1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 56 #include <linux/swapops.h> 57 #include <linux/balloon_compaction.h> 58 59 #include "internal.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/vmscan.h> 63 64 struct scan_control { 65 /* How many pages shrink_list() should reclaim */ 66 unsigned long nr_to_reclaim; 67 68 /* 69 * Nodemask of nodes allowed by the caller. If NULL, all nodes 70 * are scanned. 71 */ 72 nodemask_t *nodemask; 73 74 /* 75 * The memory cgroup that hit its limit and as a result is the 76 * primary target of this reclaim invocation. 77 */ 78 struct mem_cgroup *target_mem_cgroup; 79 80 /* 81 * Scan pressure balancing between anon and file LRUs 82 */ 83 unsigned long anon_cost; 84 unsigned long file_cost; 85 86 /* Can active pages be deactivated as part of reclaim? */ 87 #define DEACTIVATE_ANON 1 88 #define DEACTIVATE_FILE 2 89 unsigned int may_deactivate:2; 90 unsigned int force_deactivate:1; 91 unsigned int skipped_deactivate:1; 92 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 94 unsigned int may_writepage:1; 95 96 /* Can mapped pages be reclaimed? */ 97 unsigned int may_unmap:1; 98 99 /* Can pages be swapped as part of reclaim? */ 100 unsigned int may_swap:1; 101 102 /* 103 * Cgroup memory below memory.low is protected as long as we 104 * don't threaten to OOM. If any cgroup is reclaimed at 105 * reduced force or passed over entirely due to its memory.low 106 * setting (memcg_low_skipped), and nothing is reclaimed as a 107 * result, then go back for one more cycle that reclaims the protected 108 * memory (memcg_low_reclaim) to avert OOM. 109 */ 110 unsigned int memcg_low_reclaim:1; 111 unsigned int memcg_low_skipped:1; 112 113 unsigned int hibernation_mode:1; 114 115 /* One of the zones is ready for compaction */ 116 unsigned int compaction_ready:1; 117 118 /* There is easily reclaimable cold cache in the current node */ 119 unsigned int cache_trim_mode:1; 120 121 /* The file pages on the current node are dangerously low */ 122 unsigned int file_is_tiny:1; 123 124 /* Allocation order */ 125 s8 order; 126 127 /* Scan (total_size >> priority) pages at once */ 128 s8 priority; 129 130 /* The highest zone to isolate pages for reclaim from */ 131 s8 reclaim_idx; 132 133 /* This context's GFP mask */ 134 gfp_t gfp_mask; 135 136 /* Incremented by the number of inactive pages that were scanned */ 137 unsigned long nr_scanned; 138 139 /* Number of pages freed so far during a call to shrink_zones() */ 140 unsigned long nr_reclaimed; 141 142 struct { 143 unsigned int dirty; 144 unsigned int unqueued_dirty; 145 unsigned int congested; 146 unsigned int writeback; 147 unsigned int immediate; 148 unsigned int file_taken; 149 unsigned int taken; 150 } nr; 151 152 /* for recording the reclaimed slab by now */ 153 struct reclaim_state reclaim_state; 154 }; 155 156 #ifdef ARCH_HAS_PREFETCHW 157 #define prefetchw_prev_lru_page(_page, _base, _field) \ 158 do { \ 159 if ((_page)->lru.prev != _base) { \ 160 struct page *prev; \ 161 \ 162 prev = lru_to_page(&(_page->lru)); \ 163 prefetchw(&prev->_field); \ 164 } \ 165 } while (0) 166 #else 167 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 168 #endif 169 170 /* 171 * From 0 .. 200. Higher means more swappy. 172 */ 173 int vm_swappiness = 60; 174 175 static void set_task_reclaim_state(struct task_struct *task, 176 struct reclaim_state *rs) 177 { 178 /* Check for an overwrite */ 179 WARN_ON_ONCE(rs && task->reclaim_state); 180 181 /* Check for the nulling of an already-nulled member */ 182 WARN_ON_ONCE(!rs && !task->reclaim_state); 183 184 task->reclaim_state = rs; 185 } 186 187 static LIST_HEAD(shrinker_list); 188 static DECLARE_RWSEM(shrinker_rwsem); 189 190 #ifdef CONFIG_MEMCG 191 static int shrinker_nr_max; 192 193 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 194 static inline int shrinker_map_size(int nr_items) 195 { 196 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 197 } 198 199 static inline int shrinker_defer_size(int nr_items) 200 { 201 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 202 } 203 204 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 205 int nid) 206 { 207 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 208 lockdep_is_held(&shrinker_rwsem)); 209 } 210 211 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 212 int map_size, int defer_size, 213 int old_map_size, int old_defer_size) 214 { 215 struct shrinker_info *new, *old; 216 struct mem_cgroup_per_node *pn; 217 int nid; 218 int size = map_size + defer_size; 219 220 for_each_node(nid) { 221 pn = memcg->nodeinfo[nid]; 222 old = shrinker_info_protected(memcg, nid); 223 /* Not yet online memcg */ 224 if (!old) 225 return 0; 226 227 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 228 if (!new) 229 return -ENOMEM; 230 231 new->nr_deferred = (atomic_long_t *)(new + 1); 232 new->map = (void *)new->nr_deferred + defer_size; 233 234 /* map: set all old bits, clear all new bits */ 235 memset(new->map, (int)0xff, old_map_size); 236 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 237 /* nr_deferred: copy old values, clear all new values */ 238 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 239 memset((void *)new->nr_deferred + old_defer_size, 0, 240 defer_size - old_defer_size); 241 242 rcu_assign_pointer(pn->shrinker_info, new); 243 kvfree_rcu(old, rcu); 244 } 245 246 return 0; 247 } 248 249 void free_shrinker_info(struct mem_cgroup *memcg) 250 { 251 struct mem_cgroup_per_node *pn; 252 struct shrinker_info *info; 253 int nid; 254 255 for_each_node(nid) { 256 pn = memcg->nodeinfo[nid]; 257 info = rcu_dereference_protected(pn->shrinker_info, true); 258 kvfree(info); 259 rcu_assign_pointer(pn->shrinker_info, NULL); 260 } 261 } 262 263 int alloc_shrinker_info(struct mem_cgroup *memcg) 264 { 265 struct shrinker_info *info; 266 int nid, size, ret = 0; 267 int map_size, defer_size = 0; 268 269 down_write(&shrinker_rwsem); 270 map_size = shrinker_map_size(shrinker_nr_max); 271 defer_size = shrinker_defer_size(shrinker_nr_max); 272 size = map_size + defer_size; 273 for_each_node(nid) { 274 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 275 if (!info) { 276 free_shrinker_info(memcg); 277 ret = -ENOMEM; 278 break; 279 } 280 info->nr_deferred = (atomic_long_t *)(info + 1); 281 info->map = (void *)info->nr_deferred + defer_size; 282 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 283 } 284 up_write(&shrinker_rwsem); 285 286 return ret; 287 } 288 289 static inline bool need_expand(int nr_max) 290 { 291 return round_up(nr_max, BITS_PER_LONG) > 292 round_up(shrinker_nr_max, BITS_PER_LONG); 293 } 294 295 static int expand_shrinker_info(int new_id) 296 { 297 int ret = 0; 298 int new_nr_max = new_id + 1; 299 int map_size, defer_size = 0; 300 int old_map_size, old_defer_size = 0; 301 struct mem_cgroup *memcg; 302 303 if (!need_expand(new_nr_max)) 304 goto out; 305 306 if (!root_mem_cgroup) 307 goto out; 308 309 lockdep_assert_held(&shrinker_rwsem); 310 311 map_size = shrinker_map_size(new_nr_max); 312 defer_size = shrinker_defer_size(new_nr_max); 313 old_map_size = shrinker_map_size(shrinker_nr_max); 314 old_defer_size = shrinker_defer_size(shrinker_nr_max); 315 316 memcg = mem_cgroup_iter(NULL, NULL, NULL); 317 do { 318 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 319 old_map_size, old_defer_size); 320 if (ret) { 321 mem_cgroup_iter_break(NULL, memcg); 322 goto out; 323 } 324 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 325 out: 326 if (!ret) 327 shrinker_nr_max = new_nr_max; 328 329 return ret; 330 } 331 332 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 333 { 334 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 335 struct shrinker_info *info; 336 337 rcu_read_lock(); 338 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 339 /* Pairs with smp mb in shrink_slab() */ 340 smp_mb__before_atomic(); 341 set_bit(shrinker_id, info->map); 342 rcu_read_unlock(); 343 } 344 } 345 346 static DEFINE_IDR(shrinker_idr); 347 348 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 349 { 350 int id, ret = -ENOMEM; 351 352 if (mem_cgroup_disabled()) 353 return -ENOSYS; 354 355 down_write(&shrinker_rwsem); 356 /* This may call shrinker, so it must use down_read_trylock() */ 357 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 358 if (id < 0) 359 goto unlock; 360 361 if (id >= shrinker_nr_max) { 362 if (expand_shrinker_info(id)) { 363 idr_remove(&shrinker_idr, id); 364 goto unlock; 365 } 366 } 367 shrinker->id = id; 368 ret = 0; 369 unlock: 370 up_write(&shrinker_rwsem); 371 return ret; 372 } 373 374 static void unregister_memcg_shrinker(struct shrinker *shrinker) 375 { 376 int id = shrinker->id; 377 378 BUG_ON(id < 0); 379 380 lockdep_assert_held(&shrinker_rwsem); 381 382 idr_remove(&shrinker_idr, id); 383 } 384 385 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 386 struct mem_cgroup *memcg) 387 { 388 struct shrinker_info *info; 389 390 info = shrinker_info_protected(memcg, nid); 391 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 392 } 393 394 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 395 struct mem_cgroup *memcg) 396 { 397 struct shrinker_info *info; 398 399 info = shrinker_info_protected(memcg, nid); 400 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 401 } 402 403 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 404 { 405 int i, nid; 406 long nr; 407 struct mem_cgroup *parent; 408 struct shrinker_info *child_info, *parent_info; 409 410 parent = parent_mem_cgroup(memcg); 411 if (!parent) 412 parent = root_mem_cgroup; 413 414 /* Prevent from concurrent shrinker_info expand */ 415 down_read(&shrinker_rwsem); 416 for_each_node(nid) { 417 child_info = shrinker_info_protected(memcg, nid); 418 parent_info = shrinker_info_protected(parent, nid); 419 for (i = 0; i < shrinker_nr_max; i++) { 420 nr = atomic_long_read(&child_info->nr_deferred[i]); 421 atomic_long_add(nr, &parent_info->nr_deferred[i]); 422 } 423 } 424 up_read(&shrinker_rwsem); 425 } 426 427 static bool cgroup_reclaim(struct scan_control *sc) 428 { 429 return sc->target_mem_cgroup; 430 } 431 432 /** 433 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 434 * @sc: scan_control in question 435 * 436 * The normal page dirty throttling mechanism in balance_dirty_pages() is 437 * completely broken with the legacy memcg and direct stalling in 438 * shrink_page_list() is used for throttling instead, which lacks all the 439 * niceties such as fairness, adaptive pausing, bandwidth proportional 440 * allocation and configurability. 441 * 442 * This function tests whether the vmscan currently in progress can assume 443 * that the normal dirty throttling mechanism is operational. 444 */ 445 static bool writeback_throttling_sane(struct scan_control *sc) 446 { 447 if (!cgroup_reclaim(sc)) 448 return true; 449 #ifdef CONFIG_CGROUP_WRITEBACK 450 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 451 return true; 452 #endif 453 return false; 454 } 455 #else 456 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 457 { 458 return -ENOSYS; 459 } 460 461 static void unregister_memcg_shrinker(struct shrinker *shrinker) 462 { 463 } 464 465 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 466 struct mem_cgroup *memcg) 467 { 468 return 0; 469 } 470 471 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 472 struct mem_cgroup *memcg) 473 { 474 return 0; 475 } 476 477 static bool cgroup_reclaim(struct scan_control *sc) 478 { 479 return false; 480 } 481 482 static bool writeback_throttling_sane(struct scan_control *sc) 483 { 484 return true; 485 } 486 #endif 487 488 static long xchg_nr_deferred(struct shrinker *shrinker, 489 struct shrink_control *sc) 490 { 491 int nid = sc->nid; 492 493 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 494 nid = 0; 495 496 if (sc->memcg && 497 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 498 return xchg_nr_deferred_memcg(nid, shrinker, 499 sc->memcg); 500 501 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 502 } 503 504 505 static long add_nr_deferred(long nr, struct shrinker *shrinker, 506 struct shrink_control *sc) 507 { 508 int nid = sc->nid; 509 510 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 511 nid = 0; 512 513 if (sc->memcg && 514 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 515 return add_nr_deferred_memcg(nr, nid, shrinker, 516 sc->memcg); 517 518 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 519 } 520 521 /* 522 * This misses isolated pages which are not accounted for to save counters. 523 * As the data only determines if reclaim or compaction continues, it is 524 * not expected that isolated pages will be a dominating factor. 525 */ 526 unsigned long zone_reclaimable_pages(struct zone *zone) 527 { 528 unsigned long nr; 529 530 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 531 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 532 if (get_nr_swap_pages() > 0) 533 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 534 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 535 536 return nr; 537 } 538 539 /** 540 * lruvec_lru_size - Returns the number of pages on the given LRU list. 541 * @lruvec: lru vector 542 * @lru: lru to use 543 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 544 */ 545 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 546 int zone_idx) 547 { 548 unsigned long size = 0; 549 int zid; 550 551 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 552 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 553 554 if (!managed_zone(zone)) 555 continue; 556 557 if (!mem_cgroup_disabled()) 558 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 559 else 560 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 561 } 562 return size; 563 } 564 565 /* 566 * Add a shrinker callback to be called from the vm. 567 */ 568 int prealloc_shrinker(struct shrinker *shrinker) 569 { 570 unsigned int size; 571 int err; 572 573 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 574 err = prealloc_memcg_shrinker(shrinker); 575 if (err != -ENOSYS) 576 return err; 577 578 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 579 } 580 581 size = sizeof(*shrinker->nr_deferred); 582 if (shrinker->flags & SHRINKER_NUMA_AWARE) 583 size *= nr_node_ids; 584 585 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 586 if (!shrinker->nr_deferred) 587 return -ENOMEM; 588 589 return 0; 590 } 591 592 void free_prealloced_shrinker(struct shrinker *shrinker) 593 { 594 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 595 down_write(&shrinker_rwsem); 596 unregister_memcg_shrinker(shrinker); 597 up_write(&shrinker_rwsem); 598 return; 599 } 600 601 kfree(shrinker->nr_deferred); 602 shrinker->nr_deferred = NULL; 603 } 604 605 void register_shrinker_prepared(struct shrinker *shrinker) 606 { 607 down_write(&shrinker_rwsem); 608 list_add_tail(&shrinker->list, &shrinker_list); 609 shrinker->flags |= SHRINKER_REGISTERED; 610 up_write(&shrinker_rwsem); 611 } 612 613 int register_shrinker(struct shrinker *shrinker) 614 { 615 int err = prealloc_shrinker(shrinker); 616 617 if (err) 618 return err; 619 register_shrinker_prepared(shrinker); 620 return 0; 621 } 622 EXPORT_SYMBOL(register_shrinker); 623 624 /* 625 * Remove one 626 */ 627 void unregister_shrinker(struct shrinker *shrinker) 628 { 629 if (!(shrinker->flags & SHRINKER_REGISTERED)) 630 return; 631 632 down_write(&shrinker_rwsem); 633 list_del(&shrinker->list); 634 shrinker->flags &= ~SHRINKER_REGISTERED; 635 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 636 unregister_memcg_shrinker(shrinker); 637 up_write(&shrinker_rwsem); 638 639 kfree(shrinker->nr_deferred); 640 shrinker->nr_deferred = NULL; 641 } 642 EXPORT_SYMBOL(unregister_shrinker); 643 644 #define SHRINK_BATCH 128 645 646 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 647 struct shrinker *shrinker, int priority) 648 { 649 unsigned long freed = 0; 650 unsigned long long delta; 651 long total_scan; 652 long freeable; 653 long nr; 654 long new_nr; 655 long batch_size = shrinker->batch ? shrinker->batch 656 : SHRINK_BATCH; 657 long scanned = 0, next_deferred; 658 659 freeable = shrinker->count_objects(shrinker, shrinkctl); 660 if (freeable == 0 || freeable == SHRINK_EMPTY) 661 return freeable; 662 663 /* 664 * copy the current shrinker scan count into a local variable 665 * and zero it so that other concurrent shrinker invocations 666 * don't also do this scanning work. 667 */ 668 nr = xchg_nr_deferred(shrinker, shrinkctl); 669 670 if (shrinker->seeks) { 671 delta = freeable >> priority; 672 delta *= 4; 673 do_div(delta, shrinker->seeks); 674 } else { 675 /* 676 * These objects don't require any IO to create. Trim 677 * them aggressively under memory pressure to keep 678 * them from causing refetches in the IO caches. 679 */ 680 delta = freeable / 2; 681 } 682 683 total_scan = nr >> priority; 684 total_scan += delta; 685 total_scan = min(total_scan, (2 * freeable)); 686 687 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 688 freeable, delta, total_scan, priority); 689 690 /* 691 * Normally, we should not scan less than batch_size objects in one 692 * pass to avoid too frequent shrinker calls, but if the slab has less 693 * than batch_size objects in total and we are really tight on memory, 694 * we will try to reclaim all available objects, otherwise we can end 695 * up failing allocations although there are plenty of reclaimable 696 * objects spread over several slabs with usage less than the 697 * batch_size. 698 * 699 * We detect the "tight on memory" situations by looking at the total 700 * number of objects we want to scan (total_scan). If it is greater 701 * than the total number of objects on slab (freeable), we must be 702 * scanning at high prio and therefore should try to reclaim as much as 703 * possible. 704 */ 705 while (total_scan >= batch_size || 706 total_scan >= freeable) { 707 unsigned long ret; 708 unsigned long nr_to_scan = min(batch_size, total_scan); 709 710 shrinkctl->nr_to_scan = nr_to_scan; 711 shrinkctl->nr_scanned = nr_to_scan; 712 ret = shrinker->scan_objects(shrinker, shrinkctl); 713 if (ret == SHRINK_STOP) 714 break; 715 freed += ret; 716 717 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 718 total_scan -= shrinkctl->nr_scanned; 719 scanned += shrinkctl->nr_scanned; 720 721 cond_resched(); 722 } 723 724 /* 725 * The deferred work is increased by any new work (delta) that wasn't 726 * done, decreased by old deferred work that was done now. 727 * 728 * And it is capped to two times of the freeable items. 729 */ 730 next_deferred = max_t(long, (nr + delta - scanned), 0); 731 next_deferred = min(next_deferred, (2 * freeable)); 732 733 /* 734 * move the unused scan count back into the shrinker in a 735 * manner that handles concurrent updates. 736 */ 737 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 738 739 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 740 return freed; 741 } 742 743 #ifdef CONFIG_MEMCG 744 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 745 struct mem_cgroup *memcg, int priority) 746 { 747 struct shrinker_info *info; 748 unsigned long ret, freed = 0; 749 int i; 750 751 if (!mem_cgroup_online(memcg)) 752 return 0; 753 754 if (!down_read_trylock(&shrinker_rwsem)) 755 return 0; 756 757 info = shrinker_info_protected(memcg, nid); 758 if (unlikely(!info)) 759 goto unlock; 760 761 for_each_set_bit(i, info->map, shrinker_nr_max) { 762 struct shrink_control sc = { 763 .gfp_mask = gfp_mask, 764 .nid = nid, 765 .memcg = memcg, 766 }; 767 struct shrinker *shrinker; 768 769 shrinker = idr_find(&shrinker_idr, i); 770 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 771 if (!shrinker) 772 clear_bit(i, info->map); 773 continue; 774 } 775 776 /* Call non-slab shrinkers even though kmem is disabled */ 777 if (!memcg_kmem_enabled() && 778 !(shrinker->flags & SHRINKER_NONSLAB)) 779 continue; 780 781 ret = do_shrink_slab(&sc, shrinker, priority); 782 if (ret == SHRINK_EMPTY) { 783 clear_bit(i, info->map); 784 /* 785 * After the shrinker reported that it had no objects to 786 * free, but before we cleared the corresponding bit in 787 * the memcg shrinker map, a new object might have been 788 * added. To make sure, we have the bit set in this 789 * case, we invoke the shrinker one more time and reset 790 * the bit if it reports that it is not empty anymore. 791 * The memory barrier here pairs with the barrier in 792 * set_shrinker_bit(): 793 * 794 * list_lru_add() shrink_slab_memcg() 795 * list_add_tail() clear_bit() 796 * <MB> <MB> 797 * set_bit() do_shrink_slab() 798 */ 799 smp_mb__after_atomic(); 800 ret = do_shrink_slab(&sc, shrinker, priority); 801 if (ret == SHRINK_EMPTY) 802 ret = 0; 803 else 804 set_shrinker_bit(memcg, nid, i); 805 } 806 freed += ret; 807 808 if (rwsem_is_contended(&shrinker_rwsem)) { 809 freed = freed ? : 1; 810 break; 811 } 812 } 813 unlock: 814 up_read(&shrinker_rwsem); 815 return freed; 816 } 817 #else /* CONFIG_MEMCG */ 818 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 819 struct mem_cgroup *memcg, int priority) 820 { 821 return 0; 822 } 823 #endif /* CONFIG_MEMCG */ 824 825 /** 826 * shrink_slab - shrink slab caches 827 * @gfp_mask: allocation context 828 * @nid: node whose slab caches to target 829 * @memcg: memory cgroup whose slab caches to target 830 * @priority: the reclaim priority 831 * 832 * Call the shrink functions to age shrinkable caches. 833 * 834 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 835 * unaware shrinkers will receive a node id of 0 instead. 836 * 837 * @memcg specifies the memory cgroup to target. Unaware shrinkers 838 * are called only if it is the root cgroup. 839 * 840 * @priority is sc->priority, we take the number of objects and >> by priority 841 * in order to get the scan target. 842 * 843 * Returns the number of reclaimed slab objects. 844 */ 845 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 846 struct mem_cgroup *memcg, 847 int priority) 848 { 849 unsigned long ret, freed = 0; 850 struct shrinker *shrinker; 851 852 /* 853 * The root memcg might be allocated even though memcg is disabled 854 * via "cgroup_disable=memory" boot parameter. This could make 855 * mem_cgroup_is_root() return false, then just run memcg slab 856 * shrink, but skip global shrink. This may result in premature 857 * oom. 858 */ 859 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 860 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 861 862 if (!down_read_trylock(&shrinker_rwsem)) 863 goto out; 864 865 list_for_each_entry(shrinker, &shrinker_list, list) { 866 struct shrink_control sc = { 867 .gfp_mask = gfp_mask, 868 .nid = nid, 869 .memcg = memcg, 870 }; 871 872 ret = do_shrink_slab(&sc, shrinker, priority); 873 if (ret == SHRINK_EMPTY) 874 ret = 0; 875 freed += ret; 876 /* 877 * Bail out if someone want to register a new shrinker to 878 * prevent the registration from being stalled for long periods 879 * by parallel ongoing shrinking. 880 */ 881 if (rwsem_is_contended(&shrinker_rwsem)) { 882 freed = freed ? : 1; 883 break; 884 } 885 } 886 887 up_read(&shrinker_rwsem); 888 out: 889 cond_resched(); 890 return freed; 891 } 892 893 void drop_slab_node(int nid) 894 { 895 unsigned long freed; 896 897 do { 898 struct mem_cgroup *memcg = NULL; 899 900 if (fatal_signal_pending(current)) 901 return; 902 903 freed = 0; 904 memcg = mem_cgroup_iter(NULL, NULL, NULL); 905 do { 906 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 907 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 908 } while (freed > 10); 909 } 910 911 void drop_slab(void) 912 { 913 int nid; 914 915 for_each_online_node(nid) 916 drop_slab_node(nid); 917 } 918 919 static inline int is_page_cache_freeable(struct page *page) 920 { 921 /* 922 * A freeable page cache page is referenced only by the caller 923 * that isolated the page, the page cache and optional buffer 924 * heads at page->private. 925 */ 926 int page_cache_pins = thp_nr_pages(page); 927 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 928 } 929 930 static int may_write_to_inode(struct inode *inode) 931 { 932 if (current->flags & PF_SWAPWRITE) 933 return 1; 934 if (!inode_write_congested(inode)) 935 return 1; 936 if (inode_to_bdi(inode) == current->backing_dev_info) 937 return 1; 938 return 0; 939 } 940 941 /* 942 * We detected a synchronous write error writing a page out. Probably 943 * -ENOSPC. We need to propagate that into the address_space for a subsequent 944 * fsync(), msync() or close(). 945 * 946 * The tricky part is that after writepage we cannot touch the mapping: nothing 947 * prevents it from being freed up. But we have a ref on the page and once 948 * that page is locked, the mapping is pinned. 949 * 950 * We're allowed to run sleeping lock_page() here because we know the caller has 951 * __GFP_FS. 952 */ 953 static void handle_write_error(struct address_space *mapping, 954 struct page *page, int error) 955 { 956 lock_page(page); 957 if (page_mapping(page) == mapping) 958 mapping_set_error(mapping, error); 959 unlock_page(page); 960 } 961 962 /* possible outcome of pageout() */ 963 typedef enum { 964 /* failed to write page out, page is locked */ 965 PAGE_KEEP, 966 /* move page to the active list, page is locked */ 967 PAGE_ACTIVATE, 968 /* page has been sent to the disk successfully, page is unlocked */ 969 PAGE_SUCCESS, 970 /* page is clean and locked */ 971 PAGE_CLEAN, 972 } pageout_t; 973 974 /* 975 * pageout is called by shrink_page_list() for each dirty page. 976 * Calls ->writepage(). 977 */ 978 static pageout_t pageout(struct page *page, struct address_space *mapping) 979 { 980 /* 981 * If the page is dirty, only perform writeback if that write 982 * will be non-blocking. To prevent this allocation from being 983 * stalled by pagecache activity. But note that there may be 984 * stalls if we need to run get_block(). We could test 985 * PagePrivate for that. 986 * 987 * If this process is currently in __generic_file_write_iter() against 988 * this page's queue, we can perform writeback even if that 989 * will block. 990 * 991 * If the page is swapcache, write it back even if that would 992 * block, for some throttling. This happens by accident, because 993 * swap_backing_dev_info is bust: it doesn't reflect the 994 * congestion state of the swapdevs. Easy to fix, if needed. 995 */ 996 if (!is_page_cache_freeable(page)) 997 return PAGE_KEEP; 998 if (!mapping) { 999 /* 1000 * Some data journaling orphaned pages can have 1001 * page->mapping == NULL while being dirty with clean buffers. 1002 */ 1003 if (page_has_private(page)) { 1004 if (try_to_free_buffers(page)) { 1005 ClearPageDirty(page); 1006 pr_info("%s: orphaned page\n", __func__); 1007 return PAGE_CLEAN; 1008 } 1009 } 1010 return PAGE_KEEP; 1011 } 1012 if (mapping->a_ops->writepage == NULL) 1013 return PAGE_ACTIVATE; 1014 if (!may_write_to_inode(mapping->host)) 1015 return PAGE_KEEP; 1016 1017 if (clear_page_dirty_for_io(page)) { 1018 int res; 1019 struct writeback_control wbc = { 1020 .sync_mode = WB_SYNC_NONE, 1021 .nr_to_write = SWAP_CLUSTER_MAX, 1022 .range_start = 0, 1023 .range_end = LLONG_MAX, 1024 .for_reclaim = 1, 1025 }; 1026 1027 SetPageReclaim(page); 1028 res = mapping->a_ops->writepage(page, &wbc); 1029 if (res < 0) 1030 handle_write_error(mapping, page, res); 1031 if (res == AOP_WRITEPAGE_ACTIVATE) { 1032 ClearPageReclaim(page); 1033 return PAGE_ACTIVATE; 1034 } 1035 1036 if (!PageWriteback(page)) { 1037 /* synchronous write or broken a_ops? */ 1038 ClearPageReclaim(page); 1039 } 1040 trace_mm_vmscan_writepage(page); 1041 inc_node_page_state(page, NR_VMSCAN_WRITE); 1042 return PAGE_SUCCESS; 1043 } 1044 1045 return PAGE_CLEAN; 1046 } 1047 1048 /* 1049 * Same as remove_mapping, but if the page is removed from the mapping, it 1050 * gets returned with a refcount of 0. 1051 */ 1052 static int __remove_mapping(struct address_space *mapping, struct page *page, 1053 bool reclaimed, struct mem_cgroup *target_memcg) 1054 { 1055 int refcount; 1056 void *shadow = NULL; 1057 1058 BUG_ON(!PageLocked(page)); 1059 BUG_ON(mapping != page_mapping(page)); 1060 1061 xa_lock_irq(&mapping->i_pages); 1062 /* 1063 * The non racy check for a busy page. 1064 * 1065 * Must be careful with the order of the tests. When someone has 1066 * a ref to the page, it may be possible that they dirty it then 1067 * drop the reference. So if PageDirty is tested before page_count 1068 * here, then the following race may occur: 1069 * 1070 * get_user_pages(&page); 1071 * [user mapping goes away] 1072 * write_to(page); 1073 * !PageDirty(page) [good] 1074 * SetPageDirty(page); 1075 * put_page(page); 1076 * !page_count(page) [good, discard it] 1077 * 1078 * [oops, our write_to data is lost] 1079 * 1080 * Reversing the order of the tests ensures such a situation cannot 1081 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 1082 * load is not satisfied before that of page->_refcount. 1083 * 1084 * Note that if SetPageDirty is always performed via set_page_dirty, 1085 * and thus under the i_pages lock, then this ordering is not required. 1086 */ 1087 refcount = 1 + compound_nr(page); 1088 if (!page_ref_freeze(page, refcount)) 1089 goto cannot_free; 1090 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 1091 if (unlikely(PageDirty(page))) { 1092 page_ref_unfreeze(page, refcount); 1093 goto cannot_free; 1094 } 1095 1096 if (PageSwapCache(page)) { 1097 swp_entry_t swap = { .val = page_private(page) }; 1098 mem_cgroup_swapout(page, swap); 1099 if (reclaimed && !mapping_exiting(mapping)) 1100 shadow = workingset_eviction(page, target_memcg); 1101 __delete_from_swap_cache(page, swap, shadow); 1102 xa_unlock_irq(&mapping->i_pages); 1103 put_swap_page(page, swap); 1104 } else { 1105 void (*freepage)(struct page *); 1106 1107 freepage = mapping->a_ops->freepage; 1108 /* 1109 * Remember a shadow entry for reclaimed file cache in 1110 * order to detect refaults, thus thrashing, later on. 1111 * 1112 * But don't store shadows in an address space that is 1113 * already exiting. This is not just an optimization, 1114 * inode reclaim needs to empty out the radix tree or 1115 * the nodes are lost. Don't plant shadows behind its 1116 * back. 1117 * 1118 * We also don't store shadows for DAX mappings because the 1119 * only page cache pages found in these are zero pages 1120 * covering holes, and because we don't want to mix DAX 1121 * exceptional entries and shadow exceptional entries in the 1122 * same address_space. 1123 */ 1124 if (reclaimed && page_is_file_lru(page) && 1125 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1126 shadow = workingset_eviction(page, target_memcg); 1127 __delete_from_page_cache(page, shadow); 1128 xa_unlock_irq(&mapping->i_pages); 1129 1130 if (freepage != NULL) 1131 freepage(page); 1132 } 1133 1134 return 1; 1135 1136 cannot_free: 1137 xa_unlock_irq(&mapping->i_pages); 1138 return 0; 1139 } 1140 1141 /* 1142 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 1143 * someone else has a ref on the page, abort and return 0. If it was 1144 * successfully detached, return 1. Assumes the caller has a single ref on 1145 * this page. 1146 */ 1147 int remove_mapping(struct address_space *mapping, struct page *page) 1148 { 1149 if (__remove_mapping(mapping, page, false, NULL)) { 1150 /* 1151 * Unfreezing the refcount with 1 rather than 2 effectively 1152 * drops the pagecache ref for us without requiring another 1153 * atomic operation. 1154 */ 1155 page_ref_unfreeze(page, 1); 1156 return 1; 1157 } 1158 return 0; 1159 } 1160 1161 /** 1162 * putback_lru_page - put previously isolated page onto appropriate LRU list 1163 * @page: page to be put back to appropriate lru list 1164 * 1165 * Add previously isolated @page to appropriate LRU list. 1166 * Page may still be unevictable for other reasons. 1167 * 1168 * lru_lock must not be held, interrupts must be enabled. 1169 */ 1170 void putback_lru_page(struct page *page) 1171 { 1172 lru_cache_add(page); 1173 put_page(page); /* drop ref from isolate */ 1174 } 1175 1176 enum page_references { 1177 PAGEREF_RECLAIM, 1178 PAGEREF_RECLAIM_CLEAN, 1179 PAGEREF_KEEP, 1180 PAGEREF_ACTIVATE, 1181 }; 1182 1183 static enum page_references page_check_references(struct page *page, 1184 struct scan_control *sc) 1185 { 1186 int referenced_ptes, referenced_page; 1187 unsigned long vm_flags; 1188 1189 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1190 &vm_flags); 1191 referenced_page = TestClearPageReferenced(page); 1192 1193 /* 1194 * Mlock lost the isolation race with us. Let try_to_unmap() 1195 * move the page to the unevictable list. 1196 */ 1197 if (vm_flags & VM_LOCKED) 1198 return PAGEREF_RECLAIM; 1199 1200 if (referenced_ptes) { 1201 /* 1202 * All mapped pages start out with page table 1203 * references from the instantiating fault, so we need 1204 * to look twice if a mapped file page is used more 1205 * than once. 1206 * 1207 * Mark it and spare it for another trip around the 1208 * inactive list. Another page table reference will 1209 * lead to its activation. 1210 * 1211 * Note: the mark is set for activated pages as well 1212 * so that recently deactivated but used pages are 1213 * quickly recovered. 1214 */ 1215 SetPageReferenced(page); 1216 1217 if (referenced_page || referenced_ptes > 1) 1218 return PAGEREF_ACTIVATE; 1219 1220 /* 1221 * Activate file-backed executable pages after first usage. 1222 */ 1223 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 1224 return PAGEREF_ACTIVATE; 1225 1226 return PAGEREF_KEEP; 1227 } 1228 1229 /* Reclaim if clean, defer dirty pages to writeback */ 1230 if (referenced_page && !PageSwapBacked(page)) 1231 return PAGEREF_RECLAIM_CLEAN; 1232 1233 return PAGEREF_RECLAIM; 1234 } 1235 1236 /* Check if a page is dirty or under writeback */ 1237 static void page_check_dirty_writeback(struct page *page, 1238 bool *dirty, bool *writeback) 1239 { 1240 struct address_space *mapping; 1241 1242 /* 1243 * Anonymous pages are not handled by flushers and must be written 1244 * from reclaim context. Do not stall reclaim based on them 1245 */ 1246 if (!page_is_file_lru(page) || 1247 (PageAnon(page) && !PageSwapBacked(page))) { 1248 *dirty = false; 1249 *writeback = false; 1250 return; 1251 } 1252 1253 /* By default assume that the page flags are accurate */ 1254 *dirty = PageDirty(page); 1255 *writeback = PageWriteback(page); 1256 1257 /* Verify dirty/writeback state if the filesystem supports it */ 1258 if (!page_has_private(page)) 1259 return; 1260 1261 mapping = page_mapping(page); 1262 if (mapping && mapping->a_ops->is_dirty_writeback) 1263 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1264 } 1265 1266 /* 1267 * shrink_page_list() returns the number of reclaimed pages 1268 */ 1269 static unsigned int shrink_page_list(struct list_head *page_list, 1270 struct pglist_data *pgdat, 1271 struct scan_control *sc, 1272 struct reclaim_stat *stat, 1273 bool ignore_references) 1274 { 1275 LIST_HEAD(ret_pages); 1276 LIST_HEAD(free_pages); 1277 unsigned int nr_reclaimed = 0; 1278 unsigned int pgactivate = 0; 1279 1280 memset(stat, 0, sizeof(*stat)); 1281 cond_resched(); 1282 1283 while (!list_empty(page_list)) { 1284 struct address_space *mapping; 1285 struct page *page; 1286 enum page_references references = PAGEREF_RECLAIM; 1287 bool dirty, writeback, may_enter_fs; 1288 unsigned int nr_pages; 1289 1290 cond_resched(); 1291 1292 page = lru_to_page(page_list); 1293 list_del(&page->lru); 1294 1295 if (!trylock_page(page)) 1296 goto keep; 1297 1298 VM_BUG_ON_PAGE(PageActive(page), page); 1299 1300 nr_pages = compound_nr(page); 1301 1302 /* Account the number of base pages even though THP */ 1303 sc->nr_scanned += nr_pages; 1304 1305 if (unlikely(!page_evictable(page))) 1306 goto activate_locked; 1307 1308 if (!sc->may_unmap && page_mapped(page)) 1309 goto keep_locked; 1310 1311 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1312 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1313 1314 /* 1315 * The number of dirty pages determines if a node is marked 1316 * reclaim_congested which affects wait_iff_congested. kswapd 1317 * will stall and start writing pages if the tail of the LRU 1318 * is all dirty unqueued pages. 1319 */ 1320 page_check_dirty_writeback(page, &dirty, &writeback); 1321 if (dirty || writeback) 1322 stat->nr_dirty++; 1323 1324 if (dirty && !writeback) 1325 stat->nr_unqueued_dirty++; 1326 1327 /* 1328 * Treat this page as congested if the underlying BDI is or if 1329 * pages are cycling through the LRU so quickly that the 1330 * pages marked for immediate reclaim are making it to the 1331 * end of the LRU a second time. 1332 */ 1333 mapping = page_mapping(page); 1334 if (((dirty || writeback) && mapping && 1335 inode_write_congested(mapping->host)) || 1336 (writeback && PageReclaim(page))) 1337 stat->nr_congested++; 1338 1339 /* 1340 * If a page at the tail of the LRU is under writeback, there 1341 * are three cases to consider. 1342 * 1343 * 1) If reclaim is encountering an excessive number of pages 1344 * under writeback and this page is both under writeback and 1345 * PageReclaim then it indicates that pages are being queued 1346 * for IO but are being recycled through the LRU before the 1347 * IO can complete. Waiting on the page itself risks an 1348 * indefinite stall if it is impossible to writeback the 1349 * page due to IO error or disconnected storage so instead 1350 * note that the LRU is being scanned too quickly and the 1351 * caller can stall after page list has been processed. 1352 * 1353 * 2) Global or new memcg reclaim encounters a page that is 1354 * not marked for immediate reclaim, or the caller does not 1355 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1356 * not to fs). In this case mark the page for immediate 1357 * reclaim and continue scanning. 1358 * 1359 * Require may_enter_fs because we would wait on fs, which 1360 * may not have submitted IO yet. And the loop driver might 1361 * enter reclaim, and deadlock if it waits on a page for 1362 * which it is needed to do the write (loop masks off 1363 * __GFP_IO|__GFP_FS for this reason); but more thought 1364 * would probably show more reasons. 1365 * 1366 * 3) Legacy memcg encounters a page that is already marked 1367 * PageReclaim. memcg does not have any dirty pages 1368 * throttling so we could easily OOM just because too many 1369 * pages are in writeback and there is nothing else to 1370 * reclaim. Wait for the writeback to complete. 1371 * 1372 * In cases 1) and 2) we activate the pages to get them out of 1373 * the way while we continue scanning for clean pages on the 1374 * inactive list and refilling from the active list. The 1375 * observation here is that waiting for disk writes is more 1376 * expensive than potentially causing reloads down the line. 1377 * Since they're marked for immediate reclaim, they won't put 1378 * memory pressure on the cache working set any longer than it 1379 * takes to write them to disk. 1380 */ 1381 if (PageWriteback(page)) { 1382 /* Case 1 above */ 1383 if (current_is_kswapd() && 1384 PageReclaim(page) && 1385 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1386 stat->nr_immediate++; 1387 goto activate_locked; 1388 1389 /* Case 2 above */ 1390 } else if (writeback_throttling_sane(sc) || 1391 !PageReclaim(page) || !may_enter_fs) { 1392 /* 1393 * This is slightly racy - end_page_writeback() 1394 * might have just cleared PageReclaim, then 1395 * setting PageReclaim here end up interpreted 1396 * as PageReadahead - but that does not matter 1397 * enough to care. What we do want is for this 1398 * page to have PageReclaim set next time memcg 1399 * reclaim reaches the tests above, so it will 1400 * then wait_on_page_writeback() to avoid OOM; 1401 * and it's also appropriate in global reclaim. 1402 */ 1403 SetPageReclaim(page); 1404 stat->nr_writeback++; 1405 goto activate_locked; 1406 1407 /* Case 3 above */ 1408 } else { 1409 unlock_page(page); 1410 wait_on_page_writeback(page); 1411 /* then go back and try same page again */ 1412 list_add_tail(&page->lru, page_list); 1413 continue; 1414 } 1415 } 1416 1417 if (!ignore_references) 1418 references = page_check_references(page, sc); 1419 1420 switch (references) { 1421 case PAGEREF_ACTIVATE: 1422 goto activate_locked; 1423 case PAGEREF_KEEP: 1424 stat->nr_ref_keep += nr_pages; 1425 goto keep_locked; 1426 case PAGEREF_RECLAIM: 1427 case PAGEREF_RECLAIM_CLEAN: 1428 ; /* try to reclaim the page below */ 1429 } 1430 1431 /* 1432 * Anonymous process memory has backing store? 1433 * Try to allocate it some swap space here. 1434 * Lazyfree page could be freed directly 1435 */ 1436 if (PageAnon(page) && PageSwapBacked(page)) { 1437 if (!PageSwapCache(page)) { 1438 if (!(sc->gfp_mask & __GFP_IO)) 1439 goto keep_locked; 1440 if (page_maybe_dma_pinned(page)) 1441 goto keep_locked; 1442 if (PageTransHuge(page)) { 1443 /* cannot split THP, skip it */ 1444 if (!can_split_huge_page(page, NULL)) 1445 goto activate_locked; 1446 /* 1447 * Split pages without a PMD map right 1448 * away. Chances are some or all of the 1449 * tail pages can be freed without IO. 1450 */ 1451 if (!compound_mapcount(page) && 1452 split_huge_page_to_list(page, 1453 page_list)) 1454 goto activate_locked; 1455 } 1456 if (!add_to_swap(page)) { 1457 if (!PageTransHuge(page)) 1458 goto activate_locked_split; 1459 /* Fallback to swap normal pages */ 1460 if (split_huge_page_to_list(page, 1461 page_list)) 1462 goto activate_locked; 1463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1464 count_vm_event(THP_SWPOUT_FALLBACK); 1465 #endif 1466 if (!add_to_swap(page)) 1467 goto activate_locked_split; 1468 } 1469 1470 may_enter_fs = true; 1471 1472 /* Adding to swap updated mapping */ 1473 mapping = page_mapping(page); 1474 } 1475 } else if (unlikely(PageTransHuge(page))) { 1476 /* Split file THP */ 1477 if (split_huge_page_to_list(page, page_list)) 1478 goto keep_locked; 1479 } 1480 1481 /* 1482 * THP may get split above, need minus tail pages and update 1483 * nr_pages to avoid accounting tail pages twice. 1484 * 1485 * The tail pages that are added into swap cache successfully 1486 * reach here. 1487 */ 1488 if ((nr_pages > 1) && !PageTransHuge(page)) { 1489 sc->nr_scanned -= (nr_pages - 1); 1490 nr_pages = 1; 1491 } 1492 1493 /* 1494 * The page is mapped into the page tables of one or more 1495 * processes. Try to unmap it here. 1496 */ 1497 if (page_mapped(page)) { 1498 enum ttu_flags flags = TTU_BATCH_FLUSH; 1499 bool was_swapbacked = PageSwapBacked(page); 1500 1501 if (unlikely(PageTransHuge(page))) 1502 flags |= TTU_SPLIT_HUGE_PMD; 1503 1504 try_to_unmap(page, flags); 1505 if (page_mapped(page)) { 1506 stat->nr_unmap_fail += nr_pages; 1507 if (!was_swapbacked && PageSwapBacked(page)) 1508 stat->nr_lazyfree_fail += nr_pages; 1509 goto activate_locked; 1510 } 1511 } 1512 1513 if (PageDirty(page)) { 1514 /* 1515 * Only kswapd can writeback filesystem pages 1516 * to avoid risk of stack overflow. But avoid 1517 * injecting inefficient single-page IO into 1518 * flusher writeback as much as possible: only 1519 * write pages when we've encountered many 1520 * dirty pages, and when we've already scanned 1521 * the rest of the LRU for clean pages and see 1522 * the same dirty pages again (PageReclaim). 1523 */ 1524 if (page_is_file_lru(page) && 1525 (!current_is_kswapd() || !PageReclaim(page) || 1526 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1527 /* 1528 * Immediately reclaim when written back. 1529 * Similar in principal to deactivate_page() 1530 * except we already have the page isolated 1531 * and know it's dirty 1532 */ 1533 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1534 SetPageReclaim(page); 1535 1536 goto activate_locked; 1537 } 1538 1539 if (references == PAGEREF_RECLAIM_CLEAN) 1540 goto keep_locked; 1541 if (!may_enter_fs) 1542 goto keep_locked; 1543 if (!sc->may_writepage) 1544 goto keep_locked; 1545 1546 /* 1547 * Page is dirty. Flush the TLB if a writable entry 1548 * potentially exists to avoid CPU writes after IO 1549 * starts and then write it out here. 1550 */ 1551 try_to_unmap_flush_dirty(); 1552 switch (pageout(page, mapping)) { 1553 case PAGE_KEEP: 1554 goto keep_locked; 1555 case PAGE_ACTIVATE: 1556 goto activate_locked; 1557 case PAGE_SUCCESS: 1558 stat->nr_pageout += thp_nr_pages(page); 1559 1560 if (PageWriteback(page)) 1561 goto keep; 1562 if (PageDirty(page)) 1563 goto keep; 1564 1565 /* 1566 * A synchronous write - probably a ramdisk. Go 1567 * ahead and try to reclaim the page. 1568 */ 1569 if (!trylock_page(page)) 1570 goto keep; 1571 if (PageDirty(page) || PageWriteback(page)) 1572 goto keep_locked; 1573 mapping = page_mapping(page); 1574 fallthrough; 1575 case PAGE_CLEAN: 1576 ; /* try to free the page below */ 1577 } 1578 } 1579 1580 /* 1581 * If the page has buffers, try to free the buffer mappings 1582 * associated with this page. If we succeed we try to free 1583 * the page as well. 1584 * 1585 * We do this even if the page is PageDirty(). 1586 * try_to_release_page() does not perform I/O, but it is 1587 * possible for a page to have PageDirty set, but it is actually 1588 * clean (all its buffers are clean). This happens if the 1589 * buffers were written out directly, with submit_bh(). ext3 1590 * will do this, as well as the blockdev mapping. 1591 * try_to_release_page() will discover that cleanness and will 1592 * drop the buffers and mark the page clean - it can be freed. 1593 * 1594 * Rarely, pages can have buffers and no ->mapping. These are 1595 * the pages which were not successfully invalidated in 1596 * truncate_cleanup_page(). We try to drop those buffers here 1597 * and if that worked, and the page is no longer mapped into 1598 * process address space (page_count == 1) it can be freed. 1599 * Otherwise, leave the page on the LRU so it is swappable. 1600 */ 1601 if (page_has_private(page)) { 1602 if (!try_to_release_page(page, sc->gfp_mask)) 1603 goto activate_locked; 1604 if (!mapping && page_count(page) == 1) { 1605 unlock_page(page); 1606 if (put_page_testzero(page)) 1607 goto free_it; 1608 else { 1609 /* 1610 * rare race with speculative reference. 1611 * the speculative reference will free 1612 * this page shortly, so we may 1613 * increment nr_reclaimed here (and 1614 * leave it off the LRU). 1615 */ 1616 nr_reclaimed++; 1617 continue; 1618 } 1619 } 1620 } 1621 1622 if (PageAnon(page) && !PageSwapBacked(page)) { 1623 /* follow __remove_mapping for reference */ 1624 if (!page_ref_freeze(page, 1)) 1625 goto keep_locked; 1626 if (PageDirty(page)) { 1627 page_ref_unfreeze(page, 1); 1628 goto keep_locked; 1629 } 1630 1631 count_vm_event(PGLAZYFREED); 1632 count_memcg_page_event(page, PGLAZYFREED); 1633 } else if (!mapping || !__remove_mapping(mapping, page, true, 1634 sc->target_mem_cgroup)) 1635 goto keep_locked; 1636 1637 unlock_page(page); 1638 free_it: 1639 /* 1640 * THP may get swapped out in a whole, need account 1641 * all base pages. 1642 */ 1643 nr_reclaimed += nr_pages; 1644 1645 /* 1646 * Is there need to periodically free_page_list? It would 1647 * appear not as the counts should be low 1648 */ 1649 if (unlikely(PageTransHuge(page))) 1650 destroy_compound_page(page); 1651 else 1652 list_add(&page->lru, &free_pages); 1653 continue; 1654 1655 activate_locked_split: 1656 /* 1657 * The tail pages that are failed to add into swap cache 1658 * reach here. Fixup nr_scanned and nr_pages. 1659 */ 1660 if (nr_pages > 1) { 1661 sc->nr_scanned -= (nr_pages - 1); 1662 nr_pages = 1; 1663 } 1664 activate_locked: 1665 /* Not a candidate for swapping, so reclaim swap space. */ 1666 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1667 PageMlocked(page))) 1668 try_to_free_swap(page); 1669 VM_BUG_ON_PAGE(PageActive(page), page); 1670 if (!PageMlocked(page)) { 1671 int type = page_is_file_lru(page); 1672 SetPageActive(page); 1673 stat->nr_activate[type] += nr_pages; 1674 count_memcg_page_event(page, PGACTIVATE); 1675 } 1676 keep_locked: 1677 unlock_page(page); 1678 keep: 1679 list_add(&page->lru, &ret_pages); 1680 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1681 } 1682 1683 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1684 1685 mem_cgroup_uncharge_list(&free_pages); 1686 try_to_unmap_flush(); 1687 free_unref_page_list(&free_pages); 1688 1689 list_splice(&ret_pages, page_list); 1690 count_vm_events(PGACTIVATE, pgactivate); 1691 1692 return nr_reclaimed; 1693 } 1694 1695 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1696 struct list_head *page_list) 1697 { 1698 struct scan_control sc = { 1699 .gfp_mask = GFP_KERNEL, 1700 .priority = DEF_PRIORITY, 1701 .may_unmap = 1, 1702 }; 1703 struct reclaim_stat stat; 1704 unsigned int nr_reclaimed; 1705 struct page *page, *next; 1706 LIST_HEAD(clean_pages); 1707 unsigned int noreclaim_flag; 1708 1709 list_for_each_entry_safe(page, next, page_list, lru) { 1710 if (!PageHuge(page) && page_is_file_lru(page) && 1711 !PageDirty(page) && !__PageMovable(page) && 1712 !PageUnevictable(page)) { 1713 ClearPageActive(page); 1714 list_move(&page->lru, &clean_pages); 1715 } 1716 } 1717 1718 /* 1719 * We should be safe here since we are only dealing with file pages and 1720 * we are not kswapd and therefore cannot write dirty file pages. But 1721 * call memalloc_noreclaim_save() anyway, just in case these conditions 1722 * change in the future. 1723 */ 1724 noreclaim_flag = memalloc_noreclaim_save(); 1725 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1726 &stat, true); 1727 memalloc_noreclaim_restore(noreclaim_flag); 1728 1729 list_splice(&clean_pages, page_list); 1730 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1731 -(long)nr_reclaimed); 1732 /* 1733 * Since lazyfree pages are isolated from file LRU from the beginning, 1734 * they will rotate back to anonymous LRU in the end if it failed to 1735 * discard so isolated count will be mismatched. 1736 * Compensate the isolated count for both LRU lists. 1737 */ 1738 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1739 stat.nr_lazyfree_fail); 1740 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1741 -(long)stat.nr_lazyfree_fail); 1742 return nr_reclaimed; 1743 } 1744 1745 /* 1746 * Attempt to remove the specified page from its LRU. Only take this page 1747 * if it is of the appropriate PageActive status. Pages which are being 1748 * freed elsewhere are also ignored. 1749 * 1750 * page: page to consider 1751 * mode: one of the LRU isolation modes defined above 1752 * 1753 * returns true on success, false on failure. 1754 */ 1755 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) 1756 { 1757 /* Only take pages on the LRU. */ 1758 if (!PageLRU(page)) 1759 return false; 1760 1761 /* Compaction should not handle unevictable pages but CMA can do so */ 1762 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1763 return false; 1764 1765 /* 1766 * To minimise LRU disruption, the caller can indicate that it only 1767 * wants to isolate pages it will be able to operate on without 1768 * blocking - clean pages for the most part. 1769 * 1770 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1771 * that it is possible to migrate without blocking 1772 */ 1773 if (mode & ISOLATE_ASYNC_MIGRATE) { 1774 /* All the caller can do on PageWriteback is block */ 1775 if (PageWriteback(page)) 1776 return false; 1777 1778 if (PageDirty(page)) { 1779 struct address_space *mapping; 1780 bool migrate_dirty; 1781 1782 /* 1783 * Only pages without mappings or that have a 1784 * ->migratepage callback are possible to migrate 1785 * without blocking. However, we can be racing with 1786 * truncation so it's necessary to lock the page 1787 * to stabilise the mapping as truncation holds 1788 * the page lock until after the page is removed 1789 * from the page cache. 1790 */ 1791 if (!trylock_page(page)) 1792 return false; 1793 1794 mapping = page_mapping(page); 1795 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1796 unlock_page(page); 1797 if (!migrate_dirty) 1798 return false; 1799 } 1800 } 1801 1802 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1803 return false; 1804 1805 return true; 1806 } 1807 1808 /* 1809 * Update LRU sizes after isolating pages. The LRU size updates must 1810 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1811 */ 1812 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1813 enum lru_list lru, unsigned long *nr_zone_taken) 1814 { 1815 int zid; 1816 1817 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1818 if (!nr_zone_taken[zid]) 1819 continue; 1820 1821 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1822 } 1823 1824 } 1825 1826 /* 1827 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1828 * 1829 * lruvec->lru_lock is heavily contended. Some of the functions that 1830 * shrink the lists perform better by taking out a batch of pages 1831 * and working on them outside the LRU lock. 1832 * 1833 * For pagecache intensive workloads, this function is the hottest 1834 * spot in the kernel (apart from copy_*_user functions). 1835 * 1836 * Lru_lock must be held before calling this function. 1837 * 1838 * @nr_to_scan: The number of eligible pages to look through on the list. 1839 * @lruvec: The LRU vector to pull pages from. 1840 * @dst: The temp list to put pages on to. 1841 * @nr_scanned: The number of pages that were scanned. 1842 * @sc: The scan_control struct for this reclaim session 1843 * @lru: LRU list id for isolating 1844 * 1845 * returns how many pages were moved onto *@dst. 1846 */ 1847 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1848 struct lruvec *lruvec, struct list_head *dst, 1849 unsigned long *nr_scanned, struct scan_control *sc, 1850 enum lru_list lru) 1851 { 1852 struct list_head *src = &lruvec->lists[lru]; 1853 unsigned long nr_taken = 0; 1854 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1855 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1856 unsigned long skipped = 0; 1857 unsigned long scan, total_scan, nr_pages; 1858 LIST_HEAD(pages_skipped); 1859 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1860 1861 total_scan = 0; 1862 scan = 0; 1863 while (scan < nr_to_scan && !list_empty(src)) { 1864 struct page *page; 1865 1866 page = lru_to_page(src); 1867 prefetchw_prev_lru_page(page, src, flags); 1868 1869 nr_pages = compound_nr(page); 1870 total_scan += nr_pages; 1871 1872 if (page_zonenum(page) > sc->reclaim_idx) { 1873 list_move(&page->lru, &pages_skipped); 1874 nr_skipped[page_zonenum(page)] += nr_pages; 1875 continue; 1876 } 1877 1878 /* 1879 * Do not count skipped pages because that makes the function 1880 * return with no isolated pages if the LRU mostly contains 1881 * ineligible pages. This causes the VM to not reclaim any 1882 * pages, triggering a premature OOM. 1883 * 1884 * Account all tail pages of THP. This would not cause 1885 * premature OOM since __isolate_lru_page() returns -EBUSY 1886 * only when the page is being freed somewhere else. 1887 */ 1888 scan += nr_pages; 1889 if (!__isolate_lru_page_prepare(page, mode)) { 1890 /* It is being freed elsewhere */ 1891 list_move(&page->lru, src); 1892 continue; 1893 } 1894 /* 1895 * Be careful not to clear PageLRU until after we're 1896 * sure the page is not being freed elsewhere -- the 1897 * page release code relies on it. 1898 */ 1899 if (unlikely(!get_page_unless_zero(page))) { 1900 list_move(&page->lru, src); 1901 continue; 1902 } 1903 1904 if (!TestClearPageLRU(page)) { 1905 /* Another thread is already isolating this page */ 1906 put_page(page); 1907 list_move(&page->lru, src); 1908 continue; 1909 } 1910 1911 nr_taken += nr_pages; 1912 nr_zone_taken[page_zonenum(page)] += nr_pages; 1913 list_move(&page->lru, dst); 1914 } 1915 1916 /* 1917 * Splice any skipped pages to the start of the LRU list. Note that 1918 * this disrupts the LRU order when reclaiming for lower zones but 1919 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1920 * scanning would soon rescan the same pages to skip and put the 1921 * system at risk of premature OOM. 1922 */ 1923 if (!list_empty(&pages_skipped)) { 1924 int zid; 1925 1926 list_splice(&pages_skipped, src); 1927 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1928 if (!nr_skipped[zid]) 1929 continue; 1930 1931 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1932 skipped += nr_skipped[zid]; 1933 } 1934 } 1935 *nr_scanned = total_scan; 1936 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1937 total_scan, skipped, nr_taken, mode, lru); 1938 update_lru_sizes(lruvec, lru, nr_zone_taken); 1939 return nr_taken; 1940 } 1941 1942 /** 1943 * isolate_lru_page - tries to isolate a page from its LRU list 1944 * @page: page to isolate from its LRU list 1945 * 1946 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1947 * vmstat statistic corresponding to whatever LRU list the page was on. 1948 * 1949 * Returns 0 if the page was removed from an LRU list. 1950 * Returns -EBUSY if the page was not on an LRU list. 1951 * 1952 * The returned page will have PageLRU() cleared. If it was found on 1953 * the active list, it will have PageActive set. If it was found on 1954 * the unevictable list, it will have the PageUnevictable bit set. That flag 1955 * may need to be cleared by the caller before letting the page go. 1956 * 1957 * The vmstat statistic corresponding to the list on which the page was 1958 * found will be decremented. 1959 * 1960 * Restrictions: 1961 * 1962 * (1) Must be called with an elevated refcount on the page. This is a 1963 * fundamental difference from isolate_lru_pages (which is called 1964 * without a stable reference). 1965 * (2) the lru_lock must not be held. 1966 * (3) interrupts must be enabled. 1967 */ 1968 int isolate_lru_page(struct page *page) 1969 { 1970 int ret = -EBUSY; 1971 1972 VM_BUG_ON_PAGE(!page_count(page), page); 1973 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1974 1975 if (TestClearPageLRU(page)) { 1976 struct lruvec *lruvec; 1977 1978 get_page(page); 1979 lruvec = lock_page_lruvec_irq(page); 1980 del_page_from_lru_list(page, lruvec); 1981 unlock_page_lruvec_irq(lruvec); 1982 ret = 0; 1983 } 1984 1985 return ret; 1986 } 1987 1988 /* 1989 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1990 * then get rescheduled. When there are massive number of tasks doing page 1991 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1992 * the LRU list will go small and be scanned faster than necessary, leading to 1993 * unnecessary swapping, thrashing and OOM. 1994 */ 1995 static int too_many_isolated(struct pglist_data *pgdat, int file, 1996 struct scan_control *sc) 1997 { 1998 unsigned long inactive, isolated; 1999 2000 if (current_is_kswapd()) 2001 return 0; 2002 2003 if (!writeback_throttling_sane(sc)) 2004 return 0; 2005 2006 if (file) { 2007 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2008 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2009 } else { 2010 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2011 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2012 } 2013 2014 /* 2015 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2016 * won't get blocked by normal direct-reclaimers, forming a circular 2017 * deadlock. 2018 */ 2019 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2020 inactive >>= 3; 2021 2022 return isolated > inactive; 2023 } 2024 2025 /* 2026 * move_pages_to_lru() moves pages from private @list to appropriate LRU list. 2027 * On return, @list is reused as a list of pages to be freed by the caller. 2028 * 2029 * Returns the number of pages moved to the given lruvec. 2030 */ 2031 static unsigned int move_pages_to_lru(struct lruvec *lruvec, 2032 struct list_head *list) 2033 { 2034 int nr_pages, nr_moved = 0; 2035 LIST_HEAD(pages_to_free); 2036 struct page *page; 2037 2038 while (!list_empty(list)) { 2039 page = lru_to_page(list); 2040 VM_BUG_ON_PAGE(PageLRU(page), page); 2041 list_del(&page->lru); 2042 if (unlikely(!page_evictable(page))) { 2043 spin_unlock_irq(&lruvec->lru_lock); 2044 putback_lru_page(page); 2045 spin_lock_irq(&lruvec->lru_lock); 2046 continue; 2047 } 2048 2049 /* 2050 * The SetPageLRU needs to be kept here for list integrity. 2051 * Otherwise: 2052 * #0 move_pages_to_lru #1 release_pages 2053 * if !put_page_testzero 2054 * if (put_page_testzero()) 2055 * !PageLRU //skip lru_lock 2056 * SetPageLRU() 2057 * list_add(&page->lru,) 2058 * list_add(&page->lru,) 2059 */ 2060 SetPageLRU(page); 2061 2062 if (unlikely(put_page_testzero(page))) { 2063 __clear_page_lru_flags(page); 2064 2065 if (unlikely(PageCompound(page))) { 2066 spin_unlock_irq(&lruvec->lru_lock); 2067 destroy_compound_page(page); 2068 spin_lock_irq(&lruvec->lru_lock); 2069 } else 2070 list_add(&page->lru, &pages_to_free); 2071 2072 continue; 2073 } 2074 2075 /* 2076 * All pages were isolated from the same lruvec (and isolation 2077 * inhibits memcg migration). 2078 */ 2079 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page); 2080 add_page_to_lru_list(page, lruvec); 2081 nr_pages = thp_nr_pages(page); 2082 nr_moved += nr_pages; 2083 if (PageActive(page)) 2084 workingset_age_nonresident(lruvec, nr_pages); 2085 } 2086 2087 /* 2088 * To save our caller's stack, now use input list for pages to free. 2089 */ 2090 list_splice(&pages_to_free, list); 2091 2092 return nr_moved; 2093 } 2094 2095 /* 2096 * If a kernel thread (such as nfsd for loop-back mounts) services 2097 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 2098 * In that case we should only throttle if the backing device it is 2099 * writing to is congested. In other cases it is safe to throttle. 2100 */ 2101 static int current_may_throttle(void) 2102 { 2103 return !(current->flags & PF_LOCAL_THROTTLE) || 2104 current->backing_dev_info == NULL || 2105 bdi_write_congested(current->backing_dev_info); 2106 } 2107 2108 /* 2109 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2110 * of reclaimed pages 2111 */ 2112 static unsigned long 2113 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 2114 struct scan_control *sc, enum lru_list lru) 2115 { 2116 LIST_HEAD(page_list); 2117 unsigned long nr_scanned; 2118 unsigned int nr_reclaimed = 0; 2119 unsigned long nr_taken; 2120 struct reclaim_stat stat; 2121 bool file = is_file_lru(lru); 2122 enum vm_event_item item; 2123 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2124 bool stalled = false; 2125 2126 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2127 if (stalled) 2128 return 0; 2129 2130 /* wait a bit for the reclaimer. */ 2131 msleep(100); 2132 stalled = true; 2133 2134 /* We are about to die and free our memory. Return now. */ 2135 if (fatal_signal_pending(current)) 2136 return SWAP_CLUSTER_MAX; 2137 } 2138 2139 lru_add_drain(); 2140 2141 spin_lock_irq(&lruvec->lru_lock); 2142 2143 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 2144 &nr_scanned, sc, lru); 2145 2146 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2147 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 2148 if (!cgroup_reclaim(sc)) 2149 __count_vm_events(item, nr_scanned); 2150 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2151 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2152 2153 spin_unlock_irq(&lruvec->lru_lock); 2154 2155 if (nr_taken == 0) 2156 return 0; 2157 2158 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 2159 2160 spin_lock_irq(&lruvec->lru_lock); 2161 move_pages_to_lru(lruvec, &page_list); 2162 2163 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2164 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2165 if (!cgroup_reclaim(sc)) 2166 __count_vm_events(item, nr_reclaimed); 2167 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2168 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2169 spin_unlock_irq(&lruvec->lru_lock); 2170 2171 lru_note_cost(lruvec, file, stat.nr_pageout); 2172 mem_cgroup_uncharge_list(&page_list); 2173 free_unref_page_list(&page_list); 2174 2175 /* 2176 * If dirty pages are scanned that are not queued for IO, it 2177 * implies that flushers are not doing their job. This can 2178 * happen when memory pressure pushes dirty pages to the end of 2179 * the LRU before the dirty limits are breached and the dirty 2180 * data has expired. It can also happen when the proportion of 2181 * dirty pages grows not through writes but through memory 2182 * pressure reclaiming all the clean cache. And in some cases, 2183 * the flushers simply cannot keep up with the allocation 2184 * rate. Nudge the flusher threads in case they are asleep. 2185 */ 2186 if (stat.nr_unqueued_dirty == nr_taken) 2187 wakeup_flusher_threads(WB_REASON_VMSCAN); 2188 2189 sc->nr.dirty += stat.nr_dirty; 2190 sc->nr.congested += stat.nr_congested; 2191 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2192 sc->nr.writeback += stat.nr_writeback; 2193 sc->nr.immediate += stat.nr_immediate; 2194 sc->nr.taken += nr_taken; 2195 if (file) 2196 sc->nr.file_taken += nr_taken; 2197 2198 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2199 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2200 return nr_reclaimed; 2201 } 2202 2203 /* 2204 * shrink_active_list() moves pages from the active LRU to the inactive LRU. 2205 * 2206 * We move them the other way if the page is referenced by one or more 2207 * processes. 2208 * 2209 * If the pages are mostly unmapped, the processing is fast and it is 2210 * appropriate to hold lru_lock across the whole operation. But if 2211 * the pages are mapped, the processing is slow (page_referenced()), so 2212 * we should drop lru_lock around each page. It's impossible to balance 2213 * this, so instead we remove the pages from the LRU while processing them. 2214 * It is safe to rely on PG_active against the non-LRU pages in here because 2215 * nobody will play with that bit on a non-LRU page. 2216 * 2217 * The downside is that we have to touch page->_refcount against each page. 2218 * But we had to alter page->flags anyway. 2219 */ 2220 static void shrink_active_list(unsigned long nr_to_scan, 2221 struct lruvec *lruvec, 2222 struct scan_control *sc, 2223 enum lru_list lru) 2224 { 2225 unsigned long nr_taken; 2226 unsigned long nr_scanned; 2227 unsigned long vm_flags; 2228 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2229 LIST_HEAD(l_active); 2230 LIST_HEAD(l_inactive); 2231 struct page *page; 2232 unsigned nr_deactivate, nr_activate; 2233 unsigned nr_rotated = 0; 2234 int file = is_file_lru(lru); 2235 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2236 2237 lru_add_drain(); 2238 2239 spin_lock_irq(&lruvec->lru_lock); 2240 2241 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2242 &nr_scanned, sc, lru); 2243 2244 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2245 2246 if (!cgroup_reclaim(sc)) 2247 __count_vm_events(PGREFILL, nr_scanned); 2248 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2249 2250 spin_unlock_irq(&lruvec->lru_lock); 2251 2252 while (!list_empty(&l_hold)) { 2253 cond_resched(); 2254 page = lru_to_page(&l_hold); 2255 list_del(&page->lru); 2256 2257 if (unlikely(!page_evictable(page))) { 2258 putback_lru_page(page); 2259 continue; 2260 } 2261 2262 if (unlikely(buffer_heads_over_limit)) { 2263 if (page_has_private(page) && trylock_page(page)) { 2264 if (page_has_private(page)) 2265 try_to_release_page(page, 0); 2266 unlock_page(page); 2267 } 2268 } 2269 2270 if (page_referenced(page, 0, sc->target_mem_cgroup, 2271 &vm_flags)) { 2272 /* 2273 * Identify referenced, file-backed active pages and 2274 * give them one more trip around the active list. So 2275 * that executable code get better chances to stay in 2276 * memory under moderate memory pressure. Anon pages 2277 * are not likely to be evicted by use-once streaming 2278 * IO, plus JVM can create lots of anon VM_EXEC pages, 2279 * so we ignore them here. 2280 */ 2281 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2282 nr_rotated += thp_nr_pages(page); 2283 list_add(&page->lru, &l_active); 2284 continue; 2285 } 2286 } 2287 2288 ClearPageActive(page); /* we are de-activating */ 2289 SetPageWorkingset(page); 2290 list_add(&page->lru, &l_inactive); 2291 } 2292 2293 /* 2294 * Move pages back to the lru list. 2295 */ 2296 spin_lock_irq(&lruvec->lru_lock); 2297 2298 nr_activate = move_pages_to_lru(lruvec, &l_active); 2299 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2300 /* Keep all free pages in l_active list */ 2301 list_splice(&l_inactive, &l_active); 2302 2303 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2304 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2305 2306 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2307 spin_unlock_irq(&lruvec->lru_lock); 2308 2309 mem_cgroup_uncharge_list(&l_active); 2310 free_unref_page_list(&l_active); 2311 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2312 nr_deactivate, nr_rotated, sc->priority, file); 2313 } 2314 2315 unsigned long reclaim_pages(struct list_head *page_list) 2316 { 2317 int nid = NUMA_NO_NODE; 2318 unsigned int nr_reclaimed = 0; 2319 LIST_HEAD(node_page_list); 2320 struct reclaim_stat dummy_stat; 2321 struct page *page; 2322 unsigned int noreclaim_flag; 2323 struct scan_control sc = { 2324 .gfp_mask = GFP_KERNEL, 2325 .priority = DEF_PRIORITY, 2326 .may_writepage = 1, 2327 .may_unmap = 1, 2328 .may_swap = 1, 2329 }; 2330 2331 noreclaim_flag = memalloc_noreclaim_save(); 2332 2333 while (!list_empty(page_list)) { 2334 page = lru_to_page(page_list); 2335 if (nid == NUMA_NO_NODE) { 2336 nid = page_to_nid(page); 2337 INIT_LIST_HEAD(&node_page_list); 2338 } 2339 2340 if (nid == page_to_nid(page)) { 2341 ClearPageActive(page); 2342 list_move(&page->lru, &node_page_list); 2343 continue; 2344 } 2345 2346 nr_reclaimed += shrink_page_list(&node_page_list, 2347 NODE_DATA(nid), 2348 &sc, &dummy_stat, false); 2349 while (!list_empty(&node_page_list)) { 2350 page = lru_to_page(&node_page_list); 2351 list_del(&page->lru); 2352 putback_lru_page(page); 2353 } 2354 2355 nid = NUMA_NO_NODE; 2356 } 2357 2358 if (!list_empty(&node_page_list)) { 2359 nr_reclaimed += shrink_page_list(&node_page_list, 2360 NODE_DATA(nid), 2361 &sc, &dummy_stat, false); 2362 while (!list_empty(&node_page_list)) { 2363 page = lru_to_page(&node_page_list); 2364 list_del(&page->lru); 2365 putback_lru_page(page); 2366 } 2367 } 2368 2369 memalloc_noreclaim_restore(noreclaim_flag); 2370 2371 return nr_reclaimed; 2372 } 2373 2374 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2375 struct lruvec *lruvec, struct scan_control *sc) 2376 { 2377 if (is_active_lru(lru)) { 2378 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2379 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2380 else 2381 sc->skipped_deactivate = 1; 2382 return 0; 2383 } 2384 2385 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2386 } 2387 2388 /* 2389 * The inactive anon list should be small enough that the VM never has 2390 * to do too much work. 2391 * 2392 * The inactive file list should be small enough to leave most memory 2393 * to the established workingset on the scan-resistant active list, 2394 * but large enough to avoid thrashing the aggregate readahead window. 2395 * 2396 * Both inactive lists should also be large enough that each inactive 2397 * page has a chance to be referenced again before it is reclaimed. 2398 * 2399 * If that fails and refaulting is observed, the inactive list grows. 2400 * 2401 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2402 * on this LRU, maintained by the pageout code. An inactive_ratio 2403 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2404 * 2405 * total target max 2406 * memory ratio inactive 2407 * ------------------------------------- 2408 * 10MB 1 5MB 2409 * 100MB 1 50MB 2410 * 1GB 3 250MB 2411 * 10GB 10 0.9GB 2412 * 100GB 31 3GB 2413 * 1TB 101 10GB 2414 * 10TB 320 32GB 2415 */ 2416 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2417 { 2418 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2419 unsigned long inactive, active; 2420 unsigned long inactive_ratio; 2421 unsigned long gb; 2422 2423 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2424 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2425 2426 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2427 if (gb) 2428 inactive_ratio = int_sqrt(10 * gb); 2429 else 2430 inactive_ratio = 1; 2431 2432 return inactive * inactive_ratio < active; 2433 } 2434 2435 enum scan_balance { 2436 SCAN_EQUAL, 2437 SCAN_FRACT, 2438 SCAN_ANON, 2439 SCAN_FILE, 2440 }; 2441 2442 /* 2443 * Determine how aggressively the anon and file LRU lists should be 2444 * scanned. The relative value of each set of LRU lists is determined 2445 * by looking at the fraction of the pages scanned we did rotate back 2446 * onto the active list instead of evict. 2447 * 2448 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2449 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2450 */ 2451 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2452 unsigned long *nr) 2453 { 2454 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2455 unsigned long anon_cost, file_cost, total_cost; 2456 int swappiness = mem_cgroup_swappiness(memcg); 2457 u64 fraction[ANON_AND_FILE]; 2458 u64 denominator = 0; /* gcc */ 2459 enum scan_balance scan_balance; 2460 unsigned long ap, fp; 2461 enum lru_list lru; 2462 2463 /* If we have no swap space, do not bother scanning anon pages. */ 2464 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2465 scan_balance = SCAN_FILE; 2466 goto out; 2467 } 2468 2469 /* 2470 * Global reclaim will swap to prevent OOM even with no 2471 * swappiness, but memcg users want to use this knob to 2472 * disable swapping for individual groups completely when 2473 * using the memory controller's swap limit feature would be 2474 * too expensive. 2475 */ 2476 if (cgroup_reclaim(sc) && !swappiness) { 2477 scan_balance = SCAN_FILE; 2478 goto out; 2479 } 2480 2481 /* 2482 * Do not apply any pressure balancing cleverness when the 2483 * system is close to OOM, scan both anon and file equally 2484 * (unless the swappiness setting disagrees with swapping). 2485 */ 2486 if (!sc->priority && swappiness) { 2487 scan_balance = SCAN_EQUAL; 2488 goto out; 2489 } 2490 2491 /* 2492 * If the system is almost out of file pages, force-scan anon. 2493 */ 2494 if (sc->file_is_tiny) { 2495 scan_balance = SCAN_ANON; 2496 goto out; 2497 } 2498 2499 /* 2500 * If there is enough inactive page cache, we do not reclaim 2501 * anything from the anonymous working right now. 2502 */ 2503 if (sc->cache_trim_mode) { 2504 scan_balance = SCAN_FILE; 2505 goto out; 2506 } 2507 2508 scan_balance = SCAN_FRACT; 2509 /* 2510 * Calculate the pressure balance between anon and file pages. 2511 * 2512 * The amount of pressure we put on each LRU is inversely 2513 * proportional to the cost of reclaiming each list, as 2514 * determined by the share of pages that are refaulting, times 2515 * the relative IO cost of bringing back a swapped out 2516 * anonymous page vs reloading a filesystem page (swappiness). 2517 * 2518 * Although we limit that influence to ensure no list gets 2519 * left behind completely: at least a third of the pressure is 2520 * applied, before swappiness. 2521 * 2522 * With swappiness at 100, anon and file have equal IO cost. 2523 */ 2524 total_cost = sc->anon_cost + sc->file_cost; 2525 anon_cost = total_cost + sc->anon_cost; 2526 file_cost = total_cost + sc->file_cost; 2527 total_cost = anon_cost + file_cost; 2528 2529 ap = swappiness * (total_cost + 1); 2530 ap /= anon_cost + 1; 2531 2532 fp = (200 - swappiness) * (total_cost + 1); 2533 fp /= file_cost + 1; 2534 2535 fraction[0] = ap; 2536 fraction[1] = fp; 2537 denominator = ap + fp; 2538 out: 2539 for_each_evictable_lru(lru) { 2540 int file = is_file_lru(lru); 2541 unsigned long lruvec_size; 2542 unsigned long low, min; 2543 unsigned long scan; 2544 2545 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2546 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2547 &min, &low); 2548 2549 if (min || low) { 2550 /* 2551 * Scale a cgroup's reclaim pressure by proportioning 2552 * its current usage to its memory.low or memory.min 2553 * setting. 2554 * 2555 * This is important, as otherwise scanning aggression 2556 * becomes extremely binary -- from nothing as we 2557 * approach the memory protection threshold, to totally 2558 * nominal as we exceed it. This results in requiring 2559 * setting extremely liberal protection thresholds. It 2560 * also means we simply get no protection at all if we 2561 * set it too low, which is not ideal. 2562 * 2563 * If there is any protection in place, we reduce scan 2564 * pressure by how much of the total memory used is 2565 * within protection thresholds. 2566 * 2567 * There is one special case: in the first reclaim pass, 2568 * we skip over all groups that are within their low 2569 * protection. If that fails to reclaim enough pages to 2570 * satisfy the reclaim goal, we come back and override 2571 * the best-effort low protection. However, we still 2572 * ideally want to honor how well-behaved groups are in 2573 * that case instead of simply punishing them all 2574 * equally. As such, we reclaim them based on how much 2575 * memory they are using, reducing the scan pressure 2576 * again by how much of the total memory used is under 2577 * hard protection. 2578 */ 2579 unsigned long cgroup_size = mem_cgroup_size(memcg); 2580 unsigned long protection; 2581 2582 /* memory.low scaling, make sure we retry before OOM */ 2583 if (!sc->memcg_low_reclaim && low > min) { 2584 protection = low; 2585 sc->memcg_low_skipped = 1; 2586 } else { 2587 protection = min; 2588 } 2589 2590 /* Avoid TOCTOU with earlier protection check */ 2591 cgroup_size = max(cgroup_size, protection); 2592 2593 scan = lruvec_size - lruvec_size * protection / 2594 cgroup_size; 2595 2596 /* 2597 * Minimally target SWAP_CLUSTER_MAX pages to keep 2598 * reclaim moving forwards, avoiding decrementing 2599 * sc->priority further than desirable. 2600 */ 2601 scan = max(scan, SWAP_CLUSTER_MAX); 2602 } else { 2603 scan = lruvec_size; 2604 } 2605 2606 scan >>= sc->priority; 2607 2608 /* 2609 * If the cgroup's already been deleted, make sure to 2610 * scrape out the remaining cache. 2611 */ 2612 if (!scan && !mem_cgroup_online(memcg)) 2613 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2614 2615 switch (scan_balance) { 2616 case SCAN_EQUAL: 2617 /* Scan lists relative to size */ 2618 break; 2619 case SCAN_FRACT: 2620 /* 2621 * Scan types proportional to swappiness and 2622 * their relative recent reclaim efficiency. 2623 * Make sure we don't miss the last page on 2624 * the offlined memory cgroups because of a 2625 * round-off error. 2626 */ 2627 scan = mem_cgroup_online(memcg) ? 2628 div64_u64(scan * fraction[file], denominator) : 2629 DIV64_U64_ROUND_UP(scan * fraction[file], 2630 denominator); 2631 break; 2632 case SCAN_FILE: 2633 case SCAN_ANON: 2634 /* Scan one type exclusively */ 2635 if ((scan_balance == SCAN_FILE) != file) 2636 scan = 0; 2637 break; 2638 default: 2639 /* Look ma, no brain */ 2640 BUG(); 2641 } 2642 2643 nr[lru] = scan; 2644 } 2645 } 2646 2647 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2648 { 2649 unsigned long nr[NR_LRU_LISTS]; 2650 unsigned long targets[NR_LRU_LISTS]; 2651 unsigned long nr_to_scan; 2652 enum lru_list lru; 2653 unsigned long nr_reclaimed = 0; 2654 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2655 struct blk_plug plug; 2656 bool scan_adjusted; 2657 2658 get_scan_count(lruvec, sc, nr); 2659 2660 /* Record the original scan target for proportional adjustments later */ 2661 memcpy(targets, nr, sizeof(nr)); 2662 2663 /* 2664 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2665 * event that can occur when there is little memory pressure e.g. 2666 * multiple streaming readers/writers. Hence, we do not abort scanning 2667 * when the requested number of pages are reclaimed when scanning at 2668 * DEF_PRIORITY on the assumption that the fact we are direct 2669 * reclaiming implies that kswapd is not keeping up and it is best to 2670 * do a batch of work at once. For memcg reclaim one check is made to 2671 * abort proportional reclaim if either the file or anon lru has already 2672 * dropped to zero at the first pass. 2673 */ 2674 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2675 sc->priority == DEF_PRIORITY); 2676 2677 blk_start_plug(&plug); 2678 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2679 nr[LRU_INACTIVE_FILE]) { 2680 unsigned long nr_anon, nr_file, percentage; 2681 unsigned long nr_scanned; 2682 2683 for_each_evictable_lru(lru) { 2684 if (nr[lru]) { 2685 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2686 nr[lru] -= nr_to_scan; 2687 2688 nr_reclaimed += shrink_list(lru, nr_to_scan, 2689 lruvec, sc); 2690 } 2691 } 2692 2693 cond_resched(); 2694 2695 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2696 continue; 2697 2698 /* 2699 * For kswapd and memcg, reclaim at least the number of pages 2700 * requested. Ensure that the anon and file LRUs are scanned 2701 * proportionally what was requested by get_scan_count(). We 2702 * stop reclaiming one LRU and reduce the amount scanning 2703 * proportional to the original scan target. 2704 */ 2705 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2706 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2707 2708 /* 2709 * It's just vindictive to attack the larger once the smaller 2710 * has gone to zero. And given the way we stop scanning the 2711 * smaller below, this makes sure that we only make one nudge 2712 * towards proportionality once we've got nr_to_reclaim. 2713 */ 2714 if (!nr_file || !nr_anon) 2715 break; 2716 2717 if (nr_file > nr_anon) { 2718 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2719 targets[LRU_ACTIVE_ANON] + 1; 2720 lru = LRU_BASE; 2721 percentage = nr_anon * 100 / scan_target; 2722 } else { 2723 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2724 targets[LRU_ACTIVE_FILE] + 1; 2725 lru = LRU_FILE; 2726 percentage = nr_file * 100 / scan_target; 2727 } 2728 2729 /* Stop scanning the smaller of the LRU */ 2730 nr[lru] = 0; 2731 nr[lru + LRU_ACTIVE] = 0; 2732 2733 /* 2734 * Recalculate the other LRU scan count based on its original 2735 * scan target and the percentage scanning already complete 2736 */ 2737 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2738 nr_scanned = targets[lru] - nr[lru]; 2739 nr[lru] = targets[lru] * (100 - percentage) / 100; 2740 nr[lru] -= min(nr[lru], nr_scanned); 2741 2742 lru += LRU_ACTIVE; 2743 nr_scanned = targets[lru] - nr[lru]; 2744 nr[lru] = targets[lru] * (100 - percentage) / 100; 2745 nr[lru] -= min(nr[lru], nr_scanned); 2746 2747 scan_adjusted = true; 2748 } 2749 blk_finish_plug(&plug); 2750 sc->nr_reclaimed += nr_reclaimed; 2751 2752 /* 2753 * Even if we did not try to evict anon pages at all, we want to 2754 * rebalance the anon lru active/inactive ratio. 2755 */ 2756 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2757 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2758 sc, LRU_ACTIVE_ANON); 2759 } 2760 2761 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2762 static bool in_reclaim_compaction(struct scan_control *sc) 2763 { 2764 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2765 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2766 sc->priority < DEF_PRIORITY - 2)) 2767 return true; 2768 2769 return false; 2770 } 2771 2772 /* 2773 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2774 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2775 * true if more pages should be reclaimed such that when the page allocator 2776 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2777 * It will give up earlier than that if there is difficulty reclaiming pages. 2778 */ 2779 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2780 unsigned long nr_reclaimed, 2781 struct scan_control *sc) 2782 { 2783 unsigned long pages_for_compaction; 2784 unsigned long inactive_lru_pages; 2785 int z; 2786 2787 /* If not in reclaim/compaction mode, stop */ 2788 if (!in_reclaim_compaction(sc)) 2789 return false; 2790 2791 /* 2792 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2793 * number of pages that were scanned. This will return to the caller 2794 * with the risk reclaim/compaction and the resulting allocation attempt 2795 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2796 * allocations through requiring that the full LRU list has been scanned 2797 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2798 * scan, but that approximation was wrong, and there were corner cases 2799 * where always a non-zero amount of pages were scanned. 2800 */ 2801 if (!nr_reclaimed) 2802 return false; 2803 2804 /* If compaction would go ahead or the allocation would succeed, stop */ 2805 for (z = 0; z <= sc->reclaim_idx; z++) { 2806 struct zone *zone = &pgdat->node_zones[z]; 2807 if (!managed_zone(zone)) 2808 continue; 2809 2810 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2811 case COMPACT_SUCCESS: 2812 case COMPACT_CONTINUE: 2813 return false; 2814 default: 2815 /* check next zone */ 2816 ; 2817 } 2818 } 2819 2820 /* 2821 * If we have not reclaimed enough pages for compaction and the 2822 * inactive lists are large enough, continue reclaiming 2823 */ 2824 pages_for_compaction = compact_gap(sc->order); 2825 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2826 if (get_nr_swap_pages() > 0) 2827 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2828 2829 return inactive_lru_pages > pages_for_compaction; 2830 } 2831 2832 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2833 { 2834 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2835 struct mem_cgroup *memcg; 2836 2837 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2838 do { 2839 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2840 unsigned long reclaimed; 2841 unsigned long scanned; 2842 2843 /* 2844 * This loop can become CPU-bound when target memcgs 2845 * aren't eligible for reclaim - either because they 2846 * don't have any reclaimable pages, or because their 2847 * memory is explicitly protected. Avoid soft lockups. 2848 */ 2849 cond_resched(); 2850 2851 mem_cgroup_calculate_protection(target_memcg, memcg); 2852 2853 if (mem_cgroup_below_min(memcg)) { 2854 /* 2855 * Hard protection. 2856 * If there is no reclaimable memory, OOM. 2857 */ 2858 continue; 2859 } else if (mem_cgroup_below_low(memcg)) { 2860 /* 2861 * Soft protection. 2862 * Respect the protection only as long as 2863 * there is an unprotected supply 2864 * of reclaimable memory from other cgroups. 2865 */ 2866 if (!sc->memcg_low_reclaim) { 2867 sc->memcg_low_skipped = 1; 2868 continue; 2869 } 2870 memcg_memory_event(memcg, MEMCG_LOW); 2871 } 2872 2873 reclaimed = sc->nr_reclaimed; 2874 scanned = sc->nr_scanned; 2875 2876 shrink_lruvec(lruvec, sc); 2877 2878 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2879 sc->priority); 2880 2881 /* Record the group's reclaim efficiency */ 2882 vmpressure(sc->gfp_mask, memcg, false, 2883 sc->nr_scanned - scanned, 2884 sc->nr_reclaimed - reclaimed); 2885 2886 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2887 } 2888 2889 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2890 { 2891 struct reclaim_state *reclaim_state = current->reclaim_state; 2892 unsigned long nr_reclaimed, nr_scanned; 2893 struct lruvec *target_lruvec; 2894 bool reclaimable = false; 2895 unsigned long file; 2896 2897 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2898 2899 again: 2900 /* 2901 * Flush the memory cgroup stats, so that we read accurate per-memcg 2902 * lruvec stats for heuristics. 2903 */ 2904 mem_cgroup_flush_stats(); 2905 2906 memset(&sc->nr, 0, sizeof(sc->nr)); 2907 2908 nr_reclaimed = sc->nr_reclaimed; 2909 nr_scanned = sc->nr_scanned; 2910 2911 /* 2912 * Determine the scan balance between anon and file LRUs. 2913 */ 2914 spin_lock_irq(&target_lruvec->lru_lock); 2915 sc->anon_cost = target_lruvec->anon_cost; 2916 sc->file_cost = target_lruvec->file_cost; 2917 spin_unlock_irq(&target_lruvec->lru_lock); 2918 2919 /* 2920 * Target desirable inactive:active list ratios for the anon 2921 * and file LRU lists. 2922 */ 2923 if (!sc->force_deactivate) { 2924 unsigned long refaults; 2925 2926 refaults = lruvec_page_state(target_lruvec, 2927 WORKINGSET_ACTIVATE_ANON); 2928 if (refaults != target_lruvec->refaults[0] || 2929 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2930 sc->may_deactivate |= DEACTIVATE_ANON; 2931 else 2932 sc->may_deactivate &= ~DEACTIVATE_ANON; 2933 2934 /* 2935 * When refaults are being observed, it means a new 2936 * workingset is being established. Deactivate to get 2937 * rid of any stale active pages quickly. 2938 */ 2939 refaults = lruvec_page_state(target_lruvec, 2940 WORKINGSET_ACTIVATE_FILE); 2941 if (refaults != target_lruvec->refaults[1] || 2942 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2943 sc->may_deactivate |= DEACTIVATE_FILE; 2944 else 2945 sc->may_deactivate &= ~DEACTIVATE_FILE; 2946 } else 2947 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2948 2949 /* 2950 * If we have plenty of inactive file pages that aren't 2951 * thrashing, try to reclaim those first before touching 2952 * anonymous pages. 2953 */ 2954 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2955 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2956 sc->cache_trim_mode = 1; 2957 else 2958 sc->cache_trim_mode = 0; 2959 2960 /* 2961 * Prevent the reclaimer from falling into the cache trap: as 2962 * cache pages start out inactive, every cache fault will tip 2963 * the scan balance towards the file LRU. And as the file LRU 2964 * shrinks, so does the window for rotation from references. 2965 * This means we have a runaway feedback loop where a tiny 2966 * thrashing file LRU becomes infinitely more attractive than 2967 * anon pages. Try to detect this based on file LRU size. 2968 */ 2969 if (!cgroup_reclaim(sc)) { 2970 unsigned long total_high_wmark = 0; 2971 unsigned long free, anon; 2972 int z; 2973 2974 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2975 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2976 node_page_state(pgdat, NR_INACTIVE_FILE); 2977 2978 for (z = 0; z < MAX_NR_ZONES; z++) { 2979 struct zone *zone = &pgdat->node_zones[z]; 2980 if (!managed_zone(zone)) 2981 continue; 2982 2983 total_high_wmark += high_wmark_pages(zone); 2984 } 2985 2986 /* 2987 * Consider anon: if that's low too, this isn't a 2988 * runaway file reclaim problem, but rather just 2989 * extreme pressure. Reclaim as per usual then. 2990 */ 2991 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2992 2993 sc->file_is_tiny = 2994 file + free <= total_high_wmark && 2995 !(sc->may_deactivate & DEACTIVATE_ANON) && 2996 anon >> sc->priority; 2997 } 2998 2999 shrink_node_memcgs(pgdat, sc); 3000 3001 if (reclaim_state) { 3002 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 3003 reclaim_state->reclaimed_slab = 0; 3004 } 3005 3006 /* Record the subtree's reclaim efficiency */ 3007 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 3008 sc->nr_scanned - nr_scanned, 3009 sc->nr_reclaimed - nr_reclaimed); 3010 3011 if (sc->nr_reclaimed - nr_reclaimed) 3012 reclaimable = true; 3013 3014 if (current_is_kswapd()) { 3015 /* 3016 * If reclaim is isolating dirty pages under writeback, 3017 * it implies that the long-lived page allocation rate 3018 * is exceeding the page laundering rate. Either the 3019 * global limits are not being effective at throttling 3020 * processes due to the page distribution throughout 3021 * zones or there is heavy usage of a slow backing 3022 * device. The only option is to throttle from reclaim 3023 * context which is not ideal as there is no guarantee 3024 * the dirtying process is throttled in the same way 3025 * balance_dirty_pages() manages. 3026 * 3027 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 3028 * count the number of pages under pages flagged for 3029 * immediate reclaim and stall if any are encountered 3030 * in the nr_immediate check below. 3031 */ 3032 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 3033 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 3034 3035 /* Allow kswapd to start writing pages during reclaim.*/ 3036 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 3037 set_bit(PGDAT_DIRTY, &pgdat->flags); 3038 3039 /* 3040 * If kswapd scans pages marked for immediate 3041 * reclaim and under writeback (nr_immediate), it 3042 * implies that pages are cycling through the LRU 3043 * faster than they are written so also forcibly stall. 3044 */ 3045 if (sc->nr.immediate) 3046 congestion_wait(BLK_RW_ASYNC, HZ/10); 3047 } 3048 3049 /* 3050 * Tag a node/memcg as congested if all the dirty pages 3051 * scanned were backed by a congested BDI and 3052 * wait_iff_congested will stall. 3053 * 3054 * Legacy memcg will stall in page writeback so avoid forcibly 3055 * stalling in wait_iff_congested(). 3056 */ 3057 if ((current_is_kswapd() || 3058 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 3059 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 3060 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 3061 3062 /* 3063 * Stall direct reclaim for IO completions if underlying BDIs 3064 * and node is congested. Allow kswapd to continue until it 3065 * starts encountering unqueued dirty pages or cycling through 3066 * the LRU too quickly. 3067 */ 3068 if (!current_is_kswapd() && current_may_throttle() && 3069 !sc->hibernation_mode && 3070 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 3071 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 3072 3073 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 3074 sc)) 3075 goto again; 3076 3077 /* 3078 * Kswapd gives up on balancing particular nodes after too 3079 * many failures to reclaim anything from them and goes to 3080 * sleep. On reclaim progress, reset the failure counter. A 3081 * successful direct reclaim run will revive a dormant kswapd. 3082 */ 3083 if (reclaimable) 3084 pgdat->kswapd_failures = 0; 3085 } 3086 3087 /* 3088 * Returns true if compaction should go ahead for a costly-order request, or 3089 * the allocation would already succeed without compaction. Return false if we 3090 * should reclaim first. 3091 */ 3092 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 3093 { 3094 unsigned long watermark; 3095 enum compact_result suitable; 3096 3097 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 3098 if (suitable == COMPACT_SUCCESS) 3099 /* Allocation should succeed already. Don't reclaim. */ 3100 return true; 3101 if (suitable == COMPACT_SKIPPED) 3102 /* Compaction cannot yet proceed. Do reclaim. */ 3103 return false; 3104 3105 /* 3106 * Compaction is already possible, but it takes time to run and there 3107 * are potentially other callers using the pages just freed. So proceed 3108 * with reclaim to make a buffer of free pages available to give 3109 * compaction a reasonable chance of completing and allocating the page. 3110 * Note that we won't actually reclaim the whole buffer in one attempt 3111 * as the target watermark in should_continue_reclaim() is lower. But if 3112 * we are already above the high+gap watermark, don't reclaim at all. 3113 */ 3114 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 3115 3116 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 3117 } 3118 3119 /* 3120 * This is the direct reclaim path, for page-allocating processes. We only 3121 * try to reclaim pages from zones which will satisfy the caller's allocation 3122 * request. 3123 * 3124 * If a zone is deemed to be full of pinned pages then just give it a light 3125 * scan then give up on it. 3126 */ 3127 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 3128 { 3129 struct zoneref *z; 3130 struct zone *zone; 3131 unsigned long nr_soft_reclaimed; 3132 unsigned long nr_soft_scanned; 3133 gfp_t orig_mask; 3134 pg_data_t *last_pgdat = NULL; 3135 3136 /* 3137 * If the number of buffer_heads in the machine exceeds the maximum 3138 * allowed level, force direct reclaim to scan the highmem zone as 3139 * highmem pages could be pinning lowmem pages storing buffer_heads 3140 */ 3141 orig_mask = sc->gfp_mask; 3142 if (buffer_heads_over_limit) { 3143 sc->gfp_mask |= __GFP_HIGHMEM; 3144 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 3145 } 3146 3147 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3148 sc->reclaim_idx, sc->nodemask) { 3149 /* 3150 * Take care memory controller reclaiming has small influence 3151 * to global LRU. 3152 */ 3153 if (!cgroup_reclaim(sc)) { 3154 if (!cpuset_zone_allowed(zone, 3155 GFP_KERNEL | __GFP_HARDWALL)) 3156 continue; 3157 3158 /* 3159 * If we already have plenty of memory free for 3160 * compaction in this zone, don't free any more. 3161 * Even though compaction is invoked for any 3162 * non-zero order, only frequent costly order 3163 * reclamation is disruptive enough to become a 3164 * noticeable problem, like transparent huge 3165 * page allocations. 3166 */ 3167 if (IS_ENABLED(CONFIG_COMPACTION) && 3168 sc->order > PAGE_ALLOC_COSTLY_ORDER && 3169 compaction_ready(zone, sc)) { 3170 sc->compaction_ready = true; 3171 continue; 3172 } 3173 3174 /* 3175 * Shrink each node in the zonelist once. If the 3176 * zonelist is ordered by zone (not the default) then a 3177 * node may be shrunk multiple times but in that case 3178 * the user prefers lower zones being preserved. 3179 */ 3180 if (zone->zone_pgdat == last_pgdat) 3181 continue; 3182 3183 /* 3184 * This steals pages from memory cgroups over softlimit 3185 * and returns the number of reclaimed pages and 3186 * scanned pages. This works for global memory pressure 3187 * and balancing, not for a memcg's limit. 3188 */ 3189 nr_soft_scanned = 0; 3190 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 3191 sc->order, sc->gfp_mask, 3192 &nr_soft_scanned); 3193 sc->nr_reclaimed += nr_soft_reclaimed; 3194 sc->nr_scanned += nr_soft_scanned; 3195 /* need some check for avoid more shrink_zone() */ 3196 } 3197 3198 /* See comment about same check for global reclaim above */ 3199 if (zone->zone_pgdat == last_pgdat) 3200 continue; 3201 last_pgdat = zone->zone_pgdat; 3202 shrink_node(zone->zone_pgdat, sc); 3203 } 3204 3205 /* 3206 * Restore to original mask to avoid the impact on the caller if we 3207 * promoted it to __GFP_HIGHMEM. 3208 */ 3209 sc->gfp_mask = orig_mask; 3210 } 3211 3212 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 3213 { 3214 struct lruvec *target_lruvec; 3215 unsigned long refaults; 3216 3217 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 3218 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 3219 target_lruvec->refaults[0] = refaults; 3220 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 3221 target_lruvec->refaults[1] = refaults; 3222 } 3223 3224 /* 3225 * This is the main entry point to direct page reclaim. 3226 * 3227 * If a full scan of the inactive list fails to free enough memory then we 3228 * are "out of memory" and something needs to be killed. 3229 * 3230 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3231 * high - the zone may be full of dirty or under-writeback pages, which this 3232 * caller can't do much about. We kick the writeback threads and take explicit 3233 * naps in the hope that some of these pages can be written. But if the 3234 * allocating task holds filesystem locks which prevent writeout this might not 3235 * work, and the allocation attempt will fail. 3236 * 3237 * returns: 0, if no pages reclaimed 3238 * else, the number of pages reclaimed 3239 */ 3240 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3241 struct scan_control *sc) 3242 { 3243 int initial_priority = sc->priority; 3244 pg_data_t *last_pgdat; 3245 struct zoneref *z; 3246 struct zone *zone; 3247 retry: 3248 delayacct_freepages_start(); 3249 3250 if (!cgroup_reclaim(sc)) 3251 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3252 3253 do { 3254 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3255 sc->priority); 3256 sc->nr_scanned = 0; 3257 shrink_zones(zonelist, sc); 3258 3259 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3260 break; 3261 3262 if (sc->compaction_ready) 3263 break; 3264 3265 /* 3266 * If we're getting trouble reclaiming, start doing 3267 * writepage even in laptop mode. 3268 */ 3269 if (sc->priority < DEF_PRIORITY - 2) 3270 sc->may_writepage = 1; 3271 } while (--sc->priority >= 0); 3272 3273 last_pgdat = NULL; 3274 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3275 sc->nodemask) { 3276 if (zone->zone_pgdat == last_pgdat) 3277 continue; 3278 last_pgdat = zone->zone_pgdat; 3279 3280 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3281 3282 if (cgroup_reclaim(sc)) { 3283 struct lruvec *lruvec; 3284 3285 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3286 zone->zone_pgdat); 3287 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3288 } 3289 } 3290 3291 delayacct_freepages_end(); 3292 3293 if (sc->nr_reclaimed) 3294 return sc->nr_reclaimed; 3295 3296 /* Aborted reclaim to try compaction? don't OOM, then */ 3297 if (sc->compaction_ready) 3298 return 1; 3299 3300 /* 3301 * We make inactive:active ratio decisions based on the node's 3302 * composition of memory, but a restrictive reclaim_idx or a 3303 * memory.low cgroup setting can exempt large amounts of 3304 * memory from reclaim. Neither of which are very common, so 3305 * instead of doing costly eligibility calculations of the 3306 * entire cgroup subtree up front, we assume the estimates are 3307 * good, and retry with forcible deactivation if that fails. 3308 */ 3309 if (sc->skipped_deactivate) { 3310 sc->priority = initial_priority; 3311 sc->force_deactivate = 1; 3312 sc->skipped_deactivate = 0; 3313 goto retry; 3314 } 3315 3316 /* Untapped cgroup reserves? Don't OOM, retry. */ 3317 if (sc->memcg_low_skipped) { 3318 sc->priority = initial_priority; 3319 sc->force_deactivate = 0; 3320 sc->memcg_low_reclaim = 1; 3321 sc->memcg_low_skipped = 0; 3322 goto retry; 3323 } 3324 3325 return 0; 3326 } 3327 3328 static bool allow_direct_reclaim(pg_data_t *pgdat) 3329 { 3330 struct zone *zone; 3331 unsigned long pfmemalloc_reserve = 0; 3332 unsigned long free_pages = 0; 3333 int i; 3334 bool wmark_ok; 3335 3336 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3337 return true; 3338 3339 for (i = 0; i <= ZONE_NORMAL; i++) { 3340 zone = &pgdat->node_zones[i]; 3341 if (!managed_zone(zone)) 3342 continue; 3343 3344 if (!zone_reclaimable_pages(zone)) 3345 continue; 3346 3347 pfmemalloc_reserve += min_wmark_pages(zone); 3348 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3349 } 3350 3351 /* If there are no reserves (unexpected config) then do not throttle */ 3352 if (!pfmemalloc_reserve) 3353 return true; 3354 3355 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3356 3357 /* kswapd must be awake if processes are being throttled */ 3358 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3359 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3360 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3361 3362 wake_up_interruptible(&pgdat->kswapd_wait); 3363 } 3364 3365 return wmark_ok; 3366 } 3367 3368 /* 3369 * Throttle direct reclaimers if backing storage is backed by the network 3370 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3371 * depleted. kswapd will continue to make progress and wake the processes 3372 * when the low watermark is reached. 3373 * 3374 * Returns true if a fatal signal was delivered during throttling. If this 3375 * happens, the page allocator should not consider triggering the OOM killer. 3376 */ 3377 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3378 nodemask_t *nodemask) 3379 { 3380 struct zoneref *z; 3381 struct zone *zone; 3382 pg_data_t *pgdat = NULL; 3383 3384 /* 3385 * Kernel threads should not be throttled as they may be indirectly 3386 * responsible for cleaning pages necessary for reclaim to make forward 3387 * progress. kjournald for example may enter direct reclaim while 3388 * committing a transaction where throttling it could forcing other 3389 * processes to block on log_wait_commit(). 3390 */ 3391 if (current->flags & PF_KTHREAD) 3392 goto out; 3393 3394 /* 3395 * If a fatal signal is pending, this process should not throttle. 3396 * It should return quickly so it can exit and free its memory 3397 */ 3398 if (fatal_signal_pending(current)) 3399 goto out; 3400 3401 /* 3402 * Check if the pfmemalloc reserves are ok by finding the first node 3403 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3404 * GFP_KERNEL will be required for allocating network buffers when 3405 * swapping over the network so ZONE_HIGHMEM is unusable. 3406 * 3407 * Throttling is based on the first usable node and throttled processes 3408 * wait on a queue until kswapd makes progress and wakes them. There 3409 * is an affinity then between processes waking up and where reclaim 3410 * progress has been made assuming the process wakes on the same node. 3411 * More importantly, processes running on remote nodes will not compete 3412 * for remote pfmemalloc reserves and processes on different nodes 3413 * should make reasonable progress. 3414 */ 3415 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3416 gfp_zone(gfp_mask), nodemask) { 3417 if (zone_idx(zone) > ZONE_NORMAL) 3418 continue; 3419 3420 /* Throttle based on the first usable node */ 3421 pgdat = zone->zone_pgdat; 3422 if (allow_direct_reclaim(pgdat)) 3423 goto out; 3424 break; 3425 } 3426 3427 /* If no zone was usable by the allocation flags then do not throttle */ 3428 if (!pgdat) 3429 goto out; 3430 3431 /* Account for the throttling */ 3432 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3433 3434 /* 3435 * If the caller cannot enter the filesystem, it's possible that it 3436 * is due to the caller holding an FS lock or performing a journal 3437 * transaction in the case of a filesystem like ext[3|4]. In this case, 3438 * it is not safe to block on pfmemalloc_wait as kswapd could be 3439 * blocked waiting on the same lock. Instead, throttle for up to a 3440 * second before continuing. 3441 */ 3442 if (!(gfp_mask & __GFP_FS)) { 3443 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3444 allow_direct_reclaim(pgdat), HZ); 3445 3446 goto check_pending; 3447 } 3448 3449 /* Throttle until kswapd wakes the process */ 3450 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3451 allow_direct_reclaim(pgdat)); 3452 3453 check_pending: 3454 if (fatal_signal_pending(current)) 3455 return true; 3456 3457 out: 3458 return false; 3459 } 3460 3461 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3462 gfp_t gfp_mask, nodemask_t *nodemask) 3463 { 3464 unsigned long nr_reclaimed; 3465 struct scan_control sc = { 3466 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3467 .gfp_mask = current_gfp_context(gfp_mask), 3468 .reclaim_idx = gfp_zone(gfp_mask), 3469 .order = order, 3470 .nodemask = nodemask, 3471 .priority = DEF_PRIORITY, 3472 .may_writepage = !laptop_mode, 3473 .may_unmap = 1, 3474 .may_swap = 1, 3475 }; 3476 3477 /* 3478 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3479 * Confirm they are large enough for max values. 3480 */ 3481 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3482 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3483 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3484 3485 /* 3486 * Do not enter reclaim if fatal signal was delivered while throttled. 3487 * 1 is returned so that the page allocator does not OOM kill at this 3488 * point. 3489 */ 3490 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3491 return 1; 3492 3493 set_task_reclaim_state(current, &sc.reclaim_state); 3494 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3495 3496 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3497 3498 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3499 set_task_reclaim_state(current, NULL); 3500 3501 return nr_reclaimed; 3502 } 3503 3504 #ifdef CONFIG_MEMCG 3505 3506 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3507 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3508 gfp_t gfp_mask, bool noswap, 3509 pg_data_t *pgdat, 3510 unsigned long *nr_scanned) 3511 { 3512 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3513 struct scan_control sc = { 3514 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3515 .target_mem_cgroup = memcg, 3516 .may_writepage = !laptop_mode, 3517 .may_unmap = 1, 3518 .reclaim_idx = MAX_NR_ZONES - 1, 3519 .may_swap = !noswap, 3520 }; 3521 3522 WARN_ON_ONCE(!current->reclaim_state); 3523 3524 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3525 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3526 3527 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3528 sc.gfp_mask); 3529 3530 /* 3531 * NOTE: Although we can get the priority field, using it 3532 * here is not a good idea, since it limits the pages we can scan. 3533 * if we don't reclaim here, the shrink_node from balance_pgdat 3534 * will pick up pages from other mem cgroup's as well. We hack 3535 * the priority and make it zero. 3536 */ 3537 shrink_lruvec(lruvec, &sc); 3538 3539 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3540 3541 *nr_scanned = sc.nr_scanned; 3542 3543 return sc.nr_reclaimed; 3544 } 3545 3546 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3547 unsigned long nr_pages, 3548 gfp_t gfp_mask, 3549 bool may_swap) 3550 { 3551 unsigned long nr_reclaimed; 3552 unsigned int noreclaim_flag; 3553 struct scan_control sc = { 3554 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3555 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3556 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3557 .reclaim_idx = MAX_NR_ZONES - 1, 3558 .target_mem_cgroup = memcg, 3559 .priority = DEF_PRIORITY, 3560 .may_writepage = !laptop_mode, 3561 .may_unmap = 1, 3562 .may_swap = may_swap, 3563 }; 3564 /* 3565 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3566 * equal pressure on all the nodes. This is based on the assumption that 3567 * the reclaim does not bail out early. 3568 */ 3569 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3570 3571 set_task_reclaim_state(current, &sc.reclaim_state); 3572 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3573 noreclaim_flag = memalloc_noreclaim_save(); 3574 3575 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3576 3577 memalloc_noreclaim_restore(noreclaim_flag); 3578 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3579 set_task_reclaim_state(current, NULL); 3580 3581 return nr_reclaimed; 3582 } 3583 #endif 3584 3585 static void age_active_anon(struct pglist_data *pgdat, 3586 struct scan_control *sc) 3587 { 3588 struct mem_cgroup *memcg; 3589 struct lruvec *lruvec; 3590 3591 if (!total_swap_pages) 3592 return; 3593 3594 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3595 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3596 return; 3597 3598 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3599 do { 3600 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3601 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3602 sc, LRU_ACTIVE_ANON); 3603 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3604 } while (memcg); 3605 } 3606 3607 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3608 { 3609 int i; 3610 struct zone *zone; 3611 3612 /* 3613 * Check for watermark boosts top-down as the higher zones 3614 * are more likely to be boosted. Both watermarks and boosts 3615 * should not be checked at the same time as reclaim would 3616 * start prematurely when there is no boosting and a lower 3617 * zone is balanced. 3618 */ 3619 for (i = highest_zoneidx; i >= 0; i--) { 3620 zone = pgdat->node_zones + i; 3621 if (!managed_zone(zone)) 3622 continue; 3623 3624 if (zone->watermark_boost) 3625 return true; 3626 } 3627 3628 return false; 3629 } 3630 3631 /* 3632 * Returns true if there is an eligible zone balanced for the request order 3633 * and highest_zoneidx 3634 */ 3635 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3636 { 3637 int i; 3638 unsigned long mark = -1; 3639 struct zone *zone; 3640 3641 /* 3642 * Check watermarks bottom-up as lower zones are more likely to 3643 * meet watermarks. 3644 */ 3645 for (i = 0; i <= highest_zoneidx; i++) { 3646 zone = pgdat->node_zones + i; 3647 3648 if (!managed_zone(zone)) 3649 continue; 3650 3651 mark = high_wmark_pages(zone); 3652 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3653 return true; 3654 } 3655 3656 /* 3657 * If a node has no populated zone within highest_zoneidx, it does not 3658 * need balancing by definition. This can happen if a zone-restricted 3659 * allocation tries to wake a remote kswapd. 3660 */ 3661 if (mark == -1) 3662 return true; 3663 3664 return false; 3665 } 3666 3667 /* Clear pgdat state for congested, dirty or under writeback. */ 3668 static void clear_pgdat_congested(pg_data_t *pgdat) 3669 { 3670 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3671 3672 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3673 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3674 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3675 } 3676 3677 /* 3678 * Prepare kswapd for sleeping. This verifies that there are no processes 3679 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3680 * 3681 * Returns true if kswapd is ready to sleep 3682 */ 3683 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3684 int highest_zoneidx) 3685 { 3686 /* 3687 * The throttled processes are normally woken up in balance_pgdat() as 3688 * soon as allow_direct_reclaim() is true. But there is a potential 3689 * race between when kswapd checks the watermarks and a process gets 3690 * throttled. There is also a potential race if processes get 3691 * throttled, kswapd wakes, a large process exits thereby balancing the 3692 * zones, which causes kswapd to exit balance_pgdat() before reaching 3693 * the wake up checks. If kswapd is going to sleep, no process should 3694 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3695 * the wake up is premature, processes will wake kswapd and get 3696 * throttled again. The difference from wake ups in balance_pgdat() is 3697 * that here we are under prepare_to_wait(). 3698 */ 3699 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3700 wake_up_all(&pgdat->pfmemalloc_wait); 3701 3702 /* Hopeless node, leave it to direct reclaim */ 3703 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3704 return true; 3705 3706 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3707 clear_pgdat_congested(pgdat); 3708 return true; 3709 } 3710 3711 return false; 3712 } 3713 3714 /* 3715 * kswapd shrinks a node of pages that are at or below the highest usable 3716 * zone that is currently unbalanced. 3717 * 3718 * Returns true if kswapd scanned at least the requested number of pages to 3719 * reclaim or if the lack of progress was due to pages under writeback. 3720 * This is used to determine if the scanning priority needs to be raised. 3721 */ 3722 static bool kswapd_shrink_node(pg_data_t *pgdat, 3723 struct scan_control *sc) 3724 { 3725 struct zone *zone; 3726 int z; 3727 3728 /* Reclaim a number of pages proportional to the number of zones */ 3729 sc->nr_to_reclaim = 0; 3730 for (z = 0; z <= sc->reclaim_idx; z++) { 3731 zone = pgdat->node_zones + z; 3732 if (!managed_zone(zone)) 3733 continue; 3734 3735 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3736 } 3737 3738 /* 3739 * Historically care was taken to put equal pressure on all zones but 3740 * now pressure is applied based on node LRU order. 3741 */ 3742 shrink_node(pgdat, sc); 3743 3744 /* 3745 * Fragmentation may mean that the system cannot be rebalanced for 3746 * high-order allocations. If twice the allocation size has been 3747 * reclaimed then recheck watermarks only at order-0 to prevent 3748 * excessive reclaim. Assume that a process requested a high-order 3749 * can direct reclaim/compact. 3750 */ 3751 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3752 sc->order = 0; 3753 3754 return sc->nr_scanned >= sc->nr_to_reclaim; 3755 } 3756 3757 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 3758 static inline void 3759 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 3760 { 3761 int i; 3762 struct zone *zone; 3763 3764 for (i = 0; i <= highest_zoneidx; i++) { 3765 zone = pgdat->node_zones + i; 3766 3767 if (!managed_zone(zone)) 3768 continue; 3769 3770 if (active) 3771 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3772 else 3773 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 3774 } 3775 } 3776 3777 static inline void 3778 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3779 { 3780 update_reclaim_active(pgdat, highest_zoneidx, true); 3781 } 3782 3783 static inline void 3784 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 3785 { 3786 update_reclaim_active(pgdat, highest_zoneidx, false); 3787 } 3788 3789 /* 3790 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3791 * that are eligible for use by the caller until at least one zone is 3792 * balanced. 3793 * 3794 * Returns the order kswapd finished reclaiming at. 3795 * 3796 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3797 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3798 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3799 * or lower is eligible for reclaim until at least one usable zone is 3800 * balanced. 3801 */ 3802 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3803 { 3804 int i; 3805 unsigned long nr_soft_reclaimed; 3806 unsigned long nr_soft_scanned; 3807 unsigned long pflags; 3808 unsigned long nr_boost_reclaim; 3809 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3810 bool boosted; 3811 struct zone *zone; 3812 struct scan_control sc = { 3813 .gfp_mask = GFP_KERNEL, 3814 .order = order, 3815 .may_unmap = 1, 3816 }; 3817 3818 set_task_reclaim_state(current, &sc.reclaim_state); 3819 psi_memstall_enter(&pflags); 3820 __fs_reclaim_acquire(_THIS_IP_); 3821 3822 count_vm_event(PAGEOUTRUN); 3823 3824 /* 3825 * Account for the reclaim boost. Note that the zone boost is left in 3826 * place so that parallel allocations that are near the watermark will 3827 * stall or direct reclaim until kswapd is finished. 3828 */ 3829 nr_boost_reclaim = 0; 3830 for (i = 0; i <= highest_zoneidx; i++) { 3831 zone = pgdat->node_zones + i; 3832 if (!managed_zone(zone)) 3833 continue; 3834 3835 nr_boost_reclaim += zone->watermark_boost; 3836 zone_boosts[i] = zone->watermark_boost; 3837 } 3838 boosted = nr_boost_reclaim; 3839 3840 restart: 3841 set_reclaim_active(pgdat, highest_zoneidx); 3842 sc.priority = DEF_PRIORITY; 3843 do { 3844 unsigned long nr_reclaimed = sc.nr_reclaimed; 3845 bool raise_priority = true; 3846 bool balanced; 3847 bool ret; 3848 3849 sc.reclaim_idx = highest_zoneidx; 3850 3851 /* 3852 * If the number of buffer_heads exceeds the maximum allowed 3853 * then consider reclaiming from all zones. This has a dual 3854 * purpose -- on 64-bit systems it is expected that 3855 * buffer_heads are stripped during active rotation. On 32-bit 3856 * systems, highmem pages can pin lowmem memory and shrinking 3857 * buffers can relieve lowmem pressure. Reclaim may still not 3858 * go ahead if all eligible zones for the original allocation 3859 * request are balanced to avoid excessive reclaim from kswapd. 3860 */ 3861 if (buffer_heads_over_limit) { 3862 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3863 zone = pgdat->node_zones + i; 3864 if (!managed_zone(zone)) 3865 continue; 3866 3867 sc.reclaim_idx = i; 3868 break; 3869 } 3870 } 3871 3872 /* 3873 * If the pgdat is imbalanced then ignore boosting and preserve 3874 * the watermarks for a later time and restart. Note that the 3875 * zone watermarks will be still reset at the end of balancing 3876 * on the grounds that the normal reclaim should be enough to 3877 * re-evaluate if boosting is required when kswapd next wakes. 3878 */ 3879 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3880 if (!balanced && nr_boost_reclaim) { 3881 nr_boost_reclaim = 0; 3882 goto restart; 3883 } 3884 3885 /* 3886 * If boosting is not active then only reclaim if there are no 3887 * eligible zones. Note that sc.reclaim_idx is not used as 3888 * buffer_heads_over_limit may have adjusted it. 3889 */ 3890 if (!nr_boost_reclaim && balanced) 3891 goto out; 3892 3893 /* Limit the priority of boosting to avoid reclaim writeback */ 3894 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3895 raise_priority = false; 3896 3897 /* 3898 * Do not writeback or swap pages for boosted reclaim. The 3899 * intent is to relieve pressure not issue sub-optimal IO 3900 * from reclaim context. If no pages are reclaimed, the 3901 * reclaim will be aborted. 3902 */ 3903 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3904 sc.may_swap = !nr_boost_reclaim; 3905 3906 /* 3907 * Do some background aging of the anon list, to give 3908 * pages a chance to be referenced before reclaiming. All 3909 * pages are rotated regardless of classzone as this is 3910 * about consistent aging. 3911 */ 3912 age_active_anon(pgdat, &sc); 3913 3914 /* 3915 * If we're getting trouble reclaiming, start doing writepage 3916 * even in laptop mode. 3917 */ 3918 if (sc.priority < DEF_PRIORITY - 2) 3919 sc.may_writepage = 1; 3920 3921 /* Call soft limit reclaim before calling shrink_node. */ 3922 sc.nr_scanned = 0; 3923 nr_soft_scanned = 0; 3924 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3925 sc.gfp_mask, &nr_soft_scanned); 3926 sc.nr_reclaimed += nr_soft_reclaimed; 3927 3928 /* 3929 * There should be no need to raise the scanning priority if 3930 * enough pages are already being scanned that that high 3931 * watermark would be met at 100% efficiency. 3932 */ 3933 if (kswapd_shrink_node(pgdat, &sc)) 3934 raise_priority = false; 3935 3936 /* 3937 * If the low watermark is met there is no need for processes 3938 * to be throttled on pfmemalloc_wait as they should not be 3939 * able to safely make forward progress. Wake them 3940 */ 3941 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3942 allow_direct_reclaim(pgdat)) 3943 wake_up_all(&pgdat->pfmemalloc_wait); 3944 3945 /* Check if kswapd should be suspending */ 3946 __fs_reclaim_release(_THIS_IP_); 3947 ret = try_to_freeze(); 3948 __fs_reclaim_acquire(_THIS_IP_); 3949 if (ret || kthread_should_stop()) 3950 break; 3951 3952 /* 3953 * Raise priority if scanning rate is too low or there was no 3954 * progress in reclaiming pages 3955 */ 3956 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3957 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3958 3959 /* 3960 * If reclaim made no progress for a boost, stop reclaim as 3961 * IO cannot be queued and it could be an infinite loop in 3962 * extreme circumstances. 3963 */ 3964 if (nr_boost_reclaim && !nr_reclaimed) 3965 break; 3966 3967 if (raise_priority || !nr_reclaimed) 3968 sc.priority--; 3969 } while (sc.priority >= 1); 3970 3971 if (!sc.nr_reclaimed) 3972 pgdat->kswapd_failures++; 3973 3974 out: 3975 clear_reclaim_active(pgdat, highest_zoneidx); 3976 3977 /* If reclaim was boosted, account for the reclaim done in this pass */ 3978 if (boosted) { 3979 unsigned long flags; 3980 3981 for (i = 0; i <= highest_zoneidx; i++) { 3982 if (!zone_boosts[i]) 3983 continue; 3984 3985 /* Increments are under the zone lock */ 3986 zone = pgdat->node_zones + i; 3987 spin_lock_irqsave(&zone->lock, flags); 3988 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3989 spin_unlock_irqrestore(&zone->lock, flags); 3990 } 3991 3992 /* 3993 * As there is now likely space, wakeup kcompact to defragment 3994 * pageblocks. 3995 */ 3996 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3997 } 3998 3999 snapshot_refaults(NULL, pgdat); 4000 __fs_reclaim_release(_THIS_IP_); 4001 psi_memstall_leave(&pflags); 4002 set_task_reclaim_state(current, NULL); 4003 4004 /* 4005 * Return the order kswapd stopped reclaiming at as 4006 * prepare_kswapd_sleep() takes it into account. If another caller 4007 * entered the allocator slow path while kswapd was awake, order will 4008 * remain at the higher level. 4009 */ 4010 return sc.order; 4011 } 4012 4013 /* 4014 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 4015 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 4016 * not a valid index then either kswapd runs for first time or kswapd couldn't 4017 * sleep after previous reclaim attempt (node is still unbalanced). In that 4018 * case return the zone index of the previous kswapd reclaim cycle. 4019 */ 4020 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 4021 enum zone_type prev_highest_zoneidx) 4022 { 4023 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4024 4025 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 4026 } 4027 4028 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 4029 unsigned int highest_zoneidx) 4030 { 4031 long remaining = 0; 4032 DEFINE_WAIT(wait); 4033 4034 if (freezing(current) || kthread_should_stop()) 4035 return; 4036 4037 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4038 4039 /* 4040 * Try to sleep for a short interval. Note that kcompactd will only be 4041 * woken if it is possible to sleep for a short interval. This is 4042 * deliberate on the assumption that if reclaim cannot keep an 4043 * eligible zone balanced that it's also unlikely that compaction will 4044 * succeed. 4045 */ 4046 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4047 /* 4048 * Compaction records what page blocks it recently failed to 4049 * isolate pages from and skips them in the future scanning. 4050 * When kswapd is going to sleep, it is reasonable to assume 4051 * that pages and compaction may succeed so reset the cache. 4052 */ 4053 reset_isolation_suitable(pgdat); 4054 4055 /* 4056 * We have freed the memory, now we should compact it to make 4057 * allocation of the requested order possible. 4058 */ 4059 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 4060 4061 remaining = schedule_timeout(HZ/10); 4062 4063 /* 4064 * If woken prematurely then reset kswapd_highest_zoneidx and 4065 * order. The values will either be from a wakeup request or 4066 * the previous request that slept prematurely. 4067 */ 4068 if (remaining) { 4069 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 4070 kswapd_highest_zoneidx(pgdat, 4071 highest_zoneidx)); 4072 4073 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 4074 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 4075 } 4076 4077 finish_wait(&pgdat->kswapd_wait, &wait); 4078 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 4079 } 4080 4081 /* 4082 * After a short sleep, check if it was a premature sleep. If not, then 4083 * go fully to sleep until explicitly woken up. 4084 */ 4085 if (!remaining && 4086 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 4087 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 4088 4089 /* 4090 * vmstat counters are not perfectly accurate and the estimated 4091 * value for counters such as NR_FREE_PAGES can deviate from the 4092 * true value by nr_online_cpus * threshold. To avoid the zone 4093 * watermarks being breached while under pressure, we reduce the 4094 * per-cpu vmstat threshold while kswapd is awake and restore 4095 * them before going back to sleep. 4096 */ 4097 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 4098 4099 if (!kthread_should_stop()) 4100 schedule(); 4101 4102 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 4103 } else { 4104 if (remaining) 4105 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 4106 else 4107 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 4108 } 4109 finish_wait(&pgdat->kswapd_wait, &wait); 4110 } 4111 4112 /* 4113 * The background pageout daemon, started as a kernel thread 4114 * from the init process. 4115 * 4116 * This basically trickles out pages so that we have _some_ 4117 * free memory available even if there is no other activity 4118 * that frees anything up. This is needed for things like routing 4119 * etc, where we otherwise might have all activity going on in 4120 * asynchronous contexts that cannot page things out. 4121 * 4122 * If there are applications that are active memory-allocators 4123 * (most normal use), this basically shouldn't matter. 4124 */ 4125 static int kswapd(void *p) 4126 { 4127 unsigned int alloc_order, reclaim_order; 4128 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 4129 pg_data_t *pgdat = (pg_data_t *)p; 4130 struct task_struct *tsk = current; 4131 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 4132 4133 if (!cpumask_empty(cpumask)) 4134 set_cpus_allowed_ptr(tsk, cpumask); 4135 4136 /* 4137 * Tell the memory management that we're a "memory allocator", 4138 * and that if we need more memory we should get access to it 4139 * regardless (see "__alloc_pages()"). "kswapd" should 4140 * never get caught in the normal page freeing logic. 4141 * 4142 * (Kswapd normally doesn't need memory anyway, but sometimes 4143 * you need a small amount of memory in order to be able to 4144 * page out something else, and this flag essentially protects 4145 * us from recursively trying to free more memory as we're 4146 * trying to free the first piece of memory in the first place). 4147 */ 4148 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 4149 set_freezable(); 4150 4151 WRITE_ONCE(pgdat->kswapd_order, 0); 4152 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4153 for ( ; ; ) { 4154 bool ret; 4155 4156 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 4157 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4158 highest_zoneidx); 4159 4160 kswapd_try_sleep: 4161 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 4162 highest_zoneidx); 4163 4164 /* Read the new order and highest_zoneidx */ 4165 alloc_order = READ_ONCE(pgdat->kswapd_order); 4166 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 4167 highest_zoneidx); 4168 WRITE_ONCE(pgdat->kswapd_order, 0); 4169 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 4170 4171 ret = try_to_freeze(); 4172 if (kthread_should_stop()) 4173 break; 4174 4175 /* 4176 * We can speed up thawing tasks if we don't call balance_pgdat 4177 * after returning from the refrigerator 4178 */ 4179 if (ret) 4180 continue; 4181 4182 /* 4183 * Reclaim begins at the requested order but if a high-order 4184 * reclaim fails then kswapd falls back to reclaiming for 4185 * order-0. If that happens, kswapd will consider sleeping 4186 * for the order it finished reclaiming at (reclaim_order) 4187 * but kcompactd is woken to compact for the original 4188 * request (alloc_order). 4189 */ 4190 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 4191 alloc_order); 4192 reclaim_order = balance_pgdat(pgdat, alloc_order, 4193 highest_zoneidx); 4194 if (reclaim_order < alloc_order) 4195 goto kswapd_try_sleep; 4196 } 4197 4198 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 4199 4200 return 0; 4201 } 4202 4203 /* 4204 * A zone is low on free memory or too fragmented for high-order memory. If 4205 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 4206 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 4207 * has failed or is not needed, still wake up kcompactd if only compaction is 4208 * needed. 4209 */ 4210 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 4211 enum zone_type highest_zoneidx) 4212 { 4213 pg_data_t *pgdat; 4214 enum zone_type curr_idx; 4215 4216 if (!managed_zone(zone)) 4217 return; 4218 4219 if (!cpuset_zone_allowed(zone, gfp_flags)) 4220 return; 4221 4222 pgdat = zone->zone_pgdat; 4223 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 4224 4225 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 4226 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 4227 4228 if (READ_ONCE(pgdat->kswapd_order) < order) 4229 WRITE_ONCE(pgdat->kswapd_order, order); 4230 4231 if (!waitqueue_active(&pgdat->kswapd_wait)) 4232 return; 4233 4234 /* Hopeless node, leave it to direct reclaim if possible */ 4235 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4236 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4237 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4238 /* 4239 * There may be plenty of free memory available, but it's too 4240 * fragmented for high-order allocations. Wake up kcompactd 4241 * and rely on compaction_suitable() to determine if it's 4242 * needed. If it fails, it will defer subsequent attempts to 4243 * ratelimit its work. 4244 */ 4245 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4246 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4247 return; 4248 } 4249 4250 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4251 gfp_flags); 4252 wake_up_interruptible(&pgdat->kswapd_wait); 4253 } 4254 4255 #ifdef CONFIG_HIBERNATION 4256 /* 4257 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4258 * freed pages. 4259 * 4260 * Rather than trying to age LRUs the aim is to preserve the overall 4261 * LRU order by reclaiming preferentially 4262 * inactive > active > active referenced > active mapped 4263 */ 4264 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4265 { 4266 struct scan_control sc = { 4267 .nr_to_reclaim = nr_to_reclaim, 4268 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4269 .reclaim_idx = MAX_NR_ZONES - 1, 4270 .priority = DEF_PRIORITY, 4271 .may_writepage = 1, 4272 .may_unmap = 1, 4273 .may_swap = 1, 4274 .hibernation_mode = 1, 4275 }; 4276 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4277 unsigned long nr_reclaimed; 4278 unsigned int noreclaim_flag; 4279 4280 fs_reclaim_acquire(sc.gfp_mask); 4281 noreclaim_flag = memalloc_noreclaim_save(); 4282 set_task_reclaim_state(current, &sc.reclaim_state); 4283 4284 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4285 4286 set_task_reclaim_state(current, NULL); 4287 memalloc_noreclaim_restore(noreclaim_flag); 4288 fs_reclaim_release(sc.gfp_mask); 4289 4290 return nr_reclaimed; 4291 } 4292 #endif /* CONFIG_HIBERNATION */ 4293 4294 /* 4295 * This kswapd start function will be called by init and node-hot-add. 4296 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4297 */ 4298 int kswapd_run(int nid) 4299 { 4300 pg_data_t *pgdat = NODE_DATA(nid); 4301 int ret = 0; 4302 4303 if (pgdat->kswapd) 4304 return 0; 4305 4306 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4307 if (IS_ERR(pgdat->kswapd)) { 4308 /* failure at boot is fatal */ 4309 BUG_ON(system_state < SYSTEM_RUNNING); 4310 pr_err("Failed to start kswapd on node %d\n", nid); 4311 ret = PTR_ERR(pgdat->kswapd); 4312 pgdat->kswapd = NULL; 4313 } 4314 return ret; 4315 } 4316 4317 /* 4318 * Called by memory hotplug when all memory in a node is offlined. Caller must 4319 * hold mem_hotplug_begin/end(). 4320 */ 4321 void kswapd_stop(int nid) 4322 { 4323 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4324 4325 if (kswapd) { 4326 kthread_stop(kswapd); 4327 NODE_DATA(nid)->kswapd = NULL; 4328 } 4329 } 4330 4331 static int __init kswapd_init(void) 4332 { 4333 int nid; 4334 4335 swap_setup(); 4336 for_each_node_state(nid, N_MEMORY) 4337 kswapd_run(nid); 4338 return 0; 4339 } 4340 4341 module_init(kswapd_init) 4342 4343 #ifdef CONFIG_NUMA 4344 /* 4345 * Node reclaim mode 4346 * 4347 * If non-zero call node_reclaim when the number of free pages falls below 4348 * the watermarks. 4349 */ 4350 int node_reclaim_mode __read_mostly; 4351 4352 /* 4353 * Priority for NODE_RECLAIM. This determines the fraction of pages 4354 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4355 * a zone. 4356 */ 4357 #define NODE_RECLAIM_PRIORITY 4 4358 4359 /* 4360 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4361 * occur. 4362 */ 4363 int sysctl_min_unmapped_ratio = 1; 4364 4365 /* 4366 * If the number of slab pages in a zone grows beyond this percentage then 4367 * slab reclaim needs to occur. 4368 */ 4369 int sysctl_min_slab_ratio = 5; 4370 4371 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4372 { 4373 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4374 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4375 node_page_state(pgdat, NR_ACTIVE_FILE); 4376 4377 /* 4378 * It's possible for there to be more file mapped pages than 4379 * accounted for by the pages on the file LRU lists because 4380 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4381 */ 4382 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4383 } 4384 4385 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4386 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4387 { 4388 unsigned long nr_pagecache_reclaimable; 4389 unsigned long delta = 0; 4390 4391 /* 4392 * If RECLAIM_UNMAP is set, then all file pages are considered 4393 * potentially reclaimable. Otherwise, we have to worry about 4394 * pages like swapcache and node_unmapped_file_pages() provides 4395 * a better estimate 4396 */ 4397 if (node_reclaim_mode & RECLAIM_UNMAP) 4398 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4399 else 4400 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4401 4402 /* If we can't clean pages, remove dirty pages from consideration */ 4403 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4404 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4405 4406 /* Watch for any possible underflows due to delta */ 4407 if (unlikely(delta > nr_pagecache_reclaimable)) 4408 delta = nr_pagecache_reclaimable; 4409 4410 return nr_pagecache_reclaimable - delta; 4411 } 4412 4413 /* 4414 * Try to free up some pages from this node through reclaim. 4415 */ 4416 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4417 { 4418 /* Minimum pages needed in order to stay on node */ 4419 const unsigned long nr_pages = 1 << order; 4420 struct task_struct *p = current; 4421 unsigned int noreclaim_flag; 4422 struct scan_control sc = { 4423 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4424 .gfp_mask = current_gfp_context(gfp_mask), 4425 .order = order, 4426 .priority = NODE_RECLAIM_PRIORITY, 4427 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4428 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4429 .may_swap = 1, 4430 .reclaim_idx = gfp_zone(gfp_mask), 4431 }; 4432 unsigned long pflags; 4433 4434 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4435 sc.gfp_mask); 4436 4437 cond_resched(); 4438 psi_memstall_enter(&pflags); 4439 fs_reclaim_acquire(sc.gfp_mask); 4440 /* 4441 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4442 * and we also need to be able to write out pages for RECLAIM_WRITE 4443 * and RECLAIM_UNMAP. 4444 */ 4445 noreclaim_flag = memalloc_noreclaim_save(); 4446 p->flags |= PF_SWAPWRITE; 4447 set_task_reclaim_state(p, &sc.reclaim_state); 4448 4449 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4450 /* 4451 * Free memory by calling shrink node with increasing 4452 * priorities until we have enough memory freed. 4453 */ 4454 do { 4455 shrink_node(pgdat, &sc); 4456 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4457 } 4458 4459 set_task_reclaim_state(p, NULL); 4460 current->flags &= ~PF_SWAPWRITE; 4461 memalloc_noreclaim_restore(noreclaim_flag); 4462 fs_reclaim_release(sc.gfp_mask); 4463 psi_memstall_leave(&pflags); 4464 4465 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4466 4467 return sc.nr_reclaimed >= nr_pages; 4468 } 4469 4470 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4471 { 4472 int ret; 4473 4474 /* 4475 * Node reclaim reclaims unmapped file backed pages and 4476 * slab pages if we are over the defined limits. 4477 * 4478 * A small portion of unmapped file backed pages is needed for 4479 * file I/O otherwise pages read by file I/O will be immediately 4480 * thrown out if the node is overallocated. So we do not reclaim 4481 * if less than a specified percentage of the node is used by 4482 * unmapped file backed pages. 4483 */ 4484 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4485 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4486 pgdat->min_slab_pages) 4487 return NODE_RECLAIM_FULL; 4488 4489 /* 4490 * Do not scan if the allocation should not be delayed. 4491 */ 4492 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4493 return NODE_RECLAIM_NOSCAN; 4494 4495 /* 4496 * Only run node reclaim on the local node or on nodes that do not 4497 * have associated processors. This will favor the local processor 4498 * over remote processors and spread off node memory allocations 4499 * as wide as possible. 4500 */ 4501 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4502 return NODE_RECLAIM_NOSCAN; 4503 4504 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4505 return NODE_RECLAIM_NOSCAN; 4506 4507 ret = __node_reclaim(pgdat, gfp_mask, order); 4508 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4509 4510 if (!ret) 4511 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4512 4513 return ret; 4514 } 4515 #endif 4516 4517 /** 4518 * check_move_unevictable_pages - check pages for evictability and move to 4519 * appropriate zone lru list 4520 * @pvec: pagevec with lru pages to check 4521 * 4522 * Checks pages for evictability, if an evictable page is in the unevictable 4523 * lru list, moves it to the appropriate evictable lru list. This function 4524 * should be only used for lru pages. 4525 */ 4526 void check_move_unevictable_pages(struct pagevec *pvec) 4527 { 4528 struct lruvec *lruvec = NULL; 4529 int pgscanned = 0; 4530 int pgrescued = 0; 4531 int i; 4532 4533 for (i = 0; i < pvec->nr; i++) { 4534 struct page *page = pvec->pages[i]; 4535 int nr_pages; 4536 4537 if (PageTransTail(page)) 4538 continue; 4539 4540 nr_pages = thp_nr_pages(page); 4541 pgscanned += nr_pages; 4542 4543 /* block memcg migration during page moving between lru */ 4544 if (!TestClearPageLRU(page)) 4545 continue; 4546 4547 lruvec = relock_page_lruvec_irq(page, lruvec); 4548 if (page_evictable(page) && PageUnevictable(page)) { 4549 del_page_from_lru_list(page, lruvec); 4550 ClearPageUnevictable(page); 4551 add_page_to_lru_list(page, lruvec); 4552 pgrescued += nr_pages; 4553 } 4554 SetPageLRU(page); 4555 } 4556 4557 if (lruvec) { 4558 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4559 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4560 unlock_page_lruvec_irq(lruvec); 4561 } else if (pgscanned) { 4562 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4563 } 4564 } 4565 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4566