1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 /* The highest zone to isolate pages for reclaim from */ 88 enum zone_type reclaim_idx; 89 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* Can cgroups be reclaimed below their normal consumption range? */ 99 unsigned int may_thrash:1; 100 101 unsigned int hibernation_mode:1; 102 103 /* One of the zones is ready for compaction */ 104 unsigned int compaction_ready:1; 105 106 /* Incremented by the number of inactive pages that were scanned */ 107 unsigned long nr_scanned; 108 109 /* Number of pages freed so far during a call to shrink_zones() */ 110 unsigned long nr_reclaimed; 111 }; 112 113 #ifdef ARCH_HAS_PREFETCH 114 #define prefetch_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetch(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 #ifdef ARCH_HAS_PREFETCHW 128 #define prefetchw_prev_lru_page(_page, _base, _field) \ 129 do { \ 130 if ((_page)->lru.prev != _base) { \ 131 struct page *prev; \ 132 \ 133 prev = lru_to_page(&(_page->lru)); \ 134 prefetchw(&prev->_field); \ 135 } \ 136 } while (0) 137 #else 138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 139 #endif 140 141 /* 142 * From 0 .. 100. Higher means more swappy. 143 */ 144 int vm_swappiness = 60; 145 /* 146 * The total number of pages which are beyond the high watermark within all 147 * zones. 148 */ 149 unsigned long vm_total_pages; 150 151 static LIST_HEAD(shrinker_list); 152 static DECLARE_RWSEM(shrinker_rwsem); 153 154 #ifdef CONFIG_MEMCG 155 static bool global_reclaim(struct scan_control *sc) 156 { 157 return !sc->target_mem_cgroup; 158 } 159 160 /** 161 * sane_reclaim - is the usual dirty throttling mechanism operational? 162 * @sc: scan_control in question 163 * 164 * The normal page dirty throttling mechanism in balance_dirty_pages() is 165 * completely broken with the legacy memcg and direct stalling in 166 * shrink_page_list() is used for throttling instead, which lacks all the 167 * niceties such as fairness, adaptive pausing, bandwidth proportional 168 * allocation and configurability. 169 * 170 * This function tests whether the vmscan currently in progress can assume 171 * that the normal dirty throttling mechanism is operational. 172 */ 173 static bool sane_reclaim(struct scan_control *sc) 174 { 175 struct mem_cgroup *memcg = sc->target_mem_cgroup; 176 177 if (!memcg) 178 return true; 179 #ifdef CONFIG_CGROUP_WRITEBACK 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 181 return true; 182 #endif 183 return false; 184 } 185 #else 186 static bool global_reclaim(struct scan_control *sc) 187 { 188 return true; 189 } 190 191 static bool sane_reclaim(struct scan_control *sc) 192 { 193 return true; 194 } 195 #endif 196 197 /* 198 * This misses isolated pages which are not accounted for to save counters. 199 * As the data only determines if reclaim or compaction continues, it is 200 * not expected that isolated pages will be a dominating factor. 201 */ 202 unsigned long zone_reclaimable_pages(struct zone *zone) 203 { 204 unsigned long nr; 205 206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 208 if (get_nr_swap_pages() > 0) 209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 211 212 return nr; 213 } 214 215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 216 { 217 unsigned long nr; 218 219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 222 223 if (get_nr_swap_pages() > 0) 224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 227 228 return nr; 229 } 230 231 bool pgdat_reclaimable(struct pglist_data *pgdat) 232 { 233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) < 234 pgdat_reclaimable_pages(pgdat) * 6; 235 } 236 237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 238 { 239 if (!mem_cgroup_disabled()) 240 return mem_cgroup_get_lru_size(lruvec, lru); 241 242 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 243 } 244 245 /* 246 * Add a shrinker callback to be called from the vm. 247 */ 248 int register_shrinker(struct shrinker *shrinker) 249 { 250 size_t size = sizeof(*shrinker->nr_deferred); 251 252 if (shrinker->flags & SHRINKER_NUMA_AWARE) 253 size *= nr_node_ids; 254 255 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 256 if (!shrinker->nr_deferred) 257 return -ENOMEM; 258 259 down_write(&shrinker_rwsem); 260 list_add_tail(&shrinker->list, &shrinker_list); 261 up_write(&shrinker_rwsem); 262 return 0; 263 } 264 EXPORT_SYMBOL(register_shrinker); 265 266 /* 267 * Remove one 268 */ 269 void unregister_shrinker(struct shrinker *shrinker) 270 { 271 down_write(&shrinker_rwsem); 272 list_del(&shrinker->list); 273 up_write(&shrinker_rwsem); 274 kfree(shrinker->nr_deferred); 275 } 276 EXPORT_SYMBOL(unregister_shrinker); 277 278 #define SHRINK_BATCH 128 279 280 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 281 struct shrinker *shrinker, 282 unsigned long nr_scanned, 283 unsigned long nr_eligible) 284 { 285 unsigned long freed = 0; 286 unsigned long long delta; 287 long total_scan; 288 long freeable; 289 long nr; 290 long new_nr; 291 int nid = shrinkctl->nid; 292 long batch_size = shrinker->batch ? shrinker->batch 293 : SHRINK_BATCH; 294 295 freeable = shrinker->count_objects(shrinker, shrinkctl); 296 if (freeable == 0) 297 return 0; 298 299 /* 300 * copy the current shrinker scan count into a local variable 301 * and zero it so that other concurrent shrinker invocations 302 * don't also do this scanning work. 303 */ 304 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 305 306 total_scan = nr; 307 delta = (4 * nr_scanned) / shrinker->seeks; 308 delta *= freeable; 309 do_div(delta, nr_eligible + 1); 310 total_scan += delta; 311 if (total_scan < 0) { 312 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 313 shrinker->scan_objects, total_scan); 314 total_scan = freeable; 315 } 316 317 /* 318 * We need to avoid excessive windup on filesystem shrinkers 319 * due to large numbers of GFP_NOFS allocations causing the 320 * shrinkers to return -1 all the time. This results in a large 321 * nr being built up so when a shrink that can do some work 322 * comes along it empties the entire cache due to nr >>> 323 * freeable. This is bad for sustaining a working set in 324 * memory. 325 * 326 * Hence only allow the shrinker to scan the entire cache when 327 * a large delta change is calculated directly. 328 */ 329 if (delta < freeable / 4) 330 total_scan = min(total_scan, freeable / 2); 331 332 /* 333 * Avoid risking looping forever due to too large nr value: 334 * never try to free more than twice the estimate number of 335 * freeable entries. 336 */ 337 if (total_scan > freeable * 2) 338 total_scan = freeable * 2; 339 340 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 341 nr_scanned, nr_eligible, 342 freeable, delta, total_scan); 343 344 /* 345 * Normally, we should not scan less than batch_size objects in one 346 * pass to avoid too frequent shrinker calls, but if the slab has less 347 * than batch_size objects in total and we are really tight on memory, 348 * we will try to reclaim all available objects, otherwise we can end 349 * up failing allocations although there are plenty of reclaimable 350 * objects spread over several slabs with usage less than the 351 * batch_size. 352 * 353 * We detect the "tight on memory" situations by looking at the total 354 * number of objects we want to scan (total_scan). If it is greater 355 * than the total number of objects on slab (freeable), we must be 356 * scanning at high prio and therefore should try to reclaim as much as 357 * possible. 358 */ 359 while (total_scan >= batch_size || 360 total_scan >= freeable) { 361 unsigned long ret; 362 unsigned long nr_to_scan = min(batch_size, total_scan); 363 364 shrinkctl->nr_to_scan = nr_to_scan; 365 ret = shrinker->scan_objects(shrinker, shrinkctl); 366 if (ret == SHRINK_STOP) 367 break; 368 freed += ret; 369 370 count_vm_events(SLABS_SCANNED, nr_to_scan); 371 total_scan -= nr_to_scan; 372 373 cond_resched(); 374 } 375 376 /* 377 * move the unused scan count back into the shrinker in a 378 * manner that handles concurrent updates. If we exhausted the 379 * scan, there is no need to do an update. 380 */ 381 if (total_scan > 0) 382 new_nr = atomic_long_add_return(total_scan, 383 &shrinker->nr_deferred[nid]); 384 else 385 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 386 387 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 388 return freed; 389 } 390 391 /** 392 * shrink_slab - shrink slab caches 393 * @gfp_mask: allocation context 394 * @nid: node whose slab caches to target 395 * @memcg: memory cgroup whose slab caches to target 396 * @nr_scanned: pressure numerator 397 * @nr_eligible: pressure denominator 398 * 399 * Call the shrink functions to age shrinkable caches. 400 * 401 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 402 * unaware shrinkers will receive a node id of 0 instead. 403 * 404 * @memcg specifies the memory cgroup to target. If it is not NULL, 405 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 406 * objects from the memory cgroup specified. Otherwise, only unaware 407 * shrinkers are called. 408 * 409 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 410 * the available objects should be scanned. Page reclaim for example 411 * passes the number of pages scanned and the number of pages on the 412 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 413 * when it encountered mapped pages. The ratio is further biased by 414 * the ->seeks setting of the shrink function, which indicates the 415 * cost to recreate an object relative to that of an LRU page. 416 * 417 * Returns the number of reclaimed slab objects. 418 */ 419 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 420 struct mem_cgroup *memcg, 421 unsigned long nr_scanned, 422 unsigned long nr_eligible) 423 { 424 struct shrinker *shrinker; 425 unsigned long freed = 0; 426 427 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 428 return 0; 429 430 if (nr_scanned == 0) 431 nr_scanned = SWAP_CLUSTER_MAX; 432 433 if (!down_read_trylock(&shrinker_rwsem)) { 434 /* 435 * If we would return 0, our callers would understand that we 436 * have nothing else to shrink and give up trying. By returning 437 * 1 we keep it going and assume we'll be able to shrink next 438 * time. 439 */ 440 freed = 1; 441 goto out; 442 } 443 444 list_for_each_entry(shrinker, &shrinker_list, list) { 445 struct shrink_control sc = { 446 .gfp_mask = gfp_mask, 447 .nid = nid, 448 .memcg = memcg, 449 }; 450 451 /* 452 * If kernel memory accounting is disabled, we ignore 453 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 454 * passing NULL for memcg. 455 */ 456 if (memcg_kmem_enabled() && 457 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 458 continue; 459 460 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 461 sc.nid = 0; 462 463 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 464 } 465 466 up_read(&shrinker_rwsem); 467 out: 468 cond_resched(); 469 return freed; 470 } 471 472 void drop_slab_node(int nid) 473 { 474 unsigned long freed; 475 476 do { 477 struct mem_cgroup *memcg = NULL; 478 479 freed = 0; 480 do { 481 freed += shrink_slab(GFP_KERNEL, nid, memcg, 482 1000, 1000); 483 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 484 } while (freed > 10); 485 } 486 487 void drop_slab(void) 488 { 489 int nid; 490 491 for_each_online_node(nid) 492 drop_slab_node(nid); 493 } 494 495 static inline int is_page_cache_freeable(struct page *page) 496 { 497 /* 498 * A freeable page cache page is referenced only by the caller 499 * that isolated the page, the page cache radix tree and 500 * optional buffer heads at page->private. 501 */ 502 return page_count(page) - page_has_private(page) == 2; 503 } 504 505 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 506 { 507 if (current->flags & PF_SWAPWRITE) 508 return 1; 509 if (!inode_write_congested(inode)) 510 return 1; 511 if (inode_to_bdi(inode) == current->backing_dev_info) 512 return 1; 513 return 0; 514 } 515 516 /* 517 * We detected a synchronous write error writing a page out. Probably 518 * -ENOSPC. We need to propagate that into the address_space for a subsequent 519 * fsync(), msync() or close(). 520 * 521 * The tricky part is that after writepage we cannot touch the mapping: nothing 522 * prevents it from being freed up. But we have a ref on the page and once 523 * that page is locked, the mapping is pinned. 524 * 525 * We're allowed to run sleeping lock_page() here because we know the caller has 526 * __GFP_FS. 527 */ 528 static void handle_write_error(struct address_space *mapping, 529 struct page *page, int error) 530 { 531 lock_page(page); 532 if (page_mapping(page) == mapping) 533 mapping_set_error(mapping, error); 534 unlock_page(page); 535 } 536 537 /* possible outcome of pageout() */ 538 typedef enum { 539 /* failed to write page out, page is locked */ 540 PAGE_KEEP, 541 /* move page to the active list, page is locked */ 542 PAGE_ACTIVATE, 543 /* page has been sent to the disk successfully, page is unlocked */ 544 PAGE_SUCCESS, 545 /* page is clean and locked */ 546 PAGE_CLEAN, 547 } pageout_t; 548 549 /* 550 * pageout is called by shrink_page_list() for each dirty page. 551 * Calls ->writepage(). 552 */ 553 static pageout_t pageout(struct page *page, struct address_space *mapping, 554 struct scan_control *sc) 555 { 556 /* 557 * If the page is dirty, only perform writeback if that write 558 * will be non-blocking. To prevent this allocation from being 559 * stalled by pagecache activity. But note that there may be 560 * stalls if we need to run get_block(). We could test 561 * PagePrivate for that. 562 * 563 * If this process is currently in __generic_file_write_iter() against 564 * this page's queue, we can perform writeback even if that 565 * will block. 566 * 567 * If the page is swapcache, write it back even if that would 568 * block, for some throttling. This happens by accident, because 569 * swap_backing_dev_info is bust: it doesn't reflect the 570 * congestion state of the swapdevs. Easy to fix, if needed. 571 */ 572 if (!is_page_cache_freeable(page)) 573 return PAGE_KEEP; 574 if (!mapping) { 575 /* 576 * Some data journaling orphaned pages can have 577 * page->mapping == NULL while being dirty with clean buffers. 578 */ 579 if (page_has_private(page)) { 580 if (try_to_free_buffers(page)) { 581 ClearPageDirty(page); 582 pr_info("%s: orphaned page\n", __func__); 583 return PAGE_CLEAN; 584 } 585 } 586 return PAGE_KEEP; 587 } 588 if (mapping->a_ops->writepage == NULL) 589 return PAGE_ACTIVATE; 590 if (!may_write_to_inode(mapping->host, sc)) 591 return PAGE_KEEP; 592 593 if (clear_page_dirty_for_io(page)) { 594 int res; 595 struct writeback_control wbc = { 596 .sync_mode = WB_SYNC_NONE, 597 .nr_to_write = SWAP_CLUSTER_MAX, 598 .range_start = 0, 599 .range_end = LLONG_MAX, 600 .for_reclaim = 1, 601 }; 602 603 SetPageReclaim(page); 604 res = mapping->a_ops->writepage(page, &wbc); 605 if (res < 0) 606 handle_write_error(mapping, page, res); 607 if (res == AOP_WRITEPAGE_ACTIVATE) { 608 ClearPageReclaim(page); 609 return PAGE_ACTIVATE; 610 } 611 612 if (!PageWriteback(page)) { 613 /* synchronous write or broken a_ops? */ 614 ClearPageReclaim(page); 615 } 616 trace_mm_vmscan_writepage(page); 617 inc_node_page_state(page, NR_VMSCAN_WRITE); 618 return PAGE_SUCCESS; 619 } 620 621 return PAGE_CLEAN; 622 } 623 624 /* 625 * Same as remove_mapping, but if the page is removed from the mapping, it 626 * gets returned with a refcount of 0. 627 */ 628 static int __remove_mapping(struct address_space *mapping, struct page *page, 629 bool reclaimed) 630 { 631 unsigned long flags; 632 633 BUG_ON(!PageLocked(page)); 634 BUG_ON(mapping != page_mapping(page)); 635 636 spin_lock_irqsave(&mapping->tree_lock, flags); 637 /* 638 * The non racy check for a busy page. 639 * 640 * Must be careful with the order of the tests. When someone has 641 * a ref to the page, it may be possible that they dirty it then 642 * drop the reference. So if PageDirty is tested before page_count 643 * here, then the following race may occur: 644 * 645 * get_user_pages(&page); 646 * [user mapping goes away] 647 * write_to(page); 648 * !PageDirty(page) [good] 649 * SetPageDirty(page); 650 * put_page(page); 651 * !page_count(page) [good, discard it] 652 * 653 * [oops, our write_to data is lost] 654 * 655 * Reversing the order of the tests ensures such a situation cannot 656 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 657 * load is not satisfied before that of page->_refcount. 658 * 659 * Note that if SetPageDirty is always performed via set_page_dirty, 660 * and thus under tree_lock, then this ordering is not required. 661 */ 662 if (!page_ref_freeze(page, 2)) 663 goto cannot_free; 664 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 665 if (unlikely(PageDirty(page))) { 666 page_ref_unfreeze(page, 2); 667 goto cannot_free; 668 } 669 670 if (PageSwapCache(page)) { 671 swp_entry_t swap = { .val = page_private(page) }; 672 mem_cgroup_swapout(page, swap); 673 __delete_from_swap_cache(page); 674 spin_unlock_irqrestore(&mapping->tree_lock, flags); 675 swapcache_free(swap); 676 } else { 677 void (*freepage)(struct page *); 678 void *shadow = NULL; 679 680 freepage = mapping->a_ops->freepage; 681 /* 682 * Remember a shadow entry for reclaimed file cache in 683 * order to detect refaults, thus thrashing, later on. 684 * 685 * But don't store shadows in an address space that is 686 * already exiting. This is not just an optizimation, 687 * inode reclaim needs to empty out the radix tree or 688 * the nodes are lost. Don't plant shadows behind its 689 * back. 690 * 691 * We also don't store shadows for DAX mappings because the 692 * only page cache pages found in these are zero pages 693 * covering holes, and because we don't want to mix DAX 694 * exceptional entries and shadow exceptional entries in the 695 * same page_tree. 696 */ 697 if (reclaimed && page_is_file_cache(page) && 698 !mapping_exiting(mapping) && !dax_mapping(mapping)) 699 shadow = workingset_eviction(mapping, page); 700 __delete_from_page_cache(page, shadow); 701 spin_unlock_irqrestore(&mapping->tree_lock, flags); 702 703 if (freepage != NULL) 704 freepage(page); 705 } 706 707 return 1; 708 709 cannot_free: 710 spin_unlock_irqrestore(&mapping->tree_lock, flags); 711 return 0; 712 } 713 714 /* 715 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 716 * someone else has a ref on the page, abort and return 0. If it was 717 * successfully detached, return 1. Assumes the caller has a single ref on 718 * this page. 719 */ 720 int remove_mapping(struct address_space *mapping, struct page *page) 721 { 722 if (__remove_mapping(mapping, page, false)) { 723 /* 724 * Unfreezing the refcount with 1 rather than 2 effectively 725 * drops the pagecache ref for us without requiring another 726 * atomic operation. 727 */ 728 page_ref_unfreeze(page, 1); 729 return 1; 730 } 731 return 0; 732 } 733 734 /** 735 * putback_lru_page - put previously isolated page onto appropriate LRU list 736 * @page: page to be put back to appropriate lru list 737 * 738 * Add previously isolated @page to appropriate LRU list. 739 * Page may still be unevictable for other reasons. 740 * 741 * lru_lock must not be held, interrupts must be enabled. 742 */ 743 void putback_lru_page(struct page *page) 744 { 745 bool is_unevictable; 746 int was_unevictable = PageUnevictable(page); 747 748 VM_BUG_ON_PAGE(PageLRU(page), page); 749 750 redo: 751 ClearPageUnevictable(page); 752 753 if (page_evictable(page)) { 754 /* 755 * For evictable pages, we can use the cache. 756 * In event of a race, worst case is we end up with an 757 * unevictable page on [in]active list. 758 * We know how to handle that. 759 */ 760 is_unevictable = false; 761 lru_cache_add(page); 762 } else { 763 /* 764 * Put unevictable pages directly on zone's unevictable 765 * list. 766 */ 767 is_unevictable = true; 768 add_page_to_unevictable_list(page); 769 /* 770 * When racing with an mlock or AS_UNEVICTABLE clearing 771 * (page is unlocked) make sure that if the other thread 772 * does not observe our setting of PG_lru and fails 773 * isolation/check_move_unevictable_pages, 774 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 775 * the page back to the evictable list. 776 * 777 * The other side is TestClearPageMlocked() or shmem_lock(). 778 */ 779 smp_mb(); 780 } 781 782 /* 783 * page's status can change while we move it among lru. If an evictable 784 * page is on unevictable list, it never be freed. To avoid that, 785 * check after we added it to the list, again. 786 */ 787 if (is_unevictable && page_evictable(page)) { 788 if (!isolate_lru_page(page)) { 789 put_page(page); 790 goto redo; 791 } 792 /* This means someone else dropped this page from LRU 793 * So, it will be freed or putback to LRU again. There is 794 * nothing to do here. 795 */ 796 } 797 798 if (was_unevictable && !is_unevictable) 799 count_vm_event(UNEVICTABLE_PGRESCUED); 800 else if (!was_unevictable && is_unevictable) 801 count_vm_event(UNEVICTABLE_PGCULLED); 802 803 put_page(page); /* drop ref from isolate */ 804 } 805 806 enum page_references { 807 PAGEREF_RECLAIM, 808 PAGEREF_RECLAIM_CLEAN, 809 PAGEREF_KEEP, 810 PAGEREF_ACTIVATE, 811 }; 812 813 static enum page_references page_check_references(struct page *page, 814 struct scan_control *sc) 815 { 816 int referenced_ptes, referenced_page; 817 unsigned long vm_flags; 818 819 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 820 &vm_flags); 821 referenced_page = TestClearPageReferenced(page); 822 823 /* 824 * Mlock lost the isolation race with us. Let try_to_unmap() 825 * move the page to the unevictable list. 826 */ 827 if (vm_flags & VM_LOCKED) 828 return PAGEREF_RECLAIM; 829 830 if (referenced_ptes) { 831 if (PageSwapBacked(page)) 832 return PAGEREF_ACTIVATE; 833 /* 834 * All mapped pages start out with page table 835 * references from the instantiating fault, so we need 836 * to look twice if a mapped file page is used more 837 * than once. 838 * 839 * Mark it and spare it for another trip around the 840 * inactive list. Another page table reference will 841 * lead to its activation. 842 * 843 * Note: the mark is set for activated pages as well 844 * so that recently deactivated but used pages are 845 * quickly recovered. 846 */ 847 SetPageReferenced(page); 848 849 if (referenced_page || referenced_ptes > 1) 850 return PAGEREF_ACTIVATE; 851 852 /* 853 * Activate file-backed executable pages after first usage. 854 */ 855 if (vm_flags & VM_EXEC) 856 return PAGEREF_ACTIVATE; 857 858 return PAGEREF_KEEP; 859 } 860 861 /* Reclaim if clean, defer dirty pages to writeback */ 862 if (referenced_page && !PageSwapBacked(page)) 863 return PAGEREF_RECLAIM_CLEAN; 864 865 return PAGEREF_RECLAIM; 866 } 867 868 /* Check if a page is dirty or under writeback */ 869 static void page_check_dirty_writeback(struct page *page, 870 bool *dirty, bool *writeback) 871 { 872 struct address_space *mapping; 873 874 /* 875 * Anonymous pages are not handled by flushers and must be written 876 * from reclaim context. Do not stall reclaim based on them 877 */ 878 if (!page_is_file_cache(page)) { 879 *dirty = false; 880 *writeback = false; 881 return; 882 } 883 884 /* By default assume that the page flags are accurate */ 885 *dirty = PageDirty(page); 886 *writeback = PageWriteback(page); 887 888 /* Verify dirty/writeback state if the filesystem supports it */ 889 if (!page_has_private(page)) 890 return; 891 892 mapping = page_mapping(page); 893 if (mapping && mapping->a_ops->is_dirty_writeback) 894 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 895 } 896 897 /* 898 * shrink_page_list() returns the number of reclaimed pages 899 */ 900 static unsigned long shrink_page_list(struct list_head *page_list, 901 struct pglist_data *pgdat, 902 struct scan_control *sc, 903 enum ttu_flags ttu_flags, 904 unsigned long *ret_nr_dirty, 905 unsigned long *ret_nr_unqueued_dirty, 906 unsigned long *ret_nr_congested, 907 unsigned long *ret_nr_writeback, 908 unsigned long *ret_nr_immediate, 909 bool force_reclaim) 910 { 911 LIST_HEAD(ret_pages); 912 LIST_HEAD(free_pages); 913 int pgactivate = 0; 914 unsigned long nr_unqueued_dirty = 0; 915 unsigned long nr_dirty = 0; 916 unsigned long nr_congested = 0; 917 unsigned long nr_reclaimed = 0; 918 unsigned long nr_writeback = 0; 919 unsigned long nr_immediate = 0; 920 921 cond_resched(); 922 923 while (!list_empty(page_list)) { 924 struct address_space *mapping; 925 struct page *page; 926 int may_enter_fs; 927 enum page_references references = PAGEREF_RECLAIM_CLEAN; 928 bool dirty, writeback; 929 bool lazyfree = false; 930 int ret = SWAP_SUCCESS; 931 932 cond_resched(); 933 934 page = lru_to_page(page_list); 935 list_del(&page->lru); 936 937 if (!trylock_page(page)) 938 goto keep; 939 940 VM_BUG_ON_PAGE(PageActive(page), page); 941 942 sc->nr_scanned++; 943 944 if (unlikely(!page_evictable(page))) 945 goto cull_mlocked; 946 947 if (!sc->may_unmap && page_mapped(page)) 948 goto keep_locked; 949 950 /* Double the slab pressure for mapped and swapcache pages */ 951 if (page_mapped(page) || PageSwapCache(page)) 952 sc->nr_scanned++; 953 954 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 955 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 956 957 /* 958 * The number of dirty pages determines if a zone is marked 959 * reclaim_congested which affects wait_iff_congested. kswapd 960 * will stall and start writing pages if the tail of the LRU 961 * is all dirty unqueued pages. 962 */ 963 page_check_dirty_writeback(page, &dirty, &writeback); 964 if (dirty || writeback) 965 nr_dirty++; 966 967 if (dirty && !writeback) 968 nr_unqueued_dirty++; 969 970 /* 971 * Treat this page as congested if the underlying BDI is or if 972 * pages are cycling through the LRU so quickly that the 973 * pages marked for immediate reclaim are making it to the 974 * end of the LRU a second time. 975 */ 976 mapping = page_mapping(page); 977 if (((dirty || writeback) && mapping && 978 inode_write_congested(mapping->host)) || 979 (writeback && PageReclaim(page))) 980 nr_congested++; 981 982 /* 983 * If a page at the tail of the LRU is under writeback, there 984 * are three cases to consider. 985 * 986 * 1) If reclaim is encountering an excessive number of pages 987 * under writeback and this page is both under writeback and 988 * PageReclaim then it indicates that pages are being queued 989 * for IO but are being recycled through the LRU before the 990 * IO can complete. Waiting on the page itself risks an 991 * indefinite stall if it is impossible to writeback the 992 * page due to IO error or disconnected storage so instead 993 * note that the LRU is being scanned too quickly and the 994 * caller can stall after page list has been processed. 995 * 996 * 2) Global or new memcg reclaim encounters a page that is 997 * not marked for immediate reclaim, or the caller does not 998 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 999 * not to fs). In this case mark the page for immediate 1000 * reclaim and continue scanning. 1001 * 1002 * Require may_enter_fs because we would wait on fs, which 1003 * may not have submitted IO yet. And the loop driver might 1004 * enter reclaim, and deadlock if it waits on a page for 1005 * which it is needed to do the write (loop masks off 1006 * __GFP_IO|__GFP_FS for this reason); but more thought 1007 * would probably show more reasons. 1008 * 1009 * 3) Legacy memcg encounters a page that is already marked 1010 * PageReclaim. memcg does not have any dirty pages 1011 * throttling so we could easily OOM just because too many 1012 * pages are in writeback and there is nothing else to 1013 * reclaim. Wait for the writeback to complete. 1014 */ 1015 if (PageWriteback(page)) { 1016 /* Case 1 above */ 1017 if (current_is_kswapd() && 1018 PageReclaim(page) && 1019 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1020 nr_immediate++; 1021 goto keep_locked; 1022 1023 /* Case 2 above */ 1024 } else if (sane_reclaim(sc) || 1025 !PageReclaim(page) || !may_enter_fs) { 1026 /* 1027 * This is slightly racy - end_page_writeback() 1028 * might have just cleared PageReclaim, then 1029 * setting PageReclaim here end up interpreted 1030 * as PageReadahead - but that does not matter 1031 * enough to care. What we do want is for this 1032 * page to have PageReclaim set next time memcg 1033 * reclaim reaches the tests above, so it will 1034 * then wait_on_page_writeback() to avoid OOM; 1035 * and it's also appropriate in global reclaim. 1036 */ 1037 SetPageReclaim(page); 1038 nr_writeback++; 1039 goto keep_locked; 1040 1041 /* Case 3 above */ 1042 } else { 1043 unlock_page(page); 1044 wait_on_page_writeback(page); 1045 /* then go back and try same page again */ 1046 list_add_tail(&page->lru, page_list); 1047 continue; 1048 } 1049 } 1050 1051 if (!force_reclaim) 1052 references = page_check_references(page, sc); 1053 1054 switch (references) { 1055 case PAGEREF_ACTIVATE: 1056 goto activate_locked; 1057 case PAGEREF_KEEP: 1058 goto keep_locked; 1059 case PAGEREF_RECLAIM: 1060 case PAGEREF_RECLAIM_CLEAN: 1061 ; /* try to reclaim the page below */ 1062 } 1063 1064 /* 1065 * Anonymous process memory has backing store? 1066 * Try to allocate it some swap space here. 1067 */ 1068 if (PageAnon(page) && !PageSwapCache(page)) { 1069 if (!(sc->gfp_mask & __GFP_IO)) 1070 goto keep_locked; 1071 if (!add_to_swap(page, page_list)) 1072 goto activate_locked; 1073 lazyfree = true; 1074 may_enter_fs = 1; 1075 1076 /* Adding to swap updated mapping */ 1077 mapping = page_mapping(page); 1078 } else if (unlikely(PageTransHuge(page))) { 1079 /* Split file THP */ 1080 if (split_huge_page_to_list(page, page_list)) 1081 goto keep_locked; 1082 } 1083 1084 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1085 1086 /* 1087 * The page is mapped into the page tables of one or more 1088 * processes. Try to unmap it here. 1089 */ 1090 if (page_mapped(page) && mapping) { 1091 switch (ret = try_to_unmap(page, lazyfree ? 1092 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1093 (ttu_flags | TTU_BATCH_FLUSH))) { 1094 case SWAP_FAIL: 1095 goto activate_locked; 1096 case SWAP_AGAIN: 1097 goto keep_locked; 1098 case SWAP_MLOCK: 1099 goto cull_mlocked; 1100 case SWAP_LZFREE: 1101 goto lazyfree; 1102 case SWAP_SUCCESS: 1103 ; /* try to free the page below */ 1104 } 1105 } 1106 1107 if (PageDirty(page)) { 1108 /* 1109 * Only kswapd can writeback filesystem pages to 1110 * avoid risk of stack overflow but only writeback 1111 * if many dirty pages have been encountered. 1112 */ 1113 if (page_is_file_cache(page) && 1114 (!current_is_kswapd() || 1115 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1116 /* 1117 * Immediately reclaim when written back. 1118 * Similar in principal to deactivate_page() 1119 * except we already have the page isolated 1120 * and know it's dirty 1121 */ 1122 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1123 SetPageReclaim(page); 1124 1125 goto keep_locked; 1126 } 1127 1128 if (references == PAGEREF_RECLAIM_CLEAN) 1129 goto keep_locked; 1130 if (!may_enter_fs) 1131 goto keep_locked; 1132 if (!sc->may_writepage) 1133 goto keep_locked; 1134 1135 /* 1136 * Page is dirty. Flush the TLB if a writable entry 1137 * potentially exists to avoid CPU writes after IO 1138 * starts and then write it out here. 1139 */ 1140 try_to_unmap_flush_dirty(); 1141 switch (pageout(page, mapping, sc)) { 1142 case PAGE_KEEP: 1143 goto keep_locked; 1144 case PAGE_ACTIVATE: 1145 goto activate_locked; 1146 case PAGE_SUCCESS: 1147 if (PageWriteback(page)) 1148 goto keep; 1149 if (PageDirty(page)) 1150 goto keep; 1151 1152 /* 1153 * A synchronous write - probably a ramdisk. Go 1154 * ahead and try to reclaim the page. 1155 */ 1156 if (!trylock_page(page)) 1157 goto keep; 1158 if (PageDirty(page) || PageWriteback(page)) 1159 goto keep_locked; 1160 mapping = page_mapping(page); 1161 case PAGE_CLEAN: 1162 ; /* try to free the page below */ 1163 } 1164 } 1165 1166 /* 1167 * If the page has buffers, try to free the buffer mappings 1168 * associated with this page. If we succeed we try to free 1169 * the page as well. 1170 * 1171 * We do this even if the page is PageDirty(). 1172 * try_to_release_page() does not perform I/O, but it is 1173 * possible for a page to have PageDirty set, but it is actually 1174 * clean (all its buffers are clean). This happens if the 1175 * buffers were written out directly, with submit_bh(). ext3 1176 * will do this, as well as the blockdev mapping. 1177 * try_to_release_page() will discover that cleanness and will 1178 * drop the buffers and mark the page clean - it can be freed. 1179 * 1180 * Rarely, pages can have buffers and no ->mapping. These are 1181 * the pages which were not successfully invalidated in 1182 * truncate_complete_page(). We try to drop those buffers here 1183 * and if that worked, and the page is no longer mapped into 1184 * process address space (page_count == 1) it can be freed. 1185 * Otherwise, leave the page on the LRU so it is swappable. 1186 */ 1187 if (page_has_private(page)) { 1188 if (!try_to_release_page(page, sc->gfp_mask)) 1189 goto activate_locked; 1190 if (!mapping && page_count(page) == 1) { 1191 unlock_page(page); 1192 if (put_page_testzero(page)) 1193 goto free_it; 1194 else { 1195 /* 1196 * rare race with speculative reference. 1197 * the speculative reference will free 1198 * this page shortly, so we may 1199 * increment nr_reclaimed here (and 1200 * leave it off the LRU). 1201 */ 1202 nr_reclaimed++; 1203 continue; 1204 } 1205 } 1206 } 1207 1208 lazyfree: 1209 if (!mapping || !__remove_mapping(mapping, page, true)) 1210 goto keep_locked; 1211 1212 /* 1213 * At this point, we have no other references and there is 1214 * no way to pick any more up (removed from LRU, removed 1215 * from pagecache). Can use non-atomic bitops now (and 1216 * we obviously don't have to worry about waking up a process 1217 * waiting on the page lock, because there are no references. 1218 */ 1219 __ClearPageLocked(page); 1220 free_it: 1221 if (ret == SWAP_LZFREE) 1222 count_vm_event(PGLAZYFREED); 1223 1224 nr_reclaimed++; 1225 1226 /* 1227 * Is there need to periodically free_page_list? It would 1228 * appear not as the counts should be low 1229 */ 1230 list_add(&page->lru, &free_pages); 1231 continue; 1232 1233 cull_mlocked: 1234 if (PageSwapCache(page)) 1235 try_to_free_swap(page); 1236 unlock_page(page); 1237 list_add(&page->lru, &ret_pages); 1238 continue; 1239 1240 activate_locked: 1241 /* Not a candidate for swapping, so reclaim swap space. */ 1242 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1243 try_to_free_swap(page); 1244 VM_BUG_ON_PAGE(PageActive(page), page); 1245 SetPageActive(page); 1246 pgactivate++; 1247 keep_locked: 1248 unlock_page(page); 1249 keep: 1250 list_add(&page->lru, &ret_pages); 1251 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1252 } 1253 1254 mem_cgroup_uncharge_list(&free_pages); 1255 try_to_unmap_flush(); 1256 free_hot_cold_page_list(&free_pages, true); 1257 1258 list_splice(&ret_pages, page_list); 1259 count_vm_events(PGACTIVATE, pgactivate); 1260 1261 *ret_nr_dirty += nr_dirty; 1262 *ret_nr_congested += nr_congested; 1263 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1264 *ret_nr_writeback += nr_writeback; 1265 *ret_nr_immediate += nr_immediate; 1266 return nr_reclaimed; 1267 } 1268 1269 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1270 struct list_head *page_list) 1271 { 1272 struct scan_control sc = { 1273 .gfp_mask = GFP_KERNEL, 1274 .priority = DEF_PRIORITY, 1275 .may_unmap = 1, 1276 }; 1277 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1278 struct page *page, *next; 1279 LIST_HEAD(clean_pages); 1280 1281 list_for_each_entry_safe(page, next, page_list, lru) { 1282 if (page_is_file_cache(page) && !PageDirty(page) && 1283 !__PageMovable(page)) { 1284 ClearPageActive(page); 1285 list_move(&page->lru, &clean_pages); 1286 } 1287 } 1288 1289 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1290 TTU_UNMAP|TTU_IGNORE_ACCESS, 1291 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1292 list_splice(&clean_pages, page_list); 1293 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1294 return ret; 1295 } 1296 1297 /* 1298 * Attempt to remove the specified page from its LRU. Only take this page 1299 * if it is of the appropriate PageActive status. Pages which are being 1300 * freed elsewhere are also ignored. 1301 * 1302 * page: page to consider 1303 * mode: one of the LRU isolation modes defined above 1304 * 1305 * returns 0 on success, -ve errno on failure. 1306 */ 1307 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1308 { 1309 int ret = -EINVAL; 1310 1311 /* Only take pages on the LRU. */ 1312 if (!PageLRU(page)) 1313 return ret; 1314 1315 /* Compaction should not handle unevictable pages but CMA can do so */ 1316 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1317 return ret; 1318 1319 ret = -EBUSY; 1320 1321 /* 1322 * To minimise LRU disruption, the caller can indicate that it only 1323 * wants to isolate pages it will be able to operate on without 1324 * blocking - clean pages for the most part. 1325 * 1326 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1327 * is used by reclaim when it is cannot write to backing storage 1328 * 1329 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1330 * that it is possible to migrate without blocking 1331 */ 1332 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1333 /* All the caller can do on PageWriteback is block */ 1334 if (PageWriteback(page)) 1335 return ret; 1336 1337 if (PageDirty(page)) { 1338 struct address_space *mapping; 1339 1340 /* ISOLATE_CLEAN means only clean pages */ 1341 if (mode & ISOLATE_CLEAN) 1342 return ret; 1343 1344 /* 1345 * Only pages without mappings or that have a 1346 * ->migratepage callback are possible to migrate 1347 * without blocking 1348 */ 1349 mapping = page_mapping(page); 1350 if (mapping && !mapping->a_ops->migratepage) 1351 return ret; 1352 } 1353 } 1354 1355 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1356 return ret; 1357 1358 if (likely(get_page_unless_zero(page))) { 1359 /* 1360 * Be careful not to clear PageLRU until after we're 1361 * sure the page is not being freed elsewhere -- the 1362 * page release code relies on it. 1363 */ 1364 ClearPageLRU(page); 1365 ret = 0; 1366 } 1367 1368 return ret; 1369 } 1370 1371 1372 /* 1373 * Update LRU sizes after isolating pages. The LRU size updates must 1374 * be complete before mem_cgroup_update_lru_size due to a santity check. 1375 */ 1376 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1377 enum lru_list lru, unsigned long *nr_zone_taken, 1378 unsigned long nr_taken) 1379 { 1380 int zid; 1381 1382 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1383 if (!nr_zone_taken[zid]) 1384 continue; 1385 1386 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1387 } 1388 1389 #ifdef CONFIG_MEMCG 1390 mem_cgroup_update_lru_size(lruvec, lru, -nr_taken); 1391 #endif 1392 } 1393 1394 /* 1395 * zone_lru_lock is heavily contended. Some of the functions that 1396 * shrink the lists perform better by taking out a batch of pages 1397 * and working on them outside the LRU lock. 1398 * 1399 * For pagecache intensive workloads, this function is the hottest 1400 * spot in the kernel (apart from copy_*_user functions). 1401 * 1402 * Appropriate locks must be held before calling this function. 1403 * 1404 * @nr_to_scan: The number of pages to look through on the list. 1405 * @lruvec: The LRU vector to pull pages from. 1406 * @dst: The temp list to put pages on to. 1407 * @nr_scanned: The number of pages that were scanned. 1408 * @sc: The scan_control struct for this reclaim session 1409 * @mode: One of the LRU isolation modes 1410 * @lru: LRU list id for isolating 1411 * 1412 * returns how many pages were moved onto *@dst. 1413 */ 1414 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1415 struct lruvec *lruvec, struct list_head *dst, 1416 unsigned long *nr_scanned, struct scan_control *sc, 1417 isolate_mode_t mode, enum lru_list lru) 1418 { 1419 struct list_head *src = &lruvec->lists[lru]; 1420 unsigned long nr_taken = 0; 1421 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1422 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1423 unsigned long scan, nr_pages; 1424 LIST_HEAD(pages_skipped); 1425 1426 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1427 !list_empty(src);) { 1428 struct page *page; 1429 1430 page = lru_to_page(src); 1431 prefetchw_prev_lru_page(page, src, flags); 1432 1433 VM_BUG_ON_PAGE(!PageLRU(page), page); 1434 1435 if (page_zonenum(page) > sc->reclaim_idx) { 1436 list_move(&page->lru, &pages_skipped); 1437 nr_skipped[page_zonenum(page)]++; 1438 continue; 1439 } 1440 1441 /* 1442 * Account for scanned and skipped separetly to avoid the pgdat 1443 * being prematurely marked unreclaimable by pgdat_reclaimable. 1444 */ 1445 scan++; 1446 1447 switch (__isolate_lru_page(page, mode)) { 1448 case 0: 1449 nr_pages = hpage_nr_pages(page); 1450 nr_taken += nr_pages; 1451 nr_zone_taken[page_zonenum(page)] += nr_pages; 1452 list_move(&page->lru, dst); 1453 break; 1454 1455 case -EBUSY: 1456 /* else it is being freed elsewhere */ 1457 list_move(&page->lru, src); 1458 continue; 1459 1460 default: 1461 BUG(); 1462 } 1463 } 1464 1465 /* 1466 * Splice any skipped pages to the start of the LRU list. Note that 1467 * this disrupts the LRU order when reclaiming for lower zones but 1468 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1469 * scanning would soon rescan the same pages to skip and put the 1470 * system at risk of premature OOM. 1471 */ 1472 if (!list_empty(&pages_skipped)) { 1473 int zid; 1474 unsigned long total_skipped = 0; 1475 1476 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1477 if (!nr_skipped[zid]) 1478 continue; 1479 1480 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1481 total_skipped += nr_skipped[zid]; 1482 } 1483 1484 /* 1485 * Account skipped pages as a partial scan as the pgdat may be 1486 * close to unreclaimable. If the LRU list is empty, account 1487 * skipped pages as a full scan. 1488 */ 1489 scan += list_empty(src) ? total_skipped : total_skipped >> 2; 1490 1491 list_splice(&pages_skipped, src); 1492 } 1493 *nr_scanned = scan; 1494 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan, 1495 nr_taken, mode, is_file_lru(lru)); 1496 update_lru_sizes(lruvec, lru, nr_zone_taken, nr_taken); 1497 return nr_taken; 1498 } 1499 1500 /** 1501 * isolate_lru_page - tries to isolate a page from its LRU list 1502 * @page: page to isolate from its LRU list 1503 * 1504 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1505 * vmstat statistic corresponding to whatever LRU list the page was on. 1506 * 1507 * Returns 0 if the page was removed from an LRU list. 1508 * Returns -EBUSY if the page was not on an LRU list. 1509 * 1510 * The returned page will have PageLRU() cleared. If it was found on 1511 * the active list, it will have PageActive set. If it was found on 1512 * the unevictable list, it will have the PageUnevictable bit set. That flag 1513 * may need to be cleared by the caller before letting the page go. 1514 * 1515 * The vmstat statistic corresponding to the list on which the page was 1516 * found will be decremented. 1517 * 1518 * Restrictions: 1519 * (1) Must be called with an elevated refcount on the page. This is a 1520 * fundamentnal difference from isolate_lru_pages (which is called 1521 * without a stable reference). 1522 * (2) the lru_lock must not be held. 1523 * (3) interrupts must be enabled. 1524 */ 1525 int isolate_lru_page(struct page *page) 1526 { 1527 int ret = -EBUSY; 1528 1529 VM_BUG_ON_PAGE(!page_count(page), page); 1530 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1531 1532 if (PageLRU(page)) { 1533 struct zone *zone = page_zone(page); 1534 struct lruvec *lruvec; 1535 1536 spin_lock_irq(zone_lru_lock(zone)); 1537 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1538 if (PageLRU(page)) { 1539 int lru = page_lru(page); 1540 get_page(page); 1541 ClearPageLRU(page); 1542 del_page_from_lru_list(page, lruvec, lru); 1543 ret = 0; 1544 } 1545 spin_unlock_irq(zone_lru_lock(zone)); 1546 } 1547 return ret; 1548 } 1549 1550 /* 1551 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1552 * then get resheduled. When there are massive number of tasks doing page 1553 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1554 * the LRU list will go small and be scanned faster than necessary, leading to 1555 * unnecessary swapping, thrashing and OOM. 1556 */ 1557 static int too_many_isolated(struct pglist_data *pgdat, int file, 1558 struct scan_control *sc) 1559 { 1560 unsigned long inactive, isolated; 1561 1562 if (current_is_kswapd()) 1563 return 0; 1564 1565 if (!sane_reclaim(sc)) 1566 return 0; 1567 1568 if (file) { 1569 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1570 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1571 } else { 1572 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1573 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1574 } 1575 1576 /* 1577 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1578 * won't get blocked by normal direct-reclaimers, forming a circular 1579 * deadlock. 1580 */ 1581 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1582 inactive >>= 3; 1583 1584 return isolated > inactive; 1585 } 1586 1587 static noinline_for_stack void 1588 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1589 { 1590 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1591 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1592 LIST_HEAD(pages_to_free); 1593 1594 /* 1595 * Put back any unfreeable pages. 1596 */ 1597 while (!list_empty(page_list)) { 1598 struct page *page = lru_to_page(page_list); 1599 int lru; 1600 1601 VM_BUG_ON_PAGE(PageLRU(page), page); 1602 list_del(&page->lru); 1603 if (unlikely(!page_evictable(page))) { 1604 spin_unlock_irq(&pgdat->lru_lock); 1605 putback_lru_page(page); 1606 spin_lock_irq(&pgdat->lru_lock); 1607 continue; 1608 } 1609 1610 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1611 1612 SetPageLRU(page); 1613 lru = page_lru(page); 1614 add_page_to_lru_list(page, lruvec, lru); 1615 1616 if (is_active_lru(lru)) { 1617 int file = is_file_lru(lru); 1618 int numpages = hpage_nr_pages(page); 1619 reclaim_stat->recent_rotated[file] += numpages; 1620 } 1621 if (put_page_testzero(page)) { 1622 __ClearPageLRU(page); 1623 __ClearPageActive(page); 1624 del_page_from_lru_list(page, lruvec, lru); 1625 1626 if (unlikely(PageCompound(page))) { 1627 spin_unlock_irq(&pgdat->lru_lock); 1628 mem_cgroup_uncharge(page); 1629 (*get_compound_page_dtor(page))(page); 1630 spin_lock_irq(&pgdat->lru_lock); 1631 } else 1632 list_add(&page->lru, &pages_to_free); 1633 } 1634 } 1635 1636 /* 1637 * To save our caller's stack, now use input list for pages to free. 1638 */ 1639 list_splice(&pages_to_free, page_list); 1640 } 1641 1642 /* 1643 * If a kernel thread (such as nfsd for loop-back mounts) services 1644 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1645 * In that case we should only throttle if the backing device it is 1646 * writing to is congested. In other cases it is safe to throttle. 1647 */ 1648 static int current_may_throttle(void) 1649 { 1650 return !(current->flags & PF_LESS_THROTTLE) || 1651 current->backing_dev_info == NULL || 1652 bdi_write_congested(current->backing_dev_info); 1653 } 1654 1655 static bool inactive_reclaimable_pages(struct lruvec *lruvec, 1656 struct scan_control *sc, enum lru_list lru) 1657 { 1658 int zid; 1659 struct zone *zone; 1660 int file = is_file_lru(lru); 1661 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1662 1663 if (!global_reclaim(sc)) 1664 return true; 1665 1666 for (zid = sc->reclaim_idx; zid >= 0; zid--) { 1667 zone = &pgdat->node_zones[zid]; 1668 if (!managed_zone(zone)) 1669 continue; 1670 1671 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE + 1672 LRU_FILE * file) >= SWAP_CLUSTER_MAX) 1673 return true; 1674 } 1675 1676 return false; 1677 } 1678 1679 /* 1680 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1681 * of reclaimed pages 1682 */ 1683 static noinline_for_stack unsigned long 1684 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1685 struct scan_control *sc, enum lru_list lru) 1686 { 1687 LIST_HEAD(page_list); 1688 unsigned long nr_scanned; 1689 unsigned long nr_reclaimed = 0; 1690 unsigned long nr_taken; 1691 unsigned long nr_dirty = 0; 1692 unsigned long nr_congested = 0; 1693 unsigned long nr_unqueued_dirty = 0; 1694 unsigned long nr_writeback = 0; 1695 unsigned long nr_immediate = 0; 1696 isolate_mode_t isolate_mode = 0; 1697 int file = is_file_lru(lru); 1698 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1699 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1700 1701 if (!inactive_reclaimable_pages(lruvec, sc, lru)) 1702 return 0; 1703 1704 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1705 congestion_wait(BLK_RW_ASYNC, HZ/10); 1706 1707 /* We are about to die and free our memory. Return now. */ 1708 if (fatal_signal_pending(current)) 1709 return SWAP_CLUSTER_MAX; 1710 } 1711 1712 lru_add_drain(); 1713 1714 if (!sc->may_unmap) 1715 isolate_mode |= ISOLATE_UNMAPPED; 1716 if (!sc->may_writepage) 1717 isolate_mode |= ISOLATE_CLEAN; 1718 1719 spin_lock_irq(&pgdat->lru_lock); 1720 1721 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1722 &nr_scanned, sc, isolate_mode, lru); 1723 1724 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1725 reclaim_stat->recent_scanned[file] += nr_taken; 1726 1727 if (global_reclaim(sc)) { 1728 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1729 if (current_is_kswapd()) 1730 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1731 else 1732 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1733 } 1734 spin_unlock_irq(&pgdat->lru_lock); 1735 1736 if (nr_taken == 0) 1737 return 0; 1738 1739 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, 1740 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1741 &nr_writeback, &nr_immediate, 1742 false); 1743 1744 spin_lock_irq(&pgdat->lru_lock); 1745 1746 if (global_reclaim(sc)) { 1747 if (current_is_kswapd()) 1748 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1749 else 1750 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1751 } 1752 1753 putback_inactive_pages(lruvec, &page_list); 1754 1755 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1756 1757 spin_unlock_irq(&pgdat->lru_lock); 1758 1759 mem_cgroup_uncharge_list(&page_list); 1760 free_hot_cold_page_list(&page_list, true); 1761 1762 /* 1763 * If reclaim is isolating dirty pages under writeback, it implies 1764 * that the long-lived page allocation rate is exceeding the page 1765 * laundering rate. Either the global limits are not being effective 1766 * at throttling processes due to the page distribution throughout 1767 * zones or there is heavy usage of a slow backing device. The 1768 * only option is to throttle from reclaim context which is not ideal 1769 * as there is no guarantee the dirtying process is throttled in the 1770 * same way balance_dirty_pages() manages. 1771 * 1772 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1773 * of pages under pages flagged for immediate reclaim and stall if any 1774 * are encountered in the nr_immediate check below. 1775 */ 1776 if (nr_writeback && nr_writeback == nr_taken) 1777 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1778 1779 /* 1780 * Legacy memcg will stall in page writeback so avoid forcibly 1781 * stalling here. 1782 */ 1783 if (sane_reclaim(sc)) { 1784 /* 1785 * Tag a zone as congested if all the dirty pages scanned were 1786 * backed by a congested BDI and wait_iff_congested will stall. 1787 */ 1788 if (nr_dirty && nr_dirty == nr_congested) 1789 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1790 1791 /* 1792 * If dirty pages are scanned that are not queued for IO, it 1793 * implies that flushers are not keeping up. In this case, flag 1794 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from 1795 * reclaim context. 1796 */ 1797 if (nr_unqueued_dirty == nr_taken) 1798 set_bit(PGDAT_DIRTY, &pgdat->flags); 1799 1800 /* 1801 * If kswapd scans pages marked marked for immediate 1802 * reclaim and under writeback (nr_immediate), it implies 1803 * that pages are cycling through the LRU faster than 1804 * they are written so also forcibly stall. 1805 */ 1806 if (nr_immediate && current_may_throttle()) 1807 congestion_wait(BLK_RW_ASYNC, HZ/10); 1808 } 1809 1810 /* 1811 * Stall direct reclaim for IO completions if underlying BDIs or zone 1812 * is congested. Allow kswapd to continue until it starts encountering 1813 * unqueued dirty pages or cycling through the LRU too quickly. 1814 */ 1815 if (!sc->hibernation_mode && !current_is_kswapd() && 1816 current_may_throttle()) 1817 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1818 1819 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1820 nr_scanned, nr_reclaimed, 1821 sc->priority, file); 1822 return nr_reclaimed; 1823 } 1824 1825 /* 1826 * This moves pages from the active list to the inactive list. 1827 * 1828 * We move them the other way if the page is referenced by one or more 1829 * processes, from rmap. 1830 * 1831 * If the pages are mostly unmapped, the processing is fast and it is 1832 * appropriate to hold zone_lru_lock across the whole operation. But if 1833 * the pages are mapped, the processing is slow (page_referenced()) so we 1834 * should drop zone_lru_lock around each page. It's impossible to balance 1835 * this, so instead we remove the pages from the LRU while processing them. 1836 * It is safe to rely on PG_active against the non-LRU pages in here because 1837 * nobody will play with that bit on a non-LRU page. 1838 * 1839 * The downside is that we have to touch page->_refcount against each page. 1840 * But we had to alter page->flags anyway. 1841 */ 1842 1843 static void move_active_pages_to_lru(struct lruvec *lruvec, 1844 struct list_head *list, 1845 struct list_head *pages_to_free, 1846 enum lru_list lru) 1847 { 1848 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1849 unsigned long pgmoved = 0; 1850 struct page *page; 1851 int nr_pages; 1852 1853 while (!list_empty(list)) { 1854 page = lru_to_page(list); 1855 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1856 1857 VM_BUG_ON_PAGE(PageLRU(page), page); 1858 SetPageLRU(page); 1859 1860 nr_pages = hpage_nr_pages(page); 1861 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1862 list_move(&page->lru, &lruvec->lists[lru]); 1863 pgmoved += nr_pages; 1864 1865 if (put_page_testzero(page)) { 1866 __ClearPageLRU(page); 1867 __ClearPageActive(page); 1868 del_page_from_lru_list(page, lruvec, lru); 1869 1870 if (unlikely(PageCompound(page))) { 1871 spin_unlock_irq(&pgdat->lru_lock); 1872 mem_cgroup_uncharge(page); 1873 (*get_compound_page_dtor(page))(page); 1874 spin_lock_irq(&pgdat->lru_lock); 1875 } else 1876 list_add(&page->lru, pages_to_free); 1877 } 1878 } 1879 1880 if (!is_active_lru(lru)) 1881 __count_vm_events(PGDEACTIVATE, pgmoved); 1882 } 1883 1884 static void shrink_active_list(unsigned long nr_to_scan, 1885 struct lruvec *lruvec, 1886 struct scan_control *sc, 1887 enum lru_list lru) 1888 { 1889 unsigned long nr_taken; 1890 unsigned long nr_scanned; 1891 unsigned long vm_flags; 1892 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1893 LIST_HEAD(l_active); 1894 LIST_HEAD(l_inactive); 1895 struct page *page; 1896 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1897 unsigned long nr_rotated = 0; 1898 isolate_mode_t isolate_mode = 0; 1899 int file = is_file_lru(lru); 1900 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1901 1902 lru_add_drain(); 1903 1904 if (!sc->may_unmap) 1905 isolate_mode |= ISOLATE_UNMAPPED; 1906 if (!sc->may_writepage) 1907 isolate_mode |= ISOLATE_CLEAN; 1908 1909 spin_lock_irq(&pgdat->lru_lock); 1910 1911 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1912 &nr_scanned, sc, isolate_mode, lru); 1913 1914 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1915 reclaim_stat->recent_scanned[file] += nr_taken; 1916 1917 if (global_reclaim(sc)) 1918 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1919 __count_vm_events(PGREFILL, nr_scanned); 1920 1921 spin_unlock_irq(&pgdat->lru_lock); 1922 1923 while (!list_empty(&l_hold)) { 1924 cond_resched(); 1925 page = lru_to_page(&l_hold); 1926 list_del(&page->lru); 1927 1928 if (unlikely(!page_evictable(page))) { 1929 putback_lru_page(page); 1930 continue; 1931 } 1932 1933 if (unlikely(buffer_heads_over_limit)) { 1934 if (page_has_private(page) && trylock_page(page)) { 1935 if (page_has_private(page)) 1936 try_to_release_page(page, 0); 1937 unlock_page(page); 1938 } 1939 } 1940 1941 if (page_referenced(page, 0, sc->target_mem_cgroup, 1942 &vm_flags)) { 1943 nr_rotated += hpage_nr_pages(page); 1944 /* 1945 * Identify referenced, file-backed active pages and 1946 * give them one more trip around the active list. So 1947 * that executable code get better chances to stay in 1948 * memory under moderate memory pressure. Anon pages 1949 * are not likely to be evicted by use-once streaming 1950 * IO, plus JVM can create lots of anon VM_EXEC pages, 1951 * so we ignore them here. 1952 */ 1953 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1954 list_add(&page->lru, &l_active); 1955 continue; 1956 } 1957 } 1958 1959 ClearPageActive(page); /* we are de-activating */ 1960 list_add(&page->lru, &l_inactive); 1961 } 1962 1963 /* 1964 * Move pages back to the lru list. 1965 */ 1966 spin_lock_irq(&pgdat->lru_lock); 1967 /* 1968 * Count referenced pages from currently used mappings as rotated, 1969 * even though only some of them are actually re-activated. This 1970 * helps balance scan pressure between file and anonymous pages in 1971 * get_scan_count. 1972 */ 1973 reclaim_stat->recent_rotated[file] += nr_rotated; 1974 1975 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1976 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1977 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1978 spin_unlock_irq(&pgdat->lru_lock); 1979 1980 mem_cgroup_uncharge_list(&l_hold); 1981 free_hot_cold_page_list(&l_hold, true); 1982 } 1983 1984 /* 1985 * The inactive anon list should be small enough that the VM never has 1986 * to do too much work. 1987 * 1988 * The inactive file list should be small enough to leave most memory 1989 * to the established workingset on the scan-resistant active list, 1990 * but large enough to avoid thrashing the aggregate readahead window. 1991 * 1992 * Both inactive lists should also be large enough that each inactive 1993 * page has a chance to be referenced again before it is reclaimed. 1994 * 1995 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 1996 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 1997 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 1998 * 1999 * total target max 2000 * memory ratio inactive 2001 * ------------------------------------- 2002 * 10MB 1 5MB 2003 * 100MB 1 50MB 2004 * 1GB 3 250MB 2005 * 10GB 10 0.9GB 2006 * 100GB 31 3GB 2007 * 1TB 101 10GB 2008 * 10TB 320 32GB 2009 */ 2010 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2011 struct scan_control *sc) 2012 { 2013 unsigned long inactive_ratio; 2014 unsigned long inactive; 2015 unsigned long active; 2016 unsigned long gb; 2017 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2018 int zid; 2019 2020 /* 2021 * If we don't have swap space, anonymous page deactivation 2022 * is pointless. 2023 */ 2024 if (!file && !total_swap_pages) 2025 return false; 2026 2027 inactive = lruvec_lru_size(lruvec, file * LRU_FILE); 2028 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE); 2029 2030 /* 2031 * For zone-constrained allocations, it is necessary to check if 2032 * deactivations are required for lowmem to be reclaimed. This 2033 * calculates the inactive/active pages available in eligible zones. 2034 */ 2035 for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) { 2036 struct zone *zone = &pgdat->node_zones[zid]; 2037 unsigned long inactive_zone, active_zone; 2038 2039 if (!managed_zone(zone)) 2040 continue; 2041 2042 inactive_zone = zone_page_state(zone, 2043 NR_ZONE_LRU_BASE + (file * LRU_FILE)); 2044 active_zone = zone_page_state(zone, 2045 NR_ZONE_LRU_BASE + (file * LRU_FILE) + LRU_ACTIVE); 2046 2047 inactive -= min(inactive, inactive_zone); 2048 active -= min(active, active_zone); 2049 } 2050 2051 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2052 if (gb) 2053 inactive_ratio = int_sqrt(10 * gb); 2054 else 2055 inactive_ratio = 1; 2056 2057 return inactive * inactive_ratio < active; 2058 } 2059 2060 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2061 struct lruvec *lruvec, struct scan_control *sc) 2062 { 2063 if (is_active_lru(lru)) { 2064 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc)) 2065 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2066 return 0; 2067 } 2068 2069 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2070 } 2071 2072 enum scan_balance { 2073 SCAN_EQUAL, 2074 SCAN_FRACT, 2075 SCAN_ANON, 2076 SCAN_FILE, 2077 }; 2078 2079 /* 2080 * Determine how aggressively the anon and file LRU lists should be 2081 * scanned. The relative value of each set of LRU lists is determined 2082 * by looking at the fraction of the pages scanned we did rotate back 2083 * onto the active list instead of evict. 2084 * 2085 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2086 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2087 */ 2088 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2089 struct scan_control *sc, unsigned long *nr, 2090 unsigned long *lru_pages) 2091 { 2092 int swappiness = mem_cgroup_swappiness(memcg); 2093 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2094 u64 fraction[2]; 2095 u64 denominator = 0; /* gcc */ 2096 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2097 unsigned long anon_prio, file_prio; 2098 enum scan_balance scan_balance; 2099 unsigned long anon, file; 2100 bool force_scan = false; 2101 unsigned long ap, fp; 2102 enum lru_list lru; 2103 bool some_scanned; 2104 int pass; 2105 2106 /* 2107 * If the zone or memcg is small, nr[l] can be 0. This 2108 * results in no scanning on this priority and a potential 2109 * priority drop. Global direct reclaim can go to the next 2110 * zone and tends to have no problems. Global kswapd is for 2111 * zone balancing and it needs to scan a minimum amount. When 2112 * reclaiming for a memcg, a priority drop can cause high 2113 * latencies, so it's better to scan a minimum amount there as 2114 * well. 2115 */ 2116 if (current_is_kswapd()) { 2117 if (!pgdat_reclaimable(pgdat)) 2118 force_scan = true; 2119 if (!mem_cgroup_online(memcg)) 2120 force_scan = true; 2121 } 2122 if (!global_reclaim(sc)) 2123 force_scan = true; 2124 2125 /* If we have no swap space, do not bother scanning anon pages. */ 2126 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2127 scan_balance = SCAN_FILE; 2128 goto out; 2129 } 2130 2131 /* 2132 * Global reclaim will swap to prevent OOM even with no 2133 * swappiness, but memcg users want to use this knob to 2134 * disable swapping for individual groups completely when 2135 * using the memory controller's swap limit feature would be 2136 * too expensive. 2137 */ 2138 if (!global_reclaim(sc) && !swappiness) { 2139 scan_balance = SCAN_FILE; 2140 goto out; 2141 } 2142 2143 /* 2144 * Do not apply any pressure balancing cleverness when the 2145 * system is close to OOM, scan both anon and file equally 2146 * (unless the swappiness setting disagrees with swapping). 2147 */ 2148 if (!sc->priority && swappiness) { 2149 scan_balance = SCAN_EQUAL; 2150 goto out; 2151 } 2152 2153 /* 2154 * Prevent the reclaimer from falling into the cache trap: as 2155 * cache pages start out inactive, every cache fault will tip 2156 * the scan balance towards the file LRU. And as the file LRU 2157 * shrinks, so does the window for rotation from references. 2158 * This means we have a runaway feedback loop where a tiny 2159 * thrashing file LRU becomes infinitely more attractive than 2160 * anon pages. Try to detect this based on file LRU size. 2161 */ 2162 if (global_reclaim(sc)) { 2163 unsigned long pgdatfile; 2164 unsigned long pgdatfree; 2165 int z; 2166 unsigned long total_high_wmark = 0; 2167 2168 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2169 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2170 node_page_state(pgdat, NR_INACTIVE_FILE); 2171 2172 for (z = 0; z < MAX_NR_ZONES; z++) { 2173 struct zone *zone = &pgdat->node_zones[z]; 2174 if (!managed_zone(zone)) 2175 continue; 2176 2177 total_high_wmark += high_wmark_pages(zone); 2178 } 2179 2180 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2181 scan_balance = SCAN_ANON; 2182 goto out; 2183 } 2184 } 2185 2186 /* 2187 * If there is enough inactive page cache, i.e. if the size of the 2188 * inactive list is greater than that of the active list *and* the 2189 * inactive list actually has some pages to scan on this priority, we 2190 * do not reclaim anything from the anonymous working set right now. 2191 * Without the second condition we could end up never scanning an 2192 * lruvec even if it has plenty of old anonymous pages unless the 2193 * system is under heavy pressure. 2194 */ 2195 if (!inactive_list_is_low(lruvec, true, sc) && 2196 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2197 scan_balance = SCAN_FILE; 2198 goto out; 2199 } 2200 2201 scan_balance = SCAN_FRACT; 2202 2203 /* 2204 * With swappiness at 100, anonymous and file have the same priority. 2205 * This scanning priority is essentially the inverse of IO cost. 2206 */ 2207 anon_prio = swappiness; 2208 file_prio = 200 - anon_prio; 2209 2210 /* 2211 * OK, so we have swap space and a fair amount of page cache 2212 * pages. We use the recently rotated / recently scanned 2213 * ratios to determine how valuable each cache is. 2214 * 2215 * Because workloads change over time (and to avoid overflow) 2216 * we keep these statistics as a floating average, which ends 2217 * up weighing recent references more than old ones. 2218 * 2219 * anon in [0], file in [1] 2220 */ 2221 2222 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2223 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2224 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2225 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2226 2227 spin_lock_irq(&pgdat->lru_lock); 2228 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2229 reclaim_stat->recent_scanned[0] /= 2; 2230 reclaim_stat->recent_rotated[0] /= 2; 2231 } 2232 2233 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2234 reclaim_stat->recent_scanned[1] /= 2; 2235 reclaim_stat->recent_rotated[1] /= 2; 2236 } 2237 2238 /* 2239 * The amount of pressure on anon vs file pages is inversely 2240 * proportional to the fraction of recently scanned pages on 2241 * each list that were recently referenced and in active use. 2242 */ 2243 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2244 ap /= reclaim_stat->recent_rotated[0] + 1; 2245 2246 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2247 fp /= reclaim_stat->recent_rotated[1] + 1; 2248 spin_unlock_irq(&pgdat->lru_lock); 2249 2250 fraction[0] = ap; 2251 fraction[1] = fp; 2252 denominator = ap + fp + 1; 2253 out: 2254 some_scanned = false; 2255 /* Only use force_scan on second pass. */ 2256 for (pass = 0; !some_scanned && pass < 2; pass++) { 2257 *lru_pages = 0; 2258 for_each_evictable_lru(lru) { 2259 int file = is_file_lru(lru); 2260 unsigned long size; 2261 unsigned long scan; 2262 2263 size = lruvec_lru_size(lruvec, lru); 2264 scan = size >> sc->priority; 2265 2266 if (!scan && pass && force_scan) 2267 scan = min(size, SWAP_CLUSTER_MAX); 2268 2269 switch (scan_balance) { 2270 case SCAN_EQUAL: 2271 /* Scan lists relative to size */ 2272 break; 2273 case SCAN_FRACT: 2274 /* 2275 * Scan types proportional to swappiness and 2276 * their relative recent reclaim efficiency. 2277 */ 2278 scan = div64_u64(scan * fraction[file], 2279 denominator); 2280 break; 2281 case SCAN_FILE: 2282 case SCAN_ANON: 2283 /* Scan one type exclusively */ 2284 if ((scan_balance == SCAN_FILE) != file) { 2285 size = 0; 2286 scan = 0; 2287 } 2288 break; 2289 default: 2290 /* Look ma, no brain */ 2291 BUG(); 2292 } 2293 2294 *lru_pages += size; 2295 nr[lru] = scan; 2296 2297 /* 2298 * Skip the second pass and don't force_scan, 2299 * if we found something to scan. 2300 */ 2301 some_scanned |= !!scan; 2302 } 2303 } 2304 } 2305 2306 /* 2307 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2308 */ 2309 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2310 struct scan_control *sc, unsigned long *lru_pages) 2311 { 2312 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2313 unsigned long nr[NR_LRU_LISTS]; 2314 unsigned long targets[NR_LRU_LISTS]; 2315 unsigned long nr_to_scan; 2316 enum lru_list lru; 2317 unsigned long nr_reclaimed = 0; 2318 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2319 struct blk_plug plug; 2320 bool scan_adjusted; 2321 2322 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2323 2324 /* Record the original scan target for proportional adjustments later */ 2325 memcpy(targets, nr, sizeof(nr)); 2326 2327 /* 2328 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2329 * event that can occur when there is little memory pressure e.g. 2330 * multiple streaming readers/writers. Hence, we do not abort scanning 2331 * when the requested number of pages are reclaimed when scanning at 2332 * DEF_PRIORITY on the assumption that the fact we are direct 2333 * reclaiming implies that kswapd is not keeping up and it is best to 2334 * do a batch of work at once. For memcg reclaim one check is made to 2335 * abort proportional reclaim if either the file or anon lru has already 2336 * dropped to zero at the first pass. 2337 */ 2338 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2339 sc->priority == DEF_PRIORITY); 2340 2341 blk_start_plug(&plug); 2342 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2343 nr[LRU_INACTIVE_FILE]) { 2344 unsigned long nr_anon, nr_file, percentage; 2345 unsigned long nr_scanned; 2346 2347 for_each_evictable_lru(lru) { 2348 if (nr[lru]) { 2349 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2350 nr[lru] -= nr_to_scan; 2351 2352 nr_reclaimed += shrink_list(lru, nr_to_scan, 2353 lruvec, sc); 2354 } 2355 } 2356 2357 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2358 continue; 2359 2360 /* 2361 * For kswapd and memcg, reclaim at least the number of pages 2362 * requested. Ensure that the anon and file LRUs are scanned 2363 * proportionally what was requested by get_scan_count(). We 2364 * stop reclaiming one LRU and reduce the amount scanning 2365 * proportional to the original scan target. 2366 */ 2367 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2368 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2369 2370 /* 2371 * It's just vindictive to attack the larger once the smaller 2372 * has gone to zero. And given the way we stop scanning the 2373 * smaller below, this makes sure that we only make one nudge 2374 * towards proportionality once we've got nr_to_reclaim. 2375 */ 2376 if (!nr_file || !nr_anon) 2377 break; 2378 2379 if (nr_file > nr_anon) { 2380 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2381 targets[LRU_ACTIVE_ANON] + 1; 2382 lru = LRU_BASE; 2383 percentage = nr_anon * 100 / scan_target; 2384 } else { 2385 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2386 targets[LRU_ACTIVE_FILE] + 1; 2387 lru = LRU_FILE; 2388 percentage = nr_file * 100 / scan_target; 2389 } 2390 2391 /* Stop scanning the smaller of the LRU */ 2392 nr[lru] = 0; 2393 nr[lru + LRU_ACTIVE] = 0; 2394 2395 /* 2396 * Recalculate the other LRU scan count based on its original 2397 * scan target and the percentage scanning already complete 2398 */ 2399 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2400 nr_scanned = targets[lru] - nr[lru]; 2401 nr[lru] = targets[lru] * (100 - percentage) / 100; 2402 nr[lru] -= min(nr[lru], nr_scanned); 2403 2404 lru += LRU_ACTIVE; 2405 nr_scanned = targets[lru] - nr[lru]; 2406 nr[lru] = targets[lru] * (100 - percentage) / 100; 2407 nr[lru] -= min(nr[lru], nr_scanned); 2408 2409 scan_adjusted = true; 2410 } 2411 blk_finish_plug(&plug); 2412 sc->nr_reclaimed += nr_reclaimed; 2413 2414 /* 2415 * Even if we did not try to evict anon pages at all, we want to 2416 * rebalance the anon lru active/inactive ratio. 2417 */ 2418 if (inactive_list_is_low(lruvec, false, sc)) 2419 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2420 sc, LRU_ACTIVE_ANON); 2421 } 2422 2423 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2424 static bool in_reclaim_compaction(struct scan_control *sc) 2425 { 2426 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2427 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2428 sc->priority < DEF_PRIORITY - 2)) 2429 return true; 2430 2431 return false; 2432 } 2433 2434 /* 2435 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2436 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2437 * true if more pages should be reclaimed such that when the page allocator 2438 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2439 * It will give up earlier than that if there is difficulty reclaiming pages. 2440 */ 2441 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2442 unsigned long nr_reclaimed, 2443 unsigned long nr_scanned, 2444 struct scan_control *sc) 2445 { 2446 unsigned long pages_for_compaction; 2447 unsigned long inactive_lru_pages; 2448 int z; 2449 2450 /* If not in reclaim/compaction mode, stop */ 2451 if (!in_reclaim_compaction(sc)) 2452 return false; 2453 2454 /* Consider stopping depending on scan and reclaim activity */ 2455 if (sc->gfp_mask & __GFP_REPEAT) { 2456 /* 2457 * For __GFP_REPEAT allocations, stop reclaiming if the 2458 * full LRU list has been scanned and we are still failing 2459 * to reclaim pages. This full LRU scan is potentially 2460 * expensive but a __GFP_REPEAT caller really wants to succeed 2461 */ 2462 if (!nr_reclaimed && !nr_scanned) 2463 return false; 2464 } else { 2465 /* 2466 * For non-__GFP_REPEAT allocations which can presumably 2467 * fail without consequence, stop if we failed to reclaim 2468 * any pages from the last SWAP_CLUSTER_MAX number of 2469 * pages that were scanned. This will return to the 2470 * caller faster at the risk reclaim/compaction and 2471 * the resulting allocation attempt fails 2472 */ 2473 if (!nr_reclaimed) 2474 return false; 2475 } 2476 2477 /* 2478 * If we have not reclaimed enough pages for compaction and the 2479 * inactive lists are large enough, continue reclaiming 2480 */ 2481 pages_for_compaction = compact_gap(sc->order); 2482 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2483 if (get_nr_swap_pages() > 0) 2484 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2485 if (sc->nr_reclaimed < pages_for_compaction && 2486 inactive_lru_pages > pages_for_compaction) 2487 return true; 2488 2489 /* If compaction would go ahead or the allocation would succeed, stop */ 2490 for (z = 0; z <= sc->reclaim_idx; z++) { 2491 struct zone *zone = &pgdat->node_zones[z]; 2492 if (!managed_zone(zone)) 2493 continue; 2494 2495 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2496 case COMPACT_SUCCESS: 2497 case COMPACT_CONTINUE: 2498 return false; 2499 default: 2500 /* check next zone */ 2501 ; 2502 } 2503 } 2504 return true; 2505 } 2506 2507 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2508 { 2509 struct reclaim_state *reclaim_state = current->reclaim_state; 2510 unsigned long nr_reclaimed, nr_scanned; 2511 bool reclaimable = false; 2512 2513 do { 2514 struct mem_cgroup *root = sc->target_mem_cgroup; 2515 struct mem_cgroup_reclaim_cookie reclaim = { 2516 .pgdat = pgdat, 2517 .priority = sc->priority, 2518 }; 2519 unsigned long node_lru_pages = 0; 2520 struct mem_cgroup *memcg; 2521 2522 nr_reclaimed = sc->nr_reclaimed; 2523 nr_scanned = sc->nr_scanned; 2524 2525 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2526 do { 2527 unsigned long lru_pages; 2528 unsigned long reclaimed; 2529 unsigned long scanned; 2530 2531 if (mem_cgroup_low(root, memcg)) { 2532 if (!sc->may_thrash) 2533 continue; 2534 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2535 } 2536 2537 reclaimed = sc->nr_reclaimed; 2538 scanned = sc->nr_scanned; 2539 2540 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2541 node_lru_pages += lru_pages; 2542 2543 if (memcg) 2544 shrink_slab(sc->gfp_mask, pgdat->node_id, 2545 memcg, sc->nr_scanned - scanned, 2546 lru_pages); 2547 2548 /* Record the group's reclaim efficiency */ 2549 vmpressure(sc->gfp_mask, memcg, false, 2550 sc->nr_scanned - scanned, 2551 sc->nr_reclaimed - reclaimed); 2552 2553 /* 2554 * Direct reclaim and kswapd have to scan all memory 2555 * cgroups to fulfill the overall scan target for the 2556 * node. 2557 * 2558 * Limit reclaim, on the other hand, only cares about 2559 * nr_to_reclaim pages to be reclaimed and it will 2560 * retry with decreasing priority if one round over the 2561 * whole hierarchy is not sufficient. 2562 */ 2563 if (!global_reclaim(sc) && 2564 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2565 mem_cgroup_iter_break(root, memcg); 2566 break; 2567 } 2568 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2569 2570 /* 2571 * Shrink the slab caches in the same proportion that 2572 * the eligible LRU pages were scanned. 2573 */ 2574 if (global_reclaim(sc)) 2575 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2576 sc->nr_scanned - nr_scanned, 2577 node_lru_pages); 2578 2579 if (reclaim_state) { 2580 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2581 reclaim_state->reclaimed_slab = 0; 2582 } 2583 2584 /* Record the subtree's reclaim efficiency */ 2585 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2586 sc->nr_scanned - nr_scanned, 2587 sc->nr_reclaimed - nr_reclaimed); 2588 2589 if (sc->nr_reclaimed - nr_reclaimed) 2590 reclaimable = true; 2591 2592 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2593 sc->nr_scanned - nr_scanned, sc)); 2594 2595 return reclaimable; 2596 } 2597 2598 /* 2599 * Returns true if compaction should go ahead for a costly-order request, or 2600 * the allocation would already succeed without compaction. Return false if we 2601 * should reclaim first. 2602 */ 2603 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2604 { 2605 unsigned long watermark; 2606 enum compact_result suitable; 2607 2608 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2609 if (suitable == COMPACT_SUCCESS) 2610 /* Allocation should succeed already. Don't reclaim. */ 2611 return true; 2612 if (suitable == COMPACT_SKIPPED) 2613 /* Compaction cannot yet proceed. Do reclaim. */ 2614 return false; 2615 2616 /* 2617 * Compaction is already possible, but it takes time to run and there 2618 * are potentially other callers using the pages just freed. So proceed 2619 * with reclaim to make a buffer of free pages available to give 2620 * compaction a reasonable chance of completing and allocating the page. 2621 * Note that we won't actually reclaim the whole buffer in one attempt 2622 * as the target watermark in should_continue_reclaim() is lower. But if 2623 * we are already above the high+gap watermark, don't reclaim at all. 2624 */ 2625 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2626 2627 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2628 } 2629 2630 /* 2631 * This is the direct reclaim path, for page-allocating processes. We only 2632 * try to reclaim pages from zones which will satisfy the caller's allocation 2633 * request. 2634 * 2635 * If a zone is deemed to be full of pinned pages then just give it a light 2636 * scan then give up on it. 2637 */ 2638 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2639 { 2640 struct zoneref *z; 2641 struct zone *zone; 2642 unsigned long nr_soft_reclaimed; 2643 unsigned long nr_soft_scanned; 2644 gfp_t orig_mask; 2645 pg_data_t *last_pgdat = NULL; 2646 2647 /* 2648 * If the number of buffer_heads in the machine exceeds the maximum 2649 * allowed level, force direct reclaim to scan the highmem zone as 2650 * highmem pages could be pinning lowmem pages storing buffer_heads 2651 */ 2652 orig_mask = sc->gfp_mask; 2653 if (buffer_heads_over_limit) { 2654 sc->gfp_mask |= __GFP_HIGHMEM; 2655 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2656 } 2657 2658 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2659 sc->reclaim_idx, sc->nodemask) { 2660 /* 2661 * Take care memory controller reclaiming has small influence 2662 * to global LRU. 2663 */ 2664 if (global_reclaim(sc)) { 2665 if (!cpuset_zone_allowed(zone, 2666 GFP_KERNEL | __GFP_HARDWALL)) 2667 continue; 2668 2669 if (sc->priority != DEF_PRIORITY && 2670 !pgdat_reclaimable(zone->zone_pgdat)) 2671 continue; /* Let kswapd poll it */ 2672 2673 /* 2674 * If we already have plenty of memory free for 2675 * compaction in this zone, don't free any more. 2676 * Even though compaction is invoked for any 2677 * non-zero order, only frequent costly order 2678 * reclamation is disruptive enough to become a 2679 * noticeable problem, like transparent huge 2680 * page allocations. 2681 */ 2682 if (IS_ENABLED(CONFIG_COMPACTION) && 2683 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2684 compaction_ready(zone, sc)) { 2685 sc->compaction_ready = true; 2686 continue; 2687 } 2688 2689 /* 2690 * Shrink each node in the zonelist once. If the 2691 * zonelist is ordered by zone (not the default) then a 2692 * node may be shrunk multiple times but in that case 2693 * the user prefers lower zones being preserved. 2694 */ 2695 if (zone->zone_pgdat == last_pgdat) 2696 continue; 2697 2698 /* 2699 * This steals pages from memory cgroups over softlimit 2700 * and returns the number of reclaimed pages and 2701 * scanned pages. This works for global memory pressure 2702 * and balancing, not for a memcg's limit. 2703 */ 2704 nr_soft_scanned = 0; 2705 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2706 sc->order, sc->gfp_mask, 2707 &nr_soft_scanned); 2708 sc->nr_reclaimed += nr_soft_reclaimed; 2709 sc->nr_scanned += nr_soft_scanned; 2710 /* need some check for avoid more shrink_zone() */ 2711 } 2712 2713 /* See comment about same check for global reclaim above */ 2714 if (zone->zone_pgdat == last_pgdat) 2715 continue; 2716 last_pgdat = zone->zone_pgdat; 2717 shrink_node(zone->zone_pgdat, sc); 2718 } 2719 2720 /* 2721 * Restore to original mask to avoid the impact on the caller if we 2722 * promoted it to __GFP_HIGHMEM. 2723 */ 2724 sc->gfp_mask = orig_mask; 2725 } 2726 2727 /* 2728 * This is the main entry point to direct page reclaim. 2729 * 2730 * If a full scan of the inactive list fails to free enough memory then we 2731 * are "out of memory" and something needs to be killed. 2732 * 2733 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2734 * high - the zone may be full of dirty or under-writeback pages, which this 2735 * caller can't do much about. We kick the writeback threads and take explicit 2736 * naps in the hope that some of these pages can be written. But if the 2737 * allocating task holds filesystem locks which prevent writeout this might not 2738 * work, and the allocation attempt will fail. 2739 * 2740 * returns: 0, if no pages reclaimed 2741 * else, the number of pages reclaimed 2742 */ 2743 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2744 struct scan_control *sc) 2745 { 2746 int initial_priority = sc->priority; 2747 unsigned long total_scanned = 0; 2748 unsigned long writeback_threshold; 2749 retry: 2750 delayacct_freepages_start(); 2751 2752 if (global_reclaim(sc)) 2753 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2754 2755 do { 2756 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2757 sc->priority); 2758 sc->nr_scanned = 0; 2759 shrink_zones(zonelist, sc); 2760 2761 total_scanned += sc->nr_scanned; 2762 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2763 break; 2764 2765 if (sc->compaction_ready) 2766 break; 2767 2768 /* 2769 * If we're getting trouble reclaiming, start doing 2770 * writepage even in laptop mode. 2771 */ 2772 if (sc->priority < DEF_PRIORITY - 2) 2773 sc->may_writepage = 1; 2774 2775 /* 2776 * Try to write back as many pages as we just scanned. This 2777 * tends to cause slow streaming writers to write data to the 2778 * disk smoothly, at the dirtying rate, which is nice. But 2779 * that's undesirable in laptop mode, where we *want* lumpy 2780 * writeout. So in laptop mode, write out the whole world. 2781 */ 2782 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2783 if (total_scanned > writeback_threshold) { 2784 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2785 WB_REASON_TRY_TO_FREE_PAGES); 2786 sc->may_writepage = 1; 2787 } 2788 } while (--sc->priority >= 0); 2789 2790 delayacct_freepages_end(); 2791 2792 if (sc->nr_reclaimed) 2793 return sc->nr_reclaimed; 2794 2795 /* Aborted reclaim to try compaction? don't OOM, then */ 2796 if (sc->compaction_ready) 2797 return 1; 2798 2799 /* Untapped cgroup reserves? Don't OOM, retry. */ 2800 if (!sc->may_thrash) { 2801 sc->priority = initial_priority; 2802 sc->may_thrash = 1; 2803 goto retry; 2804 } 2805 2806 return 0; 2807 } 2808 2809 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2810 { 2811 struct zone *zone; 2812 unsigned long pfmemalloc_reserve = 0; 2813 unsigned long free_pages = 0; 2814 int i; 2815 bool wmark_ok; 2816 2817 for (i = 0; i <= ZONE_NORMAL; i++) { 2818 zone = &pgdat->node_zones[i]; 2819 if (!managed_zone(zone) || 2820 pgdat_reclaimable_pages(pgdat) == 0) 2821 continue; 2822 2823 pfmemalloc_reserve += min_wmark_pages(zone); 2824 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2825 } 2826 2827 /* If there are no reserves (unexpected config) then do not throttle */ 2828 if (!pfmemalloc_reserve) 2829 return true; 2830 2831 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2832 2833 /* kswapd must be awake if processes are being throttled */ 2834 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2835 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2836 (enum zone_type)ZONE_NORMAL); 2837 wake_up_interruptible(&pgdat->kswapd_wait); 2838 } 2839 2840 return wmark_ok; 2841 } 2842 2843 /* 2844 * Throttle direct reclaimers if backing storage is backed by the network 2845 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2846 * depleted. kswapd will continue to make progress and wake the processes 2847 * when the low watermark is reached. 2848 * 2849 * Returns true if a fatal signal was delivered during throttling. If this 2850 * happens, the page allocator should not consider triggering the OOM killer. 2851 */ 2852 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2853 nodemask_t *nodemask) 2854 { 2855 struct zoneref *z; 2856 struct zone *zone; 2857 pg_data_t *pgdat = NULL; 2858 2859 /* 2860 * Kernel threads should not be throttled as they may be indirectly 2861 * responsible for cleaning pages necessary for reclaim to make forward 2862 * progress. kjournald for example may enter direct reclaim while 2863 * committing a transaction where throttling it could forcing other 2864 * processes to block on log_wait_commit(). 2865 */ 2866 if (current->flags & PF_KTHREAD) 2867 goto out; 2868 2869 /* 2870 * If a fatal signal is pending, this process should not throttle. 2871 * It should return quickly so it can exit and free its memory 2872 */ 2873 if (fatal_signal_pending(current)) 2874 goto out; 2875 2876 /* 2877 * Check if the pfmemalloc reserves are ok by finding the first node 2878 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2879 * GFP_KERNEL will be required for allocating network buffers when 2880 * swapping over the network so ZONE_HIGHMEM is unusable. 2881 * 2882 * Throttling is based on the first usable node and throttled processes 2883 * wait on a queue until kswapd makes progress and wakes them. There 2884 * is an affinity then between processes waking up and where reclaim 2885 * progress has been made assuming the process wakes on the same node. 2886 * More importantly, processes running on remote nodes will not compete 2887 * for remote pfmemalloc reserves and processes on different nodes 2888 * should make reasonable progress. 2889 */ 2890 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2891 gfp_zone(gfp_mask), nodemask) { 2892 if (zone_idx(zone) > ZONE_NORMAL) 2893 continue; 2894 2895 /* Throttle based on the first usable node */ 2896 pgdat = zone->zone_pgdat; 2897 if (pfmemalloc_watermark_ok(pgdat)) 2898 goto out; 2899 break; 2900 } 2901 2902 /* If no zone was usable by the allocation flags then do not throttle */ 2903 if (!pgdat) 2904 goto out; 2905 2906 /* Account for the throttling */ 2907 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2908 2909 /* 2910 * If the caller cannot enter the filesystem, it's possible that it 2911 * is due to the caller holding an FS lock or performing a journal 2912 * transaction in the case of a filesystem like ext[3|4]. In this case, 2913 * it is not safe to block on pfmemalloc_wait as kswapd could be 2914 * blocked waiting on the same lock. Instead, throttle for up to a 2915 * second before continuing. 2916 */ 2917 if (!(gfp_mask & __GFP_FS)) { 2918 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2919 pfmemalloc_watermark_ok(pgdat), HZ); 2920 2921 goto check_pending; 2922 } 2923 2924 /* Throttle until kswapd wakes the process */ 2925 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2926 pfmemalloc_watermark_ok(pgdat)); 2927 2928 check_pending: 2929 if (fatal_signal_pending(current)) 2930 return true; 2931 2932 out: 2933 return false; 2934 } 2935 2936 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2937 gfp_t gfp_mask, nodemask_t *nodemask) 2938 { 2939 unsigned long nr_reclaimed; 2940 struct scan_control sc = { 2941 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2942 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2943 .reclaim_idx = gfp_zone(gfp_mask), 2944 .order = order, 2945 .nodemask = nodemask, 2946 .priority = DEF_PRIORITY, 2947 .may_writepage = !laptop_mode, 2948 .may_unmap = 1, 2949 .may_swap = 1, 2950 }; 2951 2952 /* 2953 * Do not enter reclaim if fatal signal was delivered while throttled. 2954 * 1 is returned so that the page allocator does not OOM kill at this 2955 * point. 2956 */ 2957 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2958 return 1; 2959 2960 trace_mm_vmscan_direct_reclaim_begin(order, 2961 sc.may_writepage, 2962 gfp_mask, 2963 sc.reclaim_idx); 2964 2965 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2966 2967 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2968 2969 return nr_reclaimed; 2970 } 2971 2972 #ifdef CONFIG_MEMCG 2973 2974 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 2975 gfp_t gfp_mask, bool noswap, 2976 pg_data_t *pgdat, 2977 unsigned long *nr_scanned) 2978 { 2979 struct scan_control sc = { 2980 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2981 .target_mem_cgroup = memcg, 2982 .may_writepage = !laptop_mode, 2983 .may_unmap = 1, 2984 .reclaim_idx = MAX_NR_ZONES - 1, 2985 .may_swap = !noswap, 2986 }; 2987 unsigned long lru_pages; 2988 2989 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2990 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2991 2992 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2993 sc.may_writepage, 2994 sc.gfp_mask, 2995 sc.reclaim_idx); 2996 2997 /* 2998 * NOTE: Although we can get the priority field, using it 2999 * here is not a good idea, since it limits the pages we can scan. 3000 * if we don't reclaim here, the shrink_node from balance_pgdat 3001 * will pick up pages from other mem cgroup's as well. We hack 3002 * the priority and make it zero. 3003 */ 3004 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3005 3006 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3007 3008 *nr_scanned = sc.nr_scanned; 3009 return sc.nr_reclaimed; 3010 } 3011 3012 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3013 unsigned long nr_pages, 3014 gfp_t gfp_mask, 3015 bool may_swap) 3016 { 3017 struct zonelist *zonelist; 3018 unsigned long nr_reclaimed; 3019 int nid; 3020 struct scan_control sc = { 3021 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3022 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3023 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3024 .reclaim_idx = MAX_NR_ZONES - 1, 3025 .target_mem_cgroup = memcg, 3026 .priority = DEF_PRIORITY, 3027 .may_writepage = !laptop_mode, 3028 .may_unmap = 1, 3029 .may_swap = may_swap, 3030 }; 3031 3032 /* 3033 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3034 * take care of from where we get pages. So the node where we start the 3035 * scan does not need to be the current node. 3036 */ 3037 nid = mem_cgroup_select_victim_node(memcg); 3038 3039 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3040 3041 trace_mm_vmscan_memcg_reclaim_begin(0, 3042 sc.may_writepage, 3043 sc.gfp_mask, 3044 sc.reclaim_idx); 3045 3046 current->flags |= PF_MEMALLOC; 3047 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3048 current->flags &= ~PF_MEMALLOC; 3049 3050 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3051 3052 return nr_reclaimed; 3053 } 3054 #endif 3055 3056 static void age_active_anon(struct pglist_data *pgdat, 3057 struct scan_control *sc) 3058 { 3059 struct mem_cgroup *memcg; 3060 3061 if (!total_swap_pages) 3062 return; 3063 3064 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3065 do { 3066 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3067 3068 if (inactive_list_is_low(lruvec, false, sc)) 3069 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3070 sc, LRU_ACTIVE_ANON); 3071 3072 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3073 } while (memcg); 3074 } 3075 3076 static bool zone_balanced(struct zone *zone, int order, int classzone_idx) 3077 { 3078 unsigned long mark = high_wmark_pages(zone); 3079 3080 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3081 return false; 3082 3083 /* 3084 * If any eligible zone is balanced then the node is not considered 3085 * to be congested or dirty 3086 */ 3087 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); 3088 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); 3089 3090 return true; 3091 } 3092 3093 /* 3094 * Prepare kswapd for sleeping. This verifies that there are no processes 3095 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3096 * 3097 * Returns true if kswapd is ready to sleep 3098 */ 3099 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3100 { 3101 int i; 3102 3103 /* 3104 * The throttled processes are normally woken up in balance_pgdat() as 3105 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3106 * race between when kswapd checks the watermarks and a process gets 3107 * throttled. There is also a potential race if processes get 3108 * throttled, kswapd wakes, a large process exits thereby balancing the 3109 * zones, which causes kswapd to exit balance_pgdat() before reaching 3110 * the wake up checks. If kswapd is going to sleep, no process should 3111 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3112 * the wake up is premature, processes will wake kswapd and get 3113 * throttled again. The difference from wake ups in balance_pgdat() is 3114 * that here we are under prepare_to_wait(). 3115 */ 3116 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3117 wake_up_all(&pgdat->pfmemalloc_wait); 3118 3119 for (i = 0; i <= classzone_idx; i++) { 3120 struct zone *zone = pgdat->node_zones + i; 3121 3122 if (!managed_zone(zone)) 3123 continue; 3124 3125 if (!zone_balanced(zone, order, classzone_idx)) 3126 return false; 3127 } 3128 3129 return true; 3130 } 3131 3132 /* 3133 * kswapd shrinks a node of pages that are at or below the highest usable 3134 * zone that is currently unbalanced. 3135 * 3136 * Returns true if kswapd scanned at least the requested number of pages to 3137 * reclaim or if the lack of progress was due to pages under writeback. 3138 * This is used to determine if the scanning priority needs to be raised. 3139 */ 3140 static bool kswapd_shrink_node(pg_data_t *pgdat, 3141 struct scan_control *sc) 3142 { 3143 struct zone *zone; 3144 int z; 3145 3146 /* Reclaim a number of pages proportional to the number of zones */ 3147 sc->nr_to_reclaim = 0; 3148 for (z = 0; z <= sc->reclaim_idx; z++) { 3149 zone = pgdat->node_zones + z; 3150 if (!managed_zone(zone)) 3151 continue; 3152 3153 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3154 } 3155 3156 /* 3157 * Historically care was taken to put equal pressure on all zones but 3158 * now pressure is applied based on node LRU order. 3159 */ 3160 shrink_node(pgdat, sc); 3161 3162 /* 3163 * Fragmentation may mean that the system cannot be rebalanced for 3164 * high-order allocations. If twice the allocation size has been 3165 * reclaimed then recheck watermarks only at order-0 to prevent 3166 * excessive reclaim. Assume that a process requested a high-order 3167 * can direct reclaim/compact. 3168 */ 3169 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3170 sc->order = 0; 3171 3172 return sc->nr_scanned >= sc->nr_to_reclaim; 3173 } 3174 3175 /* 3176 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3177 * that are eligible for use by the caller until at least one zone is 3178 * balanced. 3179 * 3180 * Returns the order kswapd finished reclaiming at. 3181 * 3182 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3183 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3184 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3185 * or lower is eligible for reclaim until at least one usable zone is 3186 * balanced. 3187 */ 3188 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3189 { 3190 int i; 3191 unsigned long nr_soft_reclaimed; 3192 unsigned long nr_soft_scanned; 3193 struct zone *zone; 3194 struct scan_control sc = { 3195 .gfp_mask = GFP_KERNEL, 3196 .order = order, 3197 .priority = DEF_PRIORITY, 3198 .may_writepage = !laptop_mode, 3199 .may_unmap = 1, 3200 .may_swap = 1, 3201 }; 3202 count_vm_event(PAGEOUTRUN); 3203 3204 do { 3205 bool raise_priority = true; 3206 3207 sc.nr_reclaimed = 0; 3208 sc.reclaim_idx = classzone_idx; 3209 3210 /* 3211 * If the number of buffer_heads exceeds the maximum allowed 3212 * then consider reclaiming from all zones. This has a dual 3213 * purpose -- on 64-bit systems it is expected that 3214 * buffer_heads are stripped during active rotation. On 32-bit 3215 * systems, highmem pages can pin lowmem memory and shrinking 3216 * buffers can relieve lowmem pressure. Reclaim may still not 3217 * go ahead if all eligible zones for the original allocation 3218 * request are balanced to avoid excessive reclaim from kswapd. 3219 */ 3220 if (buffer_heads_over_limit) { 3221 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3222 zone = pgdat->node_zones + i; 3223 if (!managed_zone(zone)) 3224 continue; 3225 3226 sc.reclaim_idx = i; 3227 break; 3228 } 3229 } 3230 3231 /* 3232 * Only reclaim if there are no eligible zones. Check from 3233 * high to low zone as allocations prefer higher zones. 3234 * Scanning from low to high zone would allow congestion to be 3235 * cleared during a very small window when a small low 3236 * zone was balanced even under extreme pressure when the 3237 * overall node may be congested. Note that sc.reclaim_idx 3238 * is not used as buffer_heads_over_limit may have adjusted 3239 * it. 3240 */ 3241 for (i = classzone_idx; i >= 0; i--) { 3242 zone = pgdat->node_zones + i; 3243 if (!managed_zone(zone)) 3244 continue; 3245 3246 if (zone_balanced(zone, sc.order, classzone_idx)) 3247 goto out; 3248 } 3249 3250 /* 3251 * Do some background aging of the anon list, to give 3252 * pages a chance to be referenced before reclaiming. All 3253 * pages are rotated regardless of classzone as this is 3254 * about consistent aging. 3255 */ 3256 age_active_anon(pgdat, &sc); 3257 3258 /* 3259 * If we're getting trouble reclaiming, start doing writepage 3260 * even in laptop mode. 3261 */ 3262 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat)) 3263 sc.may_writepage = 1; 3264 3265 /* Call soft limit reclaim before calling shrink_node. */ 3266 sc.nr_scanned = 0; 3267 nr_soft_scanned = 0; 3268 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3269 sc.gfp_mask, &nr_soft_scanned); 3270 sc.nr_reclaimed += nr_soft_reclaimed; 3271 3272 /* 3273 * There should be no need to raise the scanning priority if 3274 * enough pages are already being scanned that that high 3275 * watermark would be met at 100% efficiency. 3276 */ 3277 if (kswapd_shrink_node(pgdat, &sc)) 3278 raise_priority = false; 3279 3280 /* 3281 * If the low watermark is met there is no need for processes 3282 * to be throttled on pfmemalloc_wait as they should not be 3283 * able to safely make forward progress. Wake them 3284 */ 3285 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3286 pfmemalloc_watermark_ok(pgdat)) 3287 wake_up_all(&pgdat->pfmemalloc_wait); 3288 3289 /* Check if kswapd should be suspending */ 3290 if (try_to_freeze() || kthread_should_stop()) 3291 break; 3292 3293 /* 3294 * Raise priority if scanning rate is too low or there was no 3295 * progress in reclaiming pages 3296 */ 3297 if (raise_priority || !sc.nr_reclaimed) 3298 sc.priority--; 3299 } while (sc.priority >= 1); 3300 3301 out: 3302 /* 3303 * Return the order kswapd stopped reclaiming at as 3304 * prepare_kswapd_sleep() takes it into account. If another caller 3305 * entered the allocator slow path while kswapd was awake, order will 3306 * remain at the higher level. 3307 */ 3308 return sc.order; 3309 } 3310 3311 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3312 unsigned int classzone_idx) 3313 { 3314 long remaining = 0; 3315 DEFINE_WAIT(wait); 3316 3317 if (freezing(current) || kthread_should_stop()) 3318 return; 3319 3320 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3321 3322 /* Try to sleep for a short interval */ 3323 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3324 /* 3325 * Compaction records what page blocks it recently failed to 3326 * isolate pages from and skips them in the future scanning. 3327 * When kswapd is going to sleep, it is reasonable to assume 3328 * that pages and compaction may succeed so reset the cache. 3329 */ 3330 reset_isolation_suitable(pgdat); 3331 3332 /* 3333 * We have freed the memory, now we should compact it to make 3334 * allocation of the requested order possible. 3335 */ 3336 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3337 3338 remaining = schedule_timeout(HZ/10); 3339 3340 /* 3341 * If woken prematurely then reset kswapd_classzone_idx and 3342 * order. The values will either be from a wakeup request or 3343 * the previous request that slept prematurely. 3344 */ 3345 if (remaining) { 3346 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3347 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3348 } 3349 3350 finish_wait(&pgdat->kswapd_wait, &wait); 3351 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3352 } 3353 3354 /* 3355 * After a short sleep, check if it was a premature sleep. If not, then 3356 * go fully to sleep until explicitly woken up. 3357 */ 3358 if (!remaining && 3359 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3360 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3361 3362 /* 3363 * vmstat counters are not perfectly accurate and the estimated 3364 * value for counters such as NR_FREE_PAGES can deviate from the 3365 * true value by nr_online_cpus * threshold. To avoid the zone 3366 * watermarks being breached while under pressure, we reduce the 3367 * per-cpu vmstat threshold while kswapd is awake and restore 3368 * them before going back to sleep. 3369 */ 3370 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3371 3372 if (!kthread_should_stop()) 3373 schedule(); 3374 3375 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3376 } else { 3377 if (remaining) 3378 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3379 else 3380 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3381 } 3382 finish_wait(&pgdat->kswapd_wait, &wait); 3383 } 3384 3385 /* 3386 * The background pageout daemon, started as a kernel thread 3387 * from the init process. 3388 * 3389 * This basically trickles out pages so that we have _some_ 3390 * free memory available even if there is no other activity 3391 * that frees anything up. This is needed for things like routing 3392 * etc, where we otherwise might have all activity going on in 3393 * asynchronous contexts that cannot page things out. 3394 * 3395 * If there are applications that are active memory-allocators 3396 * (most normal use), this basically shouldn't matter. 3397 */ 3398 static int kswapd(void *p) 3399 { 3400 unsigned int alloc_order, reclaim_order, classzone_idx; 3401 pg_data_t *pgdat = (pg_data_t*)p; 3402 struct task_struct *tsk = current; 3403 3404 struct reclaim_state reclaim_state = { 3405 .reclaimed_slab = 0, 3406 }; 3407 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3408 3409 lockdep_set_current_reclaim_state(GFP_KERNEL); 3410 3411 if (!cpumask_empty(cpumask)) 3412 set_cpus_allowed_ptr(tsk, cpumask); 3413 current->reclaim_state = &reclaim_state; 3414 3415 /* 3416 * Tell the memory management that we're a "memory allocator", 3417 * and that if we need more memory we should get access to it 3418 * regardless (see "__alloc_pages()"). "kswapd" should 3419 * never get caught in the normal page freeing logic. 3420 * 3421 * (Kswapd normally doesn't need memory anyway, but sometimes 3422 * you need a small amount of memory in order to be able to 3423 * page out something else, and this flag essentially protects 3424 * us from recursively trying to free more memory as we're 3425 * trying to free the first piece of memory in the first place). 3426 */ 3427 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3428 set_freezable(); 3429 3430 pgdat->kswapd_order = alloc_order = reclaim_order = 0; 3431 pgdat->kswapd_classzone_idx = classzone_idx = 0; 3432 for ( ; ; ) { 3433 bool ret; 3434 3435 kswapd_try_sleep: 3436 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3437 classzone_idx); 3438 3439 /* Read the new order and classzone_idx */ 3440 alloc_order = reclaim_order = pgdat->kswapd_order; 3441 classzone_idx = pgdat->kswapd_classzone_idx; 3442 pgdat->kswapd_order = 0; 3443 pgdat->kswapd_classzone_idx = 0; 3444 3445 ret = try_to_freeze(); 3446 if (kthread_should_stop()) 3447 break; 3448 3449 /* 3450 * We can speed up thawing tasks if we don't call balance_pgdat 3451 * after returning from the refrigerator 3452 */ 3453 if (ret) 3454 continue; 3455 3456 /* 3457 * Reclaim begins at the requested order but if a high-order 3458 * reclaim fails then kswapd falls back to reclaiming for 3459 * order-0. If that happens, kswapd will consider sleeping 3460 * for the order it finished reclaiming at (reclaim_order) 3461 * but kcompactd is woken to compact for the original 3462 * request (alloc_order). 3463 */ 3464 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3465 alloc_order); 3466 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3467 if (reclaim_order < alloc_order) 3468 goto kswapd_try_sleep; 3469 3470 alloc_order = reclaim_order = pgdat->kswapd_order; 3471 classzone_idx = pgdat->kswapd_classzone_idx; 3472 } 3473 3474 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3475 current->reclaim_state = NULL; 3476 lockdep_clear_current_reclaim_state(); 3477 3478 return 0; 3479 } 3480 3481 /* 3482 * A zone is low on free memory, so wake its kswapd task to service it. 3483 */ 3484 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3485 { 3486 pg_data_t *pgdat; 3487 int z; 3488 3489 if (!managed_zone(zone)) 3490 return; 3491 3492 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3493 return; 3494 pgdat = zone->zone_pgdat; 3495 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3496 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3497 if (!waitqueue_active(&pgdat->kswapd_wait)) 3498 return; 3499 3500 /* Only wake kswapd if all zones are unbalanced */ 3501 for (z = 0; z <= classzone_idx; z++) { 3502 zone = pgdat->node_zones + z; 3503 if (!managed_zone(zone)) 3504 continue; 3505 3506 if (zone_balanced(zone, order, classzone_idx)) 3507 return; 3508 } 3509 3510 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3511 wake_up_interruptible(&pgdat->kswapd_wait); 3512 } 3513 3514 #ifdef CONFIG_HIBERNATION 3515 /* 3516 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3517 * freed pages. 3518 * 3519 * Rather than trying to age LRUs the aim is to preserve the overall 3520 * LRU order by reclaiming preferentially 3521 * inactive > active > active referenced > active mapped 3522 */ 3523 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3524 { 3525 struct reclaim_state reclaim_state; 3526 struct scan_control sc = { 3527 .nr_to_reclaim = nr_to_reclaim, 3528 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3529 .reclaim_idx = MAX_NR_ZONES - 1, 3530 .priority = DEF_PRIORITY, 3531 .may_writepage = 1, 3532 .may_unmap = 1, 3533 .may_swap = 1, 3534 .hibernation_mode = 1, 3535 }; 3536 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3537 struct task_struct *p = current; 3538 unsigned long nr_reclaimed; 3539 3540 p->flags |= PF_MEMALLOC; 3541 lockdep_set_current_reclaim_state(sc.gfp_mask); 3542 reclaim_state.reclaimed_slab = 0; 3543 p->reclaim_state = &reclaim_state; 3544 3545 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3546 3547 p->reclaim_state = NULL; 3548 lockdep_clear_current_reclaim_state(); 3549 p->flags &= ~PF_MEMALLOC; 3550 3551 return nr_reclaimed; 3552 } 3553 #endif /* CONFIG_HIBERNATION */ 3554 3555 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3556 not required for correctness. So if the last cpu in a node goes 3557 away, we get changed to run anywhere: as the first one comes back, 3558 restore their cpu bindings. */ 3559 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3560 void *hcpu) 3561 { 3562 int nid; 3563 3564 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3565 for_each_node_state(nid, N_MEMORY) { 3566 pg_data_t *pgdat = NODE_DATA(nid); 3567 const struct cpumask *mask; 3568 3569 mask = cpumask_of_node(pgdat->node_id); 3570 3571 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3572 /* One of our CPUs online: restore mask */ 3573 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3574 } 3575 } 3576 return NOTIFY_OK; 3577 } 3578 3579 /* 3580 * This kswapd start function will be called by init and node-hot-add. 3581 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3582 */ 3583 int kswapd_run(int nid) 3584 { 3585 pg_data_t *pgdat = NODE_DATA(nid); 3586 int ret = 0; 3587 3588 if (pgdat->kswapd) 3589 return 0; 3590 3591 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3592 if (IS_ERR(pgdat->kswapd)) { 3593 /* failure at boot is fatal */ 3594 BUG_ON(system_state == SYSTEM_BOOTING); 3595 pr_err("Failed to start kswapd on node %d\n", nid); 3596 ret = PTR_ERR(pgdat->kswapd); 3597 pgdat->kswapd = NULL; 3598 } 3599 return ret; 3600 } 3601 3602 /* 3603 * Called by memory hotplug when all memory in a node is offlined. Caller must 3604 * hold mem_hotplug_begin/end(). 3605 */ 3606 void kswapd_stop(int nid) 3607 { 3608 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3609 3610 if (kswapd) { 3611 kthread_stop(kswapd); 3612 NODE_DATA(nid)->kswapd = NULL; 3613 } 3614 } 3615 3616 static int __init kswapd_init(void) 3617 { 3618 int nid; 3619 3620 swap_setup(); 3621 for_each_node_state(nid, N_MEMORY) 3622 kswapd_run(nid); 3623 hotcpu_notifier(cpu_callback, 0); 3624 return 0; 3625 } 3626 3627 module_init(kswapd_init) 3628 3629 #ifdef CONFIG_NUMA 3630 /* 3631 * Node reclaim mode 3632 * 3633 * If non-zero call node_reclaim when the number of free pages falls below 3634 * the watermarks. 3635 */ 3636 int node_reclaim_mode __read_mostly; 3637 3638 #define RECLAIM_OFF 0 3639 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3640 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3641 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3642 3643 /* 3644 * Priority for NODE_RECLAIM. This determines the fraction of pages 3645 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3646 * a zone. 3647 */ 3648 #define NODE_RECLAIM_PRIORITY 4 3649 3650 /* 3651 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3652 * occur. 3653 */ 3654 int sysctl_min_unmapped_ratio = 1; 3655 3656 /* 3657 * If the number of slab pages in a zone grows beyond this percentage then 3658 * slab reclaim needs to occur. 3659 */ 3660 int sysctl_min_slab_ratio = 5; 3661 3662 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3663 { 3664 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3665 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3666 node_page_state(pgdat, NR_ACTIVE_FILE); 3667 3668 /* 3669 * It's possible for there to be more file mapped pages than 3670 * accounted for by the pages on the file LRU lists because 3671 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3672 */ 3673 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3674 } 3675 3676 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3677 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3678 { 3679 unsigned long nr_pagecache_reclaimable; 3680 unsigned long delta = 0; 3681 3682 /* 3683 * If RECLAIM_UNMAP is set, then all file pages are considered 3684 * potentially reclaimable. Otherwise, we have to worry about 3685 * pages like swapcache and node_unmapped_file_pages() provides 3686 * a better estimate 3687 */ 3688 if (node_reclaim_mode & RECLAIM_UNMAP) 3689 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3690 else 3691 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3692 3693 /* If we can't clean pages, remove dirty pages from consideration */ 3694 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3695 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3696 3697 /* Watch for any possible underflows due to delta */ 3698 if (unlikely(delta > nr_pagecache_reclaimable)) 3699 delta = nr_pagecache_reclaimable; 3700 3701 return nr_pagecache_reclaimable - delta; 3702 } 3703 3704 /* 3705 * Try to free up some pages from this node through reclaim. 3706 */ 3707 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3708 { 3709 /* Minimum pages needed in order to stay on node */ 3710 const unsigned long nr_pages = 1 << order; 3711 struct task_struct *p = current; 3712 struct reclaim_state reclaim_state; 3713 int classzone_idx = gfp_zone(gfp_mask); 3714 struct scan_control sc = { 3715 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3716 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3717 .order = order, 3718 .priority = NODE_RECLAIM_PRIORITY, 3719 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3720 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3721 .may_swap = 1, 3722 .reclaim_idx = classzone_idx, 3723 }; 3724 3725 cond_resched(); 3726 /* 3727 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3728 * and we also need to be able to write out pages for RECLAIM_WRITE 3729 * and RECLAIM_UNMAP. 3730 */ 3731 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3732 lockdep_set_current_reclaim_state(gfp_mask); 3733 reclaim_state.reclaimed_slab = 0; 3734 p->reclaim_state = &reclaim_state; 3735 3736 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3737 /* 3738 * Free memory by calling shrink zone with increasing 3739 * priorities until we have enough memory freed. 3740 */ 3741 do { 3742 shrink_node(pgdat, &sc); 3743 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3744 } 3745 3746 p->reclaim_state = NULL; 3747 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3748 lockdep_clear_current_reclaim_state(); 3749 return sc.nr_reclaimed >= nr_pages; 3750 } 3751 3752 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3753 { 3754 int ret; 3755 3756 /* 3757 * Node reclaim reclaims unmapped file backed pages and 3758 * slab pages if we are over the defined limits. 3759 * 3760 * A small portion of unmapped file backed pages is needed for 3761 * file I/O otherwise pages read by file I/O will be immediately 3762 * thrown out if the node is overallocated. So we do not reclaim 3763 * if less than a specified percentage of the node is used by 3764 * unmapped file backed pages. 3765 */ 3766 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3767 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3768 return NODE_RECLAIM_FULL; 3769 3770 if (!pgdat_reclaimable(pgdat)) 3771 return NODE_RECLAIM_FULL; 3772 3773 /* 3774 * Do not scan if the allocation should not be delayed. 3775 */ 3776 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3777 return NODE_RECLAIM_NOSCAN; 3778 3779 /* 3780 * Only run node reclaim on the local node or on nodes that do not 3781 * have associated processors. This will favor the local processor 3782 * over remote processors and spread off node memory allocations 3783 * as wide as possible. 3784 */ 3785 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3786 return NODE_RECLAIM_NOSCAN; 3787 3788 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3789 return NODE_RECLAIM_NOSCAN; 3790 3791 ret = __node_reclaim(pgdat, gfp_mask, order); 3792 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3793 3794 if (!ret) 3795 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3796 3797 return ret; 3798 } 3799 #endif 3800 3801 /* 3802 * page_evictable - test whether a page is evictable 3803 * @page: the page to test 3804 * 3805 * Test whether page is evictable--i.e., should be placed on active/inactive 3806 * lists vs unevictable list. 3807 * 3808 * Reasons page might not be evictable: 3809 * (1) page's mapping marked unevictable 3810 * (2) page is part of an mlocked VMA 3811 * 3812 */ 3813 int page_evictable(struct page *page) 3814 { 3815 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3816 } 3817 3818 #ifdef CONFIG_SHMEM 3819 /** 3820 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3821 * @pages: array of pages to check 3822 * @nr_pages: number of pages to check 3823 * 3824 * Checks pages for evictability and moves them to the appropriate lru list. 3825 * 3826 * This function is only used for SysV IPC SHM_UNLOCK. 3827 */ 3828 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3829 { 3830 struct lruvec *lruvec; 3831 struct pglist_data *pgdat = NULL; 3832 int pgscanned = 0; 3833 int pgrescued = 0; 3834 int i; 3835 3836 for (i = 0; i < nr_pages; i++) { 3837 struct page *page = pages[i]; 3838 struct pglist_data *pagepgdat = page_pgdat(page); 3839 3840 pgscanned++; 3841 if (pagepgdat != pgdat) { 3842 if (pgdat) 3843 spin_unlock_irq(&pgdat->lru_lock); 3844 pgdat = pagepgdat; 3845 spin_lock_irq(&pgdat->lru_lock); 3846 } 3847 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3848 3849 if (!PageLRU(page) || !PageUnevictable(page)) 3850 continue; 3851 3852 if (page_evictable(page)) { 3853 enum lru_list lru = page_lru_base_type(page); 3854 3855 VM_BUG_ON_PAGE(PageActive(page), page); 3856 ClearPageUnevictable(page); 3857 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3858 add_page_to_lru_list(page, lruvec, lru); 3859 pgrescued++; 3860 } 3861 } 3862 3863 if (pgdat) { 3864 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3865 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3866 spin_unlock_irq(&pgdat->lru_lock); 3867 } 3868 } 3869 #endif /* CONFIG_SHMEM */ 3870