xref: /linux/mm/vmscan.c (revision f358afc52c3066f4e8cd7b3a2d75b31e822519e9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/*
81 	 * Scan pressure balancing between anon and file LRUs
82 	 */
83 	unsigned long	anon_cost;
84 	unsigned long	file_cost;
85 
86 	/* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 	unsigned int may_deactivate:2;
90 	unsigned int force_deactivate:1;
91 	unsigned int skipped_deactivate:1;
92 
93 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
94 	unsigned int may_writepage:1;
95 
96 	/* Can mapped pages be reclaimed? */
97 	unsigned int may_unmap:1;
98 
99 	/* Can pages be swapped as part of reclaim? */
100 	unsigned int may_swap:1;
101 
102 	/*
103 	 * Cgroup memory below memory.low is protected as long as we
104 	 * don't threaten to OOM. If any cgroup is reclaimed at
105 	 * reduced force or passed over entirely due to its memory.low
106 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
107 	 * result, then go back for one more cycle that reclaims the protected
108 	 * memory (memcg_low_reclaim) to avert OOM.
109 	 */
110 	unsigned int memcg_low_reclaim:1;
111 	unsigned int memcg_low_skipped:1;
112 
113 	unsigned int hibernation_mode:1;
114 
115 	/* One of the zones is ready for compaction */
116 	unsigned int compaction_ready:1;
117 
118 	/* There is easily reclaimable cold cache in the current node */
119 	unsigned int cache_trim_mode:1;
120 
121 	/* The file pages on the current node are dangerously low */
122 	unsigned int file_is_tiny:1;
123 
124 	/* Allocation order */
125 	s8 order;
126 
127 	/* Scan (total_size >> priority) pages at once */
128 	s8 priority;
129 
130 	/* The highest zone to isolate pages for reclaim from */
131 	s8 reclaim_idx;
132 
133 	/* This context's GFP mask */
134 	gfp_t gfp_mask;
135 
136 	/* Incremented by the number of inactive pages that were scanned */
137 	unsigned long nr_scanned;
138 
139 	/* Number of pages freed so far during a call to shrink_zones() */
140 	unsigned long nr_reclaimed;
141 
142 	struct {
143 		unsigned int dirty;
144 		unsigned int unqueued_dirty;
145 		unsigned int congested;
146 		unsigned int writeback;
147 		unsigned int immediate;
148 		unsigned int file_taken;
149 		unsigned int taken;
150 	} nr;
151 
152 	/* for recording the reclaimed slab by now */
153 	struct reclaim_state reclaim_state;
154 };
155 
156 #ifdef ARCH_HAS_PREFETCHW
157 #define prefetchw_prev_lru_page(_page, _base, _field)			\
158 	do {								\
159 		if ((_page)->lru.prev != _base) {			\
160 			struct page *prev;				\
161 									\
162 			prev = lru_to_page(&(_page->lru));		\
163 			prefetchw(&prev->_field);			\
164 		}							\
165 	} while (0)
166 #else
167 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
168 #endif
169 
170 /*
171  * From 0 .. 200.  Higher means more swappy.
172  */
173 int vm_swappiness = 60;
174 
175 static void set_task_reclaim_state(struct task_struct *task,
176 				   struct reclaim_state *rs)
177 {
178 	/* Check for an overwrite */
179 	WARN_ON_ONCE(rs && task->reclaim_state);
180 
181 	/* Check for the nulling of an already-nulled member */
182 	WARN_ON_ONCE(!rs && !task->reclaim_state);
183 
184 	task->reclaim_state = rs;
185 }
186 
187 static LIST_HEAD(shrinker_list);
188 static DECLARE_RWSEM(shrinker_rwsem);
189 
190 #ifdef CONFIG_MEMCG
191 static int shrinker_nr_max;
192 
193 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
194 static inline int shrinker_map_size(int nr_items)
195 {
196 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
197 }
198 
199 static inline int shrinker_defer_size(int nr_items)
200 {
201 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
202 }
203 
204 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
205 						     int nid)
206 {
207 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
208 					 lockdep_is_held(&shrinker_rwsem));
209 }
210 
211 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
212 				    int map_size, int defer_size,
213 				    int old_map_size, int old_defer_size)
214 {
215 	struct shrinker_info *new, *old;
216 	struct mem_cgroup_per_node *pn;
217 	int nid;
218 	int size = map_size + defer_size;
219 
220 	for_each_node(nid) {
221 		pn = memcg->nodeinfo[nid];
222 		old = shrinker_info_protected(memcg, nid);
223 		/* Not yet online memcg */
224 		if (!old)
225 			return 0;
226 
227 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
228 		if (!new)
229 			return -ENOMEM;
230 
231 		new->nr_deferred = (atomic_long_t *)(new + 1);
232 		new->map = (void *)new->nr_deferred + defer_size;
233 
234 		/* map: set all old bits, clear all new bits */
235 		memset(new->map, (int)0xff, old_map_size);
236 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
237 		/* nr_deferred: copy old values, clear all new values */
238 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
239 		memset((void *)new->nr_deferred + old_defer_size, 0,
240 		       defer_size - old_defer_size);
241 
242 		rcu_assign_pointer(pn->shrinker_info, new);
243 		kvfree_rcu(old, rcu);
244 	}
245 
246 	return 0;
247 }
248 
249 void free_shrinker_info(struct mem_cgroup *memcg)
250 {
251 	struct mem_cgroup_per_node *pn;
252 	struct shrinker_info *info;
253 	int nid;
254 
255 	for_each_node(nid) {
256 		pn = memcg->nodeinfo[nid];
257 		info = rcu_dereference_protected(pn->shrinker_info, true);
258 		kvfree(info);
259 		rcu_assign_pointer(pn->shrinker_info, NULL);
260 	}
261 }
262 
263 int alloc_shrinker_info(struct mem_cgroup *memcg)
264 {
265 	struct shrinker_info *info;
266 	int nid, size, ret = 0;
267 	int map_size, defer_size = 0;
268 
269 	down_write(&shrinker_rwsem);
270 	map_size = shrinker_map_size(shrinker_nr_max);
271 	defer_size = shrinker_defer_size(shrinker_nr_max);
272 	size = map_size + defer_size;
273 	for_each_node(nid) {
274 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
275 		if (!info) {
276 			free_shrinker_info(memcg);
277 			ret = -ENOMEM;
278 			break;
279 		}
280 		info->nr_deferred = (atomic_long_t *)(info + 1);
281 		info->map = (void *)info->nr_deferred + defer_size;
282 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
283 	}
284 	up_write(&shrinker_rwsem);
285 
286 	return ret;
287 }
288 
289 static inline bool need_expand(int nr_max)
290 {
291 	return round_up(nr_max, BITS_PER_LONG) >
292 	       round_up(shrinker_nr_max, BITS_PER_LONG);
293 }
294 
295 static int expand_shrinker_info(int new_id)
296 {
297 	int ret = 0;
298 	int new_nr_max = new_id + 1;
299 	int map_size, defer_size = 0;
300 	int old_map_size, old_defer_size = 0;
301 	struct mem_cgroup *memcg;
302 
303 	if (!need_expand(new_nr_max))
304 		goto out;
305 
306 	if (!root_mem_cgroup)
307 		goto out;
308 
309 	lockdep_assert_held(&shrinker_rwsem);
310 
311 	map_size = shrinker_map_size(new_nr_max);
312 	defer_size = shrinker_defer_size(new_nr_max);
313 	old_map_size = shrinker_map_size(shrinker_nr_max);
314 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
315 
316 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
317 	do {
318 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
319 					       old_map_size, old_defer_size);
320 		if (ret) {
321 			mem_cgroup_iter_break(NULL, memcg);
322 			goto out;
323 		}
324 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
325 out:
326 	if (!ret)
327 		shrinker_nr_max = new_nr_max;
328 
329 	return ret;
330 }
331 
332 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
333 {
334 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
335 		struct shrinker_info *info;
336 
337 		rcu_read_lock();
338 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
339 		/* Pairs with smp mb in shrink_slab() */
340 		smp_mb__before_atomic();
341 		set_bit(shrinker_id, info->map);
342 		rcu_read_unlock();
343 	}
344 }
345 
346 static DEFINE_IDR(shrinker_idr);
347 
348 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
349 {
350 	int id, ret = -ENOMEM;
351 
352 	if (mem_cgroup_disabled())
353 		return -ENOSYS;
354 
355 	down_write(&shrinker_rwsem);
356 	/* This may call shrinker, so it must use down_read_trylock() */
357 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
358 	if (id < 0)
359 		goto unlock;
360 
361 	if (id >= shrinker_nr_max) {
362 		if (expand_shrinker_info(id)) {
363 			idr_remove(&shrinker_idr, id);
364 			goto unlock;
365 		}
366 	}
367 	shrinker->id = id;
368 	ret = 0;
369 unlock:
370 	up_write(&shrinker_rwsem);
371 	return ret;
372 }
373 
374 static void unregister_memcg_shrinker(struct shrinker *shrinker)
375 {
376 	int id = shrinker->id;
377 
378 	BUG_ON(id < 0);
379 
380 	lockdep_assert_held(&shrinker_rwsem);
381 
382 	idr_remove(&shrinker_idr, id);
383 }
384 
385 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
386 				   struct mem_cgroup *memcg)
387 {
388 	struct shrinker_info *info;
389 
390 	info = shrinker_info_protected(memcg, nid);
391 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
392 }
393 
394 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
395 				  struct mem_cgroup *memcg)
396 {
397 	struct shrinker_info *info;
398 
399 	info = shrinker_info_protected(memcg, nid);
400 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
401 }
402 
403 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
404 {
405 	int i, nid;
406 	long nr;
407 	struct mem_cgroup *parent;
408 	struct shrinker_info *child_info, *parent_info;
409 
410 	parent = parent_mem_cgroup(memcg);
411 	if (!parent)
412 		parent = root_mem_cgroup;
413 
414 	/* Prevent from concurrent shrinker_info expand */
415 	down_read(&shrinker_rwsem);
416 	for_each_node(nid) {
417 		child_info = shrinker_info_protected(memcg, nid);
418 		parent_info = shrinker_info_protected(parent, nid);
419 		for (i = 0; i < shrinker_nr_max; i++) {
420 			nr = atomic_long_read(&child_info->nr_deferred[i]);
421 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
422 		}
423 	}
424 	up_read(&shrinker_rwsem);
425 }
426 
427 static bool cgroup_reclaim(struct scan_control *sc)
428 {
429 	return sc->target_mem_cgroup;
430 }
431 
432 /**
433  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
434  * @sc: scan_control in question
435  *
436  * The normal page dirty throttling mechanism in balance_dirty_pages() is
437  * completely broken with the legacy memcg and direct stalling in
438  * shrink_page_list() is used for throttling instead, which lacks all the
439  * niceties such as fairness, adaptive pausing, bandwidth proportional
440  * allocation and configurability.
441  *
442  * This function tests whether the vmscan currently in progress can assume
443  * that the normal dirty throttling mechanism is operational.
444  */
445 static bool writeback_throttling_sane(struct scan_control *sc)
446 {
447 	if (!cgroup_reclaim(sc))
448 		return true;
449 #ifdef CONFIG_CGROUP_WRITEBACK
450 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
451 		return true;
452 #endif
453 	return false;
454 }
455 #else
456 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
457 {
458 	return -ENOSYS;
459 }
460 
461 static void unregister_memcg_shrinker(struct shrinker *shrinker)
462 {
463 }
464 
465 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
466 				   struct mem_cgroup *memcg)
467 {
468 	return 0;
469 }
470 
471 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
472 				  struct mem_cgroup *memcg)
473 {
474 	return 0;
475 }
476 
477 static bool cgroup_reclaim(struct scan_control *sc)
478 {
479 	return false;
480 }
481 
482 static bool writeback_throttling_sane(struct scan_control *sc)
483 {
484 	return true;
485 }
486 #endif
487 
488 static long xchg_nr_deferred(struct shrinker *shrinker,
489 			     struct shrink_control *sc)
490 {
491 	int nid = sc->nid;
492 
493 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
494 		nid = 0;
495 
496 	if (sc->memcg &&
497 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
498 		return xchg_nr_deferred_memcg(nid, shrinker,
499 					      sc->memcg);
500 
501 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
502 }
503 
504 
505 static long add_nr_deferred(long nr, struct shrinker *shrinker,
506 			    struct shrink_control *sc)
507 {
508 	int nid = sc->nid;
509 
510 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
511 		nid = 0;
512 
513 	if (sc->memcg &&
514 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
515 		return add_nr_deferred_memcg(nr, nid, shrinker,
516 					     sc->memcg);
517 
518 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
519 }
520 
521 /*
522  * This misses isolated pages which are not accounted for to save counters.
523  * As the data only determines if reclaim or compaction continues, it is
524  * not expected that isolated pages will be a dominating factor.
525  */
526 unsigned long zone_reclaimable_pages(struct zone *zone)
527 {
528 	unsigned long nr;
529 
530 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
531 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
532 	if (get_nr_swap_pages() > 0)
533 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
534 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
535 
536 	return nr;
537 }
538 
539 /**
540  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
541  * @lruvec: lru vector
542  * @lru: lru to use
543  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
544  */
545 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
546 				     int zone_idx)
547 {
548 	unsigned long size = 0;
549 	int zid;
550 
551 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
552 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
553 
554 		if (!managed_zone(zone))
555 			continue;
556 
557 		if (!mem_cgroup_disabled())
558 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
559 		else
560 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
561 	}
562 	return size;
563 }
564 
565 /*
566  * Add a shrinker callback to be called from the vm.
567  */
568 int prealloc_shrinker(struct shrinker *shrinker)
569 {
570 	unsigned int size;
571 	int err;
572 
573 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
574 		err = prealloc_memcg_shrinker(shrinker);
575 		if (err != -ENOSYS)
576 			return err;
577 
578 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
579 	}
580 
581 	size = sizeof(*shrinker->nr_deferred);
582 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
583 		size *= nr_node_ids;
584 
585 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
586 	if (!shrinker->nr_deferred)
587 		return -ENOMEM;
588 
589 	return 0;
590 }
591 
592 void free_prealloced_shrinker(struct shrinker *shrinker)
593 {
594 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
595 		down_write(&shrinker_rwsem);
596 		unregister_memcg_shrinker(shrinker);
597 		up_write(&shrinker_rwsem);
598 		return;
599 	}
600 
601 	kfree(shrinker->nr_deferred);
602 	shrinker->nr_deferred = NULL;
603 }
604 
605 void register_shrinker_prepared(struct shrinker *shrinker)
606 {
607 	down_write(&shrinker_rwsem);
608 	list_add_tail(&shrinker->list, &shrinker_list);
609 	shrinker->flags |= SHRINKER_REGISTERED;
610 	up_write(&shrinker_rwsem);
611 }
612 
613 int register_shrinker(struct shrinker *shrinker)
614 {
615 	int err = prealloc_shrinker(shrinker);
616 
617 	if (err)
618 		return err;
619 	register_shrinker_prepared(shrinker);
620 	return 0;
621 }
622 EXPORT_SYMBOL(register_shrinker);
623 
624 /*
625  * Remove one
626  */
627 void unregister_shrinker(struct shrinker *shrinker)
628 {
629 	if (!(shrinker->flags & SHRINKER_REGISTERED))
630 		return;
631 
632 	down_write(&shrinker_rwsem);
633 	list_del(&shrinker->list);
634 	shrinker->flags &= ~SHRINKER_REGISTERED;
635 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
636 		unregister_memcg_shrinker(shrinker);
637 	up_write(&shrinker_rwsem);
638 
639 	kfree(shrinker->nr_deferred);
640 	shrinker->nr_deferred = NULL;
641 }
642 EXPORT_SYMBOL(unregister_shrinker);
643 
644 #define SHRINK_BATCH 128
645 
646 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
647 				    struct shrinker *shrinker, int priority)
648 {
649 	unsigned long freed = 0;
650 	unsigned long long delta;
651 	long total_scan;
652 	long freeable;
653 	long nr;
654 	long new_nr;
655 	long batch_size = shrinker->batch ? shrinker->batch
656 					  : SHRINK_BATCH;
657 	long scanned = 0, next_deferred;
658 
659 	freeable = shrinker->count_objects(shrinker, shrinkctl);
660 	if (freeable == 0 || freeable == SHRINK_EMPTY)
661 		return freeable;
662 
663 	/*
664 	 * copy the current shrinker scan count into a local variable
665 	 * and zero it so that other concurrent shrinker invocations
666 	 * don't also do this scanning work.
667 	 */
668 	nr = xchg_nr_deferred(shrinker, shrinkctl);
669 
670 	if (shrinker->seeks) {
671 		delta = freeable >> priority;
672 		delta *= 4;
673 		do_div(delta, shrinker->seeks);
674 	} else {
675 		/*
676 		 * These objects don't require any IO to create. Trim
677 		 * them aggressively under memory pressure to keep
678 		 * them from causing refetches in the IO caches.
679 		 */
680 		delta = freeable / 2;
681 	}
682 
683 	total_scan = nr >> priority;
684 	total_scan += delta;
685 	total_scan = min(total_scan, (2 * freeable));
686 
687 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
688 				   freeable, delta, total_scan, priority);
689 
690 	/*
691 	 * Normally, we should not scan less than batch_size objects in one
692 	 * pass to avoid too frequent shrinker calls, but if the slab has less
693 	 * than batch_size objects in total and we are really tight on memory,
694 	 * we will try to reclaim all available objects, otherwise we can end
695 	 * up failing allocations although there are plenty of reclaimable
696 	 * objects spread over several slabs with usage less than the
697 	 * batch_size.
698 	 *
699 	 * We detect the "tight on memory" situations by looking at the total
700 	 * number of objects we want to scan (total_scan). If it is greater
701 	 * than the total number of objects on slab (freeable), we must be
702 	 * scanning at high prio and therefore should try to reclaim as much as
703 	 * possible.
704 	 */
705 	while (total_scan >= batch_size ||
706 	       total_scan >= freeable) {
707 		unsigned long ret;
708 		unsigned long nr_to_scan = min(batch_size, total_scan);
709 
710 		shrinkctl->nr_to_scan = nr_to_scan;
711 		shrinkctl->nr_scanned = nr_to_scan;
712 		ret = shrinker->scan_objects(shrinker, shrinkctl);
713 		if (ret == SHRINK_STOP)
714 			break;
715 		freed += ret;
716 
717 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
718 		total_scan -= shrinkctl->nr_scanned;
719 		scanned += shrinkctl->nr_scanned;
720 
721 		cond_resched();
722 	}
723 
724 	/*
725 	 * The deferred work is increased by any new work (delta) that wasn't
726 	 * done, decreased by old deferred work that was done now.
727 	 *
728 	 * And it is capped to two times of the freeable items.
729 	 */
730 	next_deferred = max_t(long, (nr + delta - scanned), 0);
731 	next_deferred = min(next_deferred, (2 * freeable));
732 
733 	/*
734 	 * move the unused scan count back into the shrinker in a
735 	 * manner that handles concurrent updates.
736 	 */
737 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
738 
739 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
740 	return freed;
741 }
742 
743 #ifdef CONFIG_MEMCG
744 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
745 			struct mem_cgroup *memcg, int priority)
746 {
747 	struct shrinker_info *info;
748 	unsigned long ret, freed = 0;
749 	int i;
750 
751 	if (!mem_cgroup_online(memcg))
752 		return 0;
753 
754 	if (!down_read_trylock(&shrinker_rwsem))
755 		return 0;
756 
757 	info = shrinker_info_protected(memcg, nid);
758 	if (unlikely(!info))
759 		goto unlock;
760 
761 	for_each_set_bit(i, info->map, shrinker_nr_max) {
762 		struct shrink_control sc = {
763 			.gfp_mask = gfp_mask,
764 			.nid = nid,
765 			.memcg = memcg,
766 		};
767 		struct shrinker *shrinker;
768 
769 		shrinker = idr_find(&shrinker_idr, i);
770 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
771 			if (!shrinker)
772 				clear_bit(i, info->map);
773 			continue;
774 		}
775 
776 		/* Call non-slab shrinkers even though kmem is disabled */
777 		if (!memcg_kmem_enabled() &&
778 		    !(shrinker->flags & SHRINKER_NONSLAB))
779 			continue;
780 
781 		ret = do_shrink_slab(&sc, shrinker, priority);
782 		if (ret == SHRINK_EMPTY) {
783 			clear_bit(i, info->map);
784 			/*
785 			 * After the shrinker reported that it had no objects to
786 			 * free, but before we cleared the corresponding bit in
787 			 * the memcg shrinker map, a new object might have been
788 			 * added. To make sure, we have the bit set in this
789 			 * case, we invoke the shrinker one more time and reset
790 			 * the bit if it reports that it is not empty anymore.
791 			 * The memory barrier here pairs with the barrier in
792 			 * set_shrinker_bit():
793 			 *
794 			 * list_lru_add()     shrink_slab_memcg()
795 			 *   list_add_tail()    clear_bit()
796 			 *   <MB>               <MB>
797 			 *   set_bit()          do_shrink_slab()
798 			 */
799 			smp_mb__after_atomic();
800 			ret = do_shrink_slab(&sc, shrinker, priority);
801 			if (ret == SHRINK_EMPTY)
802 				ret = 0;
803 			else
804 				set_shrinker_bit(memcg, nid, i);
805 		}
806 		freed += ret;
807 
808 		if (rwsem_is_contended(&shrinker_rwsem)) {
809 			freed = freed ? : 1;
810 			break;
811 		}
812 	}
813 unlock:
814 	up_read(&shrinker_rwsem);
815 	return freed;
816 }
817 #else /* CONFIG_MEMCG */
818 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
819 			struct mem_cgroup *memcg, int priority)
820 {
821 	return 0;
822 }
823 #endif /* CONFIG_MEMCG */
824 
825 /**
826  * shrink_slab - shrink slab caches
827  * @gfp_mask: allocation context
828  * @nid: node whose slab caches to target
829  * @memcg: memory cgroup whose slab caches to target
830  * @priority: the reclaim priority
831  *
832  * Call the shrink functions to age shrinkable caches.
833  *
834  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
835  * unaware shrinkers will receive a node id of 0 instead.
836  *
837  * @memcg specifies the memory cgroup to target. Unaware shrinkers
838  * are called only if it is the root cgroup.
839  *
840  * @priority is sc->priority, we take the number of objects and >> by priority
841  * in order to get the scan target.
842  *
843  * Returns the number of reclaimed slab objects.
844  */
845 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
846 				 struct mem_cgroup *memcg,
847 				 int priority)
848 {
849 	unsigned long ret, freed = 0;
850 	struct shrinker *shrinker;
851 
852 	/*
853 	 * The root memcg might be allocated even though memcg is disabled
854 	 * via "cgroup_disable=memory" boot parameter.  This could make
855 	 * mem_cgroup_is_root() return false, then just run memcg slab
856 	 * shrink, but skip global shrink.  This may result in premature
857 	 * oom.
858 	 */
859 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
860 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
861 
862 	if (!down_read_trylock(&shrinker_rwsem))
863 		goto out;
864 
865 	list_for_each_entry(shrinker, &shrinker_list, list) {
866 		struct shrink_control sc = {
867 			.gfp_mask = gfp_mask,
868 			.nid = nid,
869 			.memcg = memcg,
870 		};
871 
872 		ret = do_shrink_slab(&sc, shrinker, priority);
873 		if (ret == SHRINK_EMPTY)
874 			ret = 0;
875 		freed += ret;
876 		/*
877 		 * Bail out if someone want to register a new shrinker to
878 		 * prevent the registration from being stalled for long periods
879 		 * by parallel ongoing shrinking.
880 		 */
881 		if (rwsem_is_contended(&shrinker_rwsem)) {
882 			freed = freed ? : 1;
883 			break;
884 		}
885 	}
886 
887 	up_read(&shrinker_rwsem);
888 out:
889 	cond_resched();
890 	return freed;
891 }
892 
893 void drop_slab_node(int nid)
894 {
895 	unsigned long freed;
896 
897 	do {
898 		struct mem_cgroup *memcg = NULL;
899 
900 		if (fatal_signal_pending(current))
901 			return;
902 
903 		freed = 0;
904 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
905 		do {
906 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
907 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
908 	} while (freed > 10);
909 }
910 
911 void drop_slab(void)
912 {
913 	int nid;
914 
915 	for_each_online_node(nid)
916 		drop_slab_node(nid);
917 }
918 
919 static inline int is_page_cache_freeable(struct page *page)
920 {
921 	/*
922 	 * A freeable page cache page is referenced only by the caller
923 	 * that isolated the page, the page cache and optional buffer
924 	 * heads at page->private.
925 	 */
926 	int page_cache_pins = thp_nr_pages(page);
927 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
928 }
929 
930 static int may_write_to_inode(struct inode *inode)
931 {
932 	if (current->flags & PF_SWAPWRITE)
933 		return 1;
934 	if (!inode_write_congested(inode))
935 		return 1;
936 	if (inode_to_bdi(inode) == current->backing_dev_info)
937 		return 1;
938 	return 0;
939 }
940 
941 /*
942  * We detected a synchronous write error writing a page out.  Probably
943  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
944  * fsync(), msync() or close().
945  *
946  * The tricky part is that after writepage we cannot touch the mapping: nothing
947  * prevents it from being freed up.  But we have a ref on the page and once
948  * that page is locked, the mapping is pinned.
949  *
950  * We're allowed to run sleeping lock_page() here because we know the caller has
951  * __GFP_FS.
952  */
953 static void handle_write_error(struct address_space *mapping,
954 				struct page *page, int error)
955 {
956 	lock_page(page);
957 	if (page_mapping(page) == mapping)
958 		mapping_set_error(mapping, error);
959 	unlock_page(page);
960 }
961 
962 /* possible outcome of pageout() */
963 typedef enum {
964 	/* failed to write page out, page is locked */
965 	PAGE_KEEP,
966 	/* move page to the active list, page is locked */
967 	PAGE_ACTIVATE,
968 	/* page has been sent to the disk successfully, page is unlocked */
969 	PAGE_SUCCESS,
970 	/* page is clean and locked */
971 	PAGE_CLEAN,
972 } pageout_t;
973 
974 /*
975  * pageout is called by shrink_page_list() for each dirty page.
976  * Calls ->writepage().
977  */
978 static pageout_t pageout(struct page *page, struct address_space *mapping)
979 {
980 	/*
981 	 * If the page is dirty, only perform writeback if that write
982 	 * will be non-blocking.  To prevent this allocation from being
983 	 * stalled by pagecache activity.  But note that there may be
984 	 * stalls if we need to run get_block().  We could test
985 	 * PagePrivate for that.
986 	 *
987 	 * If this process is currently in __generic_file_write_iter() against
988 	 * this page's queue, we can perform writeback even if that
989 	 * will block.
990 	 *
991 	 * If the page is swapcache, write it back even if that would
992 	 * block, for some throttling. This happens by accident, because
993 	 * swap_backing_dev_info is bust: it doesn't reflect the
994 	 * congestion state of the swapdevs.  Easy to fix, if needed.
995 	 */
996 	if (!is_page_cache_freeable(page))
997 		return PAGE_KEEP;
998 	if (!mapping) {
999 		/*
1000 		 * Some data journaling orphaned pages can have
1001 		 * page->mapping == NULL while being dirty with clean buffers.
1002 		 */
1003 		if (page_has_private(page)) {
1004 			if (try_to_free_buffers(page)) {
1005 				ClearPageDirty(page);
1006 				pr_info("%s: orphaned page\n", __func__);
1007 				return PAGE_CLEAN;
1008 			}
1009 		}
1010 		return PAGE_KEEP;
1011 	}
1012 	if (mapping->a_ops->writepage == NULL)
1013 		return PAGE_ACTIVATE;
1014 	if (!may_write_to_inode(mapping->host))
1015 		return PAGE_KEEP;
1016 
1017 	if (clear_page_dirty_for_io(page)) {
1018 		int res;
1019 		struct writeback_control wbc = {
1020 			.sync_mode = WB_SYNC_NONE,
1021 			.nr_to_write = SWAP_CLUSTER_MAX,
1022 			.range_start = 0,
1023 			.range_end = LLONG_MAX,
1024 			.for_reclaim = 1,
1025 		};
1026 
1027 		SetPageReclaim(page);
1028 		res = mapping->a_ops->writepage(page, &wbc);
1029 		if (res < 0)
1030 			handle_write_error(mapping, page, res);
1031 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1032 			ClearPageReclaim(page);
1033 			return PAGE_ACTIVATE;
1034 		}
1035 
1036 		if (!PageWriteback(page)) {
1037 			/* synchronous write or broken a_ops? */
1038 			ClearPageReclaim(page);
1039 		}
1040 		trace_mm_vmscan_writepage(page);
1041 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1042 		return PAGE_SUCCESS;
1043 	}
1044 
1045 	return PAGE_CLEAN;
1046 }
1047 
1048 /*
1049  * Same as remove_mapping, but if the page is removed from the mapping, it
1050  * gets returned with a refcount of 0.
1051  */
1052 static int __remove_mapping(struct address_space *mapping, struct page *page,
1053 			    bool reclaimed, struct mem_cgroup *target_memcg)
1054 {
1055 	int refcount;
1056 	void *shadow = NULL;
1057 
1058 	BUG_ON(!PageLocked(page));
1059 	BUG_ON(mapping != page_mapping(page));
1060 
1061 	xa_lock_irq(&mapping->i_pages);
1062 	/*
1063 	 * The non racy check for a busy page.
1064 	 *
1065 	 * Must be careful with the order of the tests. When someone has
1066 	 * a ref to the page, it may be possible that they dirty it then
1067 	 * drop the reference. So if PageDirty is tested before page_count
1068 	 * here, then the following race may occur:
1069 	 *
1070 	 * get_user_pages(&page);
1071 	 * [user mapping goes away]
1072 	 * write_to(page);
1073 	 *				!PageDirty(page)    [good]
1074 	 * SetPageDirty(page);
1075 	 * put_page(page);
1076 	 *				!page_count(page)   [good, discard it]
1077 	 *
1078 	 * [oops, our write_to data is lost]
1079 	 *
1080 	 * Reversing the order of the tests ensures such a situation cannot
1081 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1082 	 * load is not satisfied before that of page->_refcount.
1083 	 *
1084 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1085 	 * and thus under the i_pages lock, then this ordering is not required.
1086 	 */
1087 	refcount = 1 + compound_nr(page);
1088 	if (!page_ref_freeze(page, refcount))
1089 		goto cannot_free;
1090 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1091 	if (unlikely(PageDirty(page))) {
1092 		page_ref_unfreeze(page, refcount);
1093 		goto cannot_free;
1094 	}
1095 
1096 	if (PageSwapCache(page)) {
1097 		swp_entry_t swap = { .val = page_private(page) };
1098 		mem_cgroup_swapout(page, swap);
1099 		if (reclaimed && !mapping_exiting(mapping))
1100 			shadow = workingset_eviction(page, target_memcg);
1101 		__delete_from_swap_cache(page, swap, shadow);
1102 		xa_unlock_irq(&mapping->i_pages);
1103 		put_swap_page(page, swap);
1104 	} else {
1105 		void (*freepage)(struct page *);
1106 
1107 		freepage = mapping->a_ops->freepage;
1108 		/*
1109 		 * Remember a shadow entry for reclaimed file cache in
1110 		 * order to detect refaults, thus thrashing, later on.
1111 		 *
1112 		 * But don't store shadows in an address space that is
1113 		 * already exiting.  This is not just an optimization,
1114 		 * inode reclaim needs to empty out the radix tree or
1115 		 * the nodes are lost.  Don't plant shadows behind its
1116 		 * back.
1117 		 *
1118 		 * We also don't store shadows for DAX mappings because the
1119 		 * only page cache pages found in these are zero pages
1120 		 * covering holes, and because we don't want to mix DAX
1121 		 * exceptional entries and shadow exceptional entries in the
1122 		 * same address_space.
1123 		 */
1124 		if (reclaimed && page_is_file_lru(page) &&
1125 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1126 			shadow = workingset_eviction(page, target_memcg);
1127 		__delete_from_page_cache(page, shadow);
1128 		xa_unlock_irq(&mapping->i_pages);
1129 
1130 		if (freepage != NULL)
1131 			freepage(page);
1132 	}
1133 
1134 	return 1;
1135 
1136 cannot_free:
1137 	xa_unlock_irq(&mapping->i_pages);
1138 	return 0;
1139 }
1140 
1141 /*
1142  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1143  * someone else has a ref on the page, abort and return 0.  If it was
1144  * successfully detached, return 1.  Assumes the caller has a single ref on
1145  * this page.
1146  */
1147 int remove_mapping(struct address_space *mapping, struct page *page)
1148 {
1149 	if (__remove_mapping(mapping, page, false, NULL)) {
1150 		/*
1151 		 * Unfreezing the refcount with 1 rather than 2 effectively
1152 		 * drops the pagecache ref for us without requiring another
1153 		 * atomic operation.
1154 		 */
1155 		page_ref_unfreeze(page, 1);
1156 		return 1;
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  * putback_lru_page - put previously isolated page onto appropriate LRU list
1163  * @page: page to be put back to appropriate lru list
1164  *
1165  * Add previously isolated @page to appropriate LRU list.
1166  * Page may still be unevictable for other reasons.
1167  *
1168  * lru_lock must not be held, interrupts must be enabled.
1169  */
1170 void putback_lru_page(struct page *page)
1171 {
1172 	lru_cache_add(page);
1173 	put_page(page);		/* drop ref from isolate */
1174 }
1175 
1176 enum page_references {
1177 	PAGEREF_RECLAIM,
1178 	PAGEREF_RECLAIM_CLEAN,
1179 	PAGEREF_KEEP,
1180 	PAGEREF_ACTIVATE,
1181 };
1182 
1183 static enum page_references page_check_references(struct page *page,
1184 						  struct scan_control *sc)
1185 {
1186 	int referenced_ptes, referenced_page;
1187 	unsigned long vm_flags;
1188 
1189 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1190 					  &vm_flags);
1191 	referenced_page = TestClearPageReferenced(page);
1192 
1193 	/*
1194 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1195 	 * move the page to the unevictable list.
1196 	 */
1197 	if (vm_flags & VM_LOCKED)
1198 		return PAGEREF_RECLAIM;
1199 
1200 	if (referenced_ptes) {
1201 		/*
1202 		 * All mapped pages start out with page table
1203 		 * references from the instantiating fault, so we need
1204 		 * to look twice if a mapped file page is used more
1205 		 * than once.
1206 		 *
1207 		 * Mark it and spare it for another trip around the
1208 		 * inactive list.  Another page table reference will
1209 		 * lead to its activation.
1210 		 *
1211 		 * Note: the mark is set for activated pages as well
1212 		 * so that recently deactivated but used pages are
1213 		 * quickly recovered.
1214 		 */
1215 		SetPageReferenced(page);
1216 
1217 		if (referenced_page || referenced_ptes > 1)
1218 			return PAGEREF_ACTIVATE;
1219 
1220 		/*
1221 		 * Activate file-backed executable pages after first usage.
1222 		 */
1223 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1224 			return PAGEREF_ACTIVATE;
1225 
1226 		return PAGEREF_KEEP;
1227 	}
1228 
1229 	/* Reclaim if clean, defer dirty pages to writeback */
1230 	if (referenced_page && !PageSwapBacked(page))
1231 		return PAGEREF_RECLAIM_CLEAN;
1232 
1233 	return PAGEREF_RECLAIM;
1234 }
1235 
1236 /* Check if a page is dirty or under writeback */
1237 static void page_check_dirty_writeback(struct page *page,
1238 				       bool *dirty, bool *writeback)
1239 {
1240 	struct address_space *mapping;
1241 
1242 	/*
1243 	 * Anonymous pages are not handled by flushers and must be written
1244 	 * from reclaim context. Do not stall reclaim based on them
1245 	 */
1246 	if (!page_is_file_lru(page) ||
1247 	    (PageAnon(page) && !PageSwapBacked(page))) {
1248 		*dirty = false;
1249 		*writeback = false;
1250 		return;
1251 	}
1252 
1253 	/* By default assume that the page flags are accurate */
1254 	*dirty = PageDirty(page);
1255 	*writeback = PageWriteback(page);
1256 
1257 	/* Verify dirty/writeback state if the filesystem supports it */
1258 	if (!page_has_private(page))
1259 		return;
1260 
1261 	mapping = page_mapping(page);
1262 	if (mapping && mapping->a_ops->is_dirty_writeback)
1263 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1264 }
1265 
1266 /*
1267  * shrink_page_list() returns the number of reclaimed pages
1268  */
1269 static unsigned int shrink_page_list(struct list_head *page_list,
1270 				     struct pglist_data *pgdat,
1271 				     struct scan_control *sc,
1272 				     struct reclaim_stat *stat,
1273 				     bool ignore_references)
1274 {
1275 	LIST_HEAD(ret_pages);
1276 	LIST_HEAD(free_pages);
1277 	unsigned int nr_reclaimed = 0;
1278 	unsigned int pgactivate = 0;
1279 
1280 	memset(stat, 0, sizeof(*stat));
1281 	cond_resched();
1282 
1283 	while (!list_empty(page_list)) {
1284 		struct address_space *mapping;
1285 		struct page *page;
1286 		enum page_references references = PAGEREF_RECLAIM;
1287 		bool dirty, writeback, may_enter_fs;
1288 		unsigned int nr_pages;
1289 
1290 		cond_resched();
1291 
1292 		page = lru_to_page(page_list);
1293 		list_del(&page->lru);
1294 
1295 		if (!trylock_page(page))
1296 			goto keep;
1297 
1298 		VM_BUG_ON_PAGE(PageActive(page), page);
1299 
1300 		nr_pages = compound_nr(page);
1301 
1302 		/* Account the number of base pages even though THP */
1303 		sc->nr_scanned += nr_pages;
1304 
1305 		if (unlikely(!page_evictable(page)))
1306 			goto activate_locked;
1307 
1308 		if (!sc->may_unmap && page_mapped(page))
1309 			goto keep_locked;
1310 
1311 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1312 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1313 
1314 		/*
1315 		 * The number of dirty pages determines if a node is marked
1316 		 * reclaim_congested which affects wait_iff_congested. kswapd
1317 		 * will stall and start writing pages if the tail of the LRU
1318 		 * is all dirty unqueued pages.
1319 		 */
1320 		page_check_dirty_writeback(page, &dirty, &writeback);
1321 		if (dirty || writeback)
1322 			stat->nr_dirty++;
1323 
1324 		if (dirty && !writeback)
1325 			stat->nr_unqueued_dirty++;
1326 
1327 		/*
1328 		 * Treat this page as congested if the underlying BDI is or if
1329 		 * pages are cycling through the LRU so quickly that the
1330 		 * pages marked for immediate reclaim are making it to the
1331 		 * end of the LRU a second time.
1332 		 */
1333 		mapping = page_mapping(page);
1334 		if (((dirty || writeback) && mapping &&
1335 		     inode_write_congested(mapping->host)) ||
1336 		    (writeback && PageReclaim(page)))
1337 			stat->nr_congested++;
1338 
1339 		/*
1340 		 * If a page at the tail of the LRU is under writeback, there
1341 		 * are three cases to consider.
1342 		 *
1343 		 * 1) If reclaim is encountering an excessive number of pages
1344 		 *    under writeback and this page is both under writeback and
1345 		 *    PageReclaim then it indicates that pages are being queued
1346 		 *    for IO but are being recycled through the LRU before the
1347 		 *    IO can complete. Waiting on the page itself risks an
1348 		 *    indefinite stall if it is impossible to writeback the
1349 		 *    page due to IO error or disconnected storage so instead
1350 		 *    note that the LRU is being scanned too quickly and the
1351 		 *    caller can stall after page list has been processed.
1352 		 *
1353 		 * 2) Global or new memcg reclaim encounters a page that is
1354 		 *    not marked for immediate reclaim, or the caller does not
1355 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1356 		 *    not to fs). In this case mark the page for immediate
1357 		 *    reclaim and continue scanning.
1358 		 *
1359 		 *    Require may_enter_fs because we would wait on fs, which
1360 		 *    may not have submitted IO yet. And the loop driver might
1361 		 *    enter reclaim, and deadlock if it waits on a page for
1362 		 *    which it is needed to do the write (loop masks off
1363 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1364 		 *    would probably show more reasons.
1365 		 *
1366 		 * 3) Legacy memcg encounters a page that is already marked
1367 		 *    PageReclaim. memcg does not have any dirty pages
1368 		 *    throttling so we could easily OOM just because too many
1369 		 *    pages are in writeback and there is nothing else to
1370 		 *    reclaim. Wait for the writeback to complete.
1371 		 *
1372 		 * In cases 1) and 2) we activate the pages to get them out of
1373 		 * the way while we continue scanning for clean pages on the
1374 		 * inactive list and refilling from the active list. The
1375 		 * observation here is that waiting for disk writes is more
1376 		 * expensive than potentially causing reloads down the line.
1377 		 * Since they're marked for immediate reclaim, they won't put
1378 		 * memory pressure on the cache working set any longer than it
1379 		 * takes to write them to disk.
1380 		 */
1381 		if (PageWriteback(page)) {
1382 			/* Case 1 above */
1383 			if (current_is_kswapd() &&
1384 			    PageReclaim(page) &&
1385 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1386 				stat->nr_immediate++;
1387 				goto activate_locked;
1388 
1389 			/* Case 2 above */
1390 			} else if (writeback_throttling_sane(sc) ||
1391 			    !PageReclaim(page) || !may_enter_fs) {
1392 				/*
1393 				 * This is slightly racy - end_page_writeback()
1394 				 * might have just cleared PageReclaim, then
1395 				 * setting PageReclaim here end up interpreted
1396 				 * as PageReadahead - but that does not matter
1397 				 * enough to care.  What we do want is for this
1398 				 * page to have PageReclaim set next time memcg
1399 				 * reclaim reaches the tests above, so it will
1400 				 * then wait_on_page_writeback() to avoid OOM;
1401 				 * and it's also appropriate in global reclaim.
1402 				 */
1403 				SetPageReclaim(page);
1404 				stat->nr_writeback++;
1405 				goto activate_locked;
1406 
1407 			/* Case 3 above */
1408 			} else {
1409 				unlock_page(page);
1410 				wait_on_page_writeback(page);
1411 				/* then go back and try same page again */
1412 				list_add_tail(&page->lru, page_list);
1413 				continue;
1414 			}
1415 		}
1416 
1417 		if (!ignore_references)
1418 			references = page_check_references(page, sc);
1419 
1420 		switch (references) {
1421 		case PAGEREF_ACTIVATE:
1422 			goto activate_locked;
1423 		case PAGEREF_KEEP:
1424 			stat->nr_ref_keep += nr_pages;
1425 			goto keep_locked;
1426 		case PAGEREF_RECLAIM:
1427 		case PAGEREF_RECLAIM_CLEAN:
1428 			; /* try to reclaim the page below */
1429 		}
1430 
1431 		/*
1432 		 * Anonymous process memory has backing store?
1433 		 * Try to allocate it some swap space here.
1434 		 * Lazyfree page could be freed directly
1435 		 */
1436 		if (PageAnon(page) && PageSwapBacked(page)) {
1437 			if (!PageSwapCache(page)) {
1438 				if (!(sc->gfp_mask & __GFP_IO))
1439 					goto keep_locked;
1440 				if (page_maybe_dma_pinned(page))
1441 					goto keep_locked;
1442 				if (PageTransHuge(page)) {
1443 					/* cannot split THP, skip it */
1444 					if (!can_split_huge_page(page, NULL))
1445 						goto activate_locked;
1446 					/*
1447 					 * Split pages without a PMD map right
1448 					 * away. Chances are some or all of the
1449 					 * tail pages can be freed without IO.
1450 					 */
1451 					if (!compound_mapcount(page) &&
1452 					    split_huge_page_to_list(page,
1453 								    page_list))
1454 						goto activate_locked;
1455 				}
1456 				if (!add_to_swap(page)) {
1457 					if (!PageTransHuge(page))
1458 						goto activate_locked_split;
1459 					/* Fallback to swap normal pages */
1460 					if (split_huge_page_to_list(page,
1461 								    page_list))
1462 						goto activate_locked;
1463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1464 					count_vm_event(THP_SWPOUT_FALLBACK);
1465 #endif
1466 					if (!add_to_swap(page))
1467 						goto activate_locked_split;
1468 				}
1469 
1470 				may_enter_fs = true;
1471 
1472 				/* Adding to swap updated mapping */
1473 				mapping = page_mapping(page);
1474 			}
1475 		} else if (unlikely(PageTransHuge(page))) {
1476 			/* Split file THP */
1477 			if (split_huge_page_to_list(page, page_list))
1478 				goto keep_locked;
1479 		}
1480 
1481 		/*
1482 		 * THP may get split above, need minus tail pages and update
1483 		 * nr_pages to avoid accounting tail pages twice.
1484 		 *
1485 		 * The tail pages that are added into swap cache successfully
1486 		 * reach here.
1487 		 */
1488 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1489 			sc->nr_scanned -= (nr_pages - 1);
1490 			nr_pages = 1;
1491 		}
1492 
1493 		/*
1494 		 * The page is mapped into the page tables of one or more
1495 		 * processes. Try to unmap it here.
1496 		 */
1497 		if (page_mapped(page)) {
1498 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1499 			bool was_swapbacked = PageSwapBacked(page);
1500 
1501 			if (unlikely(PageTransHuge(page)))
1502 				flags |= TTU_SPLIT_HUGE_PMD;
1503 
1504 			try_to_unmap(page, flags);
1505 			if (page_mapped(page)) {
1506 				stat->nr_unmap_fail += nr_pages;
1507 				if (!was_swapbacked && PageSwapBacked(page))
1508 					stat->nr_lazyfree_fail += nr_pages;
1509 				goto activate_locked;
1510 			}
1511 		}
1512 
1513 		if (PageDirty(page)) {
1514 			/*
1515 			 * Only kswapd can writeback filesystem pages
1516 			 * to avoid risk of stack overflow. But avoid
1517 			 * injecting inefficient single-page IO into
1518 			 * flusher writeback as much as possible: only
1519 			 * write pages when we've encountered many
1520 			 * dirty pages, and when we've already scanned
1521 			 * the rest of the LRU for clean pages and see
1522 			 * the same dirty pages again (PageReclaim).
1523 			 */
1524 			if (page_is_file_lru(page) &&
1525 			    (!current_is_kswapd() || !PageReclaim(page) ||
1526 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1527 				/*
1528 				 * Immediately reclaim when written back.
1529 				 * Similar in principal to deactivate_page()
1530 				 * except we already have the page isolated
1531 				 * and know it's dirty
1532 				 */
1533 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1534 				SetPageReclaim(page);
1535 
1536 				goto activate_locked;
1537 			}
1538 
1539 			if (references == PAGEREF_RECLAIM_CLEAN)
1540 				goto keep_locked;
1541 			if (!may_enter_fs)
1542 				goto keep_locked;
1543 			if (!sc->may_writepage)
1544 				goto keep_locked;
1545 
1546 			/*
1547 			 * Page is dirty. Flush the TLB if a writable entry
1548 			 * potentially exists to avoid CPU writes after IO
1549 			 * starts and then write it out here.
1550 			 */
1551 			try_to_unmap_flush_dirty();
1552 			switch (pageout(page, mapping)) {
1553 			case PAGE_KEEP:
1554 				goto keep_locked;
1555 			case PAGE_ACTIVATE:
1556 				goto activate_locked;
1557 			case PAGE_SUCCESS:
1558 				stat->nr_pageout += thp_nr_pages(page);
1559 
1560 				if (PageWriteback(page))
1561 					goto keep;
1562 				if (PageDirty(page))
1563 					goto keep;
1564 
1565 				/*
1566 				 * A synchronous write - probably a ramdisk.  Go
1567 				 * ahead and try to reclaim the page.
1568 				 */
1569 				if (!trylock_page(page))
1570 					goto keep;
1571 				if (PageDirty(page) || PageWriteback(page))
1572 					goto keep_locked;
1573 				mapping = page_mapping(page);
1574 				fallthrough;
1575 			case PAGE_CLEAN:
1576 				; /* try to free the page below */
1577 			}
1578 		}
1579 
1580 		/*
1581 		 * If the page has buffers, try to free the buffer mappings
1582 		 * associated with this page. If we succeed we try to free
1583 		 * the page as well.
1584 		 *
1585 		 * We do this even if the page is PageDirty().
1586 		 * try_to_release_page() does not perform I/O, but it is
1587 		 * possible for a page to have PageDirty set, but it is actually
1588 		 * clean (all its buffers are clean).  This happens if the
1589 		 * buffers were written out directly, with submit_bh(). ext3
1590 		 * will do this, as well as the blockdev mapping.
1591 		 * try_to_release_page() will discover that cleanness and will
1592 		 * drop the buffers and mark the page clean - it can be freed.
1593 		 *
1594 		 * Rarely, pages can have buffers and no ->mapping.  These are
1595 		 * the pages which were not successfully invalidated in
1596 		 * truncate_cleanup_page().  We try to drop those buffers here
1597 		 * and if that worked, and the page is no longer mapped into
1598 		 * process address space (page_count == 1) it can be freed.
1599 		 * Otherwise, leave the page on the LRU so it is swappable.
1600 		 */
1601 		if (page_has_private(page)) {
1602 			if (!try_to_release_page(page, sc->gfp_mask))
1603 				goto activate_locked;
1604 			if (!mapping && page_count(page) == 1) {
1605 				unlock_page(page);
1606 				if (put_page_testzero(page))
1607 					goto free_it;
1608 				else {
1609 					/*
1610 					 * rare race with speculative reference.
1611 					 * the speculative reference will free
1612 					 * this page shortly, so we may
1613 					 * increment nr_reclaimed here (and
1614 					 * leave it off the LRU).
1615 					 */
1616 					nr_reclaimed++;
1617 					continue;
1618 				}
1619 			}
1620 		}
1621 
1622 		if (PageAnon(page) && !PageSwapBacked(page)) {
1623 			/* follow __remove_mapping for reference */
1624 			if (!page_ref_freeze(page, 1))
1625 				goto keep_locked;
1626 			if (PageDirty(page)) {
1627 				page_ref_unfreeze(page, 1);
1628 				goto keep_locked;
1629 			}
1630 
1631 			count_vm_event(PGLAZYFREED);
1632 			count_memcg_page_event(page, PGLAZYFREED);
1633 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1634 							 sc->target_mem_cgroup))
1635 			goto keep_locked;
1636 
1637 		unlock_page(page);
1638 free_it:
1639 		/*
1640 		 * THP may get swapped out in a whole, need account
1641 		 * all base pages.
1642 		 */
1643 		nr_reclaimed += nr_pages;
1644 
1645 		/*
1646 		 * Is there need to periodically free_page_list? It would
1647 		 * appear not as the counts should be low
1648 		 */
1649 		if (unlikely(PageTransHuge(page)))
1650 			destroy_compound_page(page);
1651 		else
1652 			list_add(&page->lru, &free_pages);
1653 		continue;
1654 
1655 activate_locked_split:
1656 		/*
1657 		 * The tail pages that are failed to add into swap cache
1658 		 * reach here.  Fixup nr_scanned and nr_pages.
1659 		 */
1660 		if (nr_pages > 1) {
1661 			sc->nr_scanned -= (nr_pages - 1);
1662 			nr_pages = 1;
1663 		}
1664 activate_locked:
1665 		/* Not a candidate for swapping, so reclaim swap space. */
1666 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1667 						PageMlocked(page)))
1668 			try_to_free_swap(page);
1669 		VM_BUG_ON_PAGE(PageActive(page), page);
1670 		if (!PageMlocked(page)) {
1671 			int type = page_is_file_lru(page);
1672 			SetPageActive(page);
1673 			stat->nr_activate[type] += nr_pages;
1674 			count_memcg_page_event(page, PGACTIVATE);
1675 		}
1676 keep_locked:
1677 		unlock_page(page);
1678 keep:
1679 		list_add(&page->lru, &ret_pages);
1680 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1681 	}
1682 
1683 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1684 
1685 	mem_cgroup_uncharge_list(&free_pages);
1686 	try_to_unmap_flush();
1687 	free_unref_page_list(&free_pages);
1688 
1689 	list_splice(&ret_pages, page_list);
1690 	count_vm_events(PGACTIVATE, pgactivate);
1691 
1692 	return nr_reclaimed;
1693 }
1694 
1695 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1696 					    struct list_head *page_list)
1697 {
1698 	struct scan_control sc = {
1699 		.gfp_mask = GFP_KERNEL,
1700 		.priority = DEF_PRIORITY,
1701 		.may_unmap = 1,
1702 	};
1703 	struct reclaim_stat stat;
1704 	unsigned int nr_reclaimed;
1705 	struct page *page, *next;
1706 	LIST_HEAD(clean_pages);
1707 	unsigned int noreclaim_flag;
1708 
1709 	list_for_each_entry_safe(page, next, page_list, lru) {
1710 		if (!PageHuge(page) && page_is_file_lru(page) &&
1711 		    !PageDirty(page) && !__PageMovable(page) &&
1712 		    !PageUnevictable(page)) {
1713 			ClearPageActive(page);
1714 			list_move(&page->lru, &clean_pages);
1715 		}
1716 	}
1717 
1718 	/*
1719 	 * We should be safe here since we are only dealing with file pages and
1720 	 * we are not kswapd and therefore cannot write dirty file pages. But
1721 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1722 	 * change in the future.
1723 	 */
1724 	noreclaim_flag = memalloc_noreclaim_save();
1725 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1726 					&stat, true);
1727 	memalloc_noreclaim_restore(noreclaim_flag);
1728 
1729 	list_splice(&clean_pages, page_list);
1730 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1731 			    -(long)nr_reclaimed);
1732 	/*
1733 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1734 	 * they will rotate back to anonymous LRU in the end if it failed to
1735 	 * discard so isolated count will be mismatched.
1736 	 * Compensate the isolated count for both LRU lists.
1737 	 */
1738 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1739 			    stat.nr_lazyfree_fail);
1740 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1741 			    -(long)stat.nr_lazyfree_fail);
1742 	return nr_reclaimed;
1743 }
1744 
1745 /*
1746  * Attempt to remove the specified page from its LRU.  Only take this page
1747  * if it is of the appropriate PageActive status.  Pages which are being
1748  * freed elsewhere are also ignored.
1749  *
1750  * page:	page to consider
1751  * mode:	one of the LRU isolation modes defined above
1752  *
1753  * returns true on success, false on failure.
1754  */
1755 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1756 {
1757 	/* Only take pages on the LRU. */
1758 	if (!PageLRU(page))
1759 		return false;
1760 
1761 	/* Compaction should not handle unevictable pages but CMA can do so */
1762 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1763 		return false;
1764 
1765 	/*
1766 	 * To minimise LRU disruption, the caller can indicate that it only
1767 	 * wants to isolate pages it will be able to operate on without
1768 	 * blocking - clean pages for the most part.
1769 	 *
1770 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1771 	 * that it is possible to migrate without blocking
1772 	 */
1773 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1774 		/* All the caller can do on PageWriteback is block */
1775 		if (PageWriteback(page))
1776 			return false;
1777 
1778 		if (PageDirty(page)) {
1779 			struct address_space *mapping;
1780 			bool migrate_dirty;
1781 
1782 			/*
1783 			 * Only pages without mappings or that have a
1784 			 * ->migratepage callback are possible to migrate
1785 			 * without blocking. However, we can be racing with
1786 			 * truncation so it's necessary to lock the page
1787 			 * to stabilise the mapping as truncation holds
1788 			 * the page lock until after the page is removed
1789 			 * from the page cache.
1790 			 */
1791 			if (!trylock_page(page))
1792 				return false;
1793 
1794 			mapping = page_mapping(page);
1795 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1796 			unlock_page(page);
1797 			if (!migrate_dirty)
1798 				return false;
1799 		}
1800 	}
1801 
1802 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1803 		return false;
1804 
1805 	return true;
1806 }
1807 
1808 /*
1809  * Update LRU sizes after isolating pages. The LRU size updates must
1810  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1811  */
1812 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1813 			enum lru_list lru, unsigned long *nr_zone_taken)
1814 {
1815 	int zid;
1816 
1817 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1818 		if (!nr_zone_taken[zid])
1819 			continue;
1820 
1821 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1822 	}
1823 
1824 }
1825 
1826 /*
1827  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1828  *
1829  * lruvec->lru_lock is heavily contended.  Some of the functions that
1830  * shrink the lists perform better by taking out a batch of pages
1831  * and working on them outside the LRU lock.
1832  *
1833  * For pagecache intensive workloads, this function is the hottest
1834  * spot in the kernel (apart from copy_*_user functions).
1835  *
1836  * Lru_lock must be held before calling this function.
1837  *
1838  * @nr_to_scan:	The number of eligible pages to look through on the list.
1839  * @lruvec:	The LRU vector to pull pages from.
1840  * @dst:	The temp list to put pages on to.
1841  * @nr_scanned:	The number of pages that were scanned.
1842  * @sc:		The scan_control struct for this reclaim session
1843  * @lru:	LRU list id for isolating
1844  *
1845  * returns how many pages were moved onto *@dst.
1846  */
1847 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1848 		struct lruvec *lruvec, struct list_head *dst,
1849 		unsigned long *nr_scanned, struct scan_control *sc,
1850 		enum lru_list lru)
1851 {
1852 	struct list_head *src = &lruvec->lists[lru];
1853 	unsigned long nr_taken = 0;
1854 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1855 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1856 	unsigned long skipped = 0;
1857 	unsigned long scan, total_scan, nr_pages;
1858 	LIST_HEAD(pages_skipped);
1859 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1860 
1861 	total_scan = 0;
1862 	scan = 0;
1863 	while (scan < nr_to_scan && !list_empty(src)) {
1864 		struct page *page;
1865 
1866 		page = lru_to_page(src);
1867 		prefetchw_prev_lru_page(page, src, flags);
1868 
1869 		nr_pages = compound_nr(page);
1870 		total_scan += nr_pages;
1871 
1872 		if (page_zonenum(page) > sc->reclaim_idx) {
1873 			list_move(&page->lru, &pages_skipped);
1874 			nr_skipped[page_zonenum(page)] += nr_pages;
1875 			continue;
1876 		}
1877 
1878 		/*
1879 		 * Do not count skipped pages because that makes the function
1880 		 * return with no isolated pages if the LRU mostly contains
1881 		 * ineligible pages.  This causes the VM to not reclaim any
1882 		 * pages, triggering a premature OOM.
1883 		 *
1884 		 * Account all tail pages of THP.  This would not cause
1885 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1886 		 * only when the page is being freed somewhere else.
1887 		 */
1888 		scan += nr_pages;
1889 		if (!__isolate_lru_page_prepare(page, mode)) {
1890 			/* It is being freed elsewhere */
1891 			list_move(&page->lru, src);
1892 			continue;
1893 		}
1894 		/*
1895 		 * Be careful not to clear PageLRU until after we're
1896 		 * sure the page is not being freed elsewhere -- the
1897 		 * page release code relies on it.
1898 		 */
1899 		if (unlikely(!get_page_unless_zero(page))) {
1900 			list_move(&page->lru, src);
1901 			continue;
1902 		}
1903 
1904 		if (!TestClearPageLRU(page)) {
1905 			/* Another thread is already isolating this page */
1906 			put_page(page);
1907 			list_move(&page->lru, src);
1908 			continue;
1909 		}
1910 
1911 		nr_taken += nr_pages;
1912 		nr_zone_taken[page_zonenum(page)] += nr_pages;
1913 		list_move(&page->lru, dst);
1914 	}
1915 
1916 	/*
1917 	 * Splice any skipped pages to the start of the LRU list. Note that
1918 	 * this disrupts the LRU order when reclaiming for lower zones but
1919 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1920 	 * scanning would soon rescan the same pages to skip and put the
1921 	 * system at risk of premature OOM.
1922 	 */
1923 	if (!list_empty(&pages_skipped)) {
1924 		int zid;
1925 
1926 		list_splice(&pages_skipped, src);
1927 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1928 			if (!nr_skipped[zid])
1929 				continue;
1930 
1931 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1932 			skipped += nr_skipped[zid];
1933 		}
1934 	}
1935 	*nr_scanned = total_scan;
1936 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1937 				    total_scan, skipped, nr_taken, mode, lru);
1938 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1939 	return nr_taken;
1940 }
1941 
1942 /**
1943  * isolate_lru_page - tries to isolate a page from its LRU list
1944  * @page: page to isolate from its LRU list
1945  *
1946  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1947  * vmstat statistic corresponding to whatever LRU list the page was on.
1948  *
1949  * Returns 0 if the page was removed from an LRU list.
1950  * Returns -EBUSY if the page was not on an LRU list.
1951  *
1952  * The returned page will have PageLRU() cleared.  If it was found on
1953  * the active list, it will have PageActive set.  If it was found on
1954  * the unevictable list, it will have the PageUnevictable bit set. That flag
1955  * may need to be cleared by the caller before letting the page go.
1956  *
1957  * The vmstat statistic corresponding to the list on which the page was
1958  * found will be decremented.
1959  *
1960  * Restrictions:
1961  *
1962  * (1) Must be called with an elevated refcount on the page. This is a
1963  *     fundamental difference from isolate_lru_pages (which is called
1964  *     without a stable reference).
1965  * (2) the lru_lock must not be held.
1966  * (3) interrupts must be enabled.
1967  */
1968 int isolate_lru_page(struct page *page)
1969 {
1970 	int ret = -EBUSY;
1971 
1972 	VM_BUG_ON_PAGE(!page_count(page), page);
1973 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1974 
1975 	if (TestClearPageLRU(page)) {
1976 		struct lruvec *lruvec;
1977 
1978 		get_page(page);
1979 		lruvec = lock_page_lruvec_irq(page);
1980 		del_page_from_lru_list(page, lruvec);
1981 		unlock_page_lruvec_irq(lruvec);
1982 		ret = 0;
1983 	}
1984 
1985 	return ret;
1986 }
1987 
1988 /*
1989  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1990  * then get rescheduled. When there are massive number of tasks doing page
1991  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1992  * the LRU list will go small and be scanned faster than necessary, leading to
1993  * unnecessary swapping, thrashing and OOM.
1994  */
1995 static int too_many_isolated(struct pglist_data *pgdat, int file,
1996 		struct scan_control *sc)
1997 {
1998 	unsigned long inactive, isolated;
1999 
2000 	if (current_is_kswapd())
2001 		return 0;
2002 
2003 	if (!writeback_throttling_sane(sc))
2004 		return 0;
2005 
2006 	if (file) {
2007 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2008 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2009 	} else {
2010 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2011 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2012 	}
2013 
2014 	/*
2015 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2016 	 * won't get blocked by normal direct-reclaimers, forming a circular
2017 	 * deadlock.
2018 	 */
2019 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2020 		inactive >>= 3;
2021 
2022 	return isolated > inactive;
2023 }
2024 
2025 /*
2026  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2027  * On return, @list is reused as a list of pages to be freed by the caller.
2028  *
2029  * Returns the number of pages moved to the given lruvec.
2030  */
2031 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2032 				      struct list_head *list)
2033 {
2034 	int nr_pages, nr_moved = 0;
2035 	LIST_HEAD(pages_to_free);
2036 	struct page *page;
2037 
2038 	while (!list_empty(list)) {
2039 		page = lru_to_page(list);
2040 		VM_BUG_ON_PAGE(PageLRU(page), page);
2041 		list_del(&page->lru);
2042 		if (unlikely(!page_evictable(page))) {
2043 			spin_unlock_irq(&lruvec->lru_lock);
2044 			putback_lru_page(page);
2045 			spin_lock_irq(&lruvec->lru_lock);
2046 			continue;
2047 		}
2048 
2049 		/*
2050 		 * The SetPageLRU needs to be kept here for list integrity.
2051 		 * Otherwise:
2052 		 *   #0 move_pages_to_lru             #1 release_pages
2053 		 *   if !put_page_testzero
2054 		 *				      if (put_page_testzero())
2055 		 *				        !PageLRU //skip lru_lock
2056 		 *     SetPageLRU()
2057 		 *     list_add(&page->lru,)
2058 		 *                                        list_add(&page->lru,)
2059 		 */
2060 		SetPageLRU(page);
2061 
2062 		if (unlikely(put_page_testzero(page))) {
2063 			__clear_page_lru_flags(page);
2064 
2065 			if (unlikely(PageCompound(page))) {
2066 				spin_unlock_irq(&lruvec->lru_lock);
2067 				destroy_compound_page(page);
2068 				spin_lock_irq(&lruvec->lru_lock);
2069 			} else
2070 				list_add(&page->lru, &pages_to_free);
2071 
2072 			continue;
2073 		}
2074 
2075 		/*
2076 		 * All pages were isolated from the same lruvec (and isolation
2077 		 * inhibits memcg migration).
2078 		 */
2079 		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2080 		add_page_to_lru_list(page, lruvec);
2081 		nr_pages = thp_nr_pages(page);
2082 		nr_moved += nr_pages;
2083 		if (PageActive(page))
2084 			workingset_age_nonresident(lruvec, nr_pages);
2085 	}
2086 
2087 	/*
2088 	 * To save our caller's stack, now use input list for pages to free.
2089 	 */
2090 	list_splice(&pages_to_free, list);
2091 
2092 	return nr_moved;
2093 }
2094 
2095 /*
2096  * If a kernel thread (such as nfsd for loop-back mounts) services
2097  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2098  * In that case we should only throttle if the backing device it is
2099  * writing to is congested.  In other cases it is safe to throttle.
2100  */
2101 static int current_may_throttle(void)
2102 {
2103 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2104 		current->backing_dev_info == NULL ||
2105 		bdi_write_congested(current->backing_dev_info);
2106 }
2107 
2108 /*
2109  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2110  * of reclaimed pages
2111  */
2112 static unsigned long
2113 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2114 		     struct scan_control *sc, enum lru_list lru)
2115 {
2116 	LIST_HEAD(page_list);
2117 	unsigned long nr_scanned;
2118 	unsigned int nr_reclaimed = 0;
2119 	unsigned long nr_taken;
2120 	struct reclaim_stat stat;
2121 	bool file = is_file_lru(lru);
2122 	enum vm_event_item item;
2123 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2124 	bool stalled = false;
2125 
2126 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2127 		if (stalled)
2128 			return 0;
2129 
2130 		/* wait a bit for the reclaimer. */
2131 		msleep(100);
2132 		stalled = true;
2133 
2134 		/* We are about to die and free our memory. Return now. */
2135 		if (fatal_signal_pending(current))
2136 			return SWAP_CLUSTER_MAX;
2137 	}
2138 
2139 	lru_add_drain();
2140 
2141 	spin_lock_irq(&lruvec->lru_lock);
2142 
2143 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2144 				     &nr_scanned, sc, lru);
2145 
2146 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2147 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2148 	if (!cgroup_reclaim(sc))
2149 		__count_vm_events(item, nr_scanned);
2150 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2151 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2152 
2153 	spin_unlock_irq(&lruvec->lru_lock);
2154 
2155 	if (nr_taken == 0)
2156 		return 0;
2157 
2158 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2159 
2160 	spin_lock_irq(&lruvec->lru_lock);
2161 	move_pages_to_lru(lruvec, &page_list);
2162 
2163 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2164 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2165 	if (!cgroup_reclaim(sc))
2166 		__count_vm_events(item, nr_reclaimed);
2167 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2168 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2169 	spin_unlock_irq(&lruvec->lru_lock);
2170 
2171 	lru_note_cost(lruvec, file, stat.nr_pageout);
2172 	mem_cgroup_uncharge_list(&page_list);
2173 	free_unref_page_list(&page_list);
2174 
2175 	/*
2176 	 * If dirty pages are scanned that are not queued for IO, it
2177 	 * implies that flushers are not doing their job. This can
2178 	 * happen when memory pressure pushes dirty pages to the end of
2179 	 * the LRU before the dirty limits are breached and the dirty
2180 	 * data has expired. It can also happen when the proportion of
2181 	 * dirty pages grows not through writes but through memory
2182 	 * pressure reclaiming all the clean cache. And in some cases,
2183 	 * the flushers simply cannot keep up with the allocation
2184 	 * rate. Nudge the flusher threads in case they are asleep.
2185 	 */
2186 	if (stat.nr_unqueued_dirty == nr_taken)
2187 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2188 
2189 	sc->nr.dirty += stat.nr_dirty;
2190 	sc->nr.congested += stat.nr_congested;
2191 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2192 	sc->nr.writeback += stat.nr_writeback;
2193 	sc->nr.immediate += stat.nr_immediate;
2194 	sc->nr.taken += nr_taken;
2195 	if (file)
2196 		sc->nr.file_taken += nr_taken;
2197 
2198 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2199 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2200 	return nr_reclaimed;
2201 }
2202 
2203 /*
2204  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2205  *
2206  * We move them the other way if the page is referenced by one or more
2207  * processes.
2208  *
2209  * If the pages are mostly unmapped, the processing is fast and it is
2210  * appropriate to hold lru_lock across the whole operation.  But if
2211  * the pages are mapped, the processing is slow (page_referenced()), so
2212  * we should drop lru_lock around each page.  It's impossible to balance
2213  * this, so instead we remove the pages from the LRU while processing them.
2214  * It is safe to rely on PG_active against the non-LRU pages in here because
2215  * nobody will play with that bit on a non-LRU page.
2216  *
2217  * The downside is that we have to touch page->_refcount against each page.
2218  * But we had to alter page->flags anyway.
2219  */
2220 static void shrink_active_list(unsigned long nr_to_scan,
2221 			       struct lruvec *lruvec,
2222 			       struct scan_control *sc,
2223 			       enum lru_list lru)
2224 {
2225 	unsigned long nr_taken;
2226 	unsigned long nr_scanned;
2227 	unsigned long vm_flags;
2228 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2229 	LIST_HEAD(l_active);
2230 	LIST_HEAD(l_inactive);
2231 	struct page *page;
2232 	unsigned nr_deactivate, nr_activate;
2233 	unsigned nr_rotated = 0;
2234 	int file = is_file_lru(lru);
2235 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2236 
2237 	lru_add_drain();
2238 
2239 	spin_lock_irq(&lruvec->lru_lock);
2240 
2241 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2242 				     &nr_scanned, sc, lru);
2243 
2244 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2245 
2246 	if (!cgroup_reclaim(sc))
2247 		__count_vm_events(PGREFILL, nr_scanned);
2248 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2249 
2250 	spin_unlock_irq(&lruvec->lru_lock);
2251 
2252 	while (!list_empty(&l_hold)) {
2253 		cond_resched();
2254 		page = lru_to_page(&l_hold);
2255 		list_del(&page->lru);
2256 
2257 		if (unlikely(!page_evictable(page))) {
2258 			putback_lru_page(page);
2259 			continue;
2260 		}
2261 
2262 		if (unlikely(buffer_heads_over_limit)) {
2263 			if (page_has_private(page) && trylock_page(page)) {
2264 				if (page_has_private(page))
2265 					try_to_release_page(page, 0);
2266 				unlock_page(page);
2267 			}
2268 		}
2269 
2270 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2271 				    &vm_flags)) {
2272 			/*
2273 			 * Identify referenced, file-backed active pages and
2274 			 * give them one more trip around the active list. So
2275 			 * that executable code get better chances to stay in
2276 			 * memory under moderate memory pressure.  Anon pages
2277 			 * are not likely to be evicted by use-once streaming
2278 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2279 			 * so we ignore them here.
2280 			 */
2281 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2282 				nr_rotated += thp_nr_pages(page);
2283 				list_add(&page->lru, &l_active);
2284 				continue;
2285 			}
2286 		}
2287 
2288 		ClearPageActive(page);	/* we are de-activating */
2289 		SetPageWorkingset(page);
2290 		list_add(&page->lru, &l_inactive);
2291 	}
2292 
2293 	/*
2294 	 * Move pages back to the lru list.
2295 	 */
2296 	spin_lock_irq(&lruvec->lru_lock);
2297 
2298 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2299 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2300 	/* Keep all free pages in l_active list */
2301 	list_splice(&l_inactive, &l_active);
2302 
2303 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2304 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2305 
2306 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2307 	spin_unlock_irq(&lruvec->lru_lock);
2308 
2309 	mem_cgroup_uncharge_list(&l_active);
2310 	free_unref_page_list(&l_active);
2311 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2312 			nr_deactivate, nr_rotated, sc->priority, file);
2313 }
2314 
2315 unsigned long reclaim_pages(struct list_head *page_list)
2316 {
2317 	int nid = NUMA_NO_NODE;
2318 	unsigned int nr_reclaimed = 0;
2319 	LIST_HEAD(node_page_list);
2320 	struct reclaim_stat dummy_stat;
2321 	struct page *page;
2322 	unsigned int noreclaim_flag;
2323 	struct scan_control sc = {
2324 		.gfp_mask = GFP_KERNEL,
2325 		.priority = DEF_PRIORITY,
2326 		.may_writepage = 1,
2327 		.may_unmap = 1,
2328 		.may_swap = 1,
2329 	};
2330 
2331 	noreclaim_flag = memalloc_noreclaim_save();
2332 
2333 	while (!list_empty(page_list)) {
2334 		page = lru_to_page(page_list);
2335 		if (nid == NUMA_NO_NODE) {
2336 			nid = page_to_nid(page);
2337 			INIT_LIST_HEAD(&node_page_list);
2338 		}
2339 
2340 		if (nid == page_to_nid(page)) {
2341 			ClearPageActive(page);
2342 			list_move(&page->lru, &node_page_list);
2343 			continue;
2344 		}
2345 
2346 		nr_reclaimed += shrink_page_list(&node_page_list,
2347 						NODE_DATA(nid),
2348 						&sc, &dummy_stat, false);
2349 		while (!list_empty(&node_page_list)) {
2350 			page = lru_to_page(&node_page_list);
2351 			list_del(&page->lru);
2352 			putback_lru_page(page);
2353 		}
2354 
2355 		nid = NUMA_NO_NODE;
2356 	}
2357 
2358 	if (!list_empty(&node_page_list)) {
2359 		nr_reclaimed += shrink_page_list(&node_page_list,
2360 						NODE_DATA(nid),
2361 						&sc, &dummy_stat, false);
2362 		while (!list_empty(&node_page_list)) {
2363 			page = lru_to_page(&node_page_list);
2364 			list_del(&page->lru);
2365 			putback_lru_page(page);
2366 		}
2367 	}
2368 
2369 	memalloc_noreclaim_restore(noreclaim_flag);
2370 
2371 	return nr_reclaimed;
2372 }
2373 
2374 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2375 				 struct lruvec *lruvec, struct scan_control *sc)
2376 {
2377 	if (is_active_lru(lru)) {
2378 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2379 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2380 		else
2381 			sc->skipped_deactivate = 1;
2382 		return 0;
2383 	}
2384 
2385 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2386 }
2387 
2388 /*
2389  * The inactive anon list should be small enough that the VM never has
2390  * to do too much work.
2391  *
2392  * The inactive file list should be small enough to leave most memory
2393  * to the established workingset on the scan-resistant active list,
2394  * but large enough to avoid thrashing the aggregate readahead window.
2395  *
2396  * Both inactive lists should also be large enough that each inactive
2397  * page has a chance to be referenced again before it is reclaimed.
2398  *
2399  * If that fails and refaulting is observed, the inactive list grows.
2400  *
2401  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2402  * on this LRU, maintained by the pageout code. An inactive_ratio
2403  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2404  *
2405  * total     target    max
2406  * memory    ratio     inactive
2407  * -------------------------------------
2408  *   10MB       1         5MB
2409  *  100MB       1        50MB
2410  *    1GB       3       250MB
2411  *   10GB      10       0.9GB
2412  *  100GB      31         3GB
2413  *    1TB     101        10GB
2414  *   10TB     320        32GB
2415  */
2416 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2417 {
2418 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2419 	unsigned long inactive, active;
2420 	unsigned long inactive_ratio;
2421 	unsigned long gb;
2422 
2423 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2424 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2425 
2426 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2427 	if (gb)
2428 		inactive_ratio = int_sqrt(10 * gb);
2429 	else
2430 		inactive_ratio = 1;
2431 
2432 	return inactive * inactive_ratio < active;
2433 }
2434 
2435 enum scan_balance {
2436 	SCAN_EQUAL,
2437 	SCAN_FRACT,
2438 	SCAN_ANON,
2439 	SCAN_FILE,
2440 };
2441 
2442 /*
2443  * Determine how aggressively the anon and file LRU lists should be
2444  * scanned.  The relative value of each set of LRU lists is determined
2445  * by looking at the fraction of the pages scanned we did rotate back
2446  * onto the active list instead of evict.
2447  *
2448  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2449  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2450  */
2451 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2452 			   unsigned long *nr)
2453 {
2454 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2455 	unsigned long anon_cost, file_cost, total_cost;
2456 	int swappiness = mem_cgroup_swappiness(memcg);
2457 	u64 fraction[ANON_AND_FILE];
2458 	u64 denominator = 0;	/* gcc */
2459 	enum scan_balance scan_balance;
2460 	unsigned long ap, fp;
2461 	enum lru_list lru;
2462 
2463 	/* If we have no swap space, do not bother scanning anon pages. */
2464 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2465 		scan_balance = SCAN_FILE;
2466 		goto out;
2467 	}
2468 
2469 	/*
2470 	 * Global reclaim will swap to prevent OOM even with no
2471 	 * swappiness, but memcg users want to use this knob to
2472 	 * disable swapping for individual groups completely when
2473 	 * using the memory controller's swap limit feature would be
2474 	 * too expensive.
2475 	 */
2476 	if (cgroup_reclaim(sc) && !swappiness) {
2477 		scan_balance = SCAN_FILE;
2478 		goto out;
2479 	}
2480 
2481 	/*
2482 	 * Do not apply any pressure balancing cleverness when the
2483 	 * system is close to OOM, scan both anon and file equally
2484 	 * (unless the swappiness setting disagrees with swapping).
2485 	 */
2486 	if (!sc->priority && swappiness) {
2487 		scan_balance = SCAN_EQUAL;
2488 		goto out;
2489 	}
2490 
2491 	/*
2492 	 * If the system is almost out of file pages, force-scan anon.
2493 	 */
2494 	if (sc->file_is_tiny) {
2495 		scan_balance = SCAN_ANON;
2496 		goto out;
2497 	}
2498 
2499 	/*
2500 	 * If there is enough inactive page cache, we do not reclaim
2501 	 * anything from the anonymous working right now.
2502 	 */
2503 	if (sc->cache_trim_mode) {
2504 		scan_balance = SCAN_FILE;
2505 		goto out;
2506 	}
2507 
2508 	scan_balance = SCAN_FRACT;
2509 	/*
2510 	 * Calculate the pressure balance between anon and file pages.
2511 	 *
2512 	 * The amount of pressure we put on each LRU is inversely
2513 	 * proportional to the cost of reclaiming each list, as
2514 	 * determined by the share of pages that are refaulting, times
2515 	 * the relative IO cost of bringing back a swapped out
2516 	 * anonymous page vs reloading a filesystem page (swappiness).
2517 	 *
2518 	 * Although we limit that influence to ensure no list gets
2519 	 * left behind completely: at least a third of the pressure is
2520 	 * applied, before swappiness.
2521 	 *
2522 	 * With swappiness at 100, anon and file have equal IO cost.
2523 	 */
2524 	total_cost = sc->anon_cost + sc->file_cost;
2525 	anon_cost = total_cost + sc->anon_cost;
2526 	file_cost = total_cost + sc->file_cost;
2527 	total_cost = anon_cost + file_cost;
2528 
2529 	ap = swappiness * (total_cost + 1);
2530 	ap /= anon_cost + 1;
2531 
2532 	fp = (200 - swappiness) * (total_cost + 1);
2533 	fp /= file_cost + 1;
2534 
2535 	fraction[0] = ap;
2536 	fraction[1] = fp;
2537 	denominator = ap + fp;
2538 out:
2539 	for_each_evictable_lru(lru) {
2540 		int file = is_file_lru(lru);
2541 		unsigned long lruvec_size;
2542 		unsigned long low, min;
2543 		unsigned long scan;
2544 
2545 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2546 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2547 				      &min, &low);
2548 
2549 		if (min || low) {
2550 			/*
2551 			 * Scale a cgroup's reclaim pressure by proportioning
2552 			 * its current usage to its memory.low or memory.min
2553 			 * setting.
2554 			 *
2555 			 * This is important, as otherwise scanning aggression
2556 			 * becomes extremely binary -- from nothing as we
2557 			 * approach the memory protection threshold, to totally
2558 			 * nominal as we exceed it.  This results in requiring
2559 			 * setting extremely liberal protection thresholds. It
2560 			 * also means we simply get no protection at all if we
2561 			 * set it too low, which is not ideal.
2562 			 *
2563 			 * If there is any protection in place, we reduce scan
2564 			 * pressure by how much of the total memory used is
2565 			 * within protection thresholds.
2566 			 *
2567 			 * There is one special case: in the first reclaim pass,
2568 			 * we skip over all groups that are within their low
2569 			 * protection. If that fails to reclaim enough pages to
2570 			 * satisfy the reclaim goal, we come back and override
2571 			 * the best-effort low protection. However, we still
2572 			 * ideally want to honor how well-behaved groups are in
2573 			 * that case instead of simply punishing them all
2574 			 * equally. As such, we reclaim them based on how much
2575 			 * memory they are using, reducing the scan pressure
2576 			 * again by how much of the total memory used is under
2577 			 * hard protection.
2578 			 */
2579 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2580 			unsigned long protection;
2581 
2582 			/* memory.low scaling, make sure we retry before OOM */
2583 			if (!sc->memcg_low_reclaim && low > min) {
2584 				protection = low;
2585 				sc->memcg_low_skipped = 1;
2586 			} else {
2587 				protection = min;
2588 			}
2589 
2590 			/* Avoid TOCTOU with earlier protection check */
2591 			cgroup_size = max(cgroup_size, protection);
2592 
2593 			scan = lruvec_size - lruvec_size * protection /
2594 				cgroup_size;
2595 
2596 			/*
2597 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2598 			 * reclaim moving forwards, avoiding decrementing
2599 			 * sc->priority further than desirable.
2600 			 */
2601 			scan = max(scan, SWAP_CLUSTER_MAX);
2602 		} else {
2603 			scan = lruvec_size;
2604 		}
2605 
2606 		scan >>= sc->priority;
2607 
2608 		/*
2609 		 * If the cgroup's already been deleted, make sure to
2610 		 * scrape out the remaining cache.
2611 		 */
2612 		if (!scan && !mem_cgroup_online(memcg))
2613 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2614 
2615 		switch (scan_balance) {
2616 		case SCAN_EQUAL:
2617 			/* Scan lists relative to size */
2618 			break;
2619 		case SCAN_FRACT:
2620 			/*
2621 			 * Scan types proportional to swappiness and
2622 			 * their relative recent reclaim efficiency.
2623 			 * Make sure we don't miss the last page on
2624 			 * the offlined memory cgroups because of a
2625 			 * round-off error.
2626 			 */
2627 			scan = mem_cgroup_online(memcg) ?
2628 			       div64_u64(scan * fraction[file], denominator) :
2629 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2630 						  denominator);
2631 			break;
2632 		case SCAN_FILE:
2633 		case SCAN_ANON:
2634 			/* Scan one type exclusively */
2635 			if ((scan_balance == SCAN_FILE) != file)
2636 				scan = 0;
2637 			break;
2638 		default:
2639 			/* Look ma, no brain */
2640 			BUG();
2641 		}
2642 
2643 		nr[lru] = scan;
2644 	}
2645 }
2646 
2647 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2648 {
2649 	unsigned long nr[NR_LRU_LISTS];
2650 	unsigned long targets[NR_LRU_LISTS];
2651 	unsigned long nr_to_scan;
2652 	enum lru_list lru;
2653 	unsigned long nr_reclaimed = 0;
2654 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2655 	struct blk_plug plug;
2656 	bool scan_adjusted;
2657 
2658 	get_scan_count(lruvec, sc, nr);
2659 
2660 	/* Record the original scan target for proportional adjustments later */
2661 	memcpy(targets, nr, sizeof(nr));
2662 
2663 	/*
2664 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2665 	 * event that can occur when there is little memory pressure e.g.
2666 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2667 	 * when the requested number of pages are reclaimed when scanning at
2668 	 * DEF_PRIORITY on the assumption that the fact we are direct
2669 	 * reclaiming implies that kswapd is not keeping up and it is best to
2670 	 * do a batch of work at once. For memcg reclaim one check is made to
2671 	 * abort proportional reclaim if either the file or anon lru has already
2672 	 * dropped to zero at the first pass.
2673 	 */
2674 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2675 			 sc->priority == DEF_PRIORITY);
2676 
2677 	blk_start_plug(&plug);
2678 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2679 					nr[LRU_INACTIVE_FILE]) {
2680 		unsigned long nr_anon, nr_file, percentage;
2681 		unsigned long nr_scanned;
2682 
2683 		for_each_evictable_lru(lru) {
2684 			if (nr[lru]) {
2685 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2686 				nr[lru] -= nr_to_scan;
2687 
2688 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2689 							    lruvec, sc);
2690 			}
2691 		}
2692 
2693 		cond_resched();
2694 
2695 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2696 			continue;
2697 
2698 		/*
2699 		 * For kswapd and memcg, reclaim at least the number of pages
2700 		 * requested. Ensure that the anon and file LRUs are scanned
2701 		 * proportionally what was requested by get_scan_count(). We
2702 		 * stop reclaiming one LRU and reduce the amount scanning
2703 		 * proportional to the original scan target.
2704 		 */
2705 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2706 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2707 
2708 		/*
2709 		 * It's just vindictive to attack the larger once the smaller
2710 		 * has gone to zero.  And given the way we stop scanning the
2711 		 * smaller below, this makes sure that we only make one nudge
2712 		 * towards proportionality once we've got nr_to_reclaim.
2713 		 */
2714 		if (!nr_file || !nr_anon)
2715 			break;
2716 
2717 		if (nr_file > nr_anon) {
2718 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2719 						targets[LRU_ACTIVE_ANON] + 1;
2720 			lru = LRU_BASE;
2721 			percentage = nr_anon * 100 / scan_target;
2722 		} else {
2723 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2724 						targets[LRU_ACTIVE_FILE] + 1;
2725 			lru = LRU_FILE;
2726 			percentage = nr_file * 100 / scan_target;
2727 		}
2728 
2729 		/* Stop scanning the smaller of the LRU */
2730 		nr[lru] = 0;
2731 		nr[lru + LRU_ACTIVE] = 0;
2732 
2733 		/*
2734 		 * Recalculate the other LRU scan count based on its original
2735 		 * scan target and the percentage scanning already complete
2736 		 */
2737 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2738 		nr_scanned = targets[lru] - nr[lru];
2739 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2740 		nr[lru] -= min(nr[lru], nr_scanned);
2741 
2742 		lru += LRU_ACTIVE;
2743 		nr_scanned = targets[lru] - nr[lru];
2744 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2745 		nr[lru] -= min(nr[lru], nr_scanned);
2746 
2747 		scan_adjusted = true;
2748 	}
2749 	blk_finish_plug(&plug);
2750 	sc->nr_reclaimed += nr_reclaimed;
2751 
2752 	/*
2753 	 * Even if we did not try to evict anon pages at all, we want to
2754 	 * rebalance the anon lru active/inactive ratio.
2755 	 */
2756 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2757 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2758 				   sc, LRU_ACTIVE_ANON);
2759 }
2760 
2761 /* Use reclaim/compaction for costly allocs or under memory pressure */
2762 static bool in_reclaim_compaction(struct scan_control *sc)
2763 {
2764 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2765 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2766 			 sc->priority < DEF_PRIORITY - 2))
2767 		return true;
2768 
2769 	return false;
2770 }
2771 
2772 /*
2773  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2774  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2775  * true if more pages should be reclaimed such that when the page allocator
2776  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2777  * It will give up earlier than that if there is difficulty reclaiming pages.
2778  */
2779 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2780 					unsigned long nr_reclaimed,
2781 					struct scan_control *sc)
2782 {
2783 	unsigned long pages_for_compaction;
2784 	unsigned long inactive_lru_pages;
2785 	int z;
2786 
2787 	/* If not in reclaim/compaction mode, stop */
2788 	if (!in_reclaim_compaction(sc))
2789 		return false;
2790 
2791 	/*
2792 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2793 	 * number of pages that were scanned. This will return to the caller
2794 	 * with the risk reclaim/compaction and the resulting allocation attempt
2795 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2796 	 * allocations through requiring that the full LRU list has been scanned
2797 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2798 	 * scan, but that approximation was wrong, and there were corner cases
2799 	 * where always a non-zero amount of pages were scanned.
2800 	 */
2801 	if (!nr_reclaimed)
2802 		return false;
2803 
2804 	/* If compaction would go ahead or the allocation would succeed, stop */
2805 	for (z = 0; z <= sc->reclaim_idx; z++) {
2806 		struct zone *zone = &pgdat->node_zones[z];
2807 		if (!managed_zone(zone))
2808 			continue;
2809 
2810 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2811 		case COMPACT_SUCCESS:
2812 		case COMPACT_CONTINUE:
2813 			return false;
2814 		default:
2815 			/* check next zone */
2816 			;
2817 		}
2818 	}
2819 
2820 	/*
2821 	 * If we have not reclaimed enough pages for compaction and the
2822 	 * inactive lists are large enough, continue reclaiming
2823 	 */
2824 	pages_for_compaction = compact_gap(sc->order);
2825 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2826 	if (get_nr_swap_pages() > 0)
2827 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2828 
2829 	return inactive_lru_pages > pages_for_compaction;
2830 }
2831 
2832 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2833 {
2834 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2835 	struct mem_cgroup *memcg;
2836 
2837 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2838 	do {
2839 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2840 		unsigned long reclaimed;
2841 		unsigned long scanned;
2842 
2843 		/*
2844 		 * This loop can become CPU-bound when target memcgs
2845 		 * aren't eligible for reclaim - either because they
2846 		 * don't have any reclaimable pages, or because their
2847 		 * memory is explicitly protected. Avoid soft lockups.
2848 		 */
2849 		cond_resched();
2850 
2851 		mem_cgroup_calculate_protection(target_memcg, memcg);
2852 
2853 		if (mem_cgroup_below_min(memcg)) {
2854 			/*
2855 			 * Hard protection.
2856 			 * If there is no reclaimable memory, OOM.
2857 			 */
2858 			continue;
2859 		} else if (mem_cgroup_below_low(memcg)) {
2860 			/*
2861 			 * Soft protection.
2862 			 * Respect the protection only as long as
2863 			 * there is an unprotected supply
2864 			 * of reclaimable memory from other cgroups.
2865 			 */
2866 			if (!sc->memcg_low_reclaim) {
2867 				sc->memcg_low_skipped = 1;
2868 				continue;
2869 			}
2870 			memcg_memory_event(memcg, MEMCG_LOW);
2871 		}
2872 
2873 		reclaimed = sc->nr_reclaimed;
2874 		scanned = sc->nr_scanned;
2875 
2876 		shrink_lruvec(lruvec, sc);
2877 
2878 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2879 			    sc->priority);
2880 
2881 		/* Record the group's reclaim efficiency */
2882 		vmpressure(sc->gfp_mask, memcg, false,
2883 			   sc->nr_scanned - scanned,
2884 			   sc->nr_reclaimed - reclaimed);
2885 
2886 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2887 }
2888 
2889 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2890 {
2891 	struct reclaim_state *reclaim_state = current->reclaim_state;
2892 	unsigned long nr_reclaimed, nr_scanned;
2893 	struct lruvec *target_lruvec;
2894 	bool reclaimable = false;
2895 	unsigned long file;
2896 
2897 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2898 
2899 again:
2900 	/*
2901 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2902 	 * lruvec stats for heuristics.
2903 	 */
2904 	mem_cgroup_flush_stats();
2905 
2906 	memset(&sc->nr, 0, sizeof(sc->nr));
2907 
2908 	nr_reclaimed = sc->nr_reclaimed;
2909 	nr_scanned = sc->nr_scanned;
2910 
2911 	/*
2912 	 * Determine the scan balance between anon and file LRUs.
2913 	 */
2914 	spin_lock_irq(&target_lruvec->lru_lock);
2915 	sc->anon_cost = target_lruvec->anon_cost;
2916 	sc->file_cost = target_lruvec->file_cost;
2917 	spin_unlock_irq(&target_lruvec->lru_lock);
2918 
2919 	/*
2920 	 * Target desirable inactive:active list ratios for the anon
2921 	 * and file LRU lists.
2922 	 */
2923 	if (!sc->force_deactivate) {
2924 		unsigned long refaults;
2925 
2926 		refaults = lruvec_page_state(target_lruvec,
2927 				WORKINGSET_ACTIVATE_ANON);
2928 		if (refaults != target_lruvec->refaults[0] ||
2929 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2930 			sc->may_deactivate |= DEACTIVATE_ANON;
2931 		else
2932 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2933 
2934 		/*
2935 		 * When refaults are being observed, it means a new
2936 		 * workingset is being established. Deactivate to get
2937 		 * rid of any stale active pages quickly.
2938 		 */
2939 		refaults = lruvec_page_state(target_lruvec,
2940 				WORKINGSET_ACTIVATE_FILE);
2941 		if (refaults != target_lruvec->refaults[1] ||
2942 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2943 			sc->may_deactivate |= DEACTIVATE_FILE;
2944 		else
2945 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2946 	} else
2947 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2948 
2949 	/*
2950 	 * If we have plenty of inactive file pages that aren't
2951 	 * thrashing, try to reclaim those first before touching
2952 	 * anonymous pages.
2953 	 */
2954 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2955 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2956 		sc->cache_trim_mode = 1;
2957 	else
2958 		sc->cache_trim_mode = 0;
2959 
2960 	/*
2961 	 * Prevent the reclaimer from falling into the cache trap: as
2962 	 * cache pages start out inactive, every cache fault will tip
2963 	 * the scan balance towards the file LRU.  And as the file LRU
2964 	 * shrinks, so does the window for rotation from references.
2965 	 * This means we have a runaway feedback loop where a tiny
2966 	 * thrashing file LRU becomes infinitely more attractive than
2967 	 * anon pages.  Try to detect this based on file LRU size.
2968 	 */
2969 	if (!cgroup_reclaim(sc)) {
2970 		unsigned long total_high_wmark = 0;
2971 		unsigned long free, anon;
2972 		int z;
2973 
2974 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2975 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2976 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2977 
2978 		for (z = 0; z < MAX_NR_ZONES; z++) {
2979 			struct zone *zone = &pgdat->node_zones[z];
2980 			if (!managed_zone(zone))
2981 				continue;
2982 
2983 			total_high_wmark += high_wmark_pages(zone);
2984 		}
2985 
2986 		/*
2987 		 * Consider anon: if that's low too, this isn't a
2988 		 * runaway file reclaim problem, but rather just
2989 		 * extreme pressure. Reclaim as per usual then.
2990 		 */
2991 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2992 
2993 		sc->file_is_tiny =
2994 			file + free <= total_high_wmark &&
2995 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2996 			anon >> sc->priority;
2997 	}
2998 
2999 	shrink_node_memcgs(pgdat, sc);
3000 
3001 	if (reclaim_state) {
3002 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3003 		reclaim_state->reclaimed_slab = 0;
3004 	}
3005 
3006 	/* Record the subtree's reclaim efficiency */
3007 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3008 		   sc->nr_scanned - nr_scanned,
3009 		   sc->nr_reclaimed - nr_reclaimed);
3010 
3011 	if (sc->nr_reclaimed - nr_reclaimed)
3012 		reclaimable = true;
3013 
3014 	if (current_is_kswapd()) {
3015 		/*
3016 		 * If reclaim is isolating dirty pages under writeback,
3017 		 * it implies that the long-lived page allocation rate
3018 		 * is exceeding the page laundering rate. Either the
3019 		 * global limits are not being effective at throttling
3020 		 * processes due to the page distribution throughout
3021 		 * zones or there is heavy usage of a slow backing
3022 		 * device. The only option is to throttle from reclaim
3023 		 * context which is not ideal as there is no guarantee
3024 		 * the dirtying process is throttled in the same way
3025 		 * balance_dirty_pages() manages.
3026 		 *
3027 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3028 		 * count the number of pages under pages flagged for
3029 		 * immediate reclaim and stall if any are encountered
3030 		 * in the nr_immediate check below.
3031 		 */
3032 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3033 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3034 
3035 		/* Allow kswapd to start writing pages during reclaim.*/
3036 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3037 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3038 
3039 		/*
3040 		 * If kswapd scans pages marked for immediate
3041 		 * reclaim and under writeback (nr_immediate), it
3042 		 * implies that pages are cycling through the LRU
3043 		 * faster than they are written so also forcibly stall.
3044 		 */
3045 		if (sc->nr.immediate)
3046 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3047 	}
3048 
3049 	/*
3050 	 * Tag a node/memcg as congested if all the dirty pages
3051 	 * scanned were backed by a congested BDI and
3052 	 * wait_iff_congested will stall.
3053 	 *
3054 	 * Legacy memcg will stall in page writeback so avoid forcibly
3055 	 * stalling in wait_iff_congested().
3056 	 */
3057 	if ((current_is_kswapd() ||
3058 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3059 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3060 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3061 
3062 	/*
3063 	 * Stall direct reclaim for IO completions if underlying BDIs
3064 	 * and node is congested. Allow kswapd to continue until it
3065 	 * starts encountering unqueued dirty pages or cycling through
3066 	 * the LRU too quickly.
3067 	 */
3068 	if (!current_is_kswapd() && current_may_throttle() &&
3069 	    !sc->hibernation_mode &&
3070 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3071 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3072 
3073 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3074 				    sc))
3075 		goto again;
3076 
3077 	/*
3078 	 * Kswapd gives up on balancing particular nodes after too
3079 	 * many failures to reclaim anything from them and goes to
3080 	 * sleep. On reclaim progress, reset the failure counter. A
3081 	 * successful direct reclaim run will revive a dormant kswapd.
3082 	 */
3083 	if (reclaimable)
3084 		pgdat->kswapd_failures = 0;
3085 }
3086 
3087 /*
3088  * Returns true if compaction should go ahead for a costly-order request, or
3089  * the allocation would already succeed without compaction. Return false if we
3090  * should reclaim first.
3091  */
3092 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3093 {
3094 	unsigned long watermark;
3095 	enum compact_result suitable;
3096 
3097 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3098 	if (suitable == COMPACT_SUCCESS)
3099 		/* Allocation should succeed already. Don't reclaim. */
3100 		return true;
3101 	if (suitable == COMPACT_SKIPPED)
3102 		/* Compaction cannot yet proceed. Do reclaim. */
3103 		return false;
3104 
3105 	/*
3106 	 * Compaction is already possible, but it takes time to run and there
3107 	 * are potentially other callers using the pages just freed. So proceed
3108 	 * with reclaim to make a buffer of free pages available to give
3109 	 * compaction a reasonable chance of completing and allocating the page.
3110 	 * Note that we won't actually reclaim the whole buffer in one attempt
3111 	 * as the target watermark in should_continue_reclaim() is lower. But if
3112 	 * we are already above the high+gap watermark, don't reclaim at all.
3113 	 */
3114 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3115 
3116 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3117 }
3118 
3119 /*
3120  * This is the direct reclaim path, for page-allocating processes.  We only
3121  * try to reclaim pages from zones which will satisfy the caller's allocation
3122  * request.
3123  *
3124  * If a zone is deemed to be full of pinned pages then just give it a light
3125  * scan then give up on it.
3126  */
3127 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3128 {
3129 	struct zoneref *z;
3130 	struct zone *zone;
3131 	unsigned long nr_soft_reclaimed;
3132 	unsigned long nr_soft_scanned;
3133 	gfp_t orig_mask;
3134 	pg_data_t *last_pgdat = NULL;
3135 
3136 	/*
3137 	 * If the number of buffer_heads in the machine exceeds the maximum
3138 	 * allowed level, force direct reclaim to scan the highmem zone as
3139 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3140 	 */
3141 	orig_mask = sc->gfp_mask;
3142 	if (buffer_heads_over_limit) {
3143 		sc->gfp_mask |= __GFP_HIGHMEM;
3144 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3145 	}
3146 
3147 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3148 					sc->reclaim_idx, sc->nodemask) {
3149 		/*
3150 		 * Take care memory controller reclaiming has small influence
3151 		 * to global LRU.
3152 		 */
3153 		if (!cgroup_reclaim(sc)) {
3154 			if (!cpuset_zone_allowed(zone,
3155 						 GFP_KERNEL | __GFP_HARDWALL))
3156 				continue;
3157 
3158 			/*
3159 			 * If we already have plenty of memory free for
3160 			 * compaction in this zone, don't free any more.
3161 			 * Even though compaction is invoked for any
3162 			 * non-zero order, only frequent costly order
3163 			 * reclamation is disruptive enough to become a
3164 			 * noticeable problem, like transparent huge
3165 			 * page allocations.
3166 			 */
3167 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3168 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3169 			    compaction_ready(zone, sc)) {
3170 				sc->compaction_ready = true;
3171 				continue;
3172 			}
3173 
3174 			/*
3175 			 * Shrink each node in the zonelist once. If the
3176 			 * zonelist is ordered by zone (not the default) then a
3177 			 * node may be shrunk multiple times but in that case
3178 			 * the user prefers lower zones being preserved.
3179 			 */
3180 			if (zone->zone_pgdat == last_pgdat)
3181 				continue;
3182 
3183 			/*
3184 			 * This steals pages from memory cgroups over softlimit
3185 			 * and returns the number of reclaimed pages and
3186 			 * scanned pages. This works for global memory pressure
3187 			 * and balancing, not for a memcg's limit.
3188 			 */
3189 			nr_soft_scanned = 0;
3190 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3191 						sc->order, sc->gfp_mask,
3192 						&nr_soft_scanned);
3193 			sc->nr_reclaimed += nr_soft_reclaimed;
3194 			sc->nr_scanned += nr_soft_scanned;
3195 			/* need some check for avoid more shrink_zone() */
3196 		}
3197 
3198 		/* See comment about same check for global reclaim above */
3199 		if (zone->zone_pgdat == last_pgdat)
3200 			continue;
3201 		last_pgdat = zone->zone_pgdat;
3202 		shrink_node(zone->zone_pgdat, sc);
3203 	}
3204 
3205 	/*
3206 	 * Restore to original mask to avoid the impact on the caller if we
3207 	 * promoted it to __GFP_HIGHMEM.
3208 	 */
3209 	sc->gfp_mask = orig_mask;
3210 }
3211 
3212 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3213 {
3214 	struct lruvec *target_lruvec;
3215 	unsigned long refaults;
3216 
3217 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3218 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3219 	target_lruvec->refaults[0] = refaults;
3220 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3221 	target_lruvec->refaults[1] = refaults;
3222 }
3223 
3224 /*
3225  * This is the main entry point to direct page reclaim.
3226  *
3227  * If a full scan of the inactive list fails to free enough memory then we
3228  * are "out of memory" and something needs to be killed.
3229  *
3230  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3231  * high - the zone may be full of dirty or under-writeback pages, which this
3232  * caller can't do much about.  We kick the writeback threads and take explicit
3233  * naps in the hope that some of these pages can be written.  But if the
3234  * allocating task holds filesystem locks which prevent writeout this might not
3235  * work, and the allocation attempt will fail.
3236  *
3237  * returns:	0, if no pages reclaimed
3238  * 		else, the number of pages reclaimed
3239  */
3240 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3241 					  struct scan_control *sc)
3242 {
3243 	int initial_priority = sc->priority;
3244 	pg_data_t *last_pgdat;
3245 	struct zoneref *z;
3246 	struct zone *zone;
3247 retry:
3248 	delayacct_freepages_start();
3249 
3250 	if (!cgroup_reclaim(sc))
3251 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3252 
3253 	do {
3254 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3255 				sc->priority);
3256 		sc->nr_scanned = 0;
3257 		shrink_zones(zonelist, sc);
3258 
3259 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3260 			break;
3261 
3262 		if (sc->compaction_ready)
3263 			break;
3264 
3265 		/*
3266 		 * If we're getting trouble reclaiming, start doing
3267 		 * writepage even in laptop mode.
3268 		 */
3269 		if (sc->priority < DEF_PRIORITY - 2)
3270 			sc->may_writepage = 1;
3271 	} while (--sc->priority >= 0);
3272 
3273 	last_pgdat = NULL;
3274 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3275 					sc->nodemask) {
3276 		if (zone->zone_pgdat == last_pgdat)
3277 			continue;
3278 		last_pgdat = zone->zone_pgdat;
3279 
3280 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3281 
3282 		if (cgroup_reclaim(sc)) {
3283 			struct lruvec *lruvec;
3284 
3285 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3286 						   zone->zone_pgdat);
3287 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3288 		}
3289 	}
3290 
3291 	delayacct_freepages_end();
3292 
3293 	if (sc->nr_reclaimed)
3294 		return sc->nr_reclaimed;
3295 
3296 	/* Aborted reclaim to try compaction? don't OOM, then */
3297 	if (sc->compaction_ready)
3298 		return 1;
3299 
3300 	/*
3301 	 * We make inactive:active ratio decisions based on the node's
3302 	 * composition of memory, but a restrictive reclaim_idx or a
3303 	 * memory.low cgroup setting can exempt large amounts of
3304 	 * memory from reclaim. Neither of which are very common, so
3305 	 * instead of doing costly eligibility calculations of the
3306 	 * entire cgroup subtree up front, we assume the estimates are
3307 	 * good, and retry with forcible deactivation if that fails.
3308 	 */
3309 	if (sc->skipped_deactivate) {
3310 		sc->priority = initial_priority;
3311 		sc->force_deactivate = 1;
3312 		sc->skipped_deactivate = 0;
3313 		goto retry;
3314 	}
3315 
3316 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3317 	if (sc->memcg_low_skipped) {
3318 		sc->priority = initial_priority;
3319 		sc->force_deactivate = 0;
3320 		sc->memcg_low_reclaim = 1;
3321 		sc->memcg_low_skipped = 0;
3322 		goto retry;
3323 	}
3324 
3325 	return 0;
3326 }
3327 
3328 static bool allow_direct_reclaim(pg_data_t *pgdat)
3329 {
3330 	struct zone *zone;
3331 	unsigned long pfmemalloc_reserve = 0;
3332 	unsigned long free_pages = 0;
3333 	int i;
3334 	bool wmark_ok;
3335 
3336 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3337 		return true;
3338 
3339 	for (i = 0; i <= ZONE_NORMAL; i++) {
3340 		zone = &pgdat->node_zones[i];
3341 		if (!managed_zone(zone))
3342 			continue;
3343 
3344 		if (!zone_reclaimable_pages(zone))
3345 			continue;
3346 
3347 		pfmemalloc_reserve += min_wmark_pages(zone);
3348 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3349 	}
3350 
3351 	/* If there are no reserves (unexpected config) then do not throttle */
3352 	if (!pfmemalloc_reserve)
3353 		return true;
3354 
3355 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3356 
3357 	/* kswapd must be awake if processes are being throttled */
3358 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3359 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3360 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3361 
3362 		wake_up_interruptible(&pgdat->kswapd_wait);
3363 	}
3364 
3365 	return wmark_ok;
3366 }
3367 
3368 /*
3369  * Throttle direct reclaimers if backing storage is backed by the network
3370  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3371  * depleted. kswapd will continue to make progress and wake the processes
3372  * when the low watermark is reached.
3373  *
3374  * Returns true if a fatal signal was delivered during throttling. If this
3375  * happens, the page allocator should not consider triggering the OOM killer.
3376  */
3377 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3378 					nodemask_t *nodemask)
3379 {
3380 	struct zoneref *z;
3381 	struct zone *zone;
3382 	pg_data_t *pgdat = NULL;
3383 
3384 	/*
3385 	 * Kernel threads should not be throttled as they may be indirectly
3386 	 * responsible for cleaning pages necessary for reclaim to make forward
3387 	 * progress. kjournald for example may enter direct reclaim while
3388 	 * committing a transaction where throttling it could forcing other
3389 	 * processes to block on log_wait_commit().
3390 	 */
3391 	if (current->flags & PF_KTHREAD)
3392 		goto out;
3393 
3394 	/*
3395 	 * If a fatal signal is pending, this process should not throttle.
3396 	 * It should return quickly so it can exit and free its memory
3397 	 */
3398 	if (fatal_signal_pending(current))
3399 		goto out;
3400 
3401 	/*
3402 	 * Check if the pfmemalloc reserves are ok by finding the first node
3403 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3404 	 * GFP_KERNEL will be required for allocating network buffers when
3405 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3406 	 *
3407 	 * Throttling is based on the first usable node and throttled processes
3408 	 * wait on a queue until kswapd makes progress and wakes them. There
3409 	 * is an affinity then between processes waking up and where reclaim
3410 	 * progress has been made assuming the process wakes on the same node.
3411 	 * More importantly, processes running on remote nodes will not compete
3412 	 * for remote pfmemalloc reserves and processes on different nodes
3413 	 * should make reasonable progress.
3414 	 */
3415 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3416 					gfp_zone(gfp_mask), nodemask) {
3417 		if (zone_idx(zone) > ZONE_NORMAL)
3418 			continue;
3419 
3420 		/* Throttle based on the first usable node */
3421 		pgdat = zone->zone_pgdat;
3422 		if (allow_direct_reclaim(pgdat))
3423 			goto out;
3424 		break;
3425 	}
3426 
3427 	/* If no zone was usable by the allocation flags then do not throttle */
3428 	if (!pgdat)
3429 		goto out;
3430 
3431 	/* Account for the throttling */
3432 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3433 
3434 	/*
3435 	 * If the caller cannot enter the filesystem, it's possible that it
3436 	 * is due to the caller holding an FS lock or performing a journal
3437 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3438 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3439 	 * blocked waiting on the same lock. Instead, throttle for up to a
3440 	 * second before continuing.
3441 	 */
3442 	if (!(gfp_mask & __GFP_FS)) {
3443 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3444 			allow_direct_reclaim(pgdat), HZ);
3445 
3446 		goto check_pending;
3447 	}
3448 
3449 	/* Throttle until kswapd wakes the process */
3450 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3451 		allow_direct_reclaim(pgdat));
3452 
3453 check_pending:
3454 	if (fatal_signal_pending(current))
3455 		return true;
3456 
3457 out:
3458 	return false;
3459 }
3460 
3461 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3462 				gfp_t gfp_mask, nodemask_t *nodemask)
3463 {
3464 	unsigned long nr_reclaimed;
3465 	struct scan_control sc = {
3466 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3467 		.gfp_mask = current_gfp_context(gfp_mask),
3468 		.reclaim_idx = gfp_zone(gfp_mask),
3469 		.order = order,
3470 		.nodemask = nodemask,
3471 		.priority = DEF_PRIORITY,
3472 		.may_writepage = !laptop_mode,
3473 		.may_unmap = 1,
3474 		.may_swap = 1,
3475 	};
3476 
3477 	/*
3478 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3479 	 * Confirm they are large enough for max values.
3480 	 */
3481 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3482 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3483 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3484 
3485 	/*
3486 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3487 	 * 1 is returned so that the page allocator does not OOM kill at this
3488 	 * point.
3489 	 */
3490 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3491 		return 1;
3492 
3493 	set_task_reclaim_state(current, &sc.reclaim_state);
3494 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3495 
3496 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3497 
3498 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3499 	set_task_reclaim_state(current, NULL);
3500 
3501 	return nr_reclaimed;
3502 }
3503 
3504 #ifdef CONFIG_MEMCG
3505 
3506 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3507 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3508 						gfp_t gfp_mask, bool noswap,
3509 						pg_data_t *pgdat,
3510 						unsigned long *nr_scanned)
3511 {
3512 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3513 	struct scan_control sc = {
3514 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3515 		.target_mem_cgroup = memcg,
3516 		.may_writepage = !laptop_mode,
3517 		.may_unmap = 1,
3518 		.reclaim_idx = MAX_NR_ZONES - 1,
3519 		.may_swap = !noswap,
3520 	};
3521 
3522 	WARN_ON_ONCE(!current->reclaim_state);
3523 
3524 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3525 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3526 
3527 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3528 						      sc.gfp_mask);
3529 
3530 	/*
3531 	 * NOTE: Although we can get the priority field, using it
3532 	 * here is not a good idea, since it limits the pages we can scan.
3533 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3534 	 * will pick up pages from other mem cgroup's as well. We hack
3535 	 * the priority and make it zero.
3536 	 */
3537 	shrink_lruvec(lruvec, &sc);
3538 
3539 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3540 
3541 	*nr_scanned = sc.nr_scanned;
3542 
3543 	return sc.nr_reclaimed;
3544 }
3545 
3546 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3547 					   unsigned long nr_pages,
3548 					   gfp_t gfp_mask,
3549 					   bool may_swap)
3550 {
3551 	unsigned long nr_reclaimed;
3552 	unsigned int noreclaim_flag;
3553 	struct scan_control sc = {
3554 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3555 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3556 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3557 		.reclaim_idx = MAX_NR_ZONES - 1,
3558 		.target_mem_cgroup = memcg,
3559 		.priority = DEF_PRIORITY,
3560 		.may_writepage = !laptop_mode,
3561 		.may_unmap = 1,
3562 		.may_swap = may_swap,
3563 	};
3564 	/*
3565 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3566 	 * equal pressure on all the nodes. This is based on the assumption that
3567 	 * the reclaim does not bail out early.
3568 	 */
3569 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3570 
3571 	set_task_reclaim_state(current, &sc.reclaim_state);
3572 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3573 	noreclaim_flag = memalloc_noreclaim_save();
3574 
3575 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3576 
3577 	memalloc_noreclaim_restore(noreclaim_flag);
3578 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3579 	set_task_reclaim_state(current, NULL);
3580 
3581 	return nr_reclaimed;
3582 }
3583 #endif
3584 
3585 static void age_active_anon(struct pglist_data *pgdat,
3586 				struct scan_control *sc)
3587 {
3588 	struct mem_cgroup *memcg;
3589 	struct lruvec *lruvec;
3590 
3591 	if (!total_swap_pages)
3592 		return;
3593 
3594 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3595 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3596 		return;
3597 
3598 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3599 	do {
3600 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3601 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3602 				   sc, LRU_ACTIVE_ANON);
3603 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3604 	} while (memcg);
3605 }
3606 
3607 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3608 {
3609 	int i;
3610 	struct zone *zone;
3611 
3612 	/*
3613 	 * Check for watermark boosts top-down as the higher zones
3614 	 * are more likely to be boosted. Both watermarks and boosts
3615 	 * should not be checked at the same time as reclaim would
3616 	 * start prematurely when there is no boosting and a lower
3617 	 * zone is balanced.
3618 	 */
3619 	for (i = highest_zoneidx; i >= 0; i--) {
3620 		zone = pgdat->node_zones + i;
3621 		if (!managed_zone(zone))
3622 			continue;
3623 
3624 		if (zone->watermark_boost)
3625 			return true;
3626 	}
3627 
3628 	return false;
3629 }
3630 
3631 /*
3632  * Returns true if there is an eligible zone balanced for the request order
3633  * and highest_zoneidx
3634  */
3635 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3636 {
3637 	int i;
3638 	unsigned long mark = -1;
3639 	struct zone *zone;
3640 
3641 	/*
3642 	 * Check watermarks bottom-up as lower zones are more likely to
3643 	 * meet watermarks.
3644 	 */
3645 	for (i = 0; i <= highest_zoneidx; i++) {
3646 		zone = pgdat->node_zones + i;
3647 
3648 		if (!managed_zone(zone))
3649 			continue;
3650 
3651 		mark = high_wmark_pages(zone);
3652 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3653 			return true;
3654 	}
3655 
3656 	/*
3657 	 * If a node has no populated zone within highest_zoneidx, it does not
3658 	 * need balancing by definition. This can happen if a zone-restricted
3659 	 * allocation tries to wake a remote kswapd.
3660 	 */
3661 	if (mark == -1)
3662 		return true;
3663 
3664 	return false;
3665 }
3666 
3667 /* Clear pgdat state for congested, dirty or under writeback. */
3668 static void clear_pgdat_congested(pg_data_t *pgdat)
3669 {
3670 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3671 
3672 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3673 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3674 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3675 }
3676 
3677 /*
3678  * Prepare kswapd for sleeping. This verifies that there are no processes
3679  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3680  *
3681  * Returns true if kswapd is ready to sleep
3682  */
3683 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3684 				int highest_zoneidx)
3685 {
3686 	/*
3687 	 * The throttled processes are normally woken up in balance_pgdat() as
3688 	 * soon as allow_direct_reclaim() is true. But there is a potential
3689 	 * race between when kswapd checks the watermarks and a process gets
3690 	 * throttled. There is also a potential race if processes get
3691 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3692 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3693 	 * the wake up checks. If kswapd is going to sleep, no process should
3694 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3695 	 * the wake up is premature, processes will wake kswapd and get
3696 	 * throttled again. The difference from wake ups in balance_pgdat() is
3697 	 * that here we are under prepare_to_wait().
3698 	 */
3699 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3700 		wake_up_all(&pgdat->pfmemalloc_wait);
3701 
3702 	/* Hopeless node, leave it to direct reclaim */
3703 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3704 		return true;
3705 
3706 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3707 		clear_pgdat_congested(pgdat);
3708 		return true;
3709 	}
3710 
3711 	return false;
3712 }
3713 
3714 /*
3715  * kswapd shrinks a node of pages that are at or below the highest usable
3716  * zone that is currently unbalanced.
3717  *
3718  * Returns true if kswapd scanned at least the requested number of pages to
3719  * reclaim or if the lack of progress was due to pages under writeback.
3720  * This is used to determine if the scanning priority needs to be raised.
3721  */
3722 static bool kswapd_shrink_node(pg_data_t *pgdat,
3723 			       struct scan_control *sc)
3724 {
3725 	struct zone *zone;
3726 	int z;
3727 
3728 	/* Reclaim a number of pages proportional to the number of zones */
3729 	sc->nr_to_reclaim = 0;
3730 	for (z = 0; z <= sc->reclaim_idx; z++) {
3731 		zone = pgdat->node_zones + z;
3732 		if (!managed_zone(zone))
3733 			continue;
3734 
3735 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3736 	}
3737 
3738 	/*
3739 	 * Historically care was taken to put equal pressure on all zones but
3740 	 * now pressure is applied based on node LRU order.
3741 	 */
3742 	shrink_node(pgdat, sc);
3743 
3744 	/*
3745 	 * Fragmentation may mean that the system cannot be rebalanced for
3746 	 * high-order allocations. If twice the allocation size has been
3747 	 * reclaimed then recheck watermarks only at order-0 to prevent
3748 	 * excessive reclaim. Assume that a process requested a high-order
3749 	 * can direct reclaim/compact.
3750 	 */
3751 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3752 		sc->order = 0;
3753 
3754 	return sc->nr_scanned >= sc->nr_to_reclaim;
3755 }
3756 
3757 /* Page allocator PCP high watermark is lowered if reclaim is active. */
3758 static inline void
3759 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3760 {
3761 	int i;
3762 	struct zone *zone;
3763 
3764 	for (i = 0; i <= highest_zoneidx; i++) {
3765 		zone = pgdat->node_zones + i;
3766 
3767 		if (!managed_zone(zone))
3768 			continue;
3769 
3770 		if (active)
3771 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3772 		else
3773 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3774 	}
3775 }
3776 
3777 static inline void
3778 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3779 {
3780 	update_reclaim_active(pgdat, highest_zoneidx, true);
3781 }
3782 
3783 static inline void
3784 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3785 {
3786 	update_reclaim_active(pgdat, highest_zoneidx, false);
3787 }
3788 
3789 /*
3790  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3791  * that are eligible for use by the caller until at least one zone is
3792  * balanced.
3793  *
3794  * Returns the order kswapd finished reclaiming at.
3795  *
3796  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3797  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3798  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3799  * or lower is eligible for reclaim until at least one usable zone is
3800  * balanced.
3801  */
3802 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3803 {
3804 	int i;
3805 	unsigned long nr_soft_reclaimed;
3806 	unsigned long nr_soft_scanned;
3807 	unsigned long pflags;
3808 	unsigned long nr_boost_reclaim;
3809 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3810 	bool boosted;
3811 	struct zone *zone;
3812 	struct scan_control sc = {
3813 		.gfp_mask = GFP_KERNEL,
3814 		.order = order,
3815 		.may_unmap = 1,
3816 	};
3817 
3818 	set_task_reclaim_state(current, &sc.reclaim_state);
3819 	psi_memstall_enter(&pflags);
3820 	__fs_reclaim_acquire(_THIS_IP_);
3821 
3822 	count_vm_event(PAGEOUTRUN);
3823 
3824 	/*
3825 	 * Account for the reclaim boost. Note that the zone boost is left in
3826 	 * place so that parallel allocations that are near the watermark will
3827 	 * stall or direct reclaim until kswapd is finished.
3828 	 */
3829 	nr_boost_reclaim = 0;
3830 	for (i = 0; i <= highest_zoneidx; i++) {
3831 		zone = pgdat->node_zones + i;
3832 		if (!managed_zone(zone))
3833 			continue;
3834 
3835 		nr_boost_reclaim += zone->watermark_boost;
3836 		zone_boosts[i] = zone->watermark_boost;
3837 	}
3838 	boosted = nr_boost_reclaim;
3839 
3840 restart:
3841 	set_reclaim_active(pgdat, highest_zoneidx);
3842 	sc.priority = DEF_PRIORITY;
3843 	do {
3844 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3845 		bool raise_priority = true;
3846 		bool balanced;
3847 		bool ret;
3848 
3849 		sc.reclaim_idx = highest_zoneidx;
3850 
3851 		/*
3852 		 * If the number of buffer_heads exceeds the maximum allowed
3853 		 * then consider reclaiming from all zones. This has a dual
3854 		 * purpose -- on 64-bit systems it is expected that
3855 		 * buffer_heads are stripped during active rotation. On 32-bit
3856 		 * systems, highmem pages can pin lowmem memory and shrinking
3857 		 * buffers can relieve lowmem pressure. Reclaim may still not
3858 		 * go ahead if all eligible zones for the original allocation
3859 		 * request are balanced to avoid excessive reclaim from kswapd.
3860 		 */
3861 		if (buffer_heads_over_limit) {
3862 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3863 				zone = pgdat->node_zones + i;
3864 				if (!managed_zone(zone))
3865 					continue;
3866 
3867 				sc.reclaim_idx = i;
3868 				break;
3869 			}
3870 		}
3871 
3872 		/*
3873 		 * If the pgdat is imbalanced then ignore boosting and preserve
3874 		 * the watermarks for a later time and restart. Note that the
3875 		 * zone watermarks will be still reset at the end of balancing
3876 		 * on the grounds that the normal reclaim should be enough to
3877 		 * re-evaluate if boosting is required when kswapd next wakes.
3878 		 */
3879 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3880 		if (!balanced && nr_boost_reclaim) {
3881 			nr_boost_reclaim = 0;
3882 			goto restart;
3883 		}
3884 
3885 		/*
3886 		 * If boosting is not active then only reclaim if there are no
3887 		 * eligible zones. Note that sc.reclaim_idx is not used as
3888 		 * buffer_heads_over_limit may have adjusted it.
3889 		 */
3890 		if (!nr_boost_reclaim && balanced)
3891 			goto out;
3892 
3893 		/* Limit the priority of boosting to avoid reclaim writeback */
3894 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3895 			raise_priority = false;
3896 
3897 		/*
3898 		 * Do not writeback or swap pages for boosted reclaim. The
3899 		 * intent is to relieve pressure not issue sub-optimal IO
3900 		 * from reclaim context. If no pages are reclaimed, the
3901 		 * reclaim will be aborted.
3902 		 */
3903 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3904 		sc.may_swap = !nr_boost_reclaim;
3905 
3906 		/*
3907 		 * Do some background aging of the anon list, to give
3908 		 * pages a chance to be referenced before reclaiming. All
3909 		 * pages are rotated regardless of classzone as this is
3910 		 * about consistent aging.
3911 		 */
3912 		age_active_anon(pgdat, &sc);
3913 
3914 		/*
3915 		 * If we're getting trouble reclaiming, start doing writepage
3916 		 * even in laptop mode.
3917 		 */
3918 		if (sc.priority < DEF_PRIORITY - 2)
3919 			sc.may_writepage = 1;
3920 
3921 		/* Call soft limit reclaim before calling shrink_node. */
3922 		sc.nr_scanned = 0;
3923 		nr_soft_scanned = 0;
3924 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3925 						sc.gfp_mask, &nr_soft_scanned);
3926 		sc.nr_reclaimed += nr_soft_reclaimed;
3927 
3928 		/*
3929 		 * There should be no need to raise the scanning priority if
3930 		 * enough pages are already being scanned that that high
3931 		 * watermark would be met at 100% efficiency.
3932 		 */
3933 		if (kswapd_shrink_node(pgdat, &sc))
3934 			raise_priority = false;
3935 
3936 		/*
3937 		 * If the low watermark is met there is no need for processes
3938 		 * to be throttled on pfmemalloc_wait as they should not be
3939 		 * able to safely make forward progress. Wake them
3940 		 */
3941 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3942 				allow_direct_reclaim(pgdat))
3943 			wake_up_all(&pgdat->pfmemalloc_wait);
3944 
3945 		/* Check if kswapd should be suspending */
3946 		__fs_reclaim_release(_THIS_IP_);
3947 		ret = try_to_freeze();
3948 		__fs_reclaim_acquire(_THIS_IP_);
3949 		if (ret || kthread_should_stop())
3950 			break;
3951 
3952 		/*
3953 		 * Raise priority if scanning rate is too low or there was no
3954 		 * progress in reclaiming pages
3955 		 */
3956 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3957 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3958 
3959 		/*
3960 		 * If reclaim made no progress for a boost, stop reclaim as
3961 		 * IO cannot be queued and it could be an infinite loop in
3962 		 * extreme circumstances.
3963 		 */
3964 		if (nr_boost_reclaim && !nr_reclaimed)
3965 			break;
3966 
3967 		if (raise_priority || !nr_reclaimed)
3968 			sc.priority--;
3969 	} while (sc.priority >= 1);
3970 
3971 	if (!sc.nr_reclaimed)
3972 		pgdat->kswapd_failures++;
3973 
3974 out:
3975 	clear_reclaim_active(pgdat, highest_zoneidx);
3976 
3977 	/* If reclaim was boosted, account for the reclaim done in this pass */
3978 	if (boosted) {
3979 		unsigned long flags;
3980 
3981 		for (i = 0; i <= highest_zoneidx; i++) {
3982 			if (!zone_boosts[i])
3983 				continue;
3984 
3985 			/* Increments are under the zone lock */
3986 			zone = pgdat->node_zones + i;
3987 			spin_lock_irqsave(&zone->lock, flags);
3988 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3989 			spin_unlock_irqrestore(&zone->lock, flags);
3990 		}
3991 
3992 		/*
3993 		 * As there is now likely space, wakeup kcompact to defragment
3994 		 * pageblocks.
3995 		 */
3996 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3997 	}
3998 
3999 	snapshot_refaults(NULL, pgdat);
4000 	__fs_reclaim_release(_THIS_IP_);
4001 	psi_memstall_leave(&pflags);
4002 	set_task_reclaim_state(current, NULL);
4003 
4004 	/*
4005 	 * Return the order kswapd stopped reclaiming at as
4006 	 * prepare_kswapd_sleep() takes it into account. If another caller
4007 	 * entered the allocator slow path while kswapd was awake, order will
4008 	 * remain at the higher level.
4009 	 */
4010 	return sc.order;
4011 }
4012 
4013 /*
4014  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4015  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4016  * not a valid index then either kswapd runs for first time or kswapd couldn't
4017  * sleep after previous reclaim attempt (node is still unbalanced). In that
4018  * case return the zone index of the previous kswapd reclaim cycle.
4019  */
4020 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4021 					   enum zone_type prev_highest_zoneidx)
4022 {
4023 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4024 
4025 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4026 }
4027 
4028 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4029 				unsigned int highest_zoneidx)
4030 {
4031 	long remaining = 0;
4032 	DEFINE_WAIT(wait);
4033 
4034 	if (freezing(current) || kthread_should_stop())
4035 		return;
4036 
4037 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4038 
4039 	/*
4040 	 * Try to sleep for a short interval. Note that kcompactd will only be
4041 	 * woken if it is possible to sleep for a short interval. This is
4042 	 * deliberate on the assumption that if reclaim cannot keep an
4043 	 * eligible zone balanced that it's also unlikely that compaction will
4044 	 * succeed.
4045 	 */
4046 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4047 		/*
4048 		 * Compaction records what page blocks it recently failed to
4049 		 * isolate pages from and skips them in the future scanning.
4050 		 * When kswapd is going to sleep, it is reasonable to assume
4051 		 * that pages and compaction may succeed so reset the cache.
4052 		 */
4053 		reset_isolation_suitable(pgdat);
4054 
4055 		/*
4056 		 * We have freed the memory, now we should compact it to make
4057 		 * allocation of the requested order possible.
4058 		 */
4059 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4060 
4061 		remaining = schedule_timeout(HZ/10);
4062 
4063 		/*
4064 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4065 		 * order. The values will either be from a wakeup request or
4066 		 * the previous request that slept prematurely.
4067 		 */
4068 		if (remaining) {
4069 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4070 					kswapd_highest_zoneidx(pgdat,
4071 							highest_zoneidx));
4072 
4073 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4074 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4075 		}
4076 
4077 		finish_wait(&pgdat->kswapd_wait, &wait);
4078 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4079 	}
4080 
4081 	/*
4082 	 * After a short sleep, check if it was a premature sleep. If not, then
4083 	 * go fully to sleep until explicitly woken up.
4084 	 */
4085 	if (!remaining &&
4086 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4087 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4088 
4089 		/*
4090 		 * vmstat counters are not perfectly accurate and the estimated
4091 		 * value for counters such as NR_FREE_PAGES can deviate from the
4092 		 * true value by nr_online_cpus * threshold. To avoid the zone
4093 		 * watermarks being breached while under pressure, we reduce the
4094 		 * per-cpu vmstat threshold while kswapd is awake and restore
4095 		 * them before going back to sleep.
4096 		 */
4097 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4098 
4099 		if (!kthread_should_stop())
4100 			schedule();
4101 
4102 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4103 	} else {
4104 		if (remaining)
4105 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4106 		else
4107 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4108 	}
4109 	finish_wait(&pgdat->kswapd_wait, &wait);
4110 }
4111 
4112 /*
4113  * The background pageout daemon, started as a kernel thread
4114  * from the init process.
4115  *
4116  * This basically trickles out pages so that we have _some_
4117  * free memory available even if there is no other activity
4118  * that frees anything up. This is needed for things like routing
4119  * etc, where we otherwise might have all activity going on in
4120  * asynchronous contexts that cannot page things out.
4121  *
4122  * If there are applications that are active memory-allocators
4123  * (most normal use), this basically shouldn't matter.
4124  */
4125 static int kswapd(void *p)
4126 {
4127 	unsigned int alloc_order, reclaim_order;
4128 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4129 	pg_data_t *pgdat = (pg_data_t *)p;
4130 	struct task_struct *tsk = current;
4131 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4132 
4133 	if (!cpumask_empty(cpumask))
4134 		set_cpus_allowed_ptr(tsk, cpumask);
4135 
4136 	/*
4137 	 * Tell the memory management that we're a "memory allocator",
4138 	 * and that if we need more memory we should get access to it
4139 	 * regardless (see "__alloc_pages()"). "kswapd" should
4140 	 * never get caught in the normal page freeing logic.
4141 	 *
4142 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4143 	 * you need a small amount of memory in order to be able to
4144 	 * page out something else, and this flag essentially protects
4145 	 * us from recursively trying to free more memory as we're
4146 	 * trying to free the first piece of memory in the first place).
4147 	 */
4148 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4149 	set_freezable();
4150 
4151 	WRITE_ONCE(pgdat->kswapd_order, 0);
4152 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4153 	for ( ; ; ) {
4154 		bool ret;
4155 
4156 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4157 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4158 							highest_zoneidx);
4159 
4160 kswapd_try_sleep:
4161 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4162 					highest_zoneidx);
4163 
4164 		/* Read the new order and highest_zoneidx */
4165 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4166 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4167 							highest_zoneidx);
4168 		WRITE_ONCE(pgdat->kswapd_order, 0);
4169 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4170 
4171 		ret = try_to_freeze();
4172 		if (kthread_should_stop())
4173 			break;
4174 
4175 		/*
4176 		 * We can speed up thawing tasks if we don't call balance_pgdat
4177 		 * after returning from the refrigerator
4178 		 */
4179 		if (ret)
4180 			continue;
4181 
4182 		/*
4183 		 * Reclaim begins at the requested order but if a high-order
4184 		 * reclaim fails then kswapd falls back to reclaiming for
4185 		 * order-0. If that happens, kswapd will consider sleeping
4186 		 * for the order it finished reclaiming at (reclaim_order)
4187 		 * but kcompactd is woken to compact for the original
4188 		 * request (alloc_order).
4189 		 */
4190 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4191 						alloc_order);
4192 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4193 						highest_zoneidx);
4194 		if (reclaim_order < alloc_order)
4195 			goto kswapd_try_sleep;
4196 	}
4197 
4198 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4199 
4200 	return 0;
4201 }
4202 
4203 /*
4204  * A zone is low on free memory or too fragmented for high-order memory.  If
4205  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4206  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4207  * has failed or is not needed, still wake up kcompactd if only compaction is
4208  * needed.
4209  */
4210 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4211 		   enum zone_type highest_zoneidx)
4212 {
4213 	pg_data_t *pgdat;
4214 	enum zone_type curr_idx;
4215 
4216 	if (!managed_zone(zone))
4217 		return;
4218 
4219 	if (!cpuset_zone_allowed(zone, gfp_flags))
4220 		return;
4221 
4222 	pgdat = zone->zone_pgdat;
4223 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4224 
4225 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4226 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4227 
4228 	if (READ_ONCE(pgdat->kswapd_order) < order)
4229 		WRITE_ONCE(pgdat->kswapd_order, order);
4230 
4231 	if (!waitqueue_active(&pgdat->kswapd_wait))
4232 		return;
4233 
4234 	/* Hopeless node, leave it to direct reclaim if possible */
4235 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4236 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4237 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4238 		/*
4239 		 * There may be plenty of free memory available, but it's too
4240 		 * fragmented for high-order allocations.  Wake up kcompactd
4241 		 * and rely on compaction_suitable() to determine if it's
4242 		 * needed.  If it fails, it will defer subsequent attempts to
4243 		 * ratelimit its work.
4244 		 */
4245 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4246 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4247 		return;
4248 	}
4249 
4250 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4251 				      gfp_flags);
4252 	wake_up_interruptible(&pgdat->kswapd_wait);
4253 }
4254 
4255 #ifdef CONFIG_HIBERNATION
4256 /*
4257  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4258  * freed pages.
4259  *
4260  * Rather than trying to age LRUs the aim is to preserve the overall
4261  * LRU order by reclaiming preferentially
4262  * inactive > active > active referenced > active mapped
4263  */
4264 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4265 {
4266 	struct scan_control sc = {
4267 		.nr_to_reclaim = nr_to_reclaim,
4268 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4269 		.reclaim_idx = MAX_NR_ZONES - 1,
4270 		.priority = DEF_PRIORITY,
4271 		.may_writepage = 1,
4272 		.may_unmap = 1,
4273 		.may_swap = 1,
4274 		.hibernation_mode = 1,
4275 	};
4276 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4277 	unsigned long nr_reclaimed;
4278 	unsigned int noreclaim_flag;
4279 
4280 	fs_reclaim_acquire(sc.gfp_mask);
4281 	noreclaim_flag = memalloc_noreclaim_save();
4282 	set_task_reclaim_state(current, &sc.reclaim_state);
4283 
4284 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4285 
4286 	set_task_reclaim_state(current, NULL);
4287 	memalloc_noreclaim_restore(noreclaim_flag);
4288 	fs_reclaim_release(sc.gfp_mask);
4289 
4290 	return nr_reclaimed;
4291 }
4292 #endif /* CONFIG_HIBERNATION */
4293 
4294 /*
4295  * This kswapd start function will be called by init and node-hot-add.
4296  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4297  */
4298 int kswapd_run(int nid)
4299 {
4300 	pg_data_t *pgdat = NODE_DATA(nid);
4301 	int ret = 0;
4302 
4303 	if (pgdat->kswapd)
4304 		return 0;
4305 
4306 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4307 	if (IS_ERR(pgdat->kswapd)) {
4308 		/* failure at boot is fatal */
4309 		BUG_ON(system_state < SYSTEM_RUNNING);
4310 		pr_err("Failed to start kswapd on node %d\n", nid);
4311 		ret = PTR_ERR(pgdat->kswapd);
4312 		pgdat->kswapd = NULL;
4313 	}
4314 	return ret;
4315 }
4316 
4317 /*
4318  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4319  * hold mem_hotplug_begin/end().
4320  */
4321 void kswapd_stop(int nid)
4322 {
4323 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4324 
4325 	if (kswapd) {
4326 		kthread_stop(kswapd);
4327 		NODE_DATA(nid)->kswapd = NULL;
4328 	}
4329 }
4330 
4331 static int __init kswapd_init(void)
4332 {
4333 	int nid;
4334 
4335 	swap_setup();
4336 	for_each_node_state(nid, N_MEMORY)
4337  		kswapd_run(nid);
4338 	return 0;
4339 }
4340 
4341 module_init(kswapd_init)
4342 
4343 #ifdef CONFIG_NUMA
4344 /*
4345  * Node reclaim mode
4346  *
4347  * If non-zero call node_reclaim when the number of free pages falls below
4348  * the watermarks.
4349  */
4350 int node_reclaim_mode __read_mostly;
4351 
4352 /*
4353  * Priority for NODE_RECLAIM. This determines the fraction of pages
4354  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4355  * a zone.
4356  */
4357 #define NODE_RECLAIM_PRIORITY 4
4358 
4359 /*
4360  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4361  * occur.
4362  */
4363 int sysctl_min_unmapped_ratio = 1;
4364 
4365 /*
4366  * If the number of slab pages in a zone grows beyond this percentage then
4367  * slab reclaim needs to occur.
4368  */
4369 int sysctl_min_slab_ratio = 5;
4370 
4371 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4372 {
4373 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4374 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4375 		node_page_state(pgdat, NR_ACTIVE_FILE);
4376 
4377 	/*
4378 	 * It's possible for there to be more file mapped pages than
4379 	 * accounted for by the pages on the file LRU lists because
4380 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4381 	 */
4382 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4383 }
4384 
4385 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4386 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4387 {
4388 	unsigned long nr_pagecache_reclaimable;
4389 	unsigned long delta = 0;
4390 
4391 	/*
4392 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4393 	 * potentially reclaimable. Otherwise, we have to worry about
4394 	 * pages like swapcache and node_unmapped_file_pages() provides
4395 	 * a better estimate
4396 	 */
4397 	if (node_reclaim_mode & RECLAIM_UNMAP)
4398 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4399 	else
4400 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4401 
4402 	/* If we can't clean pages, remove dirty pages from consideration */
4403 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4404 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4405 
4406 	/* Watch for any possible underflows due to delta */
4407 	if (unlikely(delta > nr_pagecache_reclaimable))
4408 		delta = nr_pagecache_reclaimable;
4409 
4410 	return nr_pagecache_reclaimable - delta;
4411 }
4412 
4413 /*
4414  * Try to free up some pages from this node through reclaim.
4415  */
4416 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4417 {
4418 	/* Minimum pages needed in order to stay on node */
4419 	const unsigned long nr_pages = 1 << order;
4420 	struct task_struct *p = current;
4421 	unsigned int noreclaim_flag;
4422 	struct scan_control sc = {
4423 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4424 		.gfp_mask = current_gfp_context(gfp_mask),
4425 		.order = order,
4426 		.priority = NODE_RECLAIM_PRIORITY,
4427 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4428 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4429 		.may_swap = 1,
4430 		.reclaim_idx = gfp_zone(gfp_mask),
4431 	};
4432 	unsigned long pflags;
4433 
4434 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4435 					   sc.gfp_mask);
4436 
4437 	cond_resched();
4438 	psi_memstall_enter(&pflags);
4439 	fs_reclaim_acquire(sc.gfp_mask);
4440 	/*
4441 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4442 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4443 	 * and RECLAIM_UNMAP.
4444 	 */
4445 	noreclaim_flag = memalloc_noreclaim_save();
4446 	p->flags |= PF_SWAPWRITE;
4447 	set_task_reclaim_state(p, &sc.reclaim_state);
4448 
4449 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4450 		/*
4451 		 * Free memory by calling shrink node with increasing
4452 		 * priorities until we have enough memory freed.
4453 		 */
4454 		do {
4455 			shrink_node(pgdat, &sc);
4456 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4457 	}
4458 
4459 	set_task_reclaim_state(p, NULL);
4460 	current->flags &= ~PF_SWAPWRITE;
4461 	memalloc_noreclaim_restore(noreclaim_flag);
4462 	fs_reclaim_release(sc.gfp_mask);
4463 	psi_memstall_leave(&pflags);
4464 
4465 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4466 
4467 	return sc.nr_reclaimed >= nr_pages;
4468 }
4469 
4470 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4471 {
4472 	int ret;
4473 
4474 	/*
4475 	 * Node reclaim reclaims unmapped file backed pages and
4476 	 * slab pages if we are over the defined limits.
4477 	 *
4478 	 * A small portion of unmapped file backed pages is needed for
4479 	 * file I/O otherwise pages read by file I/O will be immediately
4480 	 * thrown out if the node is overallocated. So we do not reclaim
4481 	 * if less than a specified percentage of the node is used by
4482 	 * unmapped file backed pages.
4483 	 */
4484 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4485 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4486 	    pgdat->min_slab_pages)
4487 		return NODE_RECLAIM_FULL;
4488 
4489 	/*
4490 	 * Do not scan if the allocation should not be delayed.
4491 	 */
4492 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4493 		return NODE_RECLAIM_NOSCAN;
4494 
4495 	/*
4496 	 * Only run node reclaim on the local node or on nodes that do not
4497 	 * have associated processors. This will favor the local processor
4498 	 * over remote processors and spread off node memory allocations
4499 	 * as wide as possible.
4500 	 */
4501 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4502 		return NODE_RECLAIM_NOSCAN;
4503 
4504 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4505 		return NODE_RECLAIM_NOSCAN;
4506 
4507 	ret = __node_reclaim(pgdat, gfp_mask, order);
4508 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4509 
4510 	if (!ret)
4511 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4512 
4513 	return ret;
4514 }
4515 #endif
4516 
4517 /**
4518  * check_move_unevictable_pages - check pages for evictability and move to
4519  * appropriate zone lru list
4520  * @pvec: pagevec with lru pages to check
4521  *
4522  * Checks pages for evictability, if an evictable page is in the unevictable
4523  * lru list, moves it to the appropriate evictable lru list. This function
4524  * should be only used for lru pages.
4525  */
4526 void check_move_unevictable_pages(struct pagevec *pvec)
4527 {
4528 	struct lruvec *lruvec = NULL;
4529 	int pgscanned = 0;
4530 	int pgrescued = 0;
4531 	int i;
4532 
4533 	for (i = 0; i < pvec->nr; i++) {
4534 		struct page *page = pvec->pages[i];
4535 		int nr_pages;
4536 
4537 		if (PageTransTail(page))
4538 			continue;
4539 
4540 		nr_pages = thp_nr_pages(page);
4541 		pgscanned += nr_pages;
4542 
4543 		/* block memcg migration during page moving between lru */
4544 		if (!TestClearPageLRU(page))
4545 			continue;
4546 
4547 		lruvec = relock_page_lruvec_irq(page, lruvec);
4548 		if (page_evictable(page) && PageUnevictable(page)) {
4549 			del_page_from_lru_list(page, lruvec);
4550 			ClearPageUnevictable(page);
4551 			add_page_to_lru_list(page, lruvec);
4552 			pgrescued += nr_pages;
4553 		}
4554 		SetPageLRU(page);
4555 	}
4556 
4557 	if (lruvec) {
4558 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4559 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4560 		unlock_page_lruvec_irq(lruvec);
4561 	} else if (pgscanned) {
4562 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4563 	}
4564 }
4565 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4566