer in one attempt 2719 * as the target watermark in should_continue_reclaim() is lower. But if 2720 * we are already above the high+gap watermark, don't reclaim at all. 2721 */ 2722 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2723 2724 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2725 } 2726 2727 /* 2728 * This is the direct reclaim path, for page-allocating processes. We only 2729 * try to reclaim pages from zones which will satisfy the caller's allocation 2730 * request. 2731 * 2732 * If a zone is deemed to be full of pinned pages then just give it a light 2733 * scan then give up on it. 2734 */ 2735 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2736 { 2737 struct zoneref *z; 2738 struct zone *zone; 2739 unsigned long nr_soft_reclaimed; 2740 unsigned long nr_soft_scanned; 2741 gfp_t orig_mask; 2742 pg_data_t *last_pgdat = NULL; 2743 2744 /* 2745 * If the number of buffer_heads in the machine exceeds the maximum 2746 * allowed level, force direct reclaim to scan the highmem zone as 2747 * highmem pages could be pinning lowmem pages storing buffer_heads 2748 */ 2749 orig_mask = sc->gfp_mask; 2750 if (buffer_heads_over_limit) { 2751 sc->gfp_mask |= __GFP_HIGHMEM; 2752 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2753 } 2754 2755 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2756 sc->reclaim_idx, sc->nodemask) { 2757 /* 2758 * Take care memory controller reclaiming has small influence 2759 * to global LRU. 2760 */ 2761 if (global_reclaim(sc)) { 2762 if (!cpuset_zone_allowed(zone, 2763 GFP_KERNEL | __GFP_HARDWALL)) 2764 continue; 2765 2766 /* 2767 * If we already have plenty of memory free for 2768 * compaction in this zone, don't free any more. 2769 * Even though compaction is invoked for any 2770 * non-zero order, only frequent costly order 2771 * reclamation is disruptive enough to become a 2772 * noticeable problem, like transparent huge 2773 * page allocations. 2774 */ 2775 if (IS_ENABLED(CONFIG_COMPACTION) && 2776 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2777 compaction_ready(zone, sc)) { 2778 sc->compaction_ready = true; 2779 continue; 2780 } 2781 2782 /* 2783 * Shrink each node in the zonelist once. If the 2784 * zonelist is ordered by zone (not the default) then a 2785 * node may be shrunk multiple times but in that case 2786 * the user prefers lower zones being preserved. 2787 */ 2788 if (zone->zone_pgdat == last_pgdat) 2789 continue; 2790 2791 /* 2792 * This steals pages from memory cgroups over softlimit 2793 * and returns the number of reclaimed pages and 2794 * scanned pages. This works for global memory pressure 2795 * and balancing, not for a memcg's limit. 2796 */ 2797 nr_soft_scanned = 0; 2798 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2799 sc->order, sc->gfp_mask, 2800 &nr_soft_scanned); 2801 sc->nr_reclaimed += nr_soft_reclaimed; 2802 sc->nr_scanned += nr_soft_scanned; 2803 /* need some check for avoid more shrink_zone() */ 2804 } 2805 2806 /* See comment about same check for global reclaim above */ 2807 if (zone->zone_pgdat == last_pgdat) 2808 continue; 2809 last_pgdat = zone->zone_pgdat; 2810 shrink_node(zone->zone_pgdat, sc); 2811 } 2812 2813 /* 2814 * Restore to original mask to avoid the impact on the caller if we 2815 * promoted it to __GFP_HIGHMEM. 2816 */ 2817 sc->gfp_mask = orig_mask; 2818 } 2819 2820 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2821 { 2822 struct mem_cgroup *memcg; 2823 2824 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2825 do { 2826 unsigned long refaults; 2827 struct lruvec *lruvec; 2828 2829 if (memcg) 2830 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2831 else 2832 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2833 2834 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2835 lruvec->refaults = refaults; 2836 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2837 } 2838 2839 /* 2840 * This is the main entry point to direct page reclaim. 2841 * 2842 * If a full scan of the inactive list fails to free enough memory then we 2843 * are "out of memory" and something needs to be killed. 2844 * 2845 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2846 * high - the zone may be full of dirty or under-writeback pages, which this 2847 * caller can't do much about. We kick the writeback threads and take explicit 2848 * naps in the hope that some of these pages can be written. But if the 2849 * allocating task holds filesystem locks which prevent writeout this might not 2850 * work, and the allocation attempt will fail. 2851 * 2852 * returns: 0, if no pages reclaimed 2853 * else, the number of pages reclaimed 2854 */ 2855 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2856 struct scan_control *sc) 2857 { 2858 int initial_priority = sc->priority; 2859 pg_data_t *last_pgdat; 2860 struct zoneref *z; 2861 struct zone *zone; 2862 retry: 2863 delayacct_freepages_start(); 2864 2865 if (global_reclaim(sc)) 2866 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2867 2868 do { 2869 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2870 sc->priority); 2871 sc->nr_scanned = 0; 2872 shrink_zones(zonelist, sc); 2873 2874 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2875 break; 2876 2877 if (sc->compaction_ready) 2878 break; 2879 2880 /* 2881 * If we're getting trouble reclaiming, start doing 2882 * writepage even in laptop mode. 2883 */ 2884 if (sc->priority < DEF_PRIORITY - 2) 2885 sc->may_writepage = 1; 2886 } while (--sc->priority >= 0); 2887 2888 last_pgdat = NULL; 2889 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2890 sc->nodemask) { 2891 if (zone->zone_pgdat == last_pgdat) 2892 continue; 2893 last_pgdat = zone->zone_pgdat; 2894 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2895 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 2896 } 2897 2898 delayacct_freepages_end(); 2899 2900 if (sc->nr_reclaimed) 2901 return sc->nr_reclaimed; 2902 2903 /* Aborted reclaim to try compaction? don't OOM, then */ 2904 if (sc->compaction_ready) 2905 return 1; 2906 2907 /* Untapped cgroup reserves? Don't OOM, retry. */ 2908 if (sc->memcg_low_skipped) { 2909 sc->priority = initial_priority; 2910 sc->memcg_low_reclaim = 1; 2911 sc->memcg_low_skipped = 0; 2912 goto retry; 2913 } 2914 2915 return 0; 2916 } 2917 2918 static bool allow_direct_reclaim(pg_data_t *pgdat) 2919 { 2920 struct zone *zone; 2921 unsigned long pfmemalloc_reserve = 0; 2922 unsigned long free_pages = 0; 2923 int i; 2924 bool wmark_ok; 2925 2926 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2927 return true; 2928 2929 for (i = 0; i <= ZONE_NORMAL; i++) { 2930 zone = &pgdat->node_zones[i]; 2931 if (!managed_zone(zone)) 2932 continue; 2933 2934 if (!zone_reclaimable_pages(zone)) 2935 continue; 2936 2937 pfmemalloc_reserve += min_wmark_pages(zone); 2938 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2939 } 2940 2941 /* If there are no reserves (unexpected config) then do not throttle */ 2942 if (!pfmemalloc_reserve) 2943 return true; 2944 2945 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2946 2947 /* kswapd must be awake if processes are being throttled */ 2948 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2949 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2950 (enum zone_type)ZONE_NORMAL); 2951 wake_up_interruptible(&pgdat->kswapd_wait); 2952 } 2953 2954 return wmark_ok; 2955 } 2956 2957 /* 2958 * Throttle direct reclaimers if backing storage is backed by the network 2959 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2960 * depleted. kswapd will continue to make progress and wake the processes 2961 * when the low watermark is reached. 2962 * 2963 * Returns true if a fatal signal was delivered during throttling. If this 2964 * happens, the page allocator should not consider triggering the OOM killer. 2965 */ 2966 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2967 nodemask_t *nodemask) 2968 { 2969 struct zoneref *z; 2970 struct zone *zone; 2971 pg_data_t *pgdat = NULL; 2972 2973 /* 2974 * Kernel threads should not be throttled as they may be indirectly 2975 * responsible for cleaning pages necessary for reclaim to make forward 2976 * progress. kjournald for example may enter direct reclaim while 2977 * committing a transaction where throttling it could forcing other 2978 * processes to block on log_wait_commit(). 2979 */ 2980 if (current->flags & PF_KTHREAD) 2981 goto out; 2982 2983 /* 2984 * If a fatal signal is pending, this process should not throttle. 2985 * It should return quickly so it can exit and free its memory 2986 */ 2987 if (fatal_signal_pending(current)) 2988 goto out; 2989 2990 /* 2991 * Check if the pfmemalloc reserves are ok by finding the first node 2992 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2993 * GFP_KERNEL will be required for allocating network buffers when 2994 * swapping over the network so ZONE_HIGHMEM is unusable. 2995 * 2996 * Throttling is based on the first usable node and throttled processes 2997 * wait on a queue until kswapd makes progress and wakes them. There 2998 * is an affinity then between processes waking up and where reclaim 2999 * progress has been made assuming the process wakes on the same node. 3000 * More importantly, processes running on remote nodes will not compete 3001 * for remote pfmemalloc reserves and processes on different nodes 3002 * should make reasonable progress. 3003 */ 3004 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3005 gfp_zone(gfp_mask), nodemask) { 3006 if (zone_idx(zone) > ZONE_NORMAL) 3007 continue; 3008 3009 /* Throttle based on the first usable node */ 3010 pgdat = zone->zone_pgdat; 3011 if (allow_direct_reclaim(pgdat)) 3012 goto out; 3013 break; 3014 } 3015 3016 /* If no zone was usable by the allocation flags then do not throttle */ 3017 if (!pgdat) 3018 goto out; 3019 3020 /* Account for the throttling */ 3021 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3022 3023 /* 3024 * If the caller cannot enter the filesystem, it's possible that it 3025 * is due to the caller holding an FS lock or performing a journal 3026 * transaction in the case of a filesystem like ext[3|4]. In this case, 3027 * it is not safe to block on pfmemalloc_wait as kswapd could be 3028 * blocked waiting on the same lock. Instead, throttle for up to a 3029 * second before continuing. 3030 */ 3031 if (!(gfp_mask & __GFP_FS)) { 3032 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3033 allow_direct_reclaim(pgdat), HZ); 3034 3035 goto check_pending; 3036 } 3037 3038 /* Throttle until kswapd wakes the process */ 3039 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3040 allow_direct_reclaim(pgdat)); 3041 3042 check_pending: 3043 if (fatal_signal_pending(current)) 3044 return true; 3045 3046 out: 3047 return false; 3048 } 3049 3050 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3051 gfp_t gfp_mask, nodemask_t *nodemask) 3052 { 3053 unsigned long nr_reclaimed; 3054 struct scan_control sc = { 3055 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3056 .gfp_mask = current_gfp_context(gfp_mask), 3057 .reclaim_idx = gfp_zone(gfp_mask), 3058 .order = order, 3059 .nodemask = nodemask, 3060 .priority = DEF_PRIORITY, 3061 .may_writepage = !laptop_mode, 3062 .may_unmap = 1, 3063 .may_swap = 1, 3064 }; 3065 3066 /* 3067 * Do not enter reclaim if fatal signal was delivered while throttled. 3068 * 1 is returned so that the page allocator does not OOM kill at this 3069 * point. 3070 */ 3071 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3072 return 1; 3073 3074 trace_mm_vmscan_direct_reclaim_begin(order, 3075 sc.may_writepage, 3076 sc.gfp_mask, 3077 sc.reclaim_idx); 3078 3079 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3080 3081 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3082 3083 return nr_reclaimed; 3084 } 3085 3086 #ifdef CONFIG_MEMCG 3087 3088 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3089 gfp_t gfp_mask, bool noswap, 3090 pg_data_t *pgdat, 3091 unsigned long *nr_scanned) 3092 { 3093 struct scan_control sc = { 3094 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3095 .target_mem_cgroup = memcg, 3096 .may_writepage = !laptop_mode, 3097 .may_unmap = 1, 3098 .reclaim_idx = MAX_NR_ZONES - 1, 3099 .may_swap = !noswap, 3100 }; 3101 unsigned long lru_pages; 3102 3103 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3104 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3105 3106 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3107 sc.may_writepage, 3108 sc.gfp_mask, 3109 sc.reclaim_idx); 3110 3111 /* 3112 * NOTE: Although we can get the priority field, using it 3113 * here is not a good idea, since it limits the pages we can scan. 3114 * if we don't reclaim here, the shrink_node from balance_pgdat 3115 * will pick up pages from other mem cgroup's as well. We hack 3116 * the priority and make it zero. 3117 */ 3118 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3119 3120 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3121 3122 *nr_scanned = sc.nr_scanned; 3123 return sc.nr_reclaimed; 3124 } 3125 3126 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3127 unsigned long nr_pages, 3128 gfp_t gfp_mask, 3129 bool may_swap) 3130 { 3131 struct zonelist *zonelist; 3132 unsigned long nr_reclaimed; 3133 int nid; 3134 unsigned int noreclaim_flag; 3135 struct scan_control sc = { 3136 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3137 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3138 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3139 .reclaim_idx = MAX_NR_ZONES - 1, 3140 .target_mem_cgroup = memcg, 3141 .priority = DEF_PRIORITY, 3142 .may_writepage = !laptop_mode, 3143 .may_unmap = 1, 3144 .may_swap = may_swap, 3145 }; 3146 3147 /* 3148 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3149 * take care of from where we get pages. So the node where we start the 3150 * scan does not need to be the current node. 3151 */ 3152 nid = mem_cgroup_select_victim_node(memcg); 3153 3154 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3155 3156 trace_mm_vmscan_memcg_reclaim_begin(0, 3157 sc.may_writepage, 3158 sc.gfp_mask, 3159 sc.reclaim_idx); 3160 3161 noreclaim_flag = memalloc_noreclaim_save(); 3162 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3163 memalloc_noreclaim_restore(noreclaim_flag); 3164 3165 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3166 3167 return nr_reclaimed; 3168 } 3169 #endif 3170 3171 static void age_active_anon(struct pglist_data *pgdat, 3172 struct scan_control *sc) 3173 { 3174 struct mem_cgroup *memcg; 3175 3176 if (!total_swap_pages) 3177 return; 3178 3179 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3180 do { 3181 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3182 3183 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3184 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3185 sc, LRU_ACTIVE_ANON); 3186 3187 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3188 } while (memcg); 3189 } 3190 3191 /* 3192 * Returns true if there is an eligible zone balanced for the request order 3193 * and classzone_idx 3194 */ 3195 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3196 { 3197 int i; 3198 unsigned long mark = -1; 3199 struct zone *zone; 3200 3201 for (i = 0; i <= classzone_idx; i++) { 3202 zone = pgdat->node_zones + i; 3203 3204 if (!managed_zone(zone)) 3205 continue; 3206 3207 mark = high_wmark_pages(zone); 3208 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3209 return true; 3210 } 3211 3212 /* 3213 * If a node has no populated zone within classzone_idx, it does not 3214 * need balancing by definition. This can happen if a zone-restricted 3215 * allocation tries to wake a remote kswapd. 3216 */ 3217 if (mark == -1) 3218 return true; 3219 3220 return false; 3221 } 3222 3223 /* Clear pgdat state for congested, dirty or under writeback. */ 3224 static void clear_pgdat_congested(pg_data_t *pgdat) 3225 { 3226 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3227 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3228 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3229 } 3230 3231 /* 3232 * Prepare kswapd for sleeping. This verifies that there are no processes 3233 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3234 * 3235 * Returns true if kswapd is ready to sleep 3236 */ 3237 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3238 { 3239 /* 3240 * The throttled processes are normally woken up in balance_pgdat() as 3241 * soon as allow_direct_reclaim() is true. But there is a potential 3242 * race between when kswapd checks the watermarks and a process gets 3243 * throttled. There is also a potential race if processes get 3244 * throttled, kswapd wakes, a large process exits thereby balancing the 3245 * zones, which causes kswapd to exit balance_pgdat() before reaching 3246 * the wake up checks. If kswapd is going to sleep, no process should 3247 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3248 * the wake up is premature, processes will wake kswapd and get 3249 * throttled again. The difference from wake ups in balance_pgdat() is 3250 * that here we are under prepare_to_wait(). 3251 */ 3252 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3253 wake_up_all(&pgdat->pfmemalloc_wait); 3254 3255 /* Hopeless node, leave it to direct reclaim */ 3256 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3257 return true; 3258 3259 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3260 clear_pgdat_congested(pgdat); 3261 return true; 3262 } 3263 3264 return false; 3265 } 3266 3267 /* 3268 * kswapd shrinks a node of pages that are at or below the highest usable 3269 * zone that is currently unbalanced. 3270 * 3271 * Returns true if kswapd scanned at least the requested number of pages to 3272 * reclaim or if the lack of progress was due to pages under writeback. 3273 * This is used to determine if the scanning priority needs to be raised. 3274 */ 3275 static bool kswapd_shrink_node(pg_data_t *pgdat, 3276 struct scan_control *sc) 3277 { 3278 struct zone *zone; 3279 int z; 3280 3281 /* Reclaim a number of pages proportional to the number of zones */ 3282 sc->nr_to_reclaim = 0; 3283 for (z = 0; z <= sc->reclaim_idx; z++) { 3284 zone = pgdat->node_zones + z; 3285 if (!managed_zone(zone)) 3286 continue; 3287 3288 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3289 } 3290 3291 /* 3292 * Historically care was taken to put equal pressure on all zones but 3293 * now pressure is applied based on node LRU order. 3294 */ 3295 shrink_node(pgdat, sc); 3296 3297 /* 3298 * Fragmentation may mean that the system cannot be rebalanced for 3299 * high-order allocations. If twice the allocation size has been 3300 * reclaimed then recheck watermarks only at order-0 to prevent 3301 * excessive reclaim. Assume that a process requested a high-order 3302 * can direct reclaim/compact. 3303 */ 3304 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3305 sc->order = 0; 3306 3307 return sc->nr_scanned >= sc->nr_to_reclaim; 3308 } 3309 3310 /* 3311 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3312 * that are eligible for use by the caller until at least one zone is 3313 * balanced. 3314 * 3315 * Returns the order kswapd finished reclaiming at. 3316 * 3317 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3318 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3319 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3320 * or lower is eligible for reclaim until at least one usable zone is 3321 * balanced. 3322 */ 3323 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3324 { 3325 int i; 3326 unsigned long nr_soft_reclaimed; 3327 unsigned long nr_soft_scanned; 3328 struct zone *zone; 3329 struct scan_control sc = { 3330 .gfp_mask = GFP_KERNEL, 3331 .order = order, 3332 .priority = DEF_PRIORITY, 3333 .may_writepage = !laptop_mode, 3334 .may_unmap = 1, 3335 .may_swap = 1, 3336 }; 3337 3338 __fs_reclaim_acquire(); 3339 3340 count_vm_event(PAGEOUTRUN); 3341 3342 do { 3343 unsigned long nr_reclaimed = sc.nr_reclaimed; 3344 bool raise_priority = true; 3345 bool ret; 3346 3347 sc.reclaim_idx = classzone_idx; 3348 3349 /* 3350 * If the number of buffer_heads exceeds the maximum allowed 3351 * then consider reclaiming from all zones. This has a dual 3352 * purpose -- on 64-bit systems it is expected that 3353 * buffer_heads are stripped during active rotation. On 32-bit 3354 * systems, highmem pages can pin lowmem memory and shrinking 3355 * buffers can relieve lowmem pressure. Reclaim may still not 3356 * go ahead if all eligible zones for the original allocation 3357 * request are balanced to avoid excessive reclaim from kswapd. 3358 */ 3359 if (buffer_heads_over_limit) { 3360 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3361 zone = pgdat->node_zones + i; 3362 if (!managed_zone(zone)) 3363 continue; 3364 3365 sc.reclaim_idx = i; 3366 break; 3367 } 3368 } 3369 3370 /* 3371 * Only reclaim if there are no eligible zones. Note that 3372 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3373 * have adjusted it. 3374 */ 3375 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3376 goto out; 3377 3378 /* 3379 * Do some background aging of the anon list, to give 3380 * pages a chance to be referenced before reclaiming. All 3381 * pages are rotated regardless of classzone as this is 3382 * about consistent aging. 3383 */ 3384 age_active_anon(pgdat, &sc); 3385 3386 /* 3387 * If we're getting trouble reclaiming, start doing writepage 3388 * even in laptop mode. 3389 */ 3390 if (sc.priority < DEF_PRIORITY - 2) 3391 sc.may_writepage = 1; 3392 3393 /* Call soft limit reclaim before calling shrink_node. */ 3394 sc.nr_scanned = 0; 3395 nr_soft_scanned = 0; 3396 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3397 sc.gfp_mask, &nr_soft_scanned); 3398 sc.nr_reclaimed += nr_soft_reclaimed; 3399 3400 /* 3401 * There should be no need to raise the scanning priority if 3402 * enough pages are already being scanned that that high 3403 * watermark would be met at 100% efficiency. 3404 */ 3405 if (kswapd_shrink_node(pgdat, &sc)) 3406 raise_priority = false; 3407 3408 /* 3409 * If the low watermark is met there is no need for processes 3410 * to be throttled on pfmemalloc_wait as they should not be 3411 * able to safely make forward progress. Wake them 3412 */ 3413 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3414 allow_direct_reclaim(pgdat)) 3415 wake_up_all(&pgdat->pfmemalloc_wait); 3416 3417 /* Check if kswapd should be suspending */ 3418 __fs_reclaim_release(); 3419 ret = try_to_freeze(); 3420 __fs_reclaim_acquire(); 3421 if (ret || kthread_should_stop()) 3422 break; 3423 3424 /* 3425 * Raise priority if scanning rate is too low or there was no 3426 * progress in reclaiming pages 3427 */ 3428 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3429 if (raise_priority || !nr_reclaimed) 3430 sc.priority--; 3431 } while (sc.priority >= 1); 3432 3433 if (!sc.nr_reclaimed) 3434 pgdat->kswapd_failures++; 3435 3436 out: 3437 snapshot_refaults(NULL, pgdat); 3438 __fs_reclaim_release(); 3439 /* 3440 * Return the order kswapd stopped reclaiming at as 3441 * prepare_kswapd_sleep() takes it into account. If another caller 3442 * entered the allocator slow path while kswapd was awake, order will 3443 * remain at the higher level. 3444 */ 3445 return sc.order; 3446 } 3447 3448 /* 3449 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3450 * allocation request woke kswapd for. When kswapd has not woken recently, 3451 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3452 * given classzone and returns it or the highest classzone index kswapd 3453 * was recently woke for. 3454 */ 3455 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3456 enum zone_type classzone_idx) 3457 { 3458 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3459 return classzone_idx; 3460 3461 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3462 } 3463 3464 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3465 unsigned int classzone_idx) 3466 { 3467 long remaining = 0; 3468 DEFINE_WAIT(wait); 3469 3470 if (freezing(current) || kthread_should_stop()) 3471 return; 3472 3473 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3474 3475 /* 3476 * Try to sleep for a short interval. Note that kcompactd will only be 3477 * woken if it is possible to sleep for a short interval. This is 3478 * deliberate on the assumption that if reclaim cannot keep an 3479 * eligible zone balanced that it's also unlikely that compaction will 3480 * succeed. 3481 */ 3482 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3483 /* 3484 * Compaction records what page blocks it recently failed to 3485 * isolate pages from and skips them in the future scanning. 3486 * When kswapd is going to sleep, it is reasonable to assume 3487 * that pages and compaction may succeed so reset the cache. 3488 */ 3489 reset_isolation_suitable(pgdat); 3490 3491 /* 3492 * We have freed the memory, now we should compact it to make 3493 * allocation of the requested order possible. 3494 */ 3495 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3496 3497 remaining = schedule_timeout(HZ/10); 3498 3499 /* 3500 * If woken prematurely then reset kswapd_classzone_idx and 3501 * order. The values will either be from a wakeup request or 3502 * the previous request that slept prematurely. 3503 */ 3504 if (remaining) { 3505 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3506 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3507 } 3508 3509 finish_wait(&pgdat->kswapd_wait, &wait); 3510 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3511 } 3512 3513 /* 3514 * After a short sleep, check if it was a premature sleep. If not, then 3515 * go fully to sleep until explicitly woken up. 3516 */ 3517 if (!remaining && 3518 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3519 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3520 3521 /* 3522 * vmstat counters are not perfectly accurate and the estimated 3523 * value for counters such as NR_FREE_PAGES can deviate from the 3524 * true value by nr_online_cpus * threshold. To avoid the zone 3525 * watermarks being breached while under pressure, we reduce the 3526 * per-cpu vmstat threshold while kswapd is awake and restore 3527 * them before going back to sleep. 3528 */ 3529 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3530 3531 if (!kthread_should_stop()) 3532 schedule(); 3533 3534 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3535 } else { 3536 if (remaining) 3537 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3538 else 3539 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3540 } 3541 finish_wait(&pgdat->kswapd_wait, &wait); 3542 } 3543 3544 /* 3545 * The background pageout daemon, started as a kernel thread 3546 * from the init process. 3547 * 3548 * This basically trickles out pages so that we have _some_ 3549 * free memory available even if there is no other activity 3550 * that frees anything up. This is needed for things like routing 3551 * etc, where we otherwise might have all activity going on in 3552 * asynchronous contexts that cannot page things out. 3553 * 3554 * If there are applications that are active memory-allocators 3555 * (most normal use), this basically shouldn't matter. 3556 */ 3557 static int kswapd(void *p) 3558 { 3559 unsigned int alloc_order, reclaim_order; 3560 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3561 pg_data_t *pgdat = (pg_data_t*)p; 3562 struct task_struct *tsk = current; 3563 3564 struct reclaim_state reclaim_state = { 3565 .reclaimed_slab = 0, 3566 }; 3567 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3568 3569 if (!cpumask_empty(cpumask)) 3570 set_cpus_allowed_ptr(tsk, cpumask); 3571 current->reclaim_state = &reclaim_state; 3572 3573 /* 3574 * Tell the memory management that we're a "memory allocator", 3575 * and that if we need more memory we should get access to it 3576 * regardless (see "__alloc_pages()"). "kswapd" should 3577 * never get caught in the normal page freeing logic. 3578 * 3579 * (Kswapd normally doesn't need memory anyway, but sometimes 3580 * you need a small amount of memory in order to be able to 3581 * page out something else, and this flag essentially protects 3582 * us from recursively trying to free more memory as we're 3583 * trying to free the first piece of memory in the first place). 3584 */ 3585 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3586 set_freezable(); 3587 3588 pgdat->kswapd_order = 0; 3589 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3590 for ( ; ; ) { 3591 bool ret; 3592 3593 alloc_order = reclaim_order = pgdat->kswapd_order; 3594 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3595 3596 kswapd_try_sleep: 3597 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3598 classzone_idx); 3599 3600 /* Read the new order and classzone_idx */ 3601 alloc_order = reclaim_order = pgdat->kswapd_order; 3602 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3603 pgdat->kswapd_order = 0; 3604 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3605 3606 ret = try_to_freeze(); 3607 if (kthread_should_stop()) 3608 break; 3609 3610 /* 3611 * We can speed up thawing tasks if we don't call balance_pgdat 3612 * after returning from the refrigerator 3613 */ 3614 if (ret) 3615 continue; 3616 3617 /* 3618 * Reclaim begins at the requested order but if a high-order 3619 * reclaim fails then kswapd falls back to reclaiming for 3620 * order-0. If that happens, kswapd will consider sleeping 3621 * for the order it finished reclaiming at (reclaim_order) 3622 * but kcompactd is woken to compact for the original 3623 * request (alloc_order). 3624 */ 3625 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3626 alloc_order); 3627 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3628 if (reclaim_order < alloc_order) 3629 goto kswapd_try_sleep; 3630 } 3631 3632 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3633 current->reclaim_state = NULL; 3634 3635 return 0; 3636 } 3637 3638 /* 3639 * A zone is low on free memory or too fragmented for high-order memory. If 3640 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3641 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3642 * has failed or is not needed, still wake up kcompactd if only compaction is 3643 * needed. 3644 */ 3645 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3646 enum zone_type classzone_idx) 3647 { 3648 pg_data_t *pgdat; 3649 3650 if (!managed_zone(zone)) 3651 return; 3652 3653 if (!cpuset_zone_allowed(zone, gfp_flags)) 3654 return; 3655 pgdat = zone->zone_pgdat; 3656 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3657 classzone_idx); 3658 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3659 if (!waitqueue_active(&pgdat->kswapd_wait)) 3660 return; 3661 3662 /* Hopeless node, leave it to direct reclaim if possible */ 3663 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3664 pgdat_balanced(pgdat, order, classzone_idx)) { 3665 /* 3666 * There may be plenty of free memory available, but it's too 3667 * fragmented for high-order allocations. Wake up kcompactd 3668 * and rely on compaction_suitable() to determine if it's 3669 * needed. If it fails, it will defer subsequent attempts to 3670 * ratelimit its work. 3671 */ 3672 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3673 wakeup_kcompactd(pgdat, order, classzone_idx); 3674 return; 3675 } 3676 3677 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3678 gfp_flags); 3679 wake_up_interruptible(&pgdat->kswapd_wait); 3680 } 3681 3682 #ifdef CONFIG_HIBERNATION 3683 /* 3684 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3685 * freed pages. 3686 * 3687 * Rather than trying to age LRUs the aim is to preserve the overall 3688 * LRU order by reclaiming preferentially 3689 * inactive > active > active referenced > active mapped 3690 */ 3691 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3692 { 3693 struct reclaim_state reclaim_state; 3694 struct scan_control sc = { 3695 .nr_to_reclaim = nr_to_reclaim, 3696 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3697 .reclaim_idx = MAX_NR_ZONES - 1, 3698 .priority = DEF_PRIORITY, 3699 .may_writepage = 1, 3700 .may_unmap = 1, 3701 .may_swap = 1, 3702 .hibernation_mode = 1, 3703 }; 3704 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3705 struct task_struct *p = current; 3706 unsigned long nr_reclaimed; 3707 unsigned int noreclaim_flag; 3708 3709 fs_reclaim_acquire(sc.gfp_mask); 3710 noreclaim_flag = memalloc_noreclaim_save(); 3711 reclaim_state.reclaimed_slab = 0; 3712 p->reclaim_state = &reclaim_state; 3713 3714 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3715 3716 p->reclaim_state = NULL; 3717 memalloc_noreclaim_restore(noreclaim_flag); 3718 fs_reclaim_release(sc.gfp_mask); 3719 3720 return nr_reclaimed; 3721 } 3722 #endif /* CONFIG_HIBERNATION */ 3723 3724 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3725 not required for correctness. So if the last cpu in a node goes 3726 away, we get changed to run anywhere: as the first one comes back, 3727 restore their cpu bindings. */ 3728 static int kswapd_cpu_online(unsigned int cpu) 3729 { 3730 int nid; 3731 3732 for_each_node_state(nid, N_MEMORY) { 3733 pg_data_t *pgdat = NODE_DATA(nid); 3734 const struct cpumask *mask; 3735 3736 mask = cpumask_of_node(pgdat->node_id); 3737 3738 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3739 /* One of our CPUs online: restore mask */ 3740 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3741 } 3742 return 0; 3743 } 3744 3745 /* 3746 * This kswapd start function will be called by init and node-hot-add. 3747 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3748 */ 3749 int kswapd_run(int nid) 3750 { 3751 pg_data_t *pgdat = NODE_DATA(nid); 3752 int ret = 0; 3753 3754 if (pgdat->kswapd) 3755 return 0; 3756 3757 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3758 if (IS_ERR(pgdat->kswapd)) { 3759 /* failure at boot is fatal */ 3760 BUG_ON(system_state < SYSTEM_RUNNING); 3761 pr_err("Failed to start kswapd on node %d\n", nid); 3762 ret = PTR_ERR(pgdat->kswapd); 3763 pgdat->kswapd = NULL; 3764 } 3765 return ret; 3766 } 3767 3768 /* 3769 * Called by memory hotplug when all memory in a node is offlined. Caller must 3770 * hold mem_hotplug_begin/end(). 3771 */ 3772 void kswapd_stop(int nid) 3773 { 3774 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3775 3776 if (kswapd) { 3777 kthread_stop(kswapd); 3778 NODE_DATA(nid)->kswapd = NULL; 3779 } 3780 } 3781 3782 static int __init kswapd_init(void) 3783 { 3784 int nid, ret; 3785 3786 swap_setup(); 3787 for_each_node_state(nid, N_MEMORY) 3788 kswapd_run(nid); 3789 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3790 "mm/vmscan:online", kswapd_cpu_online, 3791 NULL); 3792 WARN_ON(ret < 0); 3793 return 0; 3794 } 3795 3796 module_init(kswapd_init) 3797 3798 #ifdef CONFIG_NUMA 3799 /* 3800 * Node reclaim mode 3801 * 3802 * If non-zero call node_reclaim when the number of free pages falls below 3803 * the watermarks. 3804 */ 3805 int node_reclaim_mode __read_mostly; 3806 3807 #define RECLAIM_OFF 0 3808 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3809 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3810 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3811 3812 /* 3813 * Priority for NODE_RECLAIM. This determines the fraction of pages 3814 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3815 * a zone. 3816 */ 3817 #define NODE_RECLAIM_PRIORITY 4 3818 3819 /* 3820 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3821 * occur. 3822 */ 3823 int sysctl_min_unmapped_ratio = 1; 3824 3825 /* 3826 * If the number of slab pages in a zone grows beyond this percentage then 3827 * slab reclaim needs to occur. 3828 */ 3829 int sysctl_min_slab_ratio = 5; 3830 3831 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3832 { 3833 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3834 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3835 node_page_state(pgdat, NR_ACTIVE_FILE); 3836 3837 /* 3838 * It's possible for there to be more file mapped pages than 3839 * accounted for by the pages on the file LRU lists because 3840 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3841 */ 3842 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3843 } 3844 3845 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3846 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3847 { 3848 unsigned long nr_pagecache_reclaimable; 3849 unsigned long delta = 0; 3850 3851 /* 3852 * If RECLAIM_UNMAP is set, then all file pages are considered 3853 * potentially reclaimable. Otherwise, we have to worry about 3854 * pages like swapcache and node_unmapped_file_pages() provides 3855 * a better estimate 3856 */ 3857 if (node_reclaim_mode & RECLAIM_UNMAP) 3858 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3859 else 3860 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3861 3862 /* If we can't clean pages, remove dirty pages from consideration */ 3863 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3864 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3865 3866 /* Watch for any possible underflows due to delta */ 3867 if (unlikely(delta > nr_pagecache_reclaimable)) 3868 delta = nr_pagecache_reclaimable; 3869 3870 return nr_pagecache_reclaimable - delta; 3871 } 3872 3873 /* 3874 * Try to free up some pages from this node through reclaim. 3875 */ 3876 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3877 { 3878 /* Minimum pages needed in order to stay on node */ 3879 const unsigned long nr_pages = 1 << order; 3880 struct task_struct *p = current; 3881 struct reclaim_state reclaim_state; 3882 unsigned int noreclaim_flag; 3883 struct scan_control sc = { 3884 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3885 .gfp_mask = current_gfp_context(gfp_mask), 3886 .order = order, 3887 .priority = NODE_RECLAIM_PRIORITY, 3888 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3889 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3890 .may_swap = 1, 3891 .reclaim_idx = gfp_zone(gfp_mask), 3892 }; 3893 3894 cond_resched(); 3895 fs_reclaim_acquire(sc.gfp_mask); 3896 /* 3897 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3898 * and we also need to be able to write out pages for RECLAIM_WRITE 3899 * and RECLAIM_UNMAP. 3900 */ 3901 noreclaim_flag = memalloc_noreclaim_save(); 3902 p->flags |= PF_SWAPWRITE; 3903 reclaim_state.reclaimed_slab = 0; 3904 p->reclaim_state = &reclaim_state; 3905 3906 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3907 /* 3908 * Free memory by calling shrink node with increasing 3909 * priorities until we have enough memory freed. 3910 */ 3911 do { 3912 shrink_node(pgdat, &sc); 3913 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3914 } 3915 3916 p->reclaim_state = NULL; 3917 current->flags &= ~PF_SWAPWRITE; 3918 memalloc_noreclaim_restore(noreclaim_flag); 3919 fs_reclaim_release(sc.gfp_mask); 3920 return sc.nr_reclaimed >= nr_pages; 3921 } 3922 3923 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3924 { 3925 int ret; 3926 3927 /* 3928 * Node reclaim reclaims unmapped file backed pages and 3929 * slab pages if we are over the defined limits. 3930 * 3931 * A small portion of unmapped file backed pages is needed for 3932 * file I/O otherwise pages read by file I/O will be immediately 3933 * thrown out if the node is overallocated. So we do not reclaim 3934 * if less than a specified percentage of the node is used by 3935 * unmapped file backed pages. 3936 */ 3937 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3938 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3939 return NODE_RECLAIM_FULL; 3940 3941 /* 3942 * Do not scan if the allocation should not be delayed. 3943 */ 3944 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3945 return NODE_RECLAIM_NOSCAN; 3946 3947 /* 3948 * Only run node reclaim on the local node or on nodes that do not 3949 * have associated processors. This will favor the local processor 3950 * over remote processors and spread off node memory allocations 3951 * as wide as possible. 3952 */ 3953 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3954 return NODE_RECLAIM_NOSCAN; 3955 3956 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3957 return NODE_RECLAIM_NOSCAN; 3958 3959 ret = __node_reclaim(pgdat, gfp_mask, order); 3960 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3961 3962 if (!ret) 3963 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3964 3965 return ret; 3966 } 3967 #endif 3968 3969 /* 3970 * page_evictable - test whether a page is evictable 3971 * @page: the page to test 3972 * 3973 * Test whether page is evictable--i.e., should be placed on active/inactive 3974 * lists vs unevictable list. 3975 * 3976 * Reasons page might not be evictable: 3977 * (1) page's mapping marked unevictable 3978 * (2) page is part of an mlocked VMA 3979 * 3980 */ 3981 int page_evictable(struct page *page) 3982 { 3983 int ret; 3984 3985 /* Prevent address_space of inode and swap cache from being freed */ 3986 rcu_read_lock(); 3987 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3988 rcu_read_unlock(); 3989 return ret; 3990 } 3991 3992 #ifdef CONFIG_SHMEM 3993 /** 3994 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3995 * @pages: array of pages to check 3996 * @nr_pages: number of pages to check 3997 * 3998 * Checks pages for evictability and moves them to the appropriate lru list. 3999 * 4000 * This function is only used for SysV IPC SHM_UNLOCK. 4001 */ 4002 void check_move_unevictable_pages(struct page **pages, int nr_pages) 4003 { 4004 struct lruvec *lruvec; 4005 struct pglist_data *pgdat = NULL; 4006 int pgscanned = 0; 4007 int pgrescued = 0; 4008 int i; 4009 4010 for (i = 0; i < nr_pages; i++) { 4011 struct page *page = pages[i]; 4012 struct pglist_data *pagepgdat = page_pgdat(page); 4013 4014 pgscanned++; 4015 if (pagepgdat != pgdat) { 4016 if (pgdat) 4017 spin_unlock_irq(&pgdat->lru_lock); 4018 pgdat = pagepgdat; 4019 spin_lock_irq(&pgdat->lru_lock); 4020 } 4021 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4022 4023 if (!PageLRU(page) || !PageUnevictable(page)) 4024 continue; 4025 4026 if (page_evictable(page)) { 4027 enum lru_list lru = page_lru_base_type(page); 4028 4029 VM_BUG_ON_PAGE(PageActive(page), page); 4030 ClearPageUnevictable(page); 4031 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4032 add_page_to_lru_list(page, lruvec, lru); 4033 pgrescued++; 4034 } 4035 } 4036 4037 if (pgdat) { 4038 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4039 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4040 spin_unlock_irq(&pgdat->lru_lock); 4041 } 4042 } 4043 #endif /* CONFIG_SHMEM */ 4044